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Abstract—The new emerging mobile technologies have led 

to increased complexity in the networking paradigm. These 

technologies are incorporated into each device to support to- 
day’s trends. Although this process offers many advantages, 

it brought several issues when new use-cases and services are 
introduced such as requiring regular updating of infrastructure, 
high network throughput, low latency, and minimum packet loss 
to provide proper performance. One of the main interesting 

applications that can benefit from such features is the conver- 
sational video for WebRTC which is becoming more popular 

since the developing community is growing and the industry is 
expressing its interest by striving towards designing new schemes 

for it. The main concept that controls the conversational video for 
WebRTC is the congestion control algorithm. Many approaches 

have been designed to address certain issues to result in optimum 

performance. In this study, we aim to explore the possibility 
of achieving optimal streaming in a 5G environment. We are 

especially interested in choosing the appropriate congestion 
control algorithm to achieve this purpose. As a candidate, we 

are focusing on the Self-Clocked Rate Adaptation for Multimedia 
(SCReAM) congestion control algorithm. Also, we aim to provide 

guidelines for achieving the video streaming performance of 
SCReAM in 5G networks. 

Keywords—5G, Congestion Control, Conversational Video, 
mmWave, Network, TCP, WebRTC 

I. INTRODUCTION 

Current video streaming applications have gained the in- 

terest of various industries due to their ability to create a 

comprehensive reality and get people close to each other. By 

utilizing IP protocols, such applications allow for optimum 

end-to-end (E2E) experience by offering deliverance assurance 

and the best reachable Quality of Service (QoS) [1]. In com- 

puting networks, wired and wireless communications are being 

designed to offer compatibility with different technologies and 

the ability to process services at high speeds. Constraints on 

available resources (such as bandwidth) cause packet loss and 

re-transmission when the network is overloaded, which refers 

to “congestion” [2]. 
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Network congestion occurs when the network is unable to 

handle heavy traffic which leads to reduced response time 

or in some cases, collapses the network. Hence, network 

congestion causes a greater impact and needs further consider- 

ation. Furthermore, all media traffic especially the audiovisual 

is increasing due to networking applications that are built 

on top of the transport layer which utilizes the network to 

run Video on Demand (VoD), Voice Over IP (VoIP), and 

video conferencing [3]. Although IETF has spent enormous 

efforts to standardize WebRTC for real-time applications such 

as Real-Time Transport Protocol (RTP), the industry is still 

using its own proprietary algorithm and protocols for their 

products because it has been reluctant to use standard protocol 

approaches [4]. 

Based on the above-mentioned details and due to the con- 

stant changes in current networking paradigms, the volume of 

the generated traffic is much higher than before. It is important 

to consider network congestion as one of the main issues 

nowadays. Congestion control algorithms are now a critical 

part of any network design and management to eliminate 

any effect on users’ experience. Many congestion control 

algorithms are introduced to address the previously mentioned 

issues. SCReAM [5], [6] is an efficient congestion control 

algorithm that has been proposed in 2014 for conversational 

video for LTE networks. Later, it has been standardized in 

2017 (RFC8298). Currently, there is not a clear guide on 

how to choose the best parameters of SCReAM to result 

in optimum performance. Also, it is important to realize the 

expected performance of SCReAM in 5G environments. 

In this study, we aim to explore the possibility of achieving 

optimal streaming in a 5G environment. We are especially 

interested in choosing the appropriate congestion control al- 

gorithm to achieve this purpose. As a candidate, we are 

focusing on the Self-Clocked Rate Adaptation for Multimedia 

(SCReAM) congestion control algorithm. Also, we aim to pro- 

vide guidelines for achieving the video streaming performance 
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of SCReAM in 5G networks. 

Many parameters were investigated in order to implement 

SCReAM in the appropriate 5G environment. First, we im- 

plemented this work in a Windows-based test application 

by setting the initial parameters. Then, we tested SCReAM 

with default settings to ensure that it has been implemented 

properly. Later, we modified the algorithm to be used in a 

5G environment through the retrieved 5G datasets. This sup- 

ports our further research phases to implement it in different 

scenarios and environments to reach optimum performance. 

This paper is organized as follows: Section II introduces 

the commonly related works that proposed congestion control 

approaches. Section III presents the concept of the SCReAM 

congestion control algorithm and its design. Section IV high- 

lights the evaluation environment, measurement setup, and the 

used datasets in our experiments. Section V presents the results 

obtained from our experiments including early-stage and 5G 

networks followed by a detailed discussion. Finally, future 

directions and the conclusion are discussed in Section VI. 

II. RELATED WORKS 

In this section, we will discuss how congestion control 

is employed and the related congestion control algorithms, 

starting from the early TCP version, TCP variants, and the 

most popular congestion control algorithms. Congestion con- 

trol can be employed in two main scenarios: to reduce network 

congestion when it is detected, or prevent it from happening 

in the first place. There are distinct parameters that can be 

chosen as the backbone of the congestion control algorithm 

which is used in the feedback process to report the network 

state. Also, congestion control algorithms can be classified 

using many metrics such as fairness criterion uses, aspect of 

performance, network deployment ability, and feedback type & 

size. Therefore, it is important to employ a congestion control 

algorithm that has the ability to control and eliminate any 

causes of congestion. Congestion control algorithms are being 

used as a feedback system that reports the performance of 

the network every certain time interval, which is the reason 

that it is considered the largest feedback system that has been 

deployed artificially nowadays [7]. 

Participation in academic research in this area is also 

increasing due to its ability to extend and offer new services 

by proposing different approaches to address the requirements 

of the targeted environment. Most of the current research aims 

to address the most common issue; congestion control. Many 

people believe that due to the increasing bandwidth limitation 

in computer networks, network congestion is no longer an 

issue [8]. However, it is still an issue due to the emerging 

technologies that are in constant change, thus, it demands 

higher network requirements. 

Early design of TCP [9], [10] included a simple approach 

without extensive performance that targets the congestion 

issue itself, go-back-n is used where packets are sent without 

waiting for feedback or ACKs. ACKs are sent by the server 

when all packets arrive in order and are error-free. Further 

improvements are done as follows: 

e The slow start approach has been implemented in various 

TCP schemes using a variable called congestion window 

(CWND); it defines the number of packets that can be 

sent during a certain time interval. 

e Another parameter “ssthresh” has been imported into 

further designs in the congestion avoidance phase. This 

parameter declares the appropriate CWND size based on 

network load. 

e Round Trip Time (RTT) is used to define a specific period 

where the packets should reach the destination, if RTT is 

expired, packets are retransmitted again. 

e Duplicate Acknowledgments (ACKs) are used when the 

receiver receives out-of-order segments. Fast retransmit 

is used to send these segments without waiting for the 

timer to expire. 

The first TCP implementation that included the previously 

mentioned improvements is TCP Tahoe. Another implementa- 

tion of TCP referred to as “TCP Reno” (4.3BSD) included 

a new algorithm called the fast recovery. In this version, 

duplicate ACKs mean the packets have reached successfully, 

when the sender receives 3 duplicate ACKs, it means that a 

segment is lost, this algorithm enters the fast recovery mode, 

and the sender sends the lost segment, CWND is reduced by 

half, ssthresh is updated. When multiple segments are lost, 

TCP Reno exits the fast recovery mode when receiving partial 

ACKs which results in a timeout. 

TCP NewReno defined in RFC 6582 [11] is different from 

the last version in the part of receiving partial ACKs, TCP 

NewReno does not exit the fast recovery mode, instead, it 

assumes that the most recent acknowledged segment is already 

delivered, it only retransmits the segment that follows that 

one. Thus, it eliminates the retransmission timeouts that the 

algorithm should wait until it sends another segment. Fast 

retransmission starts when three ACKs are received and ends 

when all up-to-date segments are acknowledged or when a 

retransmission timeout occurs. TCP Vegas [12] is an older 

version than NewReno. It estimates the expected throughput 

in the network, then compares the actual throughput to the 

expected throughput, if the latter is higher, there is congestion 

in the network. Hence, CWND must be modified, for example, 

in a congestion state, CWND is reduced to offer the network 

more time to balance the load. Another important fact in 

Vegas, if the timeout value is lower than the RTT estimate, 

it requires only one ACK to retransmit the segment. Further 

information about TCP variants can be found in [13], [14], 

and performance analysis is done in [15], [16]. 

A new congestion control algorithm “D-TCP” 17 is pro- 

posed for mmWave NR. The adaptive increase adaptive de- 

crease scheme is used to control the congestion window and 

bandwidth of the networking by estimating the accessible 

amount that can be utilized. In high-BDP, the algorithm is 

able to fully utilize the available bandwidth while reducing 

packet loss to a minimum. Real-time live air and simulations 

were used in experiments to evaluate this algorithm in the LTE 

network. This algorithm achieves higher goodput than TCP- 

Reno and TCP-Cubic. 
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SCTP congestion control is enhanced over LTE-A “ENH- 

SCTP” [18] to achieve effective SCTP congestion. To improve 

the performance of SCTP, congestion avoidance and slow 

start have been used based on a new congestion window 

approach called multi-criteria decision-making (MCDM). This 

approach utilizes various network metrics such as queue size, 

number of lost packets, number of received packets, number 

of sent packets, throughput, and CWND. The value of each 

parameter is chosen as the optimum value that will result in the 

best performance based on an algorithm called Technique for 

Order of Preference by Similarity to Ideal Solution (TOPSIS). 

Based on experiments done through simulations, the proposed 

algorithm resulted in a better performance than TCP and STD- 

SCTP. 

Google congestion control [19], [20] is an algorithm de- 

signed to address WebRTC requirements. One-way delay vari- 

ation is used in an end-to-end manner which is estimated using 

the Kalman filter. The sending rate is dynamically throttled by 

an adaptive threshold that will be compared to the estimated 

value. Since Chrome WebRTC stack and Google hangouts are 

using RTP/RTCP, this algorithm has been implemented over 

RTP/RTCP too. Google Chromium browser was used to obtain 

results that indicated that this algorithm is able to track link 

capacity by adapting the sending rate, reverse traffic does not 

imply any effect on this algorithm, and with short & long- 

lived TCP flows, it offers fairness for inter-protocol and intra- 

protocol. It is still a challenge for this algorithm to react fast 

enough to congestion while providing high throughput because 

although it uses delay and loss as the metrics to adjust the 

rate, the sending rate is being adjusted by a single mechanism. 

Further improvement to this algorithm is illustrated in [21]. 

Finally, SCReAM [5], [6] is a rate adaptation congestion 

control algorithm that combines two types of algorithms 

(delay-based and loss-based) to create a hybrid model for 

LTE networks. This algorithm utilizes the concept of the 

packet conservation principle to prevent the network from 

getting congested. Furthermore, the authors described an 

overview of the proposed model followed by a realization of 

congestion control feedback and the estimation of CWND. 

Since SCReAM offers many advantages over other algorithms 

and it resulted in a better performance compared to the rate- 

based algorithm, we decided to choose SCReAM as the base 

for further experiments and evaluation. A detailed description 

of this algorithm is discussed in the next section. 

III. SCREAM PROTOCOL AND ITS PARAMETERS 

A. SCReAM Protocol 

Self-Clocked Rate Adaptation for Multimedia (SCReAM) 

[5], [6] is a congestion control algorithm that adapts to the 

changes in the network to estimate different variables such 

as rate, and congestion window, queuing delay, etc. Based 

on the estimations, it adapts to such changes by modifying 

its network parameters to result in optimum performance. In 

this study, we selected SCReAM over rate-based algorithms 

to perform our evaluations due to many reasons; it reduces 

the variations of short-term delay due to a more efficient 

congestion window computation method, and it requires a 

shorter time scale operation due to the self-clocking feature. 

The issues of the rate-based algorithm mentioned before can 

be addressed efficiently by SCReAM. 

There are multiple concepts revolving around SCReAM 

which are having similarities that are worth mentioning (for a 

detailed description of the difference between the actual con- 

cepts in the previously proposed schemes and the implemented 

concept inside SCReAM, refer to [5]): 

e A Congestion control concept that is window-based and 

TCP-friendly in which the self-clocking concept was 

previously used [22]. 

e Packet conservation principle 

SCReAM. 

e Congestion is implemented over RTP streams [24]. 

e Designed to support WebRTC [25]. 

e SCReAM follows a similar manner to LEDBAT [26] 

when calculating the congestion window. 

e Queue delay is also measured similarly to LEDBAT [26]. 

e Reduced size RTCP is used as feedback based on [27]. 

[23] is supported by 
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Fig. 1: SCReAM Components [6]. 

As shown in Fig.l, the main components of SCReAM 

(located at the sender side) are media rate control, sender 

transmission control, and network congestion control. Other 

components include Queue RTP packets and UDP sockets. 

The receiver side is only used to generate feedback. The 

process of adjusting media bitrate (target rate) is handled by 

media rate control. Adjusting bitrate refers to either increase 

or decrease based on a threshold that is compared to RTP 

queue size. To determine the transmitted data, the congestion 

window must be related to the bytes in flight, which is done in 
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the sender transmission control. The procedure of transmitting 

data is affected by other parameters such as estimated link 

throughput and packet size. Bytes in flight refers to the amount 

of data inside the network at a certain interval, it is determined 

using The network congestion control. The feedback from the 

receiver is used to specify congestion window size. 

SCReAM components are performing the following tasks 

from start to end: when media frames are received, the media 

encode starts the encoding process, then, the encoded media 

are sent to the RTP queue. Later, the rate adaptation starts 

based on the RTP queue size to specify the target bitrate. 

Furthermore, RTP packets are selected to be sent to the 

UDP socket. The sender transmission control and network 

congestion control exchange the necessary information after 

RTCP packets are received. 

B. SCReAM Parameters 

The complicated design of SCReAM has led to a complexity 

in the number of parameters used for precise decision-making 

when deciding the values that directly affect SCReAM’s per- 

formance. Only certain parameters are mentioned in this study, 

for example, more than 20 constants and 20 state variables can 

be found in RFC8298 [6]. However, due to the complex coding 

design, much more parameters can be found in [28]. When 

creating a new stream, certain Parameters must be included 

as shown in Table I. In this study, we will focus on specific 

parameters that we will discuss in the following section. 

In order to identify two important input and output pa- 

rameters; frames and bitrate, we created a flowchart which 

includes a detailed description of each step in the SCReAM 

algorithm, the flowchart is shown in Fig.2. It is important 

to note that the trace video file represents the input frames, 

bytesRtp labeled in red color represents the output value for 

each frame and TotalBytes parameter represents the output 

values for all frames. The Trace_Video represents the input 

file that will be used in the video encoder, further information 

is discussed in section VI. Based on Fig.2, Equation 1 fol- 

lows step 3, Scale_Factor represents the percentage between 

target_Bitrate and nominalBitrate where targetBitrate is 

the expected bitrate for the output and nominalBitrate is 

the video encoder bitrate. Then, Video_Encoder_bytes is 

realized by multiplying the frameSize by the Scale_Factor 

as shown in Equation 2. Finally, as illustrated in Equation 

3, nominalBitrate is updated everytime based on its current 

value, frameSize, and frameRate. 

t tBitrat 
Scale_Factor = OST. () 

nominal Bitrate’ 

Video_Encoder_bytes = frameSize * Scale_Factor (2) 

nominalBitrate = 0.95 « nominal Bitrate+ 

0.05 « frameSizelia] « frameRate *8 (3) 

TABLE I: Stream Registration Parameters 
  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

Parameter Initial Value 

rtpQueue rtpQueue[0] 

ssrc 10 

(Synchronization Source) 

priority 0.7 f 

minBitrate 1 Mbps 

startBitrate 1 Mbps 

maxBitrate 10 Mbps 

rampUpSpeed 10 Mbps 

rampUpScale 1.0 f 

maxRtpQueueDelay 0.2 f 

txQueueSize Factor 0.2 f 

queueDelayGuard 0.1 f 

lossEventRateScale 0.9 f 

ecnCeEventRateScale 0.95 f 

isAdaptiveTargetRateScale True         

IV. MEASUREMENT SETUP AND DATASETS 

The SCReAM algorithm can be implemented in two dif- 

ferent methods as stated in [28]. The first method is by 

using a Windows-based test application through the Visual 

Studio software, which we are currently using. The other 

method is by using Linux based BW test application, which 

we used previously to ensure that the SCReAM is working 

as expected. SCReAM BW test application can be built and 

worked on Ubuntu 16.04 and later [28]. The method that 

we are currently using to implement the algorithm consists 

of multiple c++ codes including sender, receiver, supportive 

classes (RTP Queue, Net Queue, and Video Encoder), 

and the coordinator code (scream_v_a) which creates the 

environment and controls all of the other codes. The RTP 

Queue class is used for the Rudimentary RTP queue while the 

Net Queue class is used for the Simple delay and bandwidth 

limitation. In addition, the video encoder class is used as a 

Simple model of a video encoder. 

For the tracing, we used the video model trace file (2-70KB) 

[28] as input frames. As shown in Fig.3, we print the input 

file from the Video Encoder part to ensure that the frames 

are properly inserted into the algorithm. The total size of the 

file is 61.8 MBps (494.4 Mbps). After encoding, the input file 

will be multiplied by a scale factor + RTP overhead. Note 

that the time required to read one video file is equal to 47.74 

seconds which is the total number of frames (2387) divided 

by the Frame Rate (FR) which was set in the algorithm as 50 

Frames Per Second (FPS). 

We tested the SCReAM algorithm performance in the 5G 

Network by using the 5G dataset traces, which are collected 

over a 60GHz WLAN testbed hosted at the University of New 

York NYU [29], shown in Fig.4. The bitrate range of the 5G 

dataset is between 0 - 3080 Mbps. We used the 5G dataset 

to control the available bandwidth of the data transmission to 

emulate the 5G environment. In this study, we have used 5G 

datasets that represent measurements of dynamically changing 
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scream_v_a represents the main | 

file that runs SCReAM algorithm 

by creating a full environment 

that contains RTP Queue, Video 

Encoder, Network Queue, 

Transmitter, and Receiver. 

     

  

   

Scream_v_a 

          
   
      

   

     

    

(6) Define a variable in the 

main file that takes the value 

of rtpBytes 

(7) Call newMediaFrame ScreamTx:: 

function from the transmitter, this | newMediaFrame 

function assigns bytes as input (bytes) 

(8) In the transmitter, bytes is 

replaced with bytesRtp for bytesRtp 
further processing 

(9) stream->bytesRtp is 

differrent from the previous 

parameter, here it is used to 
contain the size of multiple      stream-> 

Trace_Video 

(1) Trace_key file contains virtual 

frames that represents the input, 

these frames will be encoded and | 

transmitted as packets 

  

  

   

    

(2) Call function 

encode() that performs 

the encoding process 

Video Encoder:: 

encode       

      

     
Video 

Encoder 

bytes 

(3) Calculate the size (in 

Bytes) of each frame 

based on a scale value 

(4) Divide the bytes 
into packets with a 

maximum size of 
1200 bytes + 12 

bytes overhead 

(5) Calculate the total 

size of all packets 

(accumulated values 

of all rtpSize) 

rtpBytes 

(9) TotalBytes is a new variable 

that we defined in the congestion 

control algorithm, it represents the 

  

  

bytesRtp    
  

packets that will be used to 

adjust the rate, later this. 

parameter is reset to zero 

total number of transmitted bytes 

which illustrates the output (total 

size of all frames inside 

Trace_Video file 

Fig. 2: Flowchart of the Input/Output Frame Size. 

network bandwidth (Capacity) that have been extracted from 

real-time 5G measurements. Hence, it characterizes as a real 

5G environment because we are using the extracted data 

as input in our experiments. Thus, we are emulating a 5G 

environment. 
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V-Axis: Frame Size (KB) / H-Axis: Frame Number 

Fig. 3: Original Video Trace. 

V. RESULTS 

In this section, we will introduce two experiments that 

aim to test the performance of the SCReAM congestion 

control algorithm in order to identify the input and output 

regarding video frames and bitrate. These two experiments 
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Fig. 4: 5G Dataset Traces Used as Network Shaping. 

are realized to illustrate the difference between the default 

and our modified (using 5G dataset) implementations. Several 

metrics were investigated to illustrate our results properly. The 

following metrics were selected for our experiments: frame 

size, target bitrate, throughput (rateTransmitted), RTP 

queue delay, network queue delay, bytes in flight, and 

congestion window (CWND). These metrics were chosen due 

to their importance in presenting the effect of any modification 

to the algorithm. 
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In the first experiment, the available bandwidth of the 

algorithm is fully controlled by a step function (throttling 

function) divided into two intervals with a total simulation 

time of 100 seconds. For the second experiment, the available 

bandwidth of the algorithm is controlled by a step function 

in the first interval, and it is controlled by the 5G dataset in 

the second interval for the same simulation time. The first 

interval is from 0 - 47.73 seconds and 95.49 - 100 seconds, 

while the second interval is from 47.74 - 95.48 seconds. We 

divided the simulation time into two intervals (assuming that 

the third interval of 95.48 - 100 seconds does not pose a 

considerable effect on our results), each with a time of 47.74 

seconds represents the time length required to read one video 

trace file in order to show the impacts of the various throttling 

function values on the encoded video file. 

In the first experiment, the encoded video trace file of the 

algorithm is represented in Fig.5. It is worth mentioning that 

the slow start that follows the target bitrate and rateTransmitted 

respectively is important in the SCReAM algorithm itself to 

avoid congestion in the network. However, it does create a 

certain loss in the first 200 frames. In addition, there is a slight 

difference deviated from the actual value of the algorithm 

throughput (rateTransmitted) due to the adaptation effect. Tar- 

get bitrate and rateTransmitted are presented in Fig.6. Hence, 

the target bitrate (the expected throughput) directly affects the 

scale value resulting in changing the actual size of the frame. 
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Fig. 5: Encoded Video Trace. 

  

target bitrate is different at each time interval which implies 

that the calculations within this algorithm are constantly done 

to alter the values of different parameters to result in a less 

congested network. 

To identify that the algorithm is performing properly, we set 

up the algorithm with a specific throttling value that is used 

for the network shaping to limit the output throughput. All 

experiments done in this phase are represented in 100 seconds 

which are divided into two intervals. The throttling value for 

the first interval was 20Mbps while the throttling value for the 

second interval was 10Mbps. We also modified the number 

of output values to simplify the results for proper illustration 

(hence that over 100 seconds, it is possible to result with 100 

or 100000 values based on the specified time interval). Fig.7 

shows the value of SCReAM initial network rate (Blue), which 

represents the throttling values for the two intervals, and the 

SCReAM throughput (rateTransmitted) (Red). 
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The RTP queue delay (Blue) and network queue delay (Red) 

are shown in Fig.8. RTP queue delay is related to the video 

frame delay through the network node. The simulation results 

of RTP queue delay were between 0 and 101 ms. The network 

Queue delay is the time needed for a network request to 

go between the sender and the receiver back and forth. The 

simulation results of network queue delay were between 0 and 

76 ms. 
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It is very important to mention that the algorithm is designed 

to continue transmitting the video file until the end of the 

simulation time, which is set to 100 seconds. The output for 

the second interval is not necessarily the same because the 
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Fig. 8: RTP Queue Delay and Network Queue Delay (sRtt). 

Finally, Fig.9 shows the bytes in flight (Red) and congestion 

window CWND (Blue). The term “bytes in flight” represents 

how many bytes can be in the network while CWND is used 

by the transmission scheduler to calculate the number of bytes 

to send into the network. The initial value of CWND is set 
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to 15 KB (default value). The values range of the Bytes in 

Flight for the interval of using the throttling value of 10 Mbps 

is between 32 - 150 KB, while this range for the CWND is 

between 95 - 150 KB. 
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Fig. 9: CWND and Bytes in Flight. 

The second experiment is done to evaluate and analyze the 

performance of the SCReAM algorithm in 5G Networks by 

replacing the fixed throttling value (for a certain interval) with 

the bitrate values from the 5G dataset Fig.4. We successfully 

modified the algorithm code to be able to read the bitrate 

from the 5G dataset file, which has a bitrate range of 0 - 

3080 Mbps. We modified the default values of some param- 

eters including the initial network rate, MaxBitrate. Since the 

algorithm’s maximum bitrate is 100Mbps, we set the value 

of the MaxBitrate and the initial rate to 100Mbps to get 

the optimal performance. Regarding the throttling values, we 

maintained the throttling value of 20 Mbps in the first interval, 

while changing the second interval’s throttling value to the 5G 

dataset’s values. The video trace file used in both experiments 

is the same because it is important to monitor and analyze the 

changes in SCReAM’s performance when the 5G dataset is 

applied. 
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Fig. 10: Encoded Video Trace with 5G Dataset. 

Fig.10 illustrates the impact of using the 5G dataset in the 

encoded trace video file. The reason behind such changes in 

the encoded frames’ sizes is due to the higher value of the 

target bitrate that is used as a scale value to calculate each 

frame size. The frames’ size of the second interval (from 47.74 

- 95.48 seconds) is almost five times the frames’ size of the 

first interval when we used a fixed throttling value of 20 Mbps. 

It happened because the bitrate of the algorithm is limited to 

approximately 100 Mbps, which is the maximum bandwidth 

limitation of the SCReAM. For instance, a frame size of 100 

KB will become ~500 KB when the 5G dataset is applied. 

This implies that the algorithm mimics the encoding at higher 

resolution (better video quality) at the higher bitrates. 
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Fig. 11: Target Bitrate and Throughput (ratetransmitted) with 

5G Dataset. 

The target bitrate; the expected bitrate of the output (Blue) 

and the rateTransmitted; the actual bitrate of the output (Red) 

when using the 5G dataset are shown in Fig.11. The interval 

of using the 5G dataset (from 47.74 — 95.48 seconds) has a 

maximum bitrate of 96.85Mbps, which approximately equals 

the maximum algorithm bitrate 1O0Mbps. As previously men- 

tioned, The target bitrate can be also defined as the desired 

bitrate and it is related to the media rate control. After the 

video frames are encoded to RTP packets and then pushed 

into the RTP queue, the RTP queue length is reported to the 

media rate control unit which calculates the optimal target 

bitrate and then feeds it to the video encoder to regulate its 

bitrate. 
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Fig. 12: RTP Queue Delay vs Network Queue Delay (sRtt) 

with 5G Dataset. 

Fig.12 presents the RTP queue delay (Blue) and Network 

Queue delay (Red) when the 5G dataset is used. The values 

range of the RTP queue delay in the first interval is between 

0 and 172 ms, while this range is between 20 and 30ms when 

the 5G dataset is used. On the other hand, the values range 

of the network queue delay is between 0 and 98 ms in the 

first interval, while it is between 0 and ~20 ms when the 5G 

dataset is applied. 

Finally, Fig.13 depicts the bytes in flight and the congestion 

window. The following results illustrated the second interval 

only (when the 5G dataset is applied). The range of values 
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for bytes in flight is 46 - 245 KB, while 

congestion window is 163 - 306 KB. 
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Fig. 13: CWND and Bytes in Flight with 5G Dataset. 

VI. CONCLUSION 

In this study, we aim to explore the possibility of achieving 

optimal streaming in a 5G environment. We are especially 

interested in choosing the appropriate congestion control al- 

gorithm to achieve this purpose. As a candidate, we are 

focusing on the Self-Clocked Rate Adaptation for Multimedia 

(SCReAM) congestion control algorithm. Also, we aim to pro- 

vide guidelines for achieving the video streaming performance 

of SCReAM in 5G networks. We discussed the design of 

SCReAM and its parameters followed by the measurement 

setup and the used datasets. Finally, we evaluated the perfor- 

mance of SCReAM based on two scenarios; a step-function 

controlled available bandwidth scenario with default settings 

and the 5G dataset which is used as a throttling function to 

specify the available bandwidth for the algorithm. 

Many parameters were investigated with and without throt- 

tling in the default settings and the 5G dataset such as frame 

size, target bitrate, throughput (rateTransmitted), RTP queue 

delay, network queue delay, bytes in flight, and congestion 

window (CWND). Our work supports our further research 

plan to implement it in different scenarios such as [30], 

environments, and parameters to reach optimum performance. 

Furthermore, since we modified the algorithm to be used 

in 5G-like networks, one of the future goals is to test this 

algorithm in a dedicated 5G scenario after making major 

modifications to it. 
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