
BUDAPEST UNIVERSITY OF TECHNOLOGY AND ECONOMICS

DEPT. OF TELECOMMUNICATIONS AND MEDIA INFORMATICS

A PERFORMANCE ANALYSIS OF SOME TRAFFIC CONTROL

TECHNIQUES IN TCP/IP NETWORKS

Tuan Anh Trinh

Ph.D. Dissertation

Supervised by

Dr. Sándor Molnár and Dr. László Gefferth

High Speed Networks Laboratory

Dept. of Telecommunications and Media Informatics

Budapest University of Technology and Economics

Budapest, Hungary
2004

c© Copyright 2004

Tuan Anh Trinh

High Speed Networks Laboratory

Dept. of Telecommunications and Media Informatics

Budapest University of Technology and Economics1

1The reviews and the minutes of the Ph.D. Defense are available from the Dean’s Office.

ii

To my family

iii

iv

Table of Contents

Table of Contents vii

List of Tables viii

List of Figures ix

Abstract xi

Acknowledgements xiii

1 Introduction 1
1.1 New Insights in TCP Traffic Modelling and Analysis 2

1.1.1 Previous Work on TCP Traffic Modelling and Analysis 2
1.1.2 Contributions to TCP Traffic Modelling and Analysis 3

1.2 Analysis of the Random Early Detection Mechanism 5
1.2.1 Previous Work on RED Performance Analysis 6
1.2.2 Contributions to RED Performance Analysis 6

2 TCP Metrics Measurements 8
2.1 Background on TCP . 9

2.1.1 Early TCP implementations . 9
2.1.2 Modern TCP implementations . 9

2.2 Dynamics of the virtual queue . 12
2.2.1 The virtual queue concept . 12
2.2.2 Results and validation . 13

2.3 A State-based Analysis of TCP . 14
2.3.1 The state detection mechanism . 15
2.3.2 Problems with state detection . 16
2.3.3 Measurement of state-based metrics of TCP 17

2.4 Conclusion . 18

v

3 A Unified Model for TCP 19
3.1 A D-BMAP model for TCP stationary throughput 20

3.1.1 Background on D-BMAP . 20
3.1.2 The Model . 21

3.2 Numerical analysis . 23
3.2.1 The TCP Reno case . 23
3.2.2 The TCP Tahoe case . 25
3.2.3 The TCP New Reno and TCP SACK case 26

3.3 Results and Validation . 27
3.3.1 On the sojourn time distribution at the states 28
3.3.2 On the stationary performance of TCP 29

3.4 Conclusion . 31

4 A Game-Theoretic Analysis of TCP 32
4.1 Background . 33

4.1.1 TCP Vegas . 33
4.1.2 Goodput models of TCP Vegas . 34

4.2 The TCP Vegas games . 35
4.2.1 Game 1: Rate allocation of TCP Vegas 35
4.2.2 Game 2: Parameter Setting of TCP Vegas 38
4.2.3 Game 3: Application to FAST TCP 40

4.3 Conclusion . 41

5 Performance Analysis of RED 43
5.1 Background on RED . 44
5.2 Proportional Loss Revisited . 45
5.3 Simulation Topology . 47
5.4 Motivations for Fuzzy RED . 48

5.4.1 Pitfalls in Tuning RED Parameters 48
5.4.2 Reasons for Fuzzy Extension . 51

5.5 Fuzzy RED Mechanism . 53
5.5.1 Construction of Fuzzy RED Mechanism 53

5.6 Simulation Results . 55
5.6.1 Stationary Performance . 55
5.6.2 Performance with Non-Stationarities 59

5.7 Conclusion . 60

6 Summary of the Dissertation 62
6.1 Measurement of the Metrics of TCP . 62
6.2 New Unified Model for TCP . 63
6.3 Game-Theoretic Analysis of TCP Vegas . 64
6.4 Performance Analysis of RED . 64

vi

A Appendices of Chapter 2 65
A.1 State detection in more detail . 65

Bibliography 66

vii

List of Tables

viii

List of Figures

2.1 Illustration of the virtual queue . 12
2.2 Dynamics of the virtual queue . 14
2.3 Illustration of the state detection algorithm 15
2.4 Flow diagram of the state detection tool . 16

3.1 Markov chain representation of exponential back-offs 23
3.2 Sojourn time distribution at Congestion Avoidance state: (a) Drop Tail case;

(b) RED case. 28
3.3 Sojourn time distribution at Loss Recovery state: (a) NewReno TCP case;

(b) SACK TCP case. 29
3.4 Throughput of TCP against different loss probabilities: (a)Reno-Tahoe TCP

case; (b) NewReno-SACK TCP case. 30

5.1 Dropping function of RED . 45
5.2 Simulation Topology . 48
5.3 Impact of weighting parameter on router-based performance metrics: RED

vs. Drop-Tail . 50
5.4 Impact of dropping parameter on router-based performance metrics: RED

vs. Drop-Tail . 51
5.5 Membership functions: (a) error membership function; (b) Wq membership

function. 54
5.6 Flow diagram of Fuzzy RED . 55
5.7 Router-based performance metrics- different RTTs: Fuzzy RED vs. Adaptive

RED versions and Drop-Tail. 56
5.8 Router-based performance metrics- same RTTs: Fuzzy RED vs. Adaptive

RED versions and Drop-Tail. 57
5.9 Queue-length variations: (a) RED case; (b) Fuzzy RED case. 58
5.10 Queue-length variations: (a) RED case; (b) Fuzzy RED case. 59
5.11 Performance with level-shifts: RED vs. Fuzzy RED: (a) RED case; (b) Fuzzy

RED case. 59
5.12 Performance with Non-Stationarities: RED vs. Fuzzy RED: (a) RED case;

(b) Fuzzy RED case. 60

ix

A.1 State detection flow diagram . 65

x

Abstract

Traffic control techniques, by keeping the rapidly growing Internet traffic within control,
are indispensable and play a crucial role in the success of the Internet. The aim of this
dissertation is to provide a comprehensive performance analysis of some key traffic control
techniques in TCP/IP networks. First, characterization of some metrics of TCP is pre-
sented. Next, a novel approach to model TCP traffic is provided. In addition, the rate
control and parameter setting of TCP is analyzed from a game-theoretic point of view.
Finally, a comprehensive performance analysis of one of the most well-known queue man-
agement schemes, the Random Early Detection scheme, is presented.

xi

xii

Acknowledgements

Throughout my graduate study, I have been fortunate enough to have the help and support
of a large number of people. First of all, I would like to express my deep gratitude to
Dr. Sándor Molnár for his kind encouraging guidance and support. Without his help this
dissertation would have never been completed.

My special thanks are due to Prof. László Györfi for helping me in many ways throughout
the years and Tamás Éltető for guiding me at the beginning when I was an undergraduate
student. I owe them a depth of gratitude.

All my research work has been done in the framework of teletraffic research at High Speed
Networks Laboratory (HsnLab), Dept. of Telecommunications and Media Informatics, Bu-
dapest University of Technology and Economics (TMIT/BUTE). I would like to thank Dr.
Tamás Henk, head of the laboratory, for his support. I also wish to acknowledge the help
that I received from those people at TMIT/BUTE during the years. It was my pleasure
working together with them.

I would also like to thank Prof. Srinivasan Keshav (Stanford University, USA), Dr. Polly
Huang (ETH Zürich, Switzerland), Dr. Miklós Telek, Dr. Attila Vidács, and Dr. András
Veres (BUTE) for their helpfulness and fruitful advice contributing to my research work.

Finally, I would most like to thank my parents for their continual encouragement and
support throughout the years. This work is dedicated to them.

Budapest, Trinh Anh Tuan
July 2004

xiii

Chapter 1

Introduction

Starting from a relatively small network used by a relatively small research community in
the United States, the Internet is now used by millions of people all over the world and this
number is growing increasingly over the years. The success of the Internet, in which the
TCP/IP protocol suite plays an important role, is based on its open, flexible but robust
architecture.

It has not all been a happy story, nevertheless. An incident [Nag84] happened during the
early growth phase of the Internet in mid 1980s brought the Internet down. The incident
(technically called congestion collapse) was later explained by the lack of attention to the
dynamics of packet forwarding. The lesson learnt from this incident is that we need to
introduce some transmission control mechanisms into the design of the Internet. In this
respect, the original fix to the congestion collapse of the Internet was provided by Van
Jacobson in [Jac88] and the Transmission Control Protocol (TCP) was born. The basic
idea behind TCP congestion control is to control network load by having sources adjust
their rates according to the level of congestion in the network. Since then, a number
of improvements have been added to the original TCP implementation, this basic idea
remained unchanged.

In addition, traffic in the Internet is composed of flows with different nature and differ-
ent characteristics, as more and more new IP-based applications are brought into existence.
Some of them are congestion-aware and some are not. As a consequence, end-to-end con-
gestion control algorithms such as those in TCP are not enough to prevent congestion in
the Internet, and they must be supplemented by control mechanisms inside the network.
Since routers are the common points for all flows, it is reasonable to detect and control
congestion at these points, at least globally. The Drop Tail buffer management scheme
does little in this respect. To face this problem, a number of Active Queue Management
(AQM) schemes [FloJa93, FGS01, FKSS99, ALLY01, HMTG01] were introduced that can
efficiently manage the buffers at the routers in order to avoid congestion, and in some cases,
to guarantee fairness between competing flows.

From what have been discussed so far, it is without doubt that the the traffic control
schemes play a crucial role in the success of the Internet. However, these schemes are still
not well understood. As a result, there is a genuine need to have a better understanding of

1

2

their performance as well as their impact on the performance of the Internet as a whole in
order to design more efficient traffic control mechanisms for the Internet.

The dissertation is organized around the above arguments. In the first part of the
dissertation, we present research results from different perspectives on the modelling and
analysis of the TCP protocol. The perspectives include the metrics of TCP, modelling of
TCP traffic and the analysis of the rate control as well as the parameter setting problems
of TCP from a game-theoretic point of view. The second part of the thesis presents a
comprehensive analysis of one of the most promising AQM schemes, the Random Early
Detection (RED) scheme, and proposes a novel scheme to improve RED performance.

1.1 New Insights in TCP Traffic Modelling and Analysis

In what follows, we summarize the key previous work in the field of TCP traffic modelling
and analysis, introduce our motivation for research, and our contributions to this area.

Our research methodology is to apply different mathematical modelling techniques, net-
work simulations and network measurements. We also introduce a number of new concepts
and propose a number of new algorithms. When investigating the proposals, we combine
the techniques mentioned above whenever possible to validate the results and to gain a
better insight into the problem.

1.1.1 Previous Work on TCP Traffic Modelling and Analysis

There exists a substantial literature on the modelling and analysis of TCP. Extensive mea-
surements and analysis of TCP have been carried out over the past few years, [LTWW93,
Pax94, Pax97, RFC2525]. A lot of lessons have been learnt from these measurements and
analysis. For example, it is now widely accepted that Internet traffic (in which TCP plays
a crucial role)is self-similar in nature, [LTWW93], contradicting the Poisson assumption in
the past. We have also learnt from the analysis about the pitfalls and many implementa-
tion problems of TCP, [RFC2525]. However, as new applications are being built upon TCP
and new versions of TCP are being proposed for specific networks, more measurement and
analysis is still need to have a better insights into the dynamics of the new/proposed net-
works. In addition, given the protocol, we want to predict the performance of the network
and keep the network manageable and analytically tractable. In order to do that, we need to
build analytical models for TCP. Basically, TCP modelling can be found in two main levels:
packet level and flow (fluid) level. One of the motivations for the packet level approach is
the possibility of applying existing discrete-time models [Kum98, PFTK98]. Respectively,
the motivation for fluid level model is the possibility of applying existing continuous-time
(control-theoretic) models, [Low03, MGT00, OKM96], to name a few. In both approaches,
good points have been addressed and important, subtle results have been achieved. In
[OKM96], Ott et al used stochastic differential equations to model TCP behavior and first
suggested the well-known square-root formula. Padhye et al in [PFTK98] extend the model

3

in [OKM96] to capture Time Out. This model is widely accepted as one of the most ac-
curate models for TCP Reno (in the case of bulk data transfer). We can also mention
here the chaotic nature of TCP and its ability to propagate long range dependance in the
Internet as suggested and examined in [VeBo00, VMKV00]. However, as TCP modelling
is application-sensitive, a general purposed TCP model that is precise, yet simple, is still
unavailable. This makes the TCP modelling task still very challenging and motivates us on
our research.

1.1.2 Contributions to TCP Traffic Modelling and Analysis

In this dissertation, we investigate the properties of the TCP protocol in three different
perspectives. The perspectives include the metrics of TCP, modelling of TCP traffic, and
game-theoretic analysis of the rate control and parameter setting of TCP. Chapter 2 intro-
duces new algorithms to measure and to evaluate new metrics of TCP. Chapter 3 proposes
a novel approach to model TCP traffic. Chapter 4 analyzes the rate control and parameter
setting of TCP from a game-theoretic perspective.

New algorithms to measure metrics of TCP

In order to understand the dynamics of TCP, we first need to know how it actually works.
In Chapter 2, new metrics and novel algorithms are introduced to characterize the dynamics
of TCP traffic in different perspectives. It is sometime not obvious how to measure some
important metrics of TCP (such as the congestion window) from simulation as well as in real
measurement. In fact, from time to time, we need to approximate the theoretically-defined
metrics in practice. Moreover, as new theoretical approach requires new kind of statistics
and metrics, it is essential to know how to measure these new metrics firstly for the sake
of validation. Secondly, the new metrics themselves provide us new perspective and insight
into the dynamic of TCP.

In Chapter 2, we introduce the virtual queue metric that characterizes the fluctuation
of the number of packets in forward direction of a TCP connection over time. While
the congestion window represents the traffic control at end-point, the virtual queue shows
the impact of the congestion window on the network. We also design a novel algorithm
to measure this metric. In addition, we discuss how this metric can reveal important
information on the network dynamics.

We introduce and design a novel algorithm to detect the changes of states of TCP during
a connection. The benefits of the algorithm are twofold. First, it helps us to have a better
insight into how the TCP actually works. Secondly, the detection of the states TCP helps
us to reveal important statistics of TCP.

Being able to detect the state changes of TCP, we are now possible to design and imple-
ment algorithms to measure important state-based metrics of TCP. The metrics include:

• The sojourn time distribution at each state during a TCP connection.

• The jumping probabilities from one state to another state during a connection.

4

• The distribution of the number of packets sent in each time slot (RTT).

These state-based metrics reveal the dynamics of TCP according to its states. In addition,
the metrics help us collect the statistics to validate our new TCP model presented in Chap-
ter 3.

A new unified model for TCP

Previous work on modelling of TCP is mainly based on studying the dynamics of the con-
gestion window process. Although important results have been achieved, due to the reasons
discussed above, a generic model for TCP that is simple and precise is still unavailable.

In Chapter 3, we propose a novel approach to model TCP traffic. In contrast to the
congestion window based approach, we introduce a new perspective into the modelling
paradigm of TCP. We study the dynamics of the states of the TCP itself in order to model
it. We investigate the sojourn time distributions at the states as well as the jumping
probabilities between the states and use the results achieved from the investigation to build
a model to estimate TCP throughput. The main advantages of our approach are that (1)
it provides a unified model for all well-known versions of TCP because they share the same
logical set of states, and (2) the number of states is significantly reduced (in contrast with
the number of possible values of the congestion window). Reducing the number of states in
a Markov model makes it more computationally feasible and more analytically tractable,
and thus, more desirable.

We propose a unified model for some well-known versions of TCP based on the Discrete-
time Batch Markovian Arrival Process (D-BMAP). The basic idea behind our model is that
we try to mimic inherent operation of TCP in order to model it. During a connection,
TCP stays in any of the following states: Slow-Start, Congestion Avoidance, Fast Recovery,
Exponential Back-off. TCP can jump from one state to another state in response to external
events such as packet loss or Time Out. We consider how much time TCP stays in each
state and the distribution of time elapsed at each state. We then consider the jumping
probability from one state to another state. This inherent operation of TCP suggests us
the use of the D-BMAP process (originally introduced and examined in detail in [BloCa95]).
The idea of D-BMAP can be traced back to M. Neuts’ work in [Neu81]. The states of the
background process (modulating process) are the states of TCP itself (i.e. Slow Start,
Congestion Avoidance, Loss Recovery and Time Out).

We introduce a new concept to characterize a TCP connection, namely the TCP char-
acterization matrix, which is the matrix that characterizes the modulating Markov chain.
we show how, under certain assumptions, the elements of the TCP characterization matrix
can be expressed and computed.

Based on the model, we propose a generic formula to estimate the average bandwidth
of a long TCP connection. The model is validated by simulation against different versions
of TCP such as TCP Reno, TCP Tahoe, TCP NewReno and TCP SACK.

5

A game-theoretic analysis of TCP Vegas

With the emergence of very large bandwidth-delay product networks such as the transat-
lantic link with a capacity in the range of 1 Gbps - 10 Gbps, new transport protocols have
been proposed to better utilize the network in these circumstances. A promising proposal
is the FAST TCP, [JWL04]. Since the design of FAST TCP is heavily based on the design
of TCP Vegas, there is a need to reconsider the benefits as well as the drawbacks of TCP
Vegas in order to have an insight into the performance and possible deployment of FAST
TCP in the future Internet. In Chapter 4, we analyze the rate control problem of a gen-
eral TCP Vegas network from the game-theoretic point of view. We also show the impact
of the parameter setting of TCP Vegas and FAST TCP on their performance by using a
game-theoretic approach.

We first consider the rate control problem of a general TCP Vegas network as a non-
cooperative game. One of the key questions in a non-cooperative flow control game in
general, and our game in particular, is whether the network converges to (or settles at)
an equilibrium point, such that no player can increase its payoff by adjusting its strategy
unilaterally. In the game-theory terminology such a point is called a Nash equilibrium. The
Nash equilibrium in our game also reflects the balance of the gain and the cost for each
player as well as for the network as a whole. A non-cooperative game may have no Nash
equilibria (in its pure strategy space), multiple equilibria, or a unique equilibrium. We then
consider the parameter setting of TCP Vegas. As described in [BMP94], TCP Vegas tries to
maintain the number of backlogged packets in the network between α and β (the parameters
of TCP Vegas). We consider the case when N TCP Vegas flows sharing a single bottleneck
link with capacity µ and with a buffer of size B. The TCP Vegas flows (the players) are
assumed to be selfish (and greedy) - they all try to increase the number of their backlogged
packets in the network. We are interested in a situation (i.e. a parameter setting, if at all
exists) from where no player would deviate.

We prove that there exists a unique Nash equilibrium (in its pure strategy space) for
the TCP Vegas rate control game.

We model the parameter setting problem of TCP Vegas as a static and noncooperative
game. We demonstrate how selfish behaviour of users can make the all TCP Vegas-network
vulnerable to congestion.

We also extend our analysis to FAST TCP case. We show how FAST TCP can be
considered as a ”faster” Vegas TCP and apply the analysis of the Vegas TCP case. Our
analysis shows the all FAST TCP network is vulnerable to congestion and this poses a
serious threat to the wide deployment of FAST TCP in future Internet.

1.2 Analysis of the Random Early Detection Mechanism

In the second part of the dissertation a comprehensive performance analysis of the Random
Early Detection mechanism is provided. In Chapter 5, we revisit a number of concepts and
found that previous thinking needs to be changed. Among these is the changed view that

6

actually RED does not provide the capability to apportion loss between flows. We highlight
the problems associated with the tuning of RED and propose a novel scheme to enhance
RED performance.

1.2.1 Previous Work on RED Performance Analysis

There exists a substantial literature on performance analysis of RED. We would divide it
into two classes. The first class largely deals with analyzing and configuring RED, while
keeping the algorithm intact, [MBB00, CJOS00, MGT00, HMTG01]. The second class
considers how to change the original RED to have better performance, [FKSS99, FGS01,
ZhAt00, LiMo97, AOMC01, WyZu02].

Despite the fact that extensive research has been devoted to performance analysis of
RED and many publications have highlighted various aspects of this issue, the question of
how to configure the parameters of RED for optimal performance is still open. In addition,
the impact of RED mechanism on different issues of Internet performance (such as fairness)
is still not clear and requires more clarification and analysis.

1.2.2 Contributions to RED Performance Analysis

In Chapter 5, we first revisit the proportional loss property of RED. Loosely speaking, the
proportional loss property means that the fraction of marked packets for each connection is
proportional to that connection’s share of the bandwidth. RED is claimed to possess this
property [FloJa93]. In addition, proportional loss is widely adopted in the fairness analysis
of RED, [LiMo97], [HBT99]. Since TCP flows account for a large portion of Internet traffic,
TCP arrivals are mainly of interest. We prove that packet losses between flows in TCP/RED
networks is non-proportional by applying the ASTA properties.

Some solutions have been proposed to overcome the difficulties of tuning RED parame-
ters. We can mention here the Adaptive RED of Feng [FKSS99] and the Adaptive RED of
Floyd [FGS01]. These proposals try to change the maxp parameter to adapt to the changing
condition of incoming traffic. My argument was that the inflexibility of RED not only lies
in its maxp parameter but also on the EWMA mechanism. As a result, RED parameters
can be tuned in an on-line manner by making the EWMA adaptive to the changing condi-
tion of the incoming traffic. We propose a new AQM scheme (Fuzzy RED) to alleviate the
inflexibility of RED tuning.

We discuss the advantage as well as the disadvantage of the Exponential Weighted
Moving Average (EWMA) mechanism in RED both from theoretical and practical point of
view.

We propose the use of Fuzzy EWMA to overcome the inflexibility of RED. We enhance
RED mechanism by replacing EWMA mechanism with Fuzzy EWMA mechanism.

We carry out a comparative performance analysis of different adaptive RED schemes
by simulations. We investigate different scenarios: stationary cases, multiple sources with

7

different RTT, different number of flows, dynamically changing number of flows. The sim-
ulations show that, in the case of a high workload and a high level of variation, fuzzy RED,
by tracking system variation in an on-line manner, improves RED performance in a num-
ber of important router-based metrics like packet loss rate, average queueing delay, link
utilization, and global power.

Chapter 2

TCP Metrics Measurements

In order to understand the dynamics of TCP, we first need to know how it actually works.
It is sometime not obvious how to measure some metrics of TCP from simulation as well as
in real measurement. In fact, from time to time, we need to approximate the theoretically-
defined metrics in practice.

One of the most important metrics of TCP is the congestion window. The congestion
window (cwnd) is a sender’s variable. More precisely, it is an inner variable of the oper-
ating system at the sender. Together with the advertised window (a receiver’s variable)
it determines the number of packets that TCP can send into the network. However, in
practice, it is not easy to trace this variable without modifying the kernel code of the op-
erating system. As a result, in order to measure (estimate) the congestion window, we
measure the number of out-going packets in the network. These are the packets that are
sent but not yet acknowledged. Another important metric of TCP is the round-trip time
(RTT). To measure the round-trip time, we can use the PING utility. However, it should
be mentioned that PING uses ICMP packets to estimate the round-trip time whereas in a
TCP connection, we deal with data packets. In fact TCP uses Karn’s algorithm, [KaPa87],
to estimate the round-trip time and this is also a formal requirement for any TCP imple-
mentation, [RFC2988]. These are the basic metrics of TCP. However, as new theoretical
approach requires new kind of statistics and metrics, it is essential to know how to measure
these new metrics firstly for the sake of validation. Secondly, the new metrics themselves
provide us new perspective and insight into the dynamics of TCP.

In this chapter, we introduce new metrics of TCP, design and implement a class of
novel algorithms to measure those metrics. The algorithms include the measurement of the
number of forward-going packets, the detection of the states of TCP and the measurement
of state-based metrics of TCP. We also show the applicability of the new metrics and novel
algorithms in TCP modelling and analysis.

The chapter is organized as follows. Section 2.1 discusses the background of TCP. In
Section 2.2, a new virtual queue concept (metric) as well as a novel algorithm to measure
the new metric is presented. A new algorithm for state detection of TCP is provided in
Section 2.3. In addition, novel algorithms to collect the state-based metrics of TCP are also
given in Section 2.3.

8

9

2.1 Background on TCP

2.1.1 Early TCP implementations

Modern TCP implementations contain a number of algorithms aimed at controlling network
congestion while maintaining good user throughput and low delay. Early TCP implemen-
tations followed a Stop-and-Wait or a Go-Back-N (see [Sch97] for detailed operations and
performance) model using cumulative positive acknowledgement and requiring retransmit
timer expiration to re-send data lost during transport. These TCP implementations did
little to minimize network congestion but contained basic elements of the transport protocol
that today’s TCP implementations inherit.

Stop-and-Wait protocol

In this procedure only one packet at a time can be transmitted. The transmitter then waits
for an acknowledgment (ACK) or negative acknowledgment (NACK). Negative acknowl-
edgments are used to indicate an error condition. If either a NACK arrives or a timeout
expires, the packet is retransmitted. Only when an ACK arrives is the packet in question
dropped from the transmit buffer. This is an appropriate protocol for halfduplex transmis-
sion, in which the two sides alternate transmission. However, this protocol obviously suffers
from reduced throughput in the fullduplex case, particularly if the link propagation delay
is significantly longer than the packet transmission time.

Go-Back-N protocol

In this procedure packets are transmitted continuously, if available, without waiting for
an ACK. On receipt of a NACK, or expiration of the Time Out without receipt of an
ACK/NACK, the packet in question and all packets following are transmitted. The pipelin-
ing of packets obviously improves the throughput performance. In practical versions of a
Go Back N protocol, not all packets need be acknowledged. An ACK may positively ac-
knowledge a given packet and all packets preceding it.

2.1.2 Modern TCP implementations

In this section, we overview some basic features of modern TCP implementations that we
will deal with in this dissertion. During establishment or connect phase, the two ends
exchange SYN packets for synchronization and generate initial sequence number. TCP
provides orderly transfer of data packets during the subsequent data transfer phase. Finally,
the protocol includes some procedures for terminating communication.

The TCP receiver: accepts packets out of sequence number order, buffers them in
TCP buffer, and delivers them to its TCP user in sequence. Since the receiver has a finite
sequencing buffer, it advertises a maximum window size, Wmax, at connection setup time,

10

and the transmitter ensures that there is never more than this amount of unacknowledged
data outstanding. The receiver returns an acknowledgement (ACK) for every good packet
that it receives. The ACKs are cumulative, i.e., an ACK carrying sequence number n
acknowledges all data up to, and including the sequence number n − 1. The ACKs from
the receiver carry the next expected packet number, which is the first among the packets
required to complete the sequence of packets in the sequencing buffer. Thus, if a packet is
lost, then the transmitter keep getting ACKs with the sequence number of the first packet
lost repeatedly. We call these the duplicate ACKs.

The TCP transmitter: maintains the following variables for each connection (at any
given time t):
A(t) = the lower window edge; all the data numbered upto and including A(t)-1 has been
transmitted and acknowledged. A(t) is nondecreasing.
W (t) = the congestion window (we also refer to this variable as cwnd in this disserta-
tion). The transmitter can send packets with the sequence number n, where A(t) ≤ n <
A(t) + W (t) and W (t) ≤ Wmax.
Wth(t) = the slow-start threshold (we also refer to this variable as ssthreshold in this dis-
sertation). Wth(t) controls the increments in W (t) as described later.

Tahoe TCP

The Tahoe TCP implementation, [Jac88], added a number of new algorithms and refine-
ments to earlier implementations. These algorithms include : Slow Start, Congestion Avoid-
ance, and Fast Retransmit. The refinements include a modification to the round trip time
estimator used to set retransmission Time Out values. With Slow Start, when the conges-
tion window smaller than threshold window, the connection load increases exponentially
due to the fact that after every acknowledgment of a new packet, the sender increases its
congestion window by one packet. When the network gets congested indicated by packet
lost, the sender enters the Congestion Avoidance Phase. The threshold window is assigned
half the value of the current congestion window. In this phase, the connection load increases
linearly due to the fact that the sender increases its congestion window by 1/W , where W
is the current congestion window size, each time a new ACK arrives. With Fast Retrans-
mit algorithm, after receiving a small number of duplicate acknowledgments for the same
TCP packet, the transmitter assumes that a packet has been lost and retransmit the packet
without waiting for the retransmission timer to expire, leading to higher channel utilization
and connection throughput. In short :

1. After every acknowledgment of a new packet: if W < Wth set W = W + 1: Slow
Start Phase else set W = W + 1/W : Congestion Avoidance Phase.

2. After a packet loss is detected: set Wth = W/2; set W = 1:Fast Retransmit Phase.

11

Reno TCP

The Reno TCP implementation, [RFC2001], also used the enhancements incorporated into
Tahoe, but modified the Fast Retransmit operation to include Fast Recovery. The new al-
gorithm prevents the communication path from going empty after Fast Retransmit, thereby
avoiding the need to Slow Start to refill it after a single packet loss. Fast Recovery is entered
by a TCP sender after receiving an initial threshold of duplicate ACKs. This threshold is
usually set to three. Once the threshold of duplicate ACKs is received, the sender retrans-
mits one packet and reduces it window by one half. Instead of slowstart, as performed by
Tahoe sender, the Reno sender uses additional incoming ACKs to clock subsequent outgoing
packets. In short:

1. After every nonrepeated acknowledgment, the algorithm works as before: if W < Wth ,
set W = W +1: Slow Start Phase else set W = W +1/W : Congestion Avoidance
Phase.

2. When the duplicate acknowledgments exceed a threshold, retransmit next expected
packet; set Wth = W/2, then set W = Wth and enter Fast Recovery Phase, resume
congestion avoidance using new window once retransmission is acknowledged.

3. Upon timer expiration: Time Out Phase, the algorithm goes into Slow Start
Phase as before : set Wth = W/2; set W = 1.

NewReno TCP

The NewReno TCP, [RFC2582], is a slightly modified version of Reno TCP. It includes
a small change to the Reno algorithm at the sender that eliminates Reno’s wait for a
retransmit timer when multiple packets are lost from a window. The change concerns the
sender’s behaviour during Fast Recovery when a partial ACK is received that acknowledges
some but not all of the packets that were outstanding at the start of the Fast Recovery
Period. When multiple packets are lost from a window, NewReno can recover without a
retransmission Time Out, retransmitting one lost packet per roundtrip time until all of
the lost packets from that window have been retransmitted.

SACK TCP

The SACK TCP (Selective Acknowledgment TCP), [MMFR96], was introduced to improve
the performance of TCP in presence of bursty losses. SACK TCP maintains a variable
called pipe that represents the estimated number of packets outstanding in the path. The
sender only sends new or retransmitted data when the estimated number of packets in the
path is less than the congestion window. The variable pipe is incremented by one when the
sender either sends a packet or retransmits an old packet. It is decremented by one when
the sender receives a duplicate ACK packet with a SACK option reporting that new data
has been received at the receiver. This is the reason why it is called selective. The sender

12

exits Fast Recovery when a recovery acknowledgment is received acknowledging all data
that was outstanding when Fast Recovery was entered.

2.2 Dynamics of the virtual queue

2.2.1 The virtual queue concept

The congestion window of a TCP connection can be approximated by the number of out-
going packets in the network (i.e. the number of packets that are sent but not yet acknowl-
edged). This number consists of:

• The number of packets flying towards the receiver (but not yet arrived).

• The number of packets stored at the receiver’s buffer (but not yet processed).

• The number of acknowledgements flying back to the sender (but not yet received by
the sender).

We are interested in the first metric (i.e. the number of packets flying to the receiver).
These packets are either on propagating or are waiting at some queues of some intermediate
routers. If we imagine all these queues as a single ”virtual queue” then our algorithm
measures the fluctuation of this virtual queue over time. The motivation for us to address
this concept is because while the congestion window represents the traffic control at end-
point, the virtual queue shows the impact of the congestion window on the network. In
addition, it also clarifies the difference between traffic generated at end-points and traffic
feeding the queues at the routers in a feed-back network, such as TCP networks. The idea
is illustrated in Figure 2.1. A natural question arises then: How to measure the virtual

Virtual queue

Acknowledgements flying back

Arrived but not yet processed

RECEIVER’s

BUFFER

SENDER

Figure 2.1: Illustration of the virtual queue

queue? To answer this question, we design a novel algorithm to measure this metric. The
algorithm consists of the following steps:

13

1. At the beginning of the connection, the virtual queue is set to 0.

2. Synchronization of the sender and receiver time to a common time (or ”absolute”
time).

3. After synchronization, record the time stamp of the packets sent at the sender and
received at the receiver.

4. Merge the time stamps recorded in increasing order.

5. Each time a packet is sent at the sender, the virtual queue is increased by 1 (a new
packet enters the queue). Each time a packet is received at the receiver, the virtual
queue is decreased by 1 (a packet leaves the queue).

One of the benefits of the proposed algorithm is that it works both for simulation
traces as well as for measurement traces. As for simulation traces (obtained from the
Network Simulator program (NS2), [NS2]), we did not need Step 1 because the simulator
has already done the synchronization. However, for traces from real measurements (by
using the TCPDUMP utility), synchronization was needed because the time at the receiver
and the sender are not necessarily the same. In this case, we used the SYN packets in the
TCPDUMP traces to synchronize the two clocks.

2.2.2 Results and validation

The virtual queue algorithm was verified using simulation and real measurements as well:

• The simulation study was carried out by using the NS2 tool. The algorithm was vali-
dated against different well-known versions of TCP (Tahoe, Reno, NewReno, SACK).

• Real measurements were carried out between the Budapest University of Technol-
ogy and Economics (BUTE) and Ericsson Research at Budapest. The packets were
recorded by using TCPDUMP tool. The algorithm was validated against the TCP-
DUMP traces obtained from the measurements.

An illustration of the dynamics of the virtual queue in Congestion Avoidance phase of TCP
is shown in Figure 2.2. We also illustrate in Figure 2.2 the ”induced delay” concept, which
is the time elapsed between two consecutive bulks of data sent. This metric (delay) plays
an important part in characterizing the forward delay and the backward delay of a TCP
connection (note that the sum of the forward delay and the backward delay is the round-trip
delay, i.e., RTT). In a symmetric network, these two kinds of delay are assumed to be equal.
However, in an asymmetric network, they are not necessarily the same and the models have
to take into account this effect.

In addition, the dynamics of the virtual queue also reveals to us the signal of congestion
through the ”congestion prone” line, the slope of which indicates congestion in the network.
The more steeper the slope the more congested the network. It is because a number of
packets are permanently queued in some intermediate routers and this number is increasing.

14

4.4 4.6 4.8 5 5.2 5.4 5.6 5.8 6 6.2 6.4
0

2

4

6

8

10

12

14

16

time [sec]

pa
ck

et
s

cwnd
forward going

Congestion Prone

Induced Delay

Figure 2.2: Dynamics of the virtual queue

The growing number of packets stored at the queues in the networks causes congestion in
the network. When a queue is sufficiently large (generally it is the bottleneck link’s queue),
it starts dropping incoming packets. As illustrated in Figure 2.2, the TCP connection suffers
a packet drop and halves its window in response to congestion in the network.

2.3 A State-based Analysis of TCP

As already mentioned previously, new theoretical approach requires new kind of statistics
and metrics, it is essential to know how to measure these new metrics firstly for the sake
of validation. Secondly, the new metrics themselves provide us new perspective and insight
into the dynamics of TCP. In this section, we address some state-based issues of TCP. We
try to give the answers to the following unanswered (or even unaddressed) questions:

• What is sojourn time distribution at each state of TCP during a connection?

• What is the jumping probability from one state to another state during a connection?

• What is the distribution of the number of packets sent in each round-trip time (RTT)?

We introduce a number of novel algorithms to measure these new metrics. At the core of
the algorithms is the state detection scheme.

In what follows, we first describe the basic state detection mechanism then we discuss
the difficulties involved with the implementation and our proposed solutions. Finally, we
describe novel algorithms to answer the questions address above.

15

2.3.1 The state detection mechanism

To begin with, all TCP connections, after hand-shake phase, start with Slow Start phase
to estimate the available bandwidth of the network. The TCP sender uses the congestion
window variable (as well as the slow start threshold and some other variables) to control
the number of packets sending to the network. The idea of our state detection algorithm is
based on the dynamics of the congestion window and the slow start threshold process. With
the congestion window, we can detect the changes of the states. Observe that if TCP is in
some state and the congestion window is increasing then TCP stays in that state. If the
congestion window is halved or decreased to 1, then a state change has happened. The slow
start threshold provides us the details about the next state, if a state change is detected. An
example of the operation of the state detection algorithm is illustrated in Figure 2.3. The

Slow Start

Fast

Rec.

Cong.

Avoid.

Slow Start
Timeout

CWND halved

CWND grows

CWND = 1

CWND = SSTHRESH

Figure 2.3: Illustration of the state detection algorithm

TCP connection starts with the Slow Start phase, so at the beginning the state variable is
set to Slow Start. As far as the congestion window (cwnd) is increasing, TCP stays in Slow
Start. The event that the congestion window is halved signals the end of the Slow Start
phase and TCP (Reno) enters Fast Recovery. The arrival of the Recovery ACK signals the
end of the Fast Recovery phase. If the next value of the cwnd is 1, then TCP Reno jumps
from Fast Recovery to Time Out (otherwise it jumps to Congestion Avoidance). The event
that the cwnd is set to 1 signals the end of the Time Out. After existing Time Out TCP

16

jumps to Slow Start phase. The event that the cwnd equals the the ssthresh signal the end
of the Slow Start phase and TCP Reno jumps from Slow Start to Congestion Avoidance.
The algorithm was implemented in a state detection tool. The flow diagram of the tool is

INITIALIZATION

update CWND

INPUT CWND

DATA IS

AVAILABLE

SSTHRESH

synchronization

STOP

NO
 YES

START

STATE DETECTION

Figure 2.4: Flow diagram of the state detection tool

illustrated in Figure 2.4 (more details are provided in Appendix A.1). Now, let us discuss
the difficulties we faced when implementing state detection.

2.3.2 Problems with state detection

We faced some difficulties when implementing the state detection mechanism of TCP. In
this section, we first state the problems, then we discuss the solution for them.

Problem 1

The first difficulty is the detection of the end of Time Out when TCP backs-off more than
one time in Time Out. As long as TCP is in Time Out, the congestion window is constantly
1 and each time it backs-off, the slow start threshold is halved. In this case, in order to check
how many times TCP backs-off we need to introduce a new variable, namely ssthreshControl
to follow the halving of the slow start threshold.

17

Problem 2

Another difficulty is the version of TCP that we deal with. The state detection of Reno
TCP, NewReno TCP, SACK TCP are more or less the same. The situation is different with
Tahoe TCP. In TCP Tahoe, there is no Fast Recovery. It slow starts after resending the
lost packet(s), of any kind. In TCP Tahoe, we have two kinds of Slow Start: Slow Start
after Time Out and Slow Start after triple ACKs. So in this case, we need to use the trace
file that contains the information about the duplicate acknowledgements.

Problem 3

We observe from our simulations that when the congestion window is small (less than 4),
the event that the congestion window is decreased to 1 does not necessarily means Time
Out. Again, we need the trace file that contains the information about the duplicate
acknowledgements to deal with this ambiguity.

We believe these are the major problems that we had to deal with. There are still many
problems relating to the state detection mechanism that we have fixed but, for the sake of
simplicity, are not listed here.

2.3.3 Measurement of state-based metrics of TCP

Being able to detect the beginning and the end of the states of TCP, it is now possible to
design new algorithms to measure the state-related metrics of TCP. The metrics include:

• The sojourn time distribution at each state during a TCP connection.

• The jumping probabilities from one state to another state during a connection.

• The distribution of the number of packets sent in each time slot (RTT).

As the first step, the algorithms begin with the state detection phase.

1. The sojourn time distributions were computed by the following steps:

• Collect all the possible states.

• For each state, e.g. state i, measure frequencies of the time (in RTT) TCP spent
at state i.

• The set of frequencies constitutes the sojourn time distribution at each state.

2. The jumping probabilities from one state to another state are computed by the fol-
lowing steps:

• Collect all the possible state jumps.

• For each state, e.g. state i, count the total number of jumps from state i (N total
i).

• Count the the total number of jumps from state i to state j (N j
i).

18

• pij = Nj
i

Ntotal
i

.

3. The distributions of the number of packets sent at each time slot (RTT) at different
states were computed by the following steps:

• Collect all the possible states.

• For each state, at each time slot, count the the total packets sent. Collect all the
possible values.

• Count the frequencies of each value.

• The frequencies of the number of packets sent at each time slot constitutes the
distributions.

The new state-based metrics provide us new insights into the dynamics of TCP. They are
also indispensable in the state-based analysis which are discussed in details in the following
sections. The applicability as well as the validation of the algorithms are presented in
Chapter 3.

2.4 Conclusion

In this chapter, new concepts and novel algorithms to characterize the metrics of TCP
were presented. We introduced the virtual queue concept (metric) that characterizes the
dynamics of a TCP connection in forward direction. A novel algorithm to measure this
metric was also provided and validated. In addition, we also introduced a novel algorithm
to detect state changes of TCP during a connection. Being able to detect the state change,
we designed and implemented new algorithms to collect the state-based metrics of TCP.

Chapter 3

A Unified Model for TCP

The modelling approaches found in the literature can be divided into two main groups:
black-box modelling and white-box modelling. Black-box modelling approaches usually
start from a theoretical model while white-box modelling approaches try to mimic inherent
operations of TCP based on some statistics. An example of white-box modelling is the
well-known ON/OFF model for voice traffic. It has two states: SILENCE and SPEAK.
If the speaker speaks, then it is in the SPEAK state, and it is in the SILENCE state
otherwise. With some probability the process jumps from SILENCE state to SPEAK state
and respectively, with some probability the process jumps from SPEAK state to SILENCE
state. So if the sojourn time distributions at the state are exponential (continuous time) or
geometrical (discrete time), then the background process can be modelled by a two-state
Markov chain and the traffic generated by voice sources can be well modelled by a Markov
Modulated Poisson Process (MMPP), [HeLu86]. A natural question arises then: How about
TCP traffic? Can we build a model for TCP by mimicking its inherent operations? The
answer is yes, as we will illustrate later on in this chapter.

Another issue of TCP modelling is the versions of TCP in consideration because each
TCP version has special mechanisms that should be carefully dealt with. Previous efforts
[Kum98, CaMe00, ZCR00] to provide a unified model for different versions of TCP found
in the literature differ from each others in one or another sense, but they are all in the
congestion window based modelling paradigm. They all tried to study the dynamics of
the congestion window (based on some Markovian assumptions) to estimate (model) the
performance of TCP. We argue that the approach to model the dynamics of the congestion
window by a Markov chain with the state space containing all the possible values of the
congestion window would result in a huge number of states when the congestion window
is getting sufficiently large. Recent developments of TCP, such as FAST TCP, HighSpeed
TCP, Scalable TCP ([JWL04, Flo03, Kel03], respectively) that allow the congestion window
as large as tens of thousands of packets would require a Markov chain as large as tens
of thousands of states. Despite the fact that we do have a large body of literature on
numerical methods for solving Markov chains (e.g. matrix-geometric method, see [Neu81] for
a comprehensive review on the issue), the Markov chain of this magnitude is computationally
infeasible in practice.

19

20

In contrast to the congestion window based approaches described above, in Chapter 3 we
introduce a new perspective into the modelling paradigm of TCP. We study the dynamics
of the states of the TCP itself in order to model it. We investigate the sojourn time
distributions at the states as well as the jumping probabilities between the states and use
the results achieved from the investigation to build a model to estimate TCP throughput.
The main advantages of our approach are that (1) it provides a unified model for all well-
known versions of TCP because they share the same logical set of states, and (2) the
number of states is significantly reduced (in contrast with the number of possible values
of the congestion window). Reducing the number of states in a Markov model makes it
more computationally feasible and more analytically tractable, and thus, we believe, more
desirable. Certainly, there is a trade-off between simplicity and accuracy and this issue is
discussed in more detail in the following sections in this chapter. However, our guiding
standpoint is to make the model as simple as possible and to increase the complexity of the
model only if it is necessary.

In this chapter, a state-based modelling of TCP traffic is presented. During a connec-
tion, TCP stays in either of the following states: Slow Start, Congestion Avoidance, Loss
Recovery (Fast Recovery and/or Fast Retransmit) and Time Out. We consider the states
of a TCP connection as the phases of a stochastic process. We propose the use of the
discrete-time batch Markovian arrival process (D-BMAP) to model the traffic generated by
a TCP connection. The main contributions of this chapter are the followings. Firstly, we
provide a simple unified model for some well-known versions of TCP based on the D-BMAP
process. Secondly, we introduce a new concept, namely the TCP characterization matrix
for a TCP connection that characterizes the transition probabilities between the states of
TCP. This matrix is crucial in our state-based analysis. We also discuss the trade-offs be-
tween simplicity and accuracy in the state-based approach. Finally, we use simulation and
numerical analysis to validate our proposed model.

The chapter is organized as follows. In Section 3.1 we present our state-based model
for TCP. Numerical analysis of the proposed model is provided in Section 3.2. Results and
validation of the model are presented in Section 3.3. Finally, Section 3.4 concludes the
chapter.

3.1 A D-BMAP model for TCP stationary throughput

3.1.1 Background on D-BMAP

The D-BMAP process was originally introduced and examined in detail in [BloCa95]. The
idea of D-BMAP can be traced back to M. Neuts’ work in [Neu81]. Consider the discrete-
time Markov chain with transition matrix P. Suppose that at time k this chain is in some
state i, 0 ≤ i ≤ N . At the next time instant k + 1, a transition to another or possible the
same state takes place and a batch arrival may or may not occur. With probability (p0)i,j ,
0 ≤ i ≤ N , there is a transition to state j without an arrival, and with probability (pn)i,j ,

21

n ≥ 1, there is a transition to state j with a batch arrival of size n. We have that

∞∑

n=0

N∑

j=0

(pn)i,j = 1 (3.1)

Clearly the matrix P0 with elements (p0)i,j governs transitions that correspond to no ar-
rivals, while the matrices Pn with elements (pn)i,j , n ≥ 1 govern transitions that correspond
to arrivals of batches of size n.
Hence, the process can be defined as a two dimensional discrete-time Markov process
{(N(k), J(k)), k ≥ 0} on the state space {(n, j), n ≥ 0, 0 ≤ j ≤ N} with the transition
matrix

T =




P0 P1 P2 P3 . . .

0 P0 P1 P2 . . .

0 0 P0 P1 . . .
...

...
.

...
...

.




The variable {N(k), k ≥ 0} represents the counting variable and {J(k), k ≥ 0} the phase
variable. With this notation the transition from state (l, i) to state (l + n, j) correspond to
an arrival of size n and a phase change of i to j. The matrix P =

∑∞
n=0 Pn is the transition

matrix of the modulating Markov chain. The average rate (BW) of the source characterized
by the D-BMAP process mentioned above can be computed as follows:

BW = Π
∞∑

i=0

iPie

Furthermore, the stationary distribution can also be computed as follows

Pr[BW = i] = ΠPie

3.1.2 The Model

The general case

In this section we will discuss how to apply the D-BMAP process to model the traffic
generated by a TCP connection in a slightly different manner as in [BloCa95]. We propose
a discrete-time model for TCP. The states of the background process (modulating process)
are the states of TCP itself (i.e., Slow Start, Congestion Avoidance, Loss Recovery and
Time Out).
Let us consider a generalized model of discrete MAP with batch arrivals:

• The process is time-slotted: the slot length is the average round-trip time (RTT).

22

• The probability of transition from state i to state j is denoted by pij and the transition
probability matrix of the modulating Markov-chain is P = {pij}.

• When the chain is in state l, the TCP source transmits a random number of packets
with probability generating function (p.g.f.) Bl(z) =

∑
i b

(l)
i zi, where b

(l)
i denotes the

probability of i arrivals in a slot when the Markov chain is in state l.

Now, let us define B(z) matrix as follows:

B(z) =




p00B0(z) p10B0(z) ... pN0B0(z)

p01B1(z) p11B1(z) ... pN1B1(z)

.

.

p0NBN (z) p1NBN (z) ... pNNBN (z)




Let Π denote the stationary (limit) distribution of the modulating Markov chain. Then we
can estimate the long term average throughput (BW) of a TCP connection as follows:

BW = Π(B′(1))T e[MSS/RTT]

where e is the unit column matrix defined by e = [1, 1, ..., 1]T and B′(1) = dB(z)/dz|z=1.
It should be noted that the two interpretations described above are identical. The only
difference is that we need to collect the statistics differently. In the first interpretation, we
stick on the states first, then we consider the batch size. In the later interpretation, we first
start with the batch size, then we examine all the possible state transitions corresponding
to that batch size.

Now let us turn our attention to the computational (numerical) aspect of the above
formula. First, let us determine Π. Since Π is defined as the stationary distribution of the
modulating Markov chain (P), it must satisfy the following equation: Π = ΠP. Conse-
quently, to compute Π, we have to solve the linear systems of equations (with constraint
that the sum of elements of Π is 1). This is a well-known problem and we can use any of the
methods available in the literature. A little more subtle question is how to determine B′(1).
Suppose that we already know the elements of P, so what we still have to compute are
dBl(z)/dz|z=1, for l = 0, N . These values are actually the expectations of the distributions
of the number of packets sent in a slot, state by state. We estimate these values by the
average of the samples from simulations. Before turning to the next part, we would like to
notice that even though we can estimate the distributions of the number of packets sent in
one slot (state by state), what we really need is only the expectations of the distributions.

On the number of states of the model

Now we turn our attention to the problems related to the number of states the model should
have. Especially, when we model Time Out (Exponential Back-off), the main question here

23

is whether one state is sufficient or not. This question yields to the validity of the Markovian
assumption. For example, modelling Time Out with Exponential Back-off by only one state
of the Markov chain is usually not sufficient because it is well-known that the sojourn time
distribution in this case is not exponential (it is in fact heavy-tailed). But increasing the
number of states increases the complexity of the model. So we have to find a compromise
here. As long as there is only one RTO of Time Out, we model it by one state. Otherwise,
Time Out is modelled by a Markov chain itself (with the number of states is the number of
”Back-offs”). Figure 3.1 shows the Markov chain representation of the exponential back-off

4
3
 5
 6

Slow Start

1
 2

p
 p
 p
 p
 p

q

q

q
 q
 q

q

p + q = 1

Back-offs

Figure 3.1: Markov chain representation of exponential back-offs

mechanism of TCP in Time Out period. Denote p the probability that TCP back-off and
q is the probability that TCP leaves Time Out and enters Slow Start. Since when in Time
Out, TCP either backs off or leaves Time Out, we have p + q = 1. We can estimate the
value p and q from the statistics gained from simulations.

3.2 Numerical analysis

The main purpose of this section is to give a formula for stationary throughput of TCP in
closed form with some assumptions to ease the analysis. In the following discussion, state
0 stands for Slow Start, state 1 stands for Loss Recovery, state 2 stands for Time Out and
state 3 stands for Congestion Avoidance, respectively.

3.2.1 The TCP Reno case

In TCP Reno we assume that the duration of Loss Recovery is typically one RTT. It is
because at the end of an RTT, the sender can decide to get out of Fast Recovery and
continue in Congestion Avoidance or Time Out will occur. In other words, if TCP is
in Fast Recovery then the probability of staying in Fast Recovery in the next round-trip
time is assumed to be 0. We experience from most of our simulations that Time Out
occurred (if any) only in one RTO and no Exponential Back-off. Although our general
model can deal with Exponential Back-off, for the sake of simplicity, we deal mainly with

24

Time Out that lasts for only one RTO and as a consequence, TCP jumps to Slow Start with
probability 1. Denote pTD the probability of triple ACK loss event and pTO the probability
of Time Out event. Let ploss = pTD + pTO. In this way, we have the probability that
TCP jumps from Loss Recovery to Congestion Avoidance (p13) is pTD

ploss
and the probability

that TCP jumps from Loss Recovery to Time Out (p12) is pTD
ploss

. Now let us determine
p01 and p31. The fact that TCP jumps from Slow Start to Loss Recovery reveals to us
that a loss has occurred and TCP was in Slow Start before the loss has been detected.
As a result, we have p01=P[loss occurred | from Slow Start]. Similarly, the event that
TCP jumps from Congestion Avoidance to Loss Recovery implies that a loss has occurred
and TCP was in Congestion Avoidance before the loss has been detected. Consequently,
p31=P[loss occurred| from Congestion Avoidance]. The probability of the event that TCP
jumps directly from Slow Start to Congestion Avoidance (p01) is P[cwnd =ssthresh]. Our
simulation shows that, except for the first Slow Start, no packet is lost in Slow Start phase.
This is understandable because Slow Start can only happen following a Time Out and Slow
Start ends when the congestion window equals to the Slow Start threshold and TCP gets to
Congestion Avoidance. After Time Out the pipe is already empty and the threshold value is
sufficiently small so that it is easily reached by Slow Start phase and state change happens.
That is why packet loss is very rarely detected in this period. Consequently, we assume
that p01 ≈ 0. From p01 + p31 = ploss we have p31 ≈ ploss and consequently p33 ≈ (1− ploss).
Now denote pthrehold=P[cwnd =ssthresh] then we have p03 = pthreshold and consequently
p00 = 1− pthreshold.

To sum up, the TCP characterization matrix for TCP Reno case can be filled as follows:

PReno =




(1− pthreshold) 0 0 pthreshold

0 0 pTO
ploss

pTD
ploss

1 0 0 0

0 ploss 0 1− ploss




where ploss = pTD + pTO.

Let Π be the stationary distribution of the modulating Markov chain, Π = (π0, π1, π2, π3).
We have Π = ΠP and Π is a distribution vector, so the following equation system holds:

π0 = (1− pthreshold)π0 + π2

π1 = π3ploss

π2 = π1
pTO

pTD

π3 = π0pthreshold + π1
pTD

ploss
+ π3(1− ploss)

with the constraint π0 + π1 + π2 + π3 = 1.

25

Algebraic computation yields:

π0 =
pTO

(1 + pTD + 2pTO)pthreshold + pTO

π1 =
plosspthreshold

(1 + pTD + 2pTO)pthreshold + pTO

π2 =
pTOpthreshold

(1 + pTD + 2pTO)pthreshold + pTO

π3 =
pthreshold

(1 + pTD + 2pTO)pthreshold + pTO

Finally, we deal with the case when the slot times at the states are different. Let Ti be the
slot time at state i, then we have the corrected stationary distribution α = (α0, α1, ..., αN)
with αi = πiTiP

j πjTj
. Specifically, the time slot in Slow Start, Congestion Avoidance and

Fast Recovery is roughly RTT whereas the time slot in Time Out (Exponential Back-off) is
measured by RTO. Denote k = RTO

RTT
. Notice that in practice k is approximately equal to 4

(k ≈ 4). Denote ρ = 1
1+(k−1)π2

be the multiplicative correction term. We have the corrected
stationary distribution of the modulating Markov-chain can be expressed in closed form as
follows:

π0 =
ρpTO

(1 + pTD + 2pTO)pthreshold + pTO

π1 =
ρplosspthreshold

(1 + pTD + 2pTO)pthreshold + pTO

π2 =
kρpTOpthreshold

(1 + pTD + 2pTO)pthreshold + pTO

π3 =
ρpthreshold

(1 + pTD + 2pTO)pthreshold + pTO

Notice that if k > 1, then ρ < 1 and kρ > 1. The fact that ρ < 1 implies that the corrected
fraction of time that TCP stays in Slow Start, Congestion Avoidance and Loss Recovery is
smaller than before correction. Similarly, the fact that kρ > 1 implies that the corrected
fraction of time that TCP stays in Time Out (Exponential Back-off) is longer than before
correction. Since in Time Out events significantly reduce performance, without correction
we might have overestimated the performance that TCP does actually produce.
Finally, the distributions (as well as the expected values) of the number of packets sent in
each time slot for every state are estimated by simulations.

3.2.2 The TCP Tahoe case

As in the TCP Reno case, in TCP Tahoe, all four states are possible. However, the deter-
mination of the characterization matrix is different in a number of ways. Firstly, the Loss
Recovery phase contains only the Fast Retransmit mechanism, without Fast Recovery (the

26

time spent in Loss Recovery is, nevertheless, the same as in TCP Reno case, i.e. approxi-
mately one RTT). Secondly, and most importantly, after Loss Recovery, instead of going to
Congestion Avoidance phase, TCP Tahoe continues with Slow Start. So applying the same
reasoning as in the TCP Reno case, the TCP characterization matrix for TCP Tahoe case
can be filled as follows:

PTahoe =




(1− pthreshold) 0 0 pthreshold

pTD
ploss

0 pTO
ploss

0

1 0 0 0

0 ploss 0 1− ploss




where ploss = pTD + pTO.

3.2.3 The TCP New Reno and TCP SACK case

As we have mentioned in the previous section, the modelling of Loss Recovery phase of TCP
New Reno and TCP SACK is not negligible since TCP, in order to avoid Time Out, stays
relatively large amount of time in Loss Recovery phase to recover when multiple (consecutive
or closely placed) packet losses occur within a window of data in transition. At this point,
it seems that we might need a much more complicated characterization matrix to model
the performance of TCP New Reno and TCP SACK. Interestingly, by contrast, it is not
the case. TCP New Reno and SACK, instead of going into Time Out, compensate packet
losses in Loss Recovery. Consequently, there is no Time Out phase in TCP New Reno and
SACK, in most cases. We state ”in most cases” because there is an exception when the
congestion window is very small (to the extreme case when too many TCP flows competing
(sharing) for a very slow bottleneck link). In this case, Time Out could happen even with
TCP New Reno and TCP SACK because there is not enough acknowledgment for triple
ACK case and TCP is forced to Time Out. We shall deal with this problem in a separated
part, but for the time being, we assume that there is enough acknowledgements flying back
and so there is no Time Out with TCP New Reno and SACK. The exclusion of Time
Out implies that, apart from the first Slow Start, there is no Slow Start phase because
Slow Start period could only happen after a Time Out period. Consequently, we have
only two states in consideration, namely Congestion Avoidance and Loss Recovery. Notice
that our simulations and measurements as well as results from earlier publications (e.g.,
[PFTK98]) suggested that the number of packets lost in a window can be approximated by
a geometrical distribution. This implies that the time TCP Reno and SACK stay in Loss
Recovery is geometrically distributed (Markov property). Furthermore, the probability
of Time Out is approximately zero (pTO ≈ 0). As a result, the probability that TCP
jumps from Congestion Avoidance phase to Loss Recovery phase is the probability of loss
event (ploss) and the probability that TCP stays in Congestion Avoidance is 1 − ploss.
Let precovery be the probability that TCP stays in Loss Recovery phase and consequently

27

(1− precovery) is the probability TCP jumps from Loss Recovery to Congestion Avoidance.
So the characterization matrix can be filled as follows:

PNewReno/SACK =


1− ploss ploss

precovery 1− precovery




The stationary distribution (π0, π1) of this two-state Markov chain is thus (precovery

ploss+precovery
,

ploss
ploss+precovery

), respectively. At this point, it seems that the model of TCP is as simple as
the well-known ON/OFF model for voice traffic. In a sense, it’s true. However, it should be
noticed that our model is different from the traditional ON/OFF model in a number of ways.
Firstly, TCP, in our case, doesn’t have OFF period. Data is sent actively in both states
(Congestion Avoidance and Loss Recovery). Secondly, we assume general distributions for
packets sent at each time slot in contrast to the very limited assumption of Poisson process
as in the voice model. The determination of the distributions of the number of packets sent
in each time slot (i.e. each round-trip time) in Congestion Avoidance and Loss Recovery is
identical to the TCP Reno case.

3.3 Results and Validation

We need to validate two things. Firstly, we consider the validity of the Markov property in
our model by examining the sojourn time distribution at different states of TCP. Secondly,
we use our model to estimate the steady-state throughput of a TCP connection (with
different versions) by validating it against different packet loss probabilities. In order to do
so, we first need to carry out experiments to collect the statistics mentioned in the model
construction part. The experiments were conducted using ns-2 simulator. The topology
that we used was a simple half-dumbbell topology. We added a loss module at the output
port of the bottleneck link’s router that can deliberately drop packets so that we can control
the drop probabilities. In this way, instead of adding more connections to the background
traffic we examine a single TCP connection. We believe that by deliberately tuning the
loss probability, we are able to emulate different scenarios of background traffic because the
effect of background traffic on a certain TCP connection ultimately results in the packet
loss probability of that connection. For the details about our simulations, the packet size
was 1000 bytes, the access link was 8 Mb/s with a delay of 0.1 ms, the bottleneck link was
800 Kb/s with a delay of 100 ms and the buffer size was 20 packets. Regarding the queue
management schemes at the router, we consider both Drop-Tail and RED mechanisms.
With RED-style queue managements, the gentle RED was used and the adaptive parameter
was tuned in.

28

3.3.1 On the sojourn time distribution at the states

Congestion Avoidance

First, we examine the sojourn time distributions at Congestion Avoidance state. Since all
versions of TCP perform identically in this state, we concentrate on Reno version. However,
we examine Reno both with Drop Tail and RED router. As we can see in Figure 3.2, the
sojourn time distribution at Congestion Avoidance is geometrically shaped both in Drop
Tail and RED case. It supports the Markovian assumption of our model for this state.

0 5 10 15 20 25 30 35 40
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

P
ro

ba
ili

ty

Stay in time [RTT]

Congestion Avoidance distribution

(a)

0 5 10 15 20 25 30
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

P
ro

ba
ili

ty

Stay in time [RTT]

Congestion Avoidance distribution

(b)

Figure 3.2: Sojourn time distribution at Congestion Avoidance state: (a) Drop Tail case;
(b) RED case.

Loss Recovery

In Reno, according to specification, it takes approximately one RTT for TCP to get out of
Fast Recovery and TCP enters Congestion Avoidance or Time Out triggers. The situation
is different with NewReno and SACK. These versions of TCP is equipped with mechanisms
to avoid Time Out in case of multiple losses in a window by longer Fast Recovery. With
NewReno and SACK versions TCP can stay in Loss Recovery for several round-trip times,
depending on the number of losses occurred in a window. So here, we can talk about the
distribution of sojourn time. As we can see in Figure 3.3, the sojourn time distribution
at Congestion Avoidance is geometrically shaped both in NewReno TCP and SACK TCP
cases. This confirms the Markovian behaviour of TCP in this state.

29

0 5 10 15 20 25
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

P
ro

ba
ili

ty

Stay in time [RTT]

Fast Recovery distribution

(a)

0 5 10 15 20 25 30 35 40
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

P
ro

ba
ili

ty

Stay in time [RTT]

Fast Recovery distribution

(b)

Figure 3.3: Sojourn time distribution at Loss Recovery state: (a) NewReno TCP case; (b)
SACK TCP case.

3.3.2 On the stationary performance of TCP

The stationary performance is one of the most important metrics of TCP. This section
provides the validation of the stationary throughput of TCP. We compare our numerical
results that we achieved from our analysis with the simulation results of NS2 under the
same configuration. We go through versions of TCP, version by version.

The TCP Reno and Tahoe case

In TCP Reno and Tahoe case, all four states are possible. The probability that Time Out
(Exponential Back-off) exists depend on the magnitude of the packet loss probability. If the
loss probability is very small (less than 1 percent), then Time Out is rare with TCP Reno,
at least with our configuration. If the loss probability is increased, then the probability of
more packets dropped in a window of packets increases. Consequently, the probability of
Time Out events also increases. We observe from our simulations that if the packet loss
probability gets to 10 percent or higher, Time Out is frequent with Reno. This has severe
effect on the performance of TCP Reno. So we validate our model in different packet loss
scenarios. We basically examine three types of losses: small (less than 1 percent), average
(up to 5 percent), high (higher than 10 percent).

Figure 3.4(a) shows the throughput of Reno TCP by simulation and analysis. It presents
that our model is in accordance with the simulation results, although we experience some
overestimation. However, the overestimation is small enough (less than 1 percent), especially
when the packet loss probability is small. The overestimation is already discussed in previous
Sections (assumption of exponentially distributed sojourn time as well as the presence of
Exponential Back-off where we have given up some details for the sake of simplicity of our
model). Regarding the relative performance of TCP Reno and Tahoe, we observe that when

30

10
−3

10
−2

10
−1

10
0

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Packet loss probability

N
or

m
al

iz
ed

 th
ro

ug
hp

ut

Reno simulation
Reno analysis
Tahoe simulation
Tahoe analysis

(a)

10
−3

10
−2

10
−1

10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Packet loss probability

N
or

m
al

iz
ed

 th
ro

ug
hp

ut

NewReno−simulation
NewReno−analysis
SACK−simulation
SACK−analysis

(b)

Figure 3.4: Throughput of TCP against different loss probabilities: (a)Reno-Tahoe TCP
case; (b) NewReno-SACK TCP case.

packet loss probabilities are small, TCP Reno performs slightly better than TCP Tahoe both
in simulation and analysis. As the packet loss probability gets higher, the situation changes.
TCP Tahoe seems to perform better than TCP Reno, at least in our experiments. This
is the reason why in wireless environment, when packet loss probability is high and not
necessarily because of congestion, TCP Tahoe performs somewhat better than TCP Reno,
as widely suggested in the literature.

The TCP NewReno and SACK case

In TCP NewReno and SACK case, we basically have only two states, namely Congestion
Avoidance and Loss Recovery. TCP NewReno and SACK perform more or less identically
most of the time. The only difference is in the Loss Recovery phase where TCP SACK, by
adapting to the pipe, is a little bit more aggressive than TCP NewReno. This results in
the unfairness between TCP NewReno and TCP SACK when they are in presence. Figure
3.4(b) shows the throughput of NewReno and SACK TCP by simulation and analysis. We
observe that SACK performs slightly better than NewReno in most of the cases. This
observation supports our view on the unfairness between TCP NewReno and TCP SACK.
And surprisingly enough, the model error is smaller than in the Reno/Tahoe case. We
believe that this is because of the existence of Time Out periods in these cases (i.e. Time
Out greatly reduces Reno/Tahoe performance but NewReno and SACK are armed with
mechanisms to deal with multiple losses in a window, thus avoiding Time Out). At this
point we believe that Exponential Back-off is the major cause of error, but more analysis
is still needed.

31

3.4 Conclusion

In this chapter, a unified model for some well-known versions of TCP based on the states of
TCP itself was presented. We introduced a new concept, namely the TCP characterization
matrix. We derived the relationship between the elements of the TCP characterization
matrix and other metrics of the TCP/IP network. We showed how to use this matrix
to model the stationary performance of TCP. The model was validated against different
network scenarios, with different versions of TCP.

Chapter 4

A Game-Theoretic Analysis of
TCP

An important issue regarding TCP is the impact of its rate control and parameter setting
on the network. Basically, TCP is a closed loop control scheme. Congestion in the network
is fed back to the source in the form of losses (Reno-like versions) or delay (such as TCP
Vegas). The source then reacts to the congestion signal from the network by reducing its
transmitting rate. In other words, we can consider packet loss and high queueing delay
as the cost of (aggressively) sending packets into the network. The higher the rate, the
higher the cost (certainly, the relationship is not necessarily linear in nature), given a fix
network. Furthermore, as the Internet has been gradually transforming from a government
sponsored project to a private enterprize (or even a commodity), the economics of the
Internet becomes more and more important issue. Consequently, Internet connectivity and
services will have to confront issues of pricing and cost recovery. In this perspective, the
cost of congestion can be in monetary form. Introducing cost of congestion into the network
creates balance, stability and high utilization of resource usage. The cost of congestion, in
our case, can be either price or delay (the application is delay-sensitive). It is suggested
in [MaVa94] that congestion pricing could be implemented by using ”smart market” where
price for sending a packet varies on a very short time scale. Specifically, for the TCP
implementation, the congestion price is updated every round-trip time. Given the pricing
schemes (parameter setting), a natural question arises then: Are these schemes efficient? Is
there any equilibrium state from where no one has the incentive to deviate? Game theory
(see [OsRu94] for a comprehensive introduction) seems to be the promising tool to answer
this question. Schenker in his pioneering paper [Sch95] used game-theoretic approach to
analyze the flow control mechanisms (for Poisson arrivals) with different queueing disciplines
at the routers. Korilis et al in [Kor95] also used game-theoretic approach to study the
existence of equilibria in noncooperative optimal flow control, especially those with QoS
constraints. The analysis presented in these papers (and some others, e.g. [AlBa04]) deals
with general flow control, ignoring some important inherent TCP operations. Regarding
parameter setting of TCP, recently, Akella et al in [Ake02] also used the tools from game

32

33

theory to examine the behaviour of TCP Reno-like (loss-based) flow controls under selfish
parameter setting. However, a comprehensive game-theoretic analysis of delay-based TCP
(such as TCP Vegas) is still unavailable. TCP Vegas is of our particular interest because,
firstly, it has inherent pricing schemes in its design that resemble the congestion pricing
schemes proposed in the literature. We believe that by better understanding TCP Vegas’
inherent pricing schemes, we will have a better insight into understanding and designing
pricing schemes for TCP traffic in general. Secondly, with the emergence of very large
bandwidth-delay product networks such as the transatlantic link with a capacity in the
range of 1 Gbps - 10 Gbps, new transport protocols have been proposed to better utilize
the network in these circumstances. One promising proposal is the FAST TCP [JWL04].
Since the design of FAST TCP is heavily based on the design of TCP Vegas, there is a need
to reconsider the benefits as well as the drawbacks of TCP Vegas in order to have an insight
into the performance and possible deployment of FAST TCP in the future Internet.

In this chapter, we use the tools from game theory to understand the impacts of the
inherent congestion pricing schemes in TCP Vegas as well as the problems of parameter
setting of TCP Vegas on its performance. It is shown how these inherent pricing schemes
result in a rate control equilibrium state that is a Nash equilibrium which is also a global
optimum of the all-Vegas networks. On the other hand, if the TCP Vegas’ users are assumed
to be selfish in terms of setting their desired number of backlogged packets in the buffers
along their paths, then the network as a whole, in certain circumstances, would operate very
inefficiently. We then extend our analysis to investigate FAST TCP, a recently proposed
TCP Vegas-based protocol. Our analysis points out that FAST TCP, like Vegas TCP,
benefits from its inherently efficient pricing schemes, but the parameter setting of FAST
TCP is very vulnerable to selfish actions of the users. This poses a serious threat to the
possible deployment of FAST TCP in the future Internet.

This chapter is organized as follows. The background on TCP Vegas is provided in
Section 4.1. The TCP Vegas games are described and analyzed in detail in Section 4.2.
Finally, Section 4.3 concludes the chapter.

4.1 Background

4.1.1 TCP Vegas

TCP Vegas was first introduced by Brakmo et al in [BMP94]. Basically, it is a delay-based
congestion control scheme that uses both queueing delay and packet loss as congestion
signal. TCP Vegas tries to control the number of packets buffered along the path with
the targeted number to be between α and β (α ≤ β). Let w(t) denote the congestion
window at time t, RTT denote the round-trip time and baseRTT is the smallest value of
the round-trip time so far (actually, this is an estimate of the propagation delay). Denote
diff = RTT−baseRTT

RTT w, then the dynamics of the congestion window of TCP Vegas can be

34

expressed as follows:

w(t + 1) =





w(t) + 1 if diff < α,

w(t)− 1 if diff > β,

w(t) otherwise.

(4.1)

In a TCP Vegas/REM network [ALLY01], a slight modification is introduced into the
updating mechanism of the congestion window. Each link l (with capacity cl) update the
link price pl(t) in period t based on the aggregate input rate xl(t) and the buffer occupancy
bl(t) as follows:

pl(t + 1) = [pl(t) + γ(µlbl(t) + xl(t)− cl)]+ (4.2)

where 0 < γ and 0 < µl < 1 are scaling factors of REM. Each source will estimate the
total price along its path and update its sending rate accordingly. To feed back the prices
to sources, link l marks each arriving packet in period t, that is not already marked at an
upcoming stream, with probability ml(t) defined as:

ml(t) = 1− ϕ−pl(t)

where ϕ > 0 is a constant. Once a packet is marked, its mark is carried to the destination
and then conveyed back to the source via acknowledgement, like ECN scheme. The source
i estimates the end-to-end marking probability by the fraction m̂i(t) of its packets marked
in period t, and estimates the path price pi(t) by:

p̂i(t) = − logϕ(1− m̂i(t))

The dynamics of the congestion window of TCP Vegas/REM can be expressed as follows:

wi(t + 1) =





wi(t) + 1 if − wi(t)
RTTi(t)

< α
p̂i(t)

,

wi(t)− 1 if − wi(t)
RTTi(t)

> α
p̂i(t)

,

wi(t) otherwise.

(4.3)

4.1.2 Goodput models of TCP Vegas

Throughout the chapter our game-theoretic analysis uses the models that are previously
derived. These are:

Model 1: (Thomas Bonald’s model)
In [Bon98], the goodput of multiple flows sharing a bottleneck link is analyzed (by using fluid
approximation) both for TCP Reno and TCP Vegas case. Assume N TCP flows sharing
a bottleneck link with capacity µ, propagation delay τ and buffer size B. The parameters
of TCP are: α and β. The main results in their paper that we use in our analysis are the
following:

35

• If Nα < B, there exists a finite time from which no loss occurs. In addition, the
window size stabilizes in finite time. If α 6= β, the congestion windows converge
not to a single point (but a region). This implies unfairness among flows even in
equilibrium. If α = β, then w1 = w2 = ... = wN = µτ

N + α and the average rate
λ1 = λ2 = ... = λN = µ

N . Note that in this case the link is fully utilized.

• If Nα ≥ B, then TCP Vegas behaves exactly like TCP Reno. Let ω = µτ
B and γ

is the multiplicative decrease of TCP Reno (typically 1
2). If ω ≥ γ

1−γ then λtotal =
(1−γ2)(ω+1)2

2(1−γ)(ω2+ω)+1
µ < µ. This implies that in this case the link is not fully utilized.

Model 2: (Steven Low’s model)
Steven Low et al in [LoLa99, LPW02, Low03, ALLY01] described an optimization framework
to study the performance of the TCP Vegas in a general network topology and under
different queue management schemes at the routers. We would mention the result regarding
the goodput of TCP Vegas under REM queue management scheme (TCP Vegas/REM) that
we will use in our analysis later in this paper. It is proved in [LPW02] that the equilibrium
rate of TCP Vegas can be calculated as: λi = αi

p∗ , where p∗ denotes the equilibrium price.
Note that this result is true for a general network topology (not restricted to a single
bottleneck link).

4.2 The TCP Vegas games

In this Section, the games regarding the inherent pricing schemes (for rate allocation) and
parameter setting of TCP Vegas are described and analyzed in detail. We also investigate
the impact of the results on the performance of TCP Vegas and on the network as a whole.

4.2.1 Game 1: Rate allocation of TCP Vegas

We consider a network that consists of a set L = {1, 2, ..., L} of links with capacity cl, l ∈ L.
Assume that the network is shared by a set of flows (sources). The set of flows is denoted
by N = {1, 2, ..., N}. The rate of flow i is denoted by xi, i ∈ N . Flow i uses a subset (Li)
of L in its path (Li ⊆ L). Let us define the routing matrix as follows:

Rli =





1 if l ∈ Li,

0 otherwise.

The physical capacity constraints of the flows therefore can be defined as :

Rx ≤ c (4.4)

where x = (x1, x2, ..., xN) is the flow rate vector and c = (c1, c2, ..., cL) is the link capacity
vector. In addition, flow rates cannot be negative:

36

xi ≥ 0, i = 1, 2, ..., N (4.5)

The set of flow rate vectors Λ that satisfy both conditions 4.4 and 4.5 is called a feasible
set.
It should be mentioned that our network, as TCP network in general, assumes feedback-
based flow control. The feedback can be implicit (e.g. queueing delay) or explicit (by pricing
and/or using Explicit Congestion Notification (ECN)). The sources (end-points) use Vegas-
style flow control, as defined in [BMP94], [LPW02]. We consider the flows as the players of
the game. The strategy space for a player is the range of it sending rate.
Let us define the following generic payoff function for each player:

Bi(xi) = αi log(xi)−
∑

l∈Li

∫ xi

0
πl(y)dy (4.6)

and πl = pl(
∑

l∈Lk
xk) is defined as the function of the total flow rates on link l. This

function is actually the price that is fed back to the player i sending at rate xi, which is an
increasing function. The higher the rate, the higher the price. Hence, the second term in
Equation 4.6 can be interpreted as the bandwidth cost fed back to player i when it attempts
to transmit at rate xi. The first term in Equation 4.6 reflects the gain of player i when
transmitting at rate xi. This form is motivated by the results of Theorem 4 in [Low03].
Notice that this is a concave function of xi, so it is also justified in practice since concavity
implies diminishing return, a property that most models in practice should have. As a
result, the payoff Bi(xi) represents the net benefit of player i when transmitting at rate xi.
The price (cost) can be communicated to the end-user (the player) by the mean of the total
queueing delay of its packets in the path, as in TCP Vegas/Drop-Tail network. The price
can also be communicated explicitly to the user by using REM active queue management
scheme (with ECN) and here we have a Vegas/REM network. In the first case, we would
like to mention that we implicitly use the PASTA property for Poisson arrivals with FIFO
scheduling principle to derive the proportional relationship between the total rate arrive
at the link and the queuing delay. We can also suggest here the Little’s formula for this
relationship. This is assumed frequently in the literature with or without any mention.
In any case, if the aggregate arrival flow is not Poisson (e.g. self-similar traffic), then
queue length (queueing delay) is generally larger than the Poisson one. Furthermore, the
expression of queueing delay in our model is assumed to be additive among links. This
is true for a Norton network with Poisson arrivals. So, strictly speaking, our analysis
can be considered as a worst case analysis for TCP Vegas/Drop-Tail network. For TCP
Vegas/REM network, the additive assumption is justified when the mark rates are small.
Indeed, let πl(t) be the marking probability at link l at time t and the end-to-end marking
probability qi(t) that the end-point i observes (and to which source algorithm reacts). For
small πl(t), qi(t) = 1−∏

l∈Li
(1− πl(t)) ≈

∑
l∈Li

πl(t).
Under the assumptions mentioned above, our problem can be modelled as a non-

cooperative game. The strategy space for a player is its sending rate and is determined
by the capacity of the links. The strategy for player i can be defined as S(i) = {xi|0 <

37

xi ≤ ci
max}, where ci

max = max{cl|l ∈ Li}. The strategy space for the game is defined as
the Cartesian product S =

⊗N
i=1 S(i), which is equivalent to the feasible set Λ. Strategy

x = (x1, x2, ..., xN) ∈ Λ is called a strategy profile. Each player (e.g. player i) chooses the
sending rate (xi) in the feasible set in order to maximize its own payoff function Bi(xi) in
a selfish way. By ”in a selfish way” we mean that the player does not care about other
players’ payoff, as far as the rate vector is in the feasible set.

One of the key questions in a non-cooperative flow control game in general, and our
game in particular, is whether the network converges to (or settles at) an equilibrium point,
such that no player can increase its payoff by adjusting its strategy unilaterally. In the
game-theory terminology such a point is called a Nash equilibrium. The Nash equilibrium
in our game also reflects the balance of the gain and the cost for each player as well as for
the network as a whole. A non-cooperative game may have no Nash equilibrium (in its pure
strategy space), multiple equilibria, or a unique equilibrium. As for the TCP Vegas game,
we can prove the following theorem:

Theorem 4.2.1. There exists a unique Nash equilibrium (in its pure strategy space) for

the TCP Vegas game described above.

Proof
First, let us consider the existence of the Nash equilibrium for the TCP Vegas game. Notice
that the feasible set Λ = {x|Rx ≤ c,x ≥ 0} is a nonempty, convex and compact set. It is
nonempty because x = (ε, ε, ..., ε) ∈ Λ, where 0 < ε < cmin

N , cmin = min{cl|l ∈ L}. It is
bounded because xi ≤ cmax, i ∈ N , where cmax = max{cl|l ∈ L}. Assume that x1,x2 ∈ Λ
and 0 < ρ < 1, we have:

ρx1 + (1− ρ)x2 ≤ R(ρx1 + (1− ρ)x2) ≤ c

This result implies the convexity of Λ.
Now let us consider the payoff functions of the players. Notice that Bi(xi) is a concave

function of xi. Indeed:
B”

i (xi) = −αi

x2
i

−
∑

l∈Li

π
′
l < 0 (4.7)

From what have been discussed so far, our game has the following properties:

1. The joint strategy space is nonempty, convex and compact.

2. The payoff function of each player is concave in its own strategy space.

According to Theorem 1 in [Ros65], there exists a Nash equilibrium in its pure strategy
space.

For the uniqueness of the Nash equilibrium, let’s consider the (nonnegative) weighted
sum of the payoff functions:

σ(x,w) =
N∑

i=1

wiBi(x), wi ≥ 0 (4.8)

38

Denote g(x,w) the pseudo-gradient of σ(x,w), then the Jacobian of g(x,w) with respect
to x can be computed as follows:

G =




B11 B12 . . . B1N

B21 B22 . . . B2N

...
.

...

BN1 BN2 . . . BNN




where

Bij =





wi(−αi

x2
i
−∑

l∈Li
π
′
l) < 0 j = i

−wi
∑

l∈L(i,j)

∂πl
∂xj

< 0 j 6= i,L(i,j) 6= ∅
0 j 6= i,L(i,j) ≡ ∅.

where L(i,j) = Li
⋂Lj . The matrix G defined above is thus negative definite. As a result,

according to Theorem 6 in [Ros65], σ(x,w) is diagonally strictly concave. According to
Theorem 2 in [Ros65], the equilibrium point of the TCP Vegas game is unique. ¤

Remark 4.2.2. To reach this equilibrium, [Ros65] shows that each player can change its

own strategy at a rate proportional to the gradient of its payoff function with respect to

its strategy and subject to constraints. This method is in fact equivalent to the gradient

projection algorithms described in [LoLa99].

Remark 4.2.3. The authors of [LoLa99], using optimization framework, also showed that,

under certain assumptions on the step size, these algorithms converge to a system wide

optimal point (which is also proved to be unique). Furthermore, it is proved in [LPW02],

[Low03] that the rate control of TCP Vegas/Drop Tail and TCP Vegas/REM is indeed based

on these algorithms. This implies that the TCP Vegas game described above converges to

a unique Nash equilibrium that is system wide optimal.

4.2.2 Game 2: Parameter Setting of TCP Vegas

In this game, we consider the parameter setting of TCP Vegas. As described in [BMP94],
TCP Vegas tries to maintain the number of backlogged packets in the network between α
and β. We examine here the situation when a selfish (and greedy) user tries to increase the
number of its backlogged packets in the network in order to grab more bandwidth in the

39

network. If all other players do the same thing (i.e. they are also selfish and greedy), the
total number of packets in the network would increase without bound. However, the size
of the buffers at routers are bounded and packet loss would occur, reducing the goodput of
the connection. We are interested in a situation (i.e. a parameter setting, if at all exists)
from where no player would deviate.

We consider a simple topology of N TCP Vegas sources sharing a single bottleneck link
with a buffer size of B packets. Source i is associated with a set (αi, βi). In this dissertation,
we deal with the case when αi = βi. The case when αi 6= βi is left for future work.

Players: N TCP Vegas flows

Actions: Each player can set its parameter (αi) in order to control the number of its
backlogged packets in the queue of the bottleneck link (with capacity µ and delay τ).
The router is assumed to use Drop-Tail mechanism (FIFO principle)

Payoff: f(αi) = λi (the goodput)

If the total number of backlogged packets is smaller than the buffer size at the bottleneck
router (i.e.

∑N
j=1 αj < B) then the payoff function of player i can be expressed as follows:

f(αi) = λi =
αiPN

j=1 αj

µ

=
µαi∑N
j=1 αj

=
µαi

αi +
∑

j 6=i αj
(4.9)

From Equation 4.9 we have:

∂f

∂αi
=

µ
∑

j 6=i αj

(αi +
∑

j 6=i αj)2
> 0, i = 1 . . . N (4.10)

Since
∑

j 6=i αj is always positive, it follows from Equation 4.9 that ∂f
∂αi

> 0, ∀i. This implies
that given other players’ strategies, player i will set αi as high as possible in order to
maximize its payoff. Notice that Equation 4.9 is valid only if

∑N
j=1 αj < B. Otherwise,

TCP Vegas, according to [Bon98], behaves exactly like TCP Reno. In this case, there are
two possibilities [Bon98]:

λReno
i =





(1−γ2)(ω+1)2

2(1−γ)(ω2+ω)+1
µ
N < µ

N if ω ≥ γ
1−γ

µ
N otherwise.

(4.11)

Thus, we have two cases:
Case 1: w < γ

1−γ
It is important to note that in this case, the link is fully utilized both for TCP Vegas and
TCP Reno. Furthermore, in TCP Reno style performance, the bandwidth is fairly (equally)
shared between flows (because they have the same RTT). Denote α∗ = (α∗1, α

∗
2, ..., α

∗
N) be

the Nash equilibrium of the game in this case. Without losing generality, we can assume that
α∗1 ≤ α∗2 ≤ . . . ≤ α∗N . Notice that in Nash equilibrium, we must have α∗1 = α∗2 = ... = α∗N .

40

Otherwise, player 1 has the incentive to deviate (i.e. to increase its number of backlogged
packets - α1) in order to get higher goodput, because in Reno style performance, it would
get a fairer share of the total bandwidth (i.e. µ

N). As a result, we have the Nash equilibria
for this game: α∗ = (α∗1, .., α

∗
N) where α∗i ≥ bB

N c, ∀i. This means that, in this case, in
Nash equilibrium, the parameter α can be arbitrarily large.
Case 2: w ≥ γ

1−γ
In this case, the link is not fully utilized. Following similar reasoning as in Case 1, we have
a set of Nash equilibria defined as follows: Ω = {α = (α1, ..αN)|α1 ≤ α2 ≤ .. ≤ αN} with
the conditions that

∑N
i=1 αi = B − 1 and α1 ≥ (1−γ2)(ω+1)2

2(1−γ)(ω2+ω)+1
B−1
N . The latter expression

simply means that even player 1 (who gets the smallest bandwidth) would not deviate, so
no other player would deviate. If this condition does not hold, player 1 would deviate to
get higher bandwidth share.

Our final comment on these Nash equilibria is that each TCP Vegas flow (player) main-
tains the number of its own backlogged packets as many as possible. As a result, the buffer
is nearly full and the queueing delay is unnecessarily high. A nearly full buffer may cause
many difficulties for TCP Vegas (e.g. the estimation of baseRTT might be inaccurate if
there are already many packets in the queue when the connection starts).

4.2.3 Game 3: Application to FAST TCP

In this section, we discuss how to apply the TCP Vegas games investigated above to analyze
FAST TCP game. First, let us consider the FAST TCP’s window dynamics as described in
[JWL04]:

w ← min{2w, (1− γ)w + γ(
baseRTT

RTT
w + α(w, qdelay))} (4.12)

with 0 < γ ≤ 1 and the parameter α(w, qdelay) is defined as a function of w and qdelay as
follows:

α(w, qdelay) =





aw if qdelay = 0,

α otherwise.
(4.13)

We can interpret FAST TCP as a ”faster” TCP Vegas as follows. First, denote diff =
RTT−baseRTT

RTT w, we have:

w(t + 1) =





w(t) + γ(α− diff) if diff < α,

w(t)− γ(diff− α) if diff > α,

w(t) otherwise.

(4.14)

From Equation 4.14 we can see that FAST TCP increases (or decreases) its window size
by γ(α − diff), instead of 1 as in TCP Vegas. Since in the original paper [JWL04], no
guidance or suggestion on how to set the parameter α as well as other parameters (a, γ)

41

were provided, we will discuss some of the issues here. First, notice that if α, γ are chosen
so that γ(α − diff) = 1, then FAST TCP would behave exactly like TCP Vegas. In fact,
this feature (the amount of window increment/decrement) is the major difference between
FAST TCP and TCP Vegas. If there is a difference between α and diff, FAST TCP tries to
balance this difference by increment/decrement its current window size more quickly than
TCP Vegas. So purposely, FAST TCP would set its parameter α much larger than 1 in a
very high bandwidth-delay network. This is only from the point of a single connection in
the network. We will show that, in the case of multiple FAST TCP flows sharing a very
high bandwidth-delay product link, from game theoretic point of view, each flow has the
incentive to increase its own αi parameter in order to have better share of bandwidth. Let’s
consider the following game:

Game 3.1

Players: N FAST TCP flows

Actions: Each player can set its parameter (αi) in order to control the number of its
backlogged packets in the queue of the bottleneck link (with capacity µ and delay
τ). The router (with buffering capacity of B packets) is assumed to use Drop-Tail
mechanism (FIFO principle)

Payoff: f(αi) = λi (the goodput)

Notice that the goodput of a FAST TCP connection has the same formula as of a TCP
Vegas connection. That is, if

∑N
j=1 < B, then:

λi =
αi

qi
= µ

αi∑N
j=1 αj

(4.15)

Again, similar to the TCP Vegas game, we have the payoff function of player i is strictly
increasing function with respect to αi. This implies that the FAST TCP game is similar to
the TCP Vegas game when the bandwidth-delay product is large (Game 2.1, Case 2) As a
result, the Nash equilibrium for the FAST TCP game is the same as in TCP Vegas game (the
only difference is the rate to equilibrium, not the equilibrium itself). There is a number
of problems associated with these Nash equilibria. First, the nearly full queue-length at
equilibrium makes the network vulnerable in the sense that there is a high probability of
FAST TCP flows’ behaviour turns back to the behaviour of TCP Reno and we come back
to where we started. Second, a large queue-length means a high delay, which is undesirable.

4.3 Conclusion

We have demonstrated, by using game-theoretic approach, how TCP Vegas’ inherent pricing
schemes as well as the parameter setting impact on its performance. Our analysis shows

42

that these inherent pricing schemes result in a rate control equilibrium state that is a
Nash equilibrium in game-theoretic terms which is also a global optimum of the all-Vegas
networks. We also proved that the parameter setting of TCP Vegas (and also FAST TCP)
are very vulnerable to selfish actions of the users. This poses a serious threat to the possible
deployment of FAST TCP in the future Internet.

Chapter 5

Performance Analysis of RED

In the first part of the dissertation (Chapter 2, Chapter 3 and Chapter 4), a comprehensive
performance analysis of TCP is presented. The TCP protocol represents the end-point con-
trol of the traffic. However, the traffic over the Internet also depends on other mechanisms
of the network (such as buffering and routing). As a result, the traffic control mechanisms of
TCP are not enough to control the traffic over the Internet and they must be supplemented
by mechanisms inside the networks. Among those mechanisms are the queue managements
at the routers. The classical Drop Tail scheme does little in this respect. Recently, a class of
Active Queue Management (AQM) schemes has been proposed to enhance the performance
of the network. The Random Early Detection (RED) mechanism is of particular interest
because it is already implemented in a wide range of commercial routers (such as Cisco’s
routers). However, the performance of RED as well as the tuning of RED’s parameters are
still very problematic and open issues.

There exists a substantial literature on performance analysis of RED and it can be
categorized into two main classes. The first class largely deals with analyzing and configuring
RED while keeping the algorithm intact. The second class considers how to change the
original RED to have better performance. In fact, there is no distinct border between the
two classes. In respect to analyzing RED, May et al [MBB00] proposed a simple analytic
model of RED and concluded (among others) that RED, in certain circumstances, provides
no better performance than Drop Tail. Christiansen et al in [CJOS00] evaluated RED with
pure web traffic and concluded that RED offers no clear advantage over Drop Tail, at least
in terms of delay. The paper also reports that performance is quite sensitive to the setting
of RED parameters. Problems with tuning and configuring RED parameters can also be
found in [MGT00, HMTG01]. In respect to new modification to RED, we would mention
Self-Configuring RED in [FKSS99] and recently Adaptive RED in [FGS01]. Basically, the
authors propose adapting the dropping probability maxp as a function of average queue
size to achieve the specified target average queue size in a wide variety of traffic scenarios.
We argue, however, that the adaptation of any parameter will affect the overall system
performance. We see no clear justification for adapting only maxp rather than minth and
maxth, as long as minth < maxth < K. In Sally Floyd’s Adaptive RED, the authors
proposed the tuning of wq based on link capacity. However, what we really consider here

43

44

is available capacity, which is changing, and the dynamics of which is yet to be estimated.
Other modifications to RED can be found in [ZhAt00, LiMo97, AOMC01, WyZu02].

Despite the fact that extensive research has been devoted to performance analysis of
RED and many publications have highlighted various aspects of this issue, the question of
how to configure the parameters of RED for optimal performance is still open. In addition,
the impact of RED mechanism on different issues of Internet performance (such as fairness)
is still not clear and requires more clarification and analysis.

In this chapter, a comprehensive performance analysis of RED is presented. We revisit
some features in RED and study them in greater detail. We point out that RED, in
general, does not possess proportional loss between flows as claimed and widely adopted in
previous research. We suggest the generalization of the Poisson Arrivals See Time Average
(PASTA) property and give a proof for TCP flows. We also evaluate the performance of the
Exponential Weighted Moving Average (EWMA) algorithm in RED. We find that EWMA
in RED is an unbiased estimator of the average queue-length, regardless of the weighting
value wq. We also point out the theoretical and practical limits of EWMA in RED. Finally,
we propose the use of Fuzzy EWMA to RED (Fuzzy RED) to alleviate the inflexibility of
RED tuning. We use simulations to evaluate the performance of Fuzzy RED and to compare
it with other versions of RED. Our simulations show that, in the case of a high workload
and a high level of variation, Fuzzy RED, by tracking system variation in an on-line manner,
improves RED performance in a number of important router-based metrics like packet loss
rate, average queueing delay, link utilization, and global power.

The chapter is organized as follows. In Section 5.1, the background on RED is briefly
overviewed. In Section 5.2, we give a detailed analysis of proportional loss in RED. Sec-
tion 5.3 shows the simulation topology. Section 5.4 discusses the motivation for Fuzzy RED.
Section 5.5 describes the Fuzzy RED mechanism. Section 5.6 evaluates the performance of
Fuzzy RED. Finally, Section 5.7 concludes the chapter.

5.1 Background on RED

In this section, we briefly describe the elements of the RED mechanism. The details about
the RED scheme can be found in the original paper [FloJa93]. The first key difference
between RED scheme and the Drop Tail scheme is that the RED scheme starts dropping
packets early, before the queue is full. The second key difference is that the dropping decision
of the RED scheme does not depend on the instantaneous queue-length but depends on the
average queue-length instead. Basically, the RED scheme randomly discards an incoming
packet with a probability that is proportional to the average queue-length.

Specifically, the RED scheme uses an exponential weighted moving average (EWMA),
which is a sort of a low-pass filter, to calculate the average queue-length from the current
queue-length:

ˆavgt = wqqt + (1− wq) ˆavgt−1 (5.1)

where qt is the instantaneous queue length at time t and wq ∈ [0, 1] is the weighting value.

45

Using the average queue length, the RED scheme calculates a packet marking/dropping
probability pb at every arrival of an incoming packet as follows:

pb =





0 if ˆavg < minth,

1 if ˆavg ≥ maxth,

ˆavg−minth
maxth−minth

∗maxp otherwise.

(5.2)

where maxp denotes the maximum packet marking probability, minth denotes the minimum
threshold, maxth denotes the maximum threshold and B denotes the buffer size. Figure 5.1

Queue-length

[packets]

Dropping/Marking probability

min

th

 max

th
 B

1

max

p

Figure 5.1: Dropping function of RED

illustrates the dropping function of the RED mechanism. As we can see in Figure 5.1,
when the (estimated) average queue-length is less than the minth, no packet is marked
(dropped). However, if the average queue-length is between the minth and maxth then the
marking probability is a linear function of the average queue-length. If the average queue-
length is greater than maxth, then all the incoming packets are marked (dropped). The
operation algorithm of the RED scheme discussed so far is relatively simple. As a result, it
is relatively easy to implement in commercial routers. In fact, the RED schemes has been
widely deployed in a number of commercial routers, including the Cisco’s routers.

5.2 Proportional Loss Revisited

Loosely speaking, the proportional loss property means that the fraction of marked packets
for each connection is proportional to that connection’s share of the bandwidth. RED is
claimed to possess this property [FloJa93]. In addition, proportional loss is widely adopted
(e.g. [LiMo97, HBT99]) in the fairness analysis of RED. However, M. May et al in [MBB00]

46

suggested that the claim is true only if the arrival flows are Poisson arrivals. This is based
on the PASTA property of Poisson processes. We take one step further. Notice that PASTA
can be generalized to ASTA (Arrivals See Time Averages), [MeYa95], and Burke in [Bur76]
has shown that the composite stream of exogenous Poisson arrivals and feedback customers
is not Poisson even though this stream sees a time average. Since TCP flows account for
a large portion of Internet traffic, TCP arrivals are mainly of interest. The question that
arises is then: Do TCP arrivals see time averages or not?

Proposition 5.2.1. TCP arrivals do not see time averages either with RED, or with Drop

Tail.

Proof
Let N ≡ {N(t), t ≥ 0} be the queue length process and A ≡ {A(t), t ≥ 0} be the arrival
process. For an arbitrary set B in the value space of N , define

U(t) =





1 if N(t) ∈ B

0 otherwise

If B is the stationary queue-length, then U is the event that N remains in that state. Now,
let us consider the mechanism of TCP. For the sake of simplicity, we take TCP Reno for
our analysis. Let W be the congestion window size and Wth the threshold value. Notice
that if the sender always has data to send then the congestion window is approximately
the number of packets that were sent but not yet acknowledged. In TCP/IP networks, the
acknowledgements (ACKs, or feedbacks) may traverse through the same route as the data
packets, they may traverse in different route. In respect to the first case, the congestion
window directly reflects the dynamics of the packet flow feeding the router. In respect to
the second case, the number of packets going in a forward direction, in a stable period, is
approximately half of this value (since the other half are ACKs in the backward direction).
Consequently, the dynamics of the congestion window also reflect the dynamics of the packet
flow feeding the router of interest.

1. After every nonrepeated acknowledgment: if W < Wth , set W = W + 1; Slow Start
Phase else set W = W + 1/W ; Congestion Avoidance Phase

2. When the duplicate acknowledgments exceed a threshold, retransmit next
expected packet; set Wth = W/2, then set W = Wth and enter Fast Recovery
Phase

3. Upon timer expiration, the algorithm goes into slow start: set Wth = W/2 set W = 1.

Let us consider Phase 2, when the congestion window is halved after sensing duplicate
acknowledgements. Duplicate ACKs imply dropping of packets at the buffer and that the
buffer at the router is full (for Drop Tail) or potentially full (for RED). That is, the future

47

increments of A in this phase are dependent on the past of U . And so, the ASTA property
does not hold. Consequently, TCP arrivals do not see time average either with RED, or
with Drop Tail gateway. ¤

Corollary 1. We cannot achieve proportional loss between TCP flows either with RED or

with Drop-Tail.

Remark 5.2.2. A more general condition of ASTA is LBA [MeYa95](Lack of Bias As-

sumption) which only requires that U and the conditional intensity, ηU , of N , given U , are

point-wise uncorrelated. Certainly the uncorrelated condition is weaker than the indepen-

dence condition. However, we can similarly show that this condition also fails.

Remark 5.2.3. ASTA, in the absence of Poisson flows, are all in the category of networks

of quasi-reversible queues; in particular, for the M/M/1 queue with feedback. Once again,

Burke in [Bur76] has shown that the composite stream of exogenous Poisson arrivals and

feedback customers is not Poisson even though this stream sees a time average.

Remark 5.2.4. It is noteworthy, however, that for quasi-reversible queues in isolation,

LBA implies Poisson arrivals [MeYa95].

Remark 5.2.5. Let us assume that the service time at the router is exponentially distrib-

uted (Markovian service). In this case, consider the G/M/1 queue. We allow the arrival

process to be general. Certainly, the arrivals generally (except Poisson ones) do not see

time averages, but due to the duality of M/G/1 and G/M/1, we can explicitly express these

two values by each other [Kle75].

5.3 Simulation Topology

Figure 5.2 shows the topology template for all of our simulations throughout this chapter.
We consider the general topology of N senders S1, S2, .., SN and N access links. The i-th
access link is specified by bandwidth BSi and delay DSi. Router1 is the access router. We
suppose the link between Router1 and Router2 is a bottleneck link with bandwidth BBN

48

ROUTER_1
 ROUTER_2

S

1

S

2

S

N

R

1

R

2

R

M

Bottleneck link

B

BN

, D

BN

 B

S1

, D

S1

 B

S2

, D

S2

 B

SN

, D

SN

B

R

, D

R

Figure 5.2: Simulation Topology

and delay DBN . We also add M receivers at the other end in case we want to generate
backward traffic. However, unless otherwise stated, we consider the bottleneck link is the
only sink.

5.4 Motivations for Fuzzy RED

5.4.1 Pitfalls in Tuning RED Parameters

One of the inherent weaknesses of RED is parameter sensitivity. Extensive research has
been devoted to this issue and many publications have highlighted various aspects of this
issue. However, the question of how to configure the parameters of RED for optimal perfor-
mance is still open. Christiansen et al in [CJOS00] examined the impacts of tuning RED’s
parameters on end-user delay, and concluded that for links carrying only web traffic, RED
queue management appears to provide no clear advantage over the Drop-Tail gateway for
end-user response times. M. May et al in [MBB00] used a simple analytic model to evaluate
RED performance in terms of loss rate, link utilization, delay and delay variation.

In this section, we use simulations to examine the impacts of tuning different RED pa-
rameters and compare their performance with Drop-Tail. We concentrate on three router-
based metrics: link utilization, link loss rate and average queuing delay. We believe that
these metrics clearly provide insight into the performance of queueing management algo-
rithms at routers because end-user metrics of interest (such as end-user delay) are mainly
dependent on these metrics. Our simulations reveal two main points. First, RED with fixed,
default parameters is no better than Drop-Tail, at least in terms of the examined metrics.
Second, there exist parameter tunings of RED so that they can perform somewhat better
than Drop-Tail. However, these parameter settings do not increase RED performance both

49

in link utilization and average queuing delay simultaneously. Rather, in this case, RED
performs better than Drop-Tail in terms of global power defined in [FloJa93] as the ratio of
throughput to delay.

Impact of weighting parameter wq. We examine the impact of tuning the weighting
parameter wq when other parameters are left unchanged and equal to the default values
(maxp=0.1, minth=10 packets, maxth=30 packets according to the buffer size of 50 pack-
ets). The bottleneck link bandwidth is 15 Mb/s, with delay 50 ms. The access links are
all 100 Mb/s. All connections are TCP connections with a packet size of 1000 bytes. To
simulate the impact of wq on different workloads, we examine it with an increasing number
of connections (4, 16, 64, 256, accordingly). Increasing the number of connections means
increasing the workload feeding the router at the bottleneck link. To simulate high level
of variation of incoming TCP traffic, we set the access link delays in a range from 10ms
to (10 + N − 1) ms, where N is the number of connections (nodes). The simulation time
used is 30 seconds. We experience a large fluctuation in queue length dynamics in the first
few seconds (typically around 5 seconds in our case) due to TCP’s first slow starts. So,
the simulation time should not be too short. We find that 30 seconds simulation time is
adequate to ensure statistical accuracy and to match TCP session time details.

RED is tuned according to the recommendation found in [FGS01]. We set

wq = 1− exp(−1/BBN) (5.3)

where BBN is the bottleneck link capacity. In our simulation, BBN is set to 15 Mb/s, so
wq is set to 0.005, accordingly.

Figure 5.3(a) shows the impact of tuning wq on link loss rates. As we can see, Drop-Tail
performs better than the default tuning of RED, at least in terms of link loss rates. We
observe that as the number of connections is small and the round-trip times are relatively in
the same range, link loss rates are relatively similar. However, as the number of connections
increases, the difference becomes significant. The simulation results reveal to us that there
exists a parameter tuning for RED that produces better performance than Drop-Tail. How-
ever, Drop-Tail seems to be more robust than a number of cases with RED, especially when
maxth is far from buffer size and maxp is high (aggressive early detection). Figure 5.3(c)
shows the performance of RED and Drop-Tail in terms of link utilization. We observe that
default RED is rather aggressive in detection, thus reducing the utilization of link capacity,
especially when the workload is high (increased connection number).

As expected, the results are different with delay. Figure 5.3(b) shows that both versions
of RED (default and tuned) have smaller average queueing delay than Drop-Tail. However,
we have to find the trade-off between average queueing delay and link utilization. We
use global power to judge the trade-off performance of Drop-Tail and different parameter
settings of RED. Figure 5.3(d) shows that RED indeed performs better than Drop-Tail in
terms of global power. However, this metrics is hardly observable by the end-user.

Impact of dropping parameter maxp. We examine the impact of tuning the drop-
ping parameter maxp when other parameters are left unchanged and equal to the default
value(wq=0.02, minth=10 packets, maxth=30 packets according to the buffer size of 50
packets). The simulation topology is the same as the simulation with wq. The bottleneck

50

0 50 100 150 200 250 300
0

1

2

3

4

5

6

Connection Number

P
ac

ke
t L

os
s

%

Drop Tail
Default RED
"Tuned" RED

(a)

0 50 100 150 200 250 300
65

70

75

80

85

90

95

100

Connection Number

U
til

iz
at

io
n

%

Drop Tail
Default RED
"Tuned" RED

(c)

0 50 100 150 200 250 300
0.05

0.1

0.15

0.2

0.25

0.3

Connection Number

A
ve

ra
ge

 Q
ue

ue
in

g
D

el
ay

 in
 s

ec

Drop Tail
Default RED
"Tuned" RED

(b)

0 50 100 150 200 250 300
300

400

500

600

700

800

900

1000

1100

Connection Number

G
lo

ba
l P

ow
er

Drop Tail
Default RED
"Tuned" RED

(d)

Figure 5.3: Impact of weighting parameter on router-based performance metrics: RED vs.
Drop-Tail

link bandwidth is 15 Mb/s, with a delay of 50 ms. The access links are all 100 Mb/s. All
connections are TCP connections with a packet size of 1000 bytes. To simulate the impact
of maxp on different workloads, we examine it with an increasing number of connections
(4, 16, 64, 256, accordingly). To simulate a high level of variation of incoming TCP traffic,
we set access link delays ranging from 10ms to (10 + N − 1) ms, where N is the number of
connections (nodes). The simulation time is 30 seconds.

RED is tuned according to the recommendation in [FKSS99], with α and β are set to 3
and 2, respectively.

As we can see in Figure 5.4(a) and 5.4(b), we have similar results in terms of loss
rates and delay as with the wq tuning simulations. However, Figure 5.4(c) shows that
tuning maxp according to Adaptive RED in [FKSS99], unlike the wq tuning simulations,
also improve link utilization. Power, as a ratio of throughput to delay, is thus certainly
improved.

What we can conclude here is that, fixed, default RED shows no clear advantage over
Drop-Tail in a number of crucial router-based performance metrics. However, there exists
a parameter tuning that can improve RED performance. The problem remains here is
that, as the conditions are changing, how to adapt the tuning properly to maintain robust
performance.

51

0 50 100 150 200 250 300
0

1

2

3

4

5

6

7

8

9

Connection Number

P
ac

ke
t L

os
s

%

Drop Tail
Default RED
"Tuned" RED

(a)

0 50 100 150 200 250 300
65

70

75

80

85

90

95

100

Connection Number

U
til

iz
at

io
n

%

Drop Tail
Default RED
"Tuned" RED

(c)

0 50 100 150 200 250 300
0.05

0.1

0.15

0.2

0.25

0.3

Connection Number

A
ve

ra
ge

 Q
ue

ue
in

g
D

el
ay

 in
 s

ec

Drop Tail
Default RED
"Tuned" RED

(b)

0 50 100 150 200 250 300
300

400

500

600

700

800

900

1000

1100

Connection Number

P
ow

er

Drop Tail
Default RED
"Tuned" RED

(d)

Figure 5.4: Impact of dropping parameter on router-based performance metrics: RED vs.
Drop-Tail

5.4.2 Reasons for Fuzzy Extension

Theoretical Limits of EWMA in RED

For any fixed wq ∈ [0, 1], let ˆavgt be the estimator of the average queue length by:

ˆavgt = wqqt + (1− wq) ˆavgt−1 (5.4)

where qt is the instantaneous queue length at time t. Given the estimator, a natural
question arises then: Is the estimator an unbiased estimator? The following well-known
fact in statistics gives us the answer:

Lemma 5.4.1. If {qt} is stationary with E(qt) = µq then ˆavgt is an unbiased estimator of

µq, regardless of the weighting value wq.

Now, let us consider the variance of this estimator. Without losing generality, we can
suppose that q1 = 0, that is the queue starts from empty. Let σ2 be the variance of {qt}.

Lemma 5.4.2. [YMKT99] If q1, q2, ... are independent (uncorrelated) then the variance of

52

the estimator can be calculated as:

D2(ˆavgt) = σ2 wq − wq(1− wq)2t−2

2− wq
(5.5)

From Equation 5.5, if wq is small (wq ≈ 0) then D2(ˆavgt) ≈ σ2 wq

2 as t →∞.

Now consider the case when q1, q2, .. are correlated. Denote γ(k) = E
[
(qt+k − µq)(qt −

µq)
]

the covariance function of {qt} at lag k and %(k) = γ(k)/γ(0) the correlation function
of {qt} at lag k.

Proposition 5.4.3. The variance of the estimator can be calculated as:

D2(ˆavgt) = σ2 wq − wq(1− wq)2t−2

2− wq
+ 2

t−2∑

k=1

%(k)
t−2−k∑

j=0

w2
q(1− wq)2j+k (5.6)

This proposition is actually the corollary of Lemma 5.4.1 and Lemma 5.4.2.

Remark 5.4.4. The coefficient %(k) → wq

2−wq
(1 − wq)k as t → ∞. Interestingly, the cor-

relation function %(k) in the expression is also ”exponentially weighted” with the weighting

parameter 1− wq.

Remark 5.4.5. The additional term contributes to the variance of the estimator. This

makes the estimator worse (it is not so good already, compared with a moving window), since

it increases the variance of the estimator. In practice, empirical and simulation analysis

in [VaFe01] show that the queue-length process is not only correlated, but exhibits fractal

properties, e.g. long range dependence. In means that %(k) decays according to a power law.

This slow decay in the correlation can make this additional term large in practice.

Practical Limits of EWMA in RED

The standard Exponential Weighted Moving Average applied in RED possesses a number of
good properties. It is easy to be implemented and it requires only a small buffer size for the
storage of samples. It is, as mentioned in the previous section, also an unbiased estimator
of the mean. However, it is inflexible in some points. First, when we average the queue-
length, we are implicitly choosing a time scale over which to average it. The problem is
then ”What should that time scale be?”. Intuitively, it should match the round-trip time of
a typical TCP connection through the RED buffer. In practice, however, TCP connections

53

can have round-trip times which vary by several orders of magnitude. Furthermore, TCP is
self-clocking and so already has its own averaging mechanism built-in which automatically
averages over a round-trip time. So why should we try to average something that is already
doing its own averaging and when it’s simply impossible to get the time scale right anyway?
Second, RED was basically designed to face with transient congestion [FloJa93] and highly
periodic network traffic, especially TCP traffic. In this respect, the standard EWMA gives a
fixed weight to past history, thus ignoring transient phases in system dynamics. In [FloJa93],
the authors proposed an analysis of bounds (or guide-lines) for the weighting value wq. The
analysis in that paper is only for a given burst size and buffer size. In other words, we
need to know these parameters a priori in order to find an appropriate wq to meet our
performance target. A fixed wq is inflexible in the sense that the EWMA algorithm cannot
adapt to the changing condition of the incoming traffic. To alleviate this problem, we
propose the use of Fuzzy Exponential Averaging [Kes91], which automatically determines a
’good’ value of wq, and is able to change this value on-line if the system behaviour changes.
Since the RED dropping mechanism is based on the estimated average queue-length, with
”good value”, we mean that RED can better keep track with queue-length variations, and
consequently, reduces the number of unnecessarily dropped packets at the router.

5.5 Fuzzy RED Mechanism

We basically keep the RED mechanism intact and only modify the weighting parameter
wq. When estimating the average queue-length at the router, instead of using a fixed
weighting parameter, we apply Fuzzy EWMA. Details about Fuzzy EWMA are described
in the original paper [Kes91]. Now, we shall discuss how Fuzzy EWMA works in our case.

5.5.1 Construction of Fuzzy RED Mechanism

Consider a discrete time system with qk, the queue length at the buffer at time k, as the
state variable. The system can span a spectrum varying from ’steady’ (stationary) to ’noisy’
(non-stationary). Let q̂k be the estimate of qk, then observation noise (error) is qk − q̂k.
To see the relation between error and the predictor, we define scaled error as |qk − q̂k|/q̂k.
From now on, if not further mentioned, we deal with this error, because it gives us insight
into how the error is related to the estimated queue-length. The variance of system and
observation noise is the problem. We need to construct a predictor that can adapt to the
changing of system dynamics. We consider the Fuzzy EWMA for this purpose.

The first question we need to deal with is how to define the control rules. We assume that
when the queue stays in its stationary (stable) state, the estimation error is small. That is,
if the dynamics of queue-length in the buffer has little perturbation, then the exponential
averaging technique will produce a predictor that is usually close to the actual system state
(error is small). In this case, wq should be large. In contrast, when there is a large variation
in queue-length, past history cannot predict the future well (the error is high). In this case,

54

we set wq low, so that the estimator can track changes in the system. Finally, since we do
not have a good grasp of the state dynamics, we only define three gradations in the values of
wq and error. In addition, keeping the number of gradations minimal reduces the overhead
computing time for the algorithm. Thus, we adopt the following control rules:

• IF error is high THEN wq is low

• IF error is medium THEN wq is medium

• IF error is low THEN wq is high

Secondly, we need to answer the question: high, medium, low are related to what?
The answer for this question is equivalent to defining the membership functions for error
and wq. For the sake of simplicity, we use the trapezoid form (the conventional and simplest
form) for these two variables.

m

e

0
 1

1

 LOW
 MEDIUM
 HIGH

(a)

m

w
q

0
 1

1

 LOW
 MEDIUM
 HIGH

(b)

Figure 5.5: Membership functions: (a) error membership function; (b) Wq membership
function.

The question that remains is how to specify the membership functions.

How to Specify Membership Functions

This question is equivalent to specifying me and mwq , as shown in Figure 5.5. It can be
done on-line by neural network training algorithms (such as back propagation), but this
is time consuming and lacks simplicity. So we do the training off-line to find appropriate
values for these parameters (i.e. for each topology, we run simulations off-line and let the
parameters me and mwq span the whole range. The best values (ranges) are chosen). When
it is good, it can be fixed. The outcome of the training, for the topology of our simulations,
has mwq in [0.002..0.05] range and me in [0.06..0.2] range. Interestingly, the results for
medium value of wq are close to the value proposed by Sally Floyd et al in [FGS01]. At this
point, it seems that we arrive at the point where we started. That is, we still need to train
the system for some a priori knowledge. The only difference here, and also the intuitive
force behind our approach, is that once a good trained parameter is chosen, it can be fixed,
and from that point, the system will adapt to the changing condition of the incoming traffic.

55

Z
-1

w

q

e
rr

o
r

Dropping

Decision
Estimated

Average

Queue-length

q

k

Control Rules

Fuzzy System

Specification

- IF error is HIGH THEN wq is

LOW

- IF error is MEDIUM THEN

wq is MEDIUM

- IF error is LOW THEN wq is

HIGH

Membership Functions of
 error

and
w

q

Fuzzy Labels (LOW,

MEDIUM, HIGH) Specification

- m

e

 and m

wq

 values

- Training off-line

EWMA: q^k=w

q

*q

k

+(1-w

q

)q^

k-1

Figure 5.6: Flow diagram of Fuzzy RED

It should be mentioned that we only apply the simplified version of Fuzzy EWMA
proposed in [Kes91] without a smoothed proportional error because we find that it is very
time consuming and in consequence greatly affects the performance.

The proposed algorithm was implemented in using NS2. Except for the EWMA algo-
rithm part, all other features in RED are kept intact.

5.6 Simulation Results

5.6.1 Stationary Performance

To examine the stationary behaviour of Fuzzy RED, we first run the simulation with the
same parameters as in previous Sections. That is, the access links are all 100 Mb/s. The
bottleneck link bandwidth is 15 Mb/s, with delay 50 ms. Buffer size at router-1 is set to
50 packets, minth is set to 10 packets, maxth is set to 30 packets. Connections are TCP
connections with a packet size of 1000 bytes. To simulate the impact of different workloads
on performance of versions of RED and Drop-Tail, we examine them with an increasing
number of connections (4, 16, 64, 256, accordingly). The simulation time is 30 seconds.
We compare our proposed Fuzzy RED not only with Drop Tail and default RED, but also
with other Adaptive RED versions, such as Adaptive RED in [FKSS99] (we call it Adaptive

56

RED-Feng), and Adaptive RED in [FloJa93] (we call it Adaptive RED-Sally).
Scenario 1. TCP incoming traffic with different RTTs. To simulate high level of

variation of incoming TCP traffic, we set access link delays range from 10ms to (10+N−1)
ms, where N is the number of connections (nodes).

0 50 100 150 200 250 300
0

1

2

3

4

5

6

7

8

9

Connection Number

P
ac

ke
t L

os
s

%

Drop Tail
Original Default RED
Adaptive RED−Feng
Adaptive RED−Sally
Fuzzy RED

(a)

0 50 100 150 200 250 300
65

70

75

80

85

90

95

100

Connection Number

U
til

iz
at

io
n

%

Drop Tail
Original Default RED
Adaptive RED−Feng
Adaptive RED−Sally
Fuzzy RED

(c)

0 50 100 150 200 250 300
0.05

0.1

0.15

0.2

0.25

0.3

Connection Number
A

ve
ra

ge
 Q

ue
ue

in
g

D
el

ay
 in

 s
ec

Drop Tail
Original Default RED
Adaptive RED−Feng
Adaptive RED−Sally
Fuzzy RED

(b)

0 50 100 150 200 250 300
300

400

500

600

700

800

900

1000

1100

Connection Number

G
lo

ba
l P

ow
er

Drop Tail
Original Default RED
Adaptive RED−Feng
Adaptive RED−Sally
Fuzzy RED

(d)

Figure 5.7: Router-based performance metrics- different RTTs: Fuzzy RED vs. Adaptive
RED versions and Drop-Tail.

Figure 5.7 shows comparative performance of Fuzzy RED against other versions of
RED and Drop Tail. As mentioned and explained in previous sections, we concentrate
on router-based performance metrics. We learned from our simulations that under light-
weight load (few number of connections), there is no significant difference between versions
of RED and Drop Tail, and the orders are changing from simulation to simulation. But the
situation is different with heavily loaded incoming traffic (eg. 256 connections). In most of
our simulations, three versions of Adaptive RED perform closely together in all examined
performance metrics. The benefits of Fuzzy RED are more visible when the workload is
high (ie. there are many TCP flows, sufficient training data for the Fuzzy Scheme) and the
level of variation of burstiness is high (different round-trip times of TCP connections as in
this scenario). Original default RED suffers from a high loss rate because of fixed parameter
setting. These fixed default parameters seem to be too aggressive. In terms of loss rate,
RED with fixed default parameters, in our case, perform even worse than Drop-Tail. We
believe that, this happens because RED, in this case, unnecessarily and too early dropped
the incoming packets. Packet loss rates with versions of Adaptive RED in the case of heavy

57

load (256 TCP flows, with different round-trip time setting) oscillate around 5 percent
whereas it is far above for Drop Tail and Default RED (6-10 percent). Figure 5.7(b) shows
the comparative performance of the queueing management algorithms in terms of average
queueing delay. We experience the situation where Drop Tail performs worst because Drop
Tail only drops packets when the queue is full thus keeping the queue potentially full all of
the time. One more thing to mention is that RED with fixed default parameters has low
utilization as shown in Figure 5.7(c). Interestingly, Figure 5.7(d) reveals that all versions
of RED (default RED included) perform better than Drop-Tail in terms of global power as
mentioned in previous sections. This means that what we really benefit from RED is not
only a low average queueing delay but also the trade-off between delay and utilization, at
least in terms of global power as defined in [FloJa93].

Scenario 2. TCP incoming traffic with the same RTTs. To simulate a low level of
variation of burstiness, we set access link delays all equal to 10 ms.

0 50 100 150 200 250 300
0

1

2

3

4

5

6

Connection Number

P
ac

ke
t L

os
s

%

Drop Tail
Original Default RED
Adaptive RED−Feng
Adaptive RED−Sally
Fuzzy RED

(a)

0 50 100 150 200 250 300
70

75

80

85

90

95

100

Connection Number

U
til

iz
at

io
n

%

Drop Tail
Original Default RED
Adaptive RED−Feng
Adaptive RED−Sally
Fuzzy RED

(c)

0 50 100 150 200 250 300
0

0.05

0.1

0.15

0.2

0.25

0.3

Connection Number

A
ve

ra
ge

 Q
ue

ue
in

g
D

el
ay

 in
 s

ec

Drop Tail
Original Default RED
Adaptive RED−Feng
Adaptive RED−Sally
Fuzzy RED

(b)

0 50 100 150 200 250 300
200

400

600

800

1000

1200

1400

1600

Connection Number

P
ow

er

Drop Tail
Original Default RED
Adaptive RED−Feng
Adaptive RED−Sally
Fuzzy RED

(d)

Figure 5.8: Router-based performance metrics- same RTTs: Fuzzy RED vs. Adaptive RED
versions and Drop-Tail.

Figure 5.8 shows comparative performance of Fuzzy RED against other versions of RED
and Drop Tail. As we can see in Figure 5.8(a), packet loss rates with versions of Adaptive
RED in the case of heavy load (256 TCP flows) oscillate around 3 percent whereas it is
much higher for Drop Tail and Default RED (4-5 percent), which are significantly smaller
than simulation with different RTTs. The situation is similar with delay and link utilization
(nearly 100% with Adaptive RED-Sally and Fuzzy RED, 256 connections) in the way that

58

all the versions perform somewhat better with the same RTTs than with different RTTs, as
shown in Figure 5.8(b) and Figure 5.8(c). Global power, as a result and shown in Figure
5.8(d), is certainly improved in all cases. An important observation to be noticed here is
that, for this scenario, Adaptive RED-Sally out-performs all other versions of RED and
Drop-Tail. This outcome shows the benefit of simplicity in Adaptive RED-Sally compared
to Fuzzy RED. However, as we mentioned earlier, we basically design Fuzzy RED to deal
with high workload and high level of variations of burstiness which is, we believe, a realistic
condition of today’s Internet.

What we have been discussing so far is only for pure TCP traffic. However, as RED
routers are also responsible for directing and managing other flows of different traffic such
as voice and video traffic. For these applications, other performance metrics are also of
importance. For example, for VoIP (Voice over IP) applications, not only the average delay
but delay variation (jitter) heavily affects the end-user view of performance. So in case both
TCP flows and UDP flows sharing the router, queue-length variation should be kept low for
the sake of the Quality of Service (QoS) for voice applications. We simulate RED and Fuzzy
RED with 1000 flows (500 TCP flows and 500 UDP flows). Since the number of connections
in this significantly increased, we also increase the duration time of the simulation to 180
seconds in order to ensure statistical accuracy of our results.

Scenario 3. Queue-length variation with the same RTTs. To simulate low level of
variation of burstiness, we set access link delays all equal to 100 ms.

0 20 40 60 80 100 120 140 160 180 200
0

5

10

15

20

25

30

35

40

45

50

Time in seconds

Q
ue

ue
−

le
ng

th
 in

 p
ac

ke
ts

Actual Length
Average Length

(a)

0 20 40 60 80 100 120 140 160 180 200
0

5

10

15

20

25

30

35

40

45

50

Time in seconds

Q
ue

ue
−

le
ng

th
 in

 p
ac

ke
ts

Actual Length
Average Length

(b)

Figure 5.9: Queue-length variations: (a) RED case; (b) Fuzzy RED case.

Figure 5.9 shows that although the overall long run average queue-length is quite
similar for RED and Fuzzy RED (around 25 packets), the variation in queue length of RED
is significantly higher with RED than with Fuzzy RED. High variation in queue-length
results in high delay variation (jitter), thus decreasing the quality of voice services.

Scenario 4. Queue-length variation with different RTTs. To simulate a high level
of variation of incoming TCP traffic, we set access link delays to range from 100 ms to
(100 + N − 1) ms, where N is the number of connections (nodes).

59

0 20 40 60 80 100 120 140 160 180 200
0

5

10

15

20

25

30

35

40

45

50

Time in seconds

Q
ue

ue
−

le
ng

th
 in

 p
ac

ke
ts

Actual Length
Average Length

(a)
0 20 40 60 80 100 120 140 160 180 200

0

5

10

15

20

25

30

35

40

45

50
Actual Length
Average Length

(b)

Figure 5.10: Queue-length variations: (a) RED case; (b) Fuzzy RED case.

As we can see in Figure 5.10, queue-length variation is significantly higher with RED
than with Fuzzy RED. Moreover, Figure 5.9 and Figure 5.10 clearly show that performance
of both RED and Fuzzy RED, respectively, decreases when we simulate with different RTTs.

5.6.2 Performance with Non-Stationarities

We examine the performance of Fuzzy RED with level-shifts, which are the most common
non-stationarity effects observed. We run the simulation in three parts each with length of
20 seconds. First, 10 TCP flows are active. After 20 seconds, an addition of 10 TCP flows
enter. After 20 seconds, these 10 flows are terminated. All other parameters are the same
as the simulation for the stationary case.

0 10 20 30 40 50 60 70
0

5

10

15

20

25

30

35

40

45

50

Time [seconds]

Q
ue

ue
 [p

ac
ke

ts
]

queue length
average queue length

(a)

0 10 20 30 40 50 60 70
0

5

10

15

20

25

30

35

40

45

50

Time [seconds]

Q
ue

ue
 [p

ac
ke

ts
]

queue length
average queue length

(b)

Figure 5.11: Performance with level-shifts: RED vs. Fuzzy RED: (a) RED case; (b) Fuzzy
RED case.

60

Figure 5.11 shows the dynamic of queue-length with RED and Fuzzy RED. After the
increase in workload (additional 10 flows enter), actual queue-length with RED varies widely
in the full range between 1 and 50. Fuzzy RED adapts to the sudden change in condition,
and does not allow the queue-length to change quickly, keeping the actual queue-length in
the target of 15 to 35 packets. After the decrease in workload (10 flows leave), it takes
around 2 seconds for both RED and Fuzzy RED to get back to a normal condition, but
Fuzzy RED produces somewhat smaller values for average queue-length and queue-length
variation.

Scenario 6. Performance with background traffic. We run the simulation with some
background web (http) traffic by adding short http sources to the examined long FTP
connections. Each http source sends a request (a packet) to its destination, which replies
with a file of size that is exponentially distributed with a mean of 125 KB-packets (the
file size distribution can also be modelled by the Weibullian distribution, but here, we use
exponential distribution, for the sake of simplicity). The waiting time for another request
is also exponentially distributed with a mean of 1 second.

0 10 20 30 40 50 60 70
0

5

10

15

20

25

30

35

40

45

50

Time [seconds]

Q
ue

ue
 [p

ac
ke

ts
]

queue length
average queue length

(a)

0 10 20 30 40 50 60 70
0

5

10

15

20

25

30

35

40

45

50

Time [seconds]

Q
ue

ue
 [p

ac
ke

ts
]

queue length
average queue length

(b)

Figure 5.12: Performance with Non-Stationarities: RED vs. Fuzzy RED: (a) RED case; (b)
Fuzzy RED case.

We observe in Figure 5.12 periodicity with both RED and Fuzzy RED. Periodicity is
well-known in the dynamics of queue-length in a buffer and it seems that Fuzzy RED does
not filter out periodicity, but it adapts to changes somewhat quicker. More importantly,
although the average queue-lengths both for Default Original RED and Fuzzy RED are
similar, the actual queue-length is higher with RED than with Fuzzy RED.

5.7 Conclusion

In this chapter, a comprehensive performance analysis of the RED queue management
scheme was presented. We demonstrated that RED in general does not guarantee propor-
tional loss to flows and gave a proof for the TCP case. We also analytically evaluated the

61

performance of the EWMA algorithm in RED.
We found that the EWMA algorithm in RED is an unbiased estimator of average queue-

length, regardless of the weighting value wq. We also pointed out the theoretical and
practical limits of the EWMA in RED.

We proposed the use of Fuzzy EWMA to RED (Fuzzy RED). Simulation results show
that our proposed Fuzzy RED improves RED performance in a number of router-based
metrics such as packet loss rate, average queueing delay, link utilization, and global power.

Regarding future work in this direction, the application of linear adaptive predictor to
predict the queue length in RED is a possible and promising approach.

Chapter 6

Summary of the Dissertation

The objective of this dissertation was to provide a comprehensive performance analysis of
some key traffic control techniques in TCP/IP network.

Motivation and previous work were first briefly overviewed in Chapter 1. The finding
and results of the dissertation were presented in detail in the next four chapters. In Chapter
2 new metrics as well as novel algorithms to characterize the dynamics of TCP traffic were
presented. In Chapter 3 a new unified model for TCP was provided. Game-theoretic
analysis of rate control and the parameter setting of TCP Vegas was presented in Chapter
4. In Chapter 5, a comprehensive performance analysis of the Random Early Detection
scheme was provided.

In what follows, we summarize the main contributions of our work.

6.1 Measurement of the Metrics of TCP

In Chapter 2 the introduction, design and implementation of several new metrics and novel
algorithms to measure different aspects of TCP traffic were presented. These include:

• The measurement of the number of forward-going packets of TCP connections.

• The detection of the states of TCP.

• The measurement of state-based metrics of TCP.

Regarding the measurement of the number of forward-going packets of TCP connection,
we have introduced a new concept, namely the virtual queue. We have discussed the re-
lationship of the virtual queue concept with other important metrics of TCP such as the
congestion window as well as the number of out-going packets of a TCP connection. We
have implemented the proposed algorithm and carried out simulation as well as measure-
ment analysis to validate it. We have also shown how to use this metric to have a better
insight into the dynamics of TCP.

62

63

Regarding the detection of the states of TCP, we have introduced, designed and imple-
mented a novel algorithm to detect the state changes of TCP during a connection. We have
carried out simulation analysis to validate the proposed algorithm. We have also shown the
applicability of this algorithm to the analysis of TCP dynamics as well as to the validation
of the results (models) presented in this dissertation.

Being able to detect the state changes of TCP, we have introduced, designed and imple-
mented a number of new algorithms to measure of the state-based metrics of TCP. These
include:

• The sojourn time distribution at each state during a TCP connection.

• The jumping probabilities from one state to another state during a connection.

• The distribution of the number of packets sent in each time slot (RTT).

We have carried out simulation analysis to validate the proposed algorithms. We have also
shown how to use the proposed algorithm to collect the state-based metric to validate our
state-based TCP model presented in this dissertation.

The results presented in Chapter 2 are published in [J4, C7, C8].

6.2 New Unified Model for TCP

In Chapter 3, a novel approach to model TCP traffic was presented. One of the benefits of
our approach is that we can build a unified model for different versions of:

• We have proposed a new unified model for different versions of TCP based on the
states of TCP itself. We considered the dynamics of TCP as a Discrete-time Batch
Markovian Arrival Process (D-BMAP), where the states of TCP are the states of the
modulating Markov chain of this process.

Another benefit of our approach is that it provides us a simple way to characterize a
TCP connection:

• We have introduced a new concept, namely the TCP characterization matrix, to
characterize a TCP connection. We have also shown how to compute the elements of
the introduced TCP characterization matrix.

We have carried out simulation to validate the new model in different scenarios, with
different versions of TCP.

The results presented in Chapter 3 are published in [J1, J3, C2, C4].

64

6.3 Game-Theoretic Analysis of TCP Vegas

In Chapter 4, a game-theoretic analysis of TCP Vegas was presented. We have investigated
the rate control and parameter setting problems of TCP Vegas from a game-theoretic point
of view.

Regarding the rate control problem of the all-TCP Vegas network, we have found that
there exists a unique Nash equilibrium (in its pure strategy space) for the TCP Vegas rate
control game.

Regarding the parameter setting problem of all-TCP Vegas network, we have studied
different games under different scenarios and found that under the selfish behaviour of the
end-users the resulted Nash equilibria (if at all exist) are very inefficient and the network
is prone to congestion.

We have also extended the analysis to FAST TCP case and concluded that under the
selfish behaviour of the end-user, the network is prone to congestion. This poses a serious
threat to the possible deployment of FAST TCP in the future Internet.

The results presented in Chapter 4 are published in [C0, C1].

6.4 Performance Analysis of RED

In Chapter 5, a comprehensive performance analysis of RED was presented. The main
results of the chapter can be summarized by the followings:

• We have pointed out that RED, in general, does not possess proportional loss between
flows as claimed and widely adopted in previous research. We have suggested the
generalization of the PASTA property and give a proof for TCP flows.

• We have evaluated the performance of the Exponential Weighted Moving Average
(EWMA) algorithm in RED. We have found that EWMA in RED is an unbiased
estimator of the average queue-length, regardless of the weighting value wq. We have
pointed out the theoretical and practical limits of EWMA in RED.

• We have proposed the use of Fuzzy EWMA to RED (Fuzzy RED) to alleviate the
inflexibility of RED tuning.

• We have carried out a comparative simulation-based analysis of different versions of
RED and shown that in the case of a high workload and a high level of variation, Fuzzy
RED, by tracking system variation in an on-line manner, improves RED performance
in a number of important router-based metrics like packet loss rate, average queueing
delay, link utilization, and global power.

The results presented in Chapter 5 are published in [J2, C5].

Appendix A

Appendices of Chapter 2

A.1 State detection in more detail

IF state==1

!iscwndGrow

AND cwnd != 1

state <- 2

cwnd>ssthresh

state <- 3

cwndNew=1

state <- 4

state==2

!iscwndGrow

AND cwndNew != 1

state <- 2

iscwndGrow=1

state <- 3

cwndNew=1

state <- 4

1

state==3

!iscwndGrow

AND cwnd != 1

state <- 2

cwndNew=1

state <- 4

1

state==4

sTimeNew>cTimeNew

state <- 1

lastSSthresh

state <- 1

state <- 4

ssthreshControl <- 1;

END

END

END

END

YES

YES

YES

YES

YES

YES

YES

YES

YES

YES

YES

YES

YES

YES

NO

NO

NO

NO

NO

START

Figure A.1: State detection flow diagram

65

Bibliography

[Ake02] A. Akella, R. Karp, C. Papadimitrou, S. Seshan, and S. Schenker, Selfish behavior
and stability of the Internet: A game-theoretic analysis of TCP ACM SIGCOMM, 2002.

[AlBa04] T. Alpcan, T. Basar, Distributed algorithms for Nash equilibira of flow control
games, to appear in Annals of Dynamic Games, 2004

[ALLY01] S. Athuraliya, V. Li, S. Low, Q. Yin, REM: active queue management, IEEE
Network, June 2001.

[AOMC01] J. Aweya, M. Ouellette, D. Montuno, A. Chapman A Control Theoretic Ap-
proach to Active Queue Management Computer Networks, 36, 2001.

[BloCa95] C. Blondia, O. Casals, Statistical multiplexing of VBR sources: A matrix-analytic
approach, Performance Evaluation 16, pp. 5-20, 1992.

[BMP94] L. Brakmo, S. O’Malley, and L. Peterson, TCP Vegas: new techniques for con-
gestion detection and avoidance, IEEE/ACM SIGCOMM 94, London, UK, Sept. 1994.

[Bon98] T. Bonald, Comparison of TCP Reno and TCP Vegas, Workshop on the modeling
of TCP, 1998.

[Bur76] P. Burke, Proof of a Conjecture on the Interarival-Time Distribution in M/M/1
Queue with Feedback, IEEE Trans. on Communication, vol. 24, 1976.

[CaMe00] C. Casetti and M. Meo, A new approach to model the stationary behavior of TCP
connections. In Proc. of IEEE INFOCOM, pages 367–375, March 2000.

[CJOS00] M. Christiansen, K Jeffay, D. Ott, F. D. Smith, Tuning RED for Web traffic
ACM SIGCOMM’00, Stockhom, 2000.

[FGS01] Sally Floyd, Ramakrishna Gummadi, and Scott Shenker. Adaptive RED: An Al-
gorithm for Increasing the Robustness of RED’s Active Queue Management, ACIRI
Technical Report, 2001.

[FKSS99] W. Feng, D. Kandlur, D. Saha, and K. G. Shin. BLUE: A New Class of Active
Queue Managemnent Algorithms, UM CSE-TR-387-99, April 99.

66

67

[Flo03] Sally Floyd, HighSpeed TCP for Large Congestion Window, RFC 3649, December
2003.

[FloJa93] Sally Floyd and Van Jacobson Random Early Detection Gateways for Congestion
Avoidance, IEEE/ACM Transactions on Networking, vol. 1, no. 4, August 1993, pp.
397-413.

[HBT99] P. Hurley, J. Boudec, and P. Thiran, A Note on the Fairness of Addictive Increase
and Multiplicative Decrease, ITC 16, UK, 1999.

[HeLu86] H. Heffes, D. Lucantoni, A Markov Modulated Characterization of Packetized
Voice and Data Traffic and Related Statistical Multiplexer Performace, IEEE Journal
on Selected Areas in Communications, Vol. 4, No. 6, September 1986, pp. 856-867.

[HMTG01] C. V. Hollot, V. Misra, D. Towsley and W. Gong, A Control Theoretic Analysis
of RED, INFOCOM 2001, Alaska, April 22-26, 2001.

[Jac88] V. Jacobson, Congestion avoidance and control, Proceedings of ACM SIG-
COMM’88, August 1988.

[JWL04] Cheng Jin, David X. Wei and Steven H. Low, FAST TCP: motivation, architec-
ture, algorithms, performance, IEEE INFOCOMM’04, March 2004.

[KaPa87] Karn, P. and C. Partridge, Improving Round-Trip Time Estimates in Reliable
Transport Protocols, SIGCOMM 87.

[Kel03] Tom Kelly, Scalable TCP: Improving Performance in Highspeed Wide Area Net-
works, ACM SIGCOMM Computer Communication Review, Vol. 33, Issue 2, pp. 83-91,
April 2003.

[Kes91] S. Keshav, A Control-theoretic Approach to Flow Control, Proc. ACM SIGCOMM
1991, Sept. 1991

[Kle75] L. Kleinrock, Queueing Systems: Theory John Wiley and Sons, 1975.

[Kor95] Y. A. Korilis and A. A. Lazar, On the existence of equilibria in noncooperative
optimal flow control, Journal of the ACM, vol. 42, no 3 pp. 584-613, 1995.

[Kum98] A. Kumar, Comparative Performance Analysis of Versions of TCP in a Local
Network with a Lossy Link, IEEE/ACM Transactions on Networking, 1998.

[LiMo97] D. Lin and R. Morris, Dynamics of Random Early Detection, SIGCOMM’97.

[LoLa99] S. Low and D. Lapsley, Optimization flow control, I: basic algorithm and conver-
gence, IEEE/ACM Transactions on Networking, 7(6):861-874, December 1999.

[Low03] S. Low, A duality model of TCP and queue management algorithms, IEEE/ACM
Transactions on Networking, October 2003.

68

[LPW02] S. Low, L. Peterson, and L. Wang, Understanding Vegas: a duality model, Journal
of ACM, 49(2):207-235, March 2002.

[LTWW93] W. Leland, M. Taqqu, W. Willinger, D. Wilson, On the Self Similar Nature of
Ethernet Traffic, ACM SIGCOMM 93, San Francisco, CA, USA, Sept. 1993.

[MaVa94] J. MacKie-Mason, H. Varian, Pricing the Internet, in B. Kahin and J. Keller,
eds., Public Access to the Internet, MIT Press, Cambridge, MA, 1995.

[MBB00] M. May, T. Bonald, and J. Bolot. Analytic Evaluation of RED Performance,
Proc. of INFOCOM’00, 2000.

[MeYa95] B. Melamed and D. Yao, The ASTA Property, Frontiers in Queuing: Models,
Methods, and Problems, CRC Press, 1995.

[MGT00] V. Misra, W. Gong and D. Towsley, A Fluid-based Analysis of a Network of AQM
Routers Supporting TCP Flows with an Application to RED, SIGCOMM 2000.

[MMFR96] M. Matthis, J. Mahdavi, S. Floyd, A. Romanow, TCP Selective Acknowledge-
ment Options, October 1996, RFC 2018.

[MSMO97] M. Matthis, J. Semske, J. Mahdavi, and T. Ott, The Macroscopic Behavior of
the TCP Congestion Avoidance Mechanism, Computer Communication Review, 27(3),
July 1997.

[Nag84] J. Nagle, Congestion Control in IP/TCP, RFC 896, January 1984.

[Neu81] Marcel Neuts, Matrix-Geometric Solutions in Stochastic Models - An Algorithmic
Approach, The Johns Hopkins University Press, Baltimore, Maryland, 1981.

[NS2] NS2 software and documentation are available at the following site:
http://www.isi.edu/nsnam/ns/

[OKM96] T. Ott, J.H.B. Kemperman, M. Mathis, The Stationary Behavior of Ideal TCP
Congestion Avoidance, Bell Lab Technical Report, 1996.

[OsRu94] M. J. Osborne and A. Rubenstein, A course in game theory, Cambridge, Massa-
chusetts: The MIT Press, 1994.

[Pax94] V. Paxson, Growth Trends in Wide-Area TCP Connections, IEEE Network, 8(4),
pp. 8-17, July/August 1994.

[Pax97] V. Paxson, Measurements and Analysis of End-to-End Internet Dynamics, Ph.D.
Dissertation, University of California, Berkeley, CA, April 1997.

[PFTK98] J. Padhye et al, Modeling TCP Reno Throughput: A Simple Model and Its
Empirical Validation, SIGCOMM’98, 1998.

69

[RFC2001] Richard Stevens, TCP Slow Start, Congestion Avoidance, Fast Retransmit, and
Fast Recovery Algorithms, January, 1997, RFC 2001.

[RFC2525] V. Paxson, M. Allman, S. Dawson, I. Heavens, B. Volz, Known TCP imple-
mentation problems, RFC 2525, March 1999.

[RFC2582] S. Floyd, T. Henderson, The NewReno Modification to TCP’s Fast Recovery
Algorithm, RFC 2582.

[RFC2988] V. Paxson, M. Allman, RFC 2988 http://rfc.net/rfc2988.html

[Ros65] J. B. Rosen, Existence and uniqueness of equilibrium points for concave n-person
games, Econometrica, vol. 33, pp. 520-534, Jul. 1965.

[Sch95] Scott Schenker, Making Greed Work in Networks: A game-theoretic analysis of
switch service disciplines, IEEE/ACM Transactions on Networking, vol. 3, 1995.

[Sch97] Misha Schwarz, Telecommunication Networks: Protocols, Modelling and Analysis
Addision Welsley, 1997.

[VaFe01] G. Vattay, A. Fekete, Self-Similarity in Bottleneck Buffers, in Proc. of Globecom
2001.

[VeBo00] A. Veres, M. Boda, The Chaotic Nature of TCP Congestion Control, INFOCOM
2000, Tel Aviv, 2000.

[VMKV00] A. Veres, S. Molnár, Zs. Kenesei, G. Vattay, On the Propagation of Long Range
Dependence in the Internet, ACM SIGCOMM 2000, Stockholm, Sweden, August 28 -
September 1, 2000.

[Wol82] R. Wolff, Poisson Arrivals See Time Averages Operations Research, vol. 30, no 2,
1982.

[WyZu02] B. Wydrowski, M. Zukerman, GREEN: An Active Queue Manangement Al-
gorithm for a Self Managed Internet, in Proc. of ICC 2002, New York, vol. 4, pp.
2368-2372, 2002.

[YMKT99] M. Yajnik, S. Moon, J. Kurose and D. Towsley, Measurement and Modelling of
the Temporal Dependence in Packet Loss, in Proc. of INFOCOM 1999.

[ZCR00] M. Zorzi, A. Chockalingam, and R. Rao Throughput analysis of TCP on channels
with memory, IEEE Journal on Selected Areas in Communications, vol. 18, no. 7, pp.
1289–1300, 2000.

[ZhAt00] B. Zheng, M Atiquizzaman, DSRED: Improving Performance of Active Queue
Management over Heterogenous Networks, The 25th Annual IEEE Conference on Local
Computer Networks, November 9-10, Tampa, Florida, USA, 2000.

Publications

Journal papers

[J0] S. Molnár, T. A. Trinh. Congestion Games in TCP Vegas and Their Applications
in FAST TCP. Submitted to Telecommunications Systems, 2004.

[J1] T. A. Trinh, S. Molnár. Modeling and Analysis of TCP Traffic: A State-based
Approach. under submission, 2004.

[J2] T. A. Trinh, S. Molnár. A Comprehensive Performance Analysis of Random Early
Detection Mechanism. Telecommunications Systems, 25(1-2): 9-31, January-February,
2004.

[J3] T. A. Trinh, S. Molnár. Modeling TCP Traffic: A State-based Approach. Periodica
Polytechnica, Electrical Engineering, Vol. 48, No. 1, pp. 1-14, 2004.

[J4] T. A. Trinh, T. Éltető. On the Stability of TCP. Journal on Communications,
November-December 2000.

Conference papers

[C0] T. A. Trinh, S. Molnár. Understanding TCP Vegas and FAST TCP: A Game-
Theoretic Perspective, submitted to IEEE/IFIP Networking 2005.

[C1] T. A. Trinh, S. Molnár. A Game-Theoretic Analysis of TCP Vegas. In Proc. of
QofIS’04 - Quality of Service in the Emerging Networking Panorama, Springer Lec-
ture Notes in Computer Science 3266 (LNCS 3266), pp. 338-347, Barcelona, Spain,
September 29 - October 1, 2004.

[C2] T. A. Trinh, S. Molnár. A Novel Approach to Model TCP Traffic, in Proc. of IEEE
GLOBECOM 2004, Dallas, Texas, USA, November-December, 2004.

[C3] T. A. Trinh, B. Sonkoly, S. Molnár. A Study of HighSpeed TCP: Observations and
Re-evaluation, in Proc. of EUNICE 2004, Tampere, Finland, June 2004.

[C4] T. A. Trinh, S. Molnár. A State-based Analysis of TCP, in Proc. of IFIP Workshop
on Next Generation Networks, Hungary, 8-10 September 2003.

70

71

[C5] T. A. Trinh, S. Molnár. RED Revisited, in Proc. of The 10th International Confer-
ence on Telecommunication Systems Modeling and Analysis, CA, USA, October 3-6,
2002.

[C6] T. A. Trinh. On the Estimation of Average Queue-length in RED, in Proc. of PCH
Conference on Telecommunications, Budapest, Hungary, April 2001.

[C7] T. A. Trinh, T. Éltető, L. Györfi. On Some Metrics of TCP, In Proc. of The 25th
International Conference on Local Area Networks, Florida, USA, November 2000.

[C8] T. A. Trinh. On the Stability of TCP, in Proc. of Students Scientific Conference,
Budapest Univ. of Technology and Economics, Budapest, Hungary, November 1999.

