
Exploration and Evaluation of Self-Clocked Rate

Adaptation for Multimedia (SCReAM) Congestion

Control Algorithm in 5G Networks

Ahmed Samir Jagmagji *-!, Haider Dhia Zubaydi *?, and Sandor Molnar *?
* Department of Telecommunications and Media Informatics (TMIT)

Faculty of Electrical Engineering and Informatics (VIK)

Budapest University of Technology and Economics

Budapest, Hungary

+ Department of Computer Engineering, College of Engineering

University of Mosul, Mosul, Iraq

ahmedjagmagjil983 @edu.bme.hu ! (, haider.zubaydi@tmit.bme.hu 7 @, molnar@tmit.bme.hu ?

Abstract—The new emerging mobile technologies have led

to increased complexity in the networking paradigm. These

technologies are incorporated into each device to support to-
day’s trends. Although this process offers many advantages,

it brought several issues when new use-cases and services are
introduced such as requiring regular updating of infrastructure,
high network throughput, low latency, and minimum packet loss
to provide proper performance. One of the main interesting

applications that can benefit from such features is the conver-
sational video for WebRTC which is becoming more popular

since the developing community is growing and the industry is
expressing its interest by striving towards designing new schemes

for it. The main concept that controls the conversational video for
WebRTC is the congestion control algorithm. Many approaches

have been designed to address certain issues to result in optimum

performance. In this study, we aim to explore the possibility
of achieving optimal streaming in a 5G environment. We are

especially interested in choosing the appropriate congestion
control algorithm to achieve this purpose. As a candidate, we

are focusing on the Self-Clocked Rate Adaptation for Multimedia
(SCReAM) congestion control algorithm. Also, we aim to provide

guidelines for achieving the video streaming performance of
SCReAM in 5G networks.

Keywords—5G, Congestion Control, Conversational Video,
mmWave, Network, TCP, WebRTC

I. INTRODUCTION

Current video streaming applications have gained the in-

terest of various industries due to their ability to create a

comprehensive reality and get people close to each other. By

utilizing IP protocols, such applications allow for optimum

end-to-end (E2E) experience by offering deliverance assurance

and the best reachable Quality of Service (QoS) [1]. In com-

puting networks, wired and wireless communications are being

designed to offer compatibility with different technologies and

the ability to process services at high speeds. Constraints on

available resources (such as bandwidth) cause packet loss and

re-transmission when the network is overloaded, which refers

to “congestion” [2].

978-1-6654-6948-7/22/$31.00 ©2022 IEEE 230

Network congestion occurs when the network is unable to

handle heavy traffic which leads to reduced response time

or in some cases, collapses the network. Hence, network

congestion causes a greater impact and needs further consider-

ation. Furthermore, all media traffic especially the audiovisual

is increasing due to networking applications that are built

on top of the transport layer which utilizes the network to

run Video on Demand (VoD), Voice Over IP (VoIP), and

video conferencing [3]. Although IETF has spent enormous

efforts to standardize WebRTC for real-time applications such

as Real-Time Transport Protocol (RTP), the industry is still

using its own proprietary algorithm and protocols for their

products because it has been reluctant to use standard protocol

approaches [4].

Based on the above-mentioned details and due to the con-

stant changes in current networking paradigms, the volume of

the generated traffic is much higher than before. It is important

to consider network congestion as one of the main issues

nowadays. Congestion control algorithms are now a critical

part of any network design and management to eliminate

any effect on users’ experience. Many congestion control

algorithms are introduced to address the previously mentioned

issues. SCReAM [5], [6] is an efficient congestion control

algorithm that has been proposed in 2014 for conversational

video for LTE networks. Later, it has been standardized in

2017 (RFC8298). Currently, there is not a clear guide on

how to choose the best parameters of SCReAM to result

in optimum performance. Also, it is important to realize the

expected performance of SCReAM in 5G environments.

In this study, we aim to explore the possibility of achieving

optimal streaming in a 5G environment. We are especially

interested in choosing the appropriate congestion control al-

gorithm to achieve this purpose. As a candidate, we are

focusing on the Self-Clocked Rate Adaptation for Multimedia

(SCReAM) congestion control algorithm. Also, we aim to pro-

vide guidelines for achieving the video streaming performance

TSP 2022

20
22

 4
5t

h
In

te
rn

at
io

na
l C

on
fe

re
nc

e
on

 T
el

ec
om

m
un

ic
at

io
ns

 a
nd

 S
ig

na
l P

ro
ce

ss
in

g
(T

SP
) |

 9
78

-1
-6

65
4-

69
48

-7
/2

2/
$3

1.
00

 ©
20

22
 IE

EE
 |

 D
O

I:
10

.1
10

9/
TS

P5
56

81
.2

02
2.

98
51

38
2

Authorized licensed use limited to: BME OMIKK. Downloaded on October 05,2022 at 19:00:20 UTC from IEEE Xplore. Restrictions apply.

of SCReAM in 5G networks.

Many parameters were investigated in order to implement

SCReAM in the appropriate 5G environment. First, we im-

plemented this work in a Windows-based test application

by setting the initial parameters. Then, we tested SCReAM

with default settings to ensure that it has been implemented

properly. Later, we modified the algorithm to be used in a

5G environment through the retrieved 5G datasets. This sup-

ports our further research phases to implement it in different

scenarios and environments to reach optimum performance.

This paper is organized as follows: Section II introduces

the commonly related works that proposed congestion control

approaches. Section III presents the concept of the SCReAM

congestion control algorithm and its design. Section IV high-

lights the evaluation environment, measurement setup, and the

used datasets in our experiments. Section V presents the results

obtained from our experiments including early-stage and 5G

networks followed by a detailed discussion. Finally, future

directions and the conclusion are discussed in Section VI.

II. RELATED WORKS

In this section, we will discuss how congestion control

is employed and the related congestion control algorithms,

starting from the early TCP version, TCP variants, and the

most popular congestion control algorithms. Congestion con-

trol can be employed in two main scenarios: to reduce network

congestion when it is detected, or prevent it from happening

in the first place. There are distinct parameters that can be

chosen as the backbone of the congestion control algorithm

which is used in the feedback process to report the network

state. Also, congestion control algorithms can be classified

using many metrics such as fairness criterion uses, aspect of

performance, network deployment ability, and feedback type &

size. Therefore, it is important to employ a congestion control

algorithm that has the ability to control and eliminate any

causes of congestion. Congestion control algorithms are being

used as a feedback system that reports the performance of

the network every certain time interval, which is the reason

that it is considered the largest feedback system that has been

deployed artificially nowadays [7].

Participation in academic research in this area is also

increasing due to its ability to extend and offer new services

by proposing different approaches to address the requirements

of the targeted environment. Most of the current research aims

to address the most common issue; congestion control. Many

people believe that due to the increasing bandwidth limitation

in computer networks, network congestion is no longer an

issue [8]. However, it is still an issue due to the emerging

technologies that are in constant change, thus, it demands

higher network requirements.

Early design of TCP [9], [10] included a simple approach

without extensive performance that targets the congestion

issue itself, go-back-n is used where packets are sent without

waiting for feedback or ACKs. ACKs are sent by the server

when all packets arrive in order and are error-free. Further

improvements are done as follows:

e The slow start approach has been implemented in various

TCP schemes using a variable called congestion window

(CWND); it defines the number of packets that can be

sent during a certain time interval.

e Another parameter “ssthresh” has been imported into

further designs in the congestion avoidance phase. This

parameter declares the appropriate CWND size based on

network load.

e Round Trip Time (RTT) is used to define a specific period

where the packets should reach the destination, if RTT is

expired, packets are retransmitted again.

e Duplicate Acknowledgments (ACKs) are used when the

receiver receives out-of-order segments. Fast retransmit

is used to send these segments without waiting for the

timer to expire.

The first TCP implementation that included the previously

mentioned improvements is TCP Tahoe. Another implementa-

tion of TCP referred to as “TCP Reno” (4.3BSD) included

a new algorithm called the fast recovery. In this version,

duplicate ACKs mean the packets have reached successfully,

when the sender receives 3 duplicate ACKs, it means that a

segment is lost, this algorithm enters the fast recovery mode,

and the sender sends the lost segment, CWND is reduced by

half, ssthresh is updated. When multiple segments are lost,

TCP Reno exits the fast recovery mode when receiving partial

ACKs which results in a timeout.

TCP NewReno defined in RFC 6582 [11] is different from

the last version in the part of receiving partial ACKs, TCP

NewReno does not exit the fast recovery mode, instead, it

assumes that the most recent acknowledged segment is already

delivered, it only retransmits the segment that follows that

one. Thus, it eliminates the retransmission timeouts that the

algorithm should wait until it sends another segment. Fast

retransmission starts when three ACKs are received and ends

when all up-to-date segments are acknowledged or when a

retransmission timeout occurs. TCP Vegas [12] is an older

version than NewReno. It estimates the expected throughput

in the network, then compares the actual throughput to the

expected throughput, if the latter is higher, there is congestion

in the network. Hence, CWND must be modified, for example,

in a congestion state, CWND is reduced to offer the network

more time to balance the load. Another important fact in

Vegas, if the timeout value is lower than the RTT estimate,

it requires only one ACK to retransmit the segment. Further

information about TCP variants can be found in [13], [14],

and performance analysis is done in [15], [16].

A new congestion control algorithm “D-TCP” 17 is pro-

posed for mmWave NR. The adaptive increase adaptive de-

crease scheme is used to control the congestion window and

bandwidth of the networking by estimating the accessible

amount that can be utilized. In high-BDP, the algorithm is

able to fully utilize the available bandwidth while reducing

packet loss to a minimum. Real-time live air and simulations

were used in experiments to evaluate this algorithm in the LTE

network. This algorithm achieves higher goodput than TCP-

Reno and TCP-Cubic.

231

Authorized licensed use limited to: BME OMIKK. Downloaded on October 05,2022 at 19:00:20 UTC from IEEE Xplore. Restrictions apply.

SCTP congestion control is enhanced over LTE-A “ENH-

SCTP” [18] to achieve effective SCTP congestion. To improve

the performance of SCTP, congestion avoidance and slow

start have been used based on a new congestion window

approach called multi-criteria decision-making (MCDM). This

approach utilizes various network metrics such as queue size,

number of lost packets, number of received packets, number

of sent packets, throughput, and CWND. The value of each

parameter is chosen as the optimum value that will result in the

best performance based on an algorithm called Technique for

Order of Preference by Similarity to Ideal Solution (TOPSIS).

Based on experiments done through simulations, the proposed

algorithm resulted in a better performance than TCP and STD-

SCTP.

Google congestion control [19], [20] is an algorithm de-

signed to address WebRTC requirements. One-way delay vari-

ation is used in an end-to-end manner which is estimated using

the Kalman filter. The sending rate is dynamically throttled by

an adaptive threshold that will be compared to the estimated

value. Since Chrome WebRTC stack and Google hangouts are

using RTP/RTCP, this algorithm has been implemented over

RTP/RTCP too. Google Chromium browser was used to obtain

results that indicated that this algorithm is able to track link

capacity by adapting the sending rate, reverse traffic does not

imply any effect on this algorithm, and with short & long-

lived TCP flows, it offers fairness for inter-protocol and intra-

protocol. It is still a challenge for this algorithm to react fast

enough to congestion while providing high throughput because

although it uses delay and loss as the metrics to adjust the

rate, the sending rate is being adjusted by a single mechanism.

Further improvement to this algorithm is illustrated in [21].

Finally, SCReAM [5], [6] is a rate adaptation congestion

control algorithm that combines two types of algorithms

(delay-based and loss-based) to create a hybrid model for

LTE networks. This algorithm utilizes the concept of the

packet conservation principle to prevent the network from

getting congested. Furthermore, the authors described an

overview of the proposed model followed by a realization of

congestion control feedback and the estimation of CWND.

Since SCReAM offers many advantages over other algorithms

and it resulted in a better performance compared to the rate-

based algorithm, we decided to choose SCReAM as the base

for further experiments and evaluation. A detailed description

of this algorithm is discussed in the next section.

III. SCREAM PROTOCOL AND ITS PARAMETERS

A. SCReAM Protocol

Self-Clocked Rate Adaptation for Multimedia (SCReAM)

[5], [6] is a congestion control algorithm that adapts to the

changes in the network to estimate different variables such

as rate, and congestion window, queuing delay, etc. Based

on the estimations, it adapts to such changes by modifying

its network parameters to result in optimum performance. In

this study, we selected SCReAM over rate-based algorithms

to perform our evaluations due to many reasons; it reduces

the variations of short-term delay due to a more efficient

congestion window computation method, and it requires a

shorter time scale operation due to the self-clocking feature.

The issues of the rate-based algorithm mentioned before can

be addressed efficiently by SCReAM.

There are multiple concepts revolving around SCReAM

which are having similarities that are worth mentioning (for a

detailed description of the difference between the actual con-

cepts in the previously proposed schemes and the implemented

concept inside SCReAM, refer to [5]):

e A Congestion control concept that is window-based and

TCP-friendly in which the self-clocking concept was

previously used [22].

e Packet conservation principle

SCReAM.

e Congestion is implemented over RTP streams [24].

e Designed to support WebRTC [25].

e SCReAM follows a similar manner to LEDBAT [26]

when calculating the congestion window.

e Queue delay is also measured similarly to LEDBAT [26].

e Reduced size RTCP is used as feedback based on [27].

[23] is supported by

Media

Encoder

Media Rate

Contorl RTP
Vv

A

RTP Packets

Queue

RTP

Vv

Sender

Transmission

Control

Network

Congestion RTP

Control
A

RTCP
UDP Socket

Fig. 1: SCReAM Components [6].

As shown in Fig.l, the main components of SCReAM

(located at the sender side) are media rate control, sender

transmission control, and network congestion control. Other

components include Queue RTP packets and UDP sockets.

The receiver side is only used to generate feedback. The

process of adjusting media bitrate (target rate) is handled by

media rate control. Adjusting bitrate refers to either increase

or decrease based on a threshold that is compared to RTP

queue size. To determine the transmitted data, the congestion

window must be related to the bytes in flight, which is done in

232

Authorized licensed use limited to: BME OMIKK. Downloaded on October 05,2022 at 19:00:20 UTC from IEEE Xplore. Restrictions apply.

the sender transmission control. The procedure of transmitting

data is affected by other parameters such as estimated link

throughput and packet size. Bytes in flight refers to the amount

of data inside the network at a certain interval, it is determined

using The network congestion control. The feedback from the

receiver is used to specify congestion window size.

SCReAM components are performing the following tasks

from start to end: when media frames are received, the media

encode starts the encoding process, then, the encoded media

are sent to the RTP queue. Later, the rate adaptation starts

based on the RTP queue size to specify the target bitrate.

Furthermore, RTP packets are selected to be sent to the

UDP socket. The sender transmission control and network

congestion control exchange the necessary information after

RTCP packets are received.

B. SCReAM Parameters

The complicated design of SCReAM has led to a complexity

in the number of parameters used for precise decision-making

when deciding the values that directly affect SCReAM’s per-

formance. Only certain parameters are mentioned in this study,

for example, more than 20 constants and 20 state variables can

be found in RFC8298 [6]. However, due to the complex coding

design, much more parameters can be found in [28]. When

creating a new stream, certain Parameters must be included

as shown in Table I. In this study, we will focus on specific

parameters that we will discuss in the following section.

In order to identify two important input and output pa-

rameters; frames and bitrate, we created a flowchart which

includes a detailed description of each step in the SCReAM

algorithm, the flowchart is shown in Fig.2. It is important

to note that the trace video file represents the input frames,

bytesRtp labeled in red color represents the output value for

each frame and TotalBytes parameter represents the output

values for all frames. The Trace_Video represents the input

file that will be used in the video encoder, further information

is discussed in section VI. Based on Fig.2, Equation 1 fol-

lows step 3, Scale_Factor represents the percentage between

target_Bitrate and nominalBitrate where targetBitrate is

the expected bitrate for the output and nominalBitrate is

the video encoder bitrate. Then, Video_Encoder_bytes is

realized by multiplying the frameSize by the Scale_Factor

as shown in Equation 2. Finally, as illustrated in Equation

3, nominalBitrate is updated everytime based on its current

value, frameSize, and frameRate.

t tBitrat
Scale_Factor = OST. ()

nominal Bitrate’

Video_Encoder_bytes = frameSize * Scale_Factor (2)

nominalBitrate = 0.95 « nominal Bitrate+

0.05 « frameSizelia] « frameRate *8 (3)

TABLE I: Stream Registration Parameters

Parameter Initial Value

rtpQueue rtpQueue[0]

ssrc 10

(Synchronization Source)

priority 0.7 f

minBitrate 1 Mbps

startBitrate 1 Mbps

maxBitrate 10 Mbps

rampUpSpeed 10 Mbps

rampUpScale 1.0 f

maxRtpQueueDelay 0.2 f

txQueueSize Factor 0.2 f

queueDelayGuard 0.1 f

lossEventRateScale 0.9 f

ecnCeEventRateScale 0.95 f

isAdaptiveTargetRateScale True

IV. MEASUREMENT SETUP AND DATASETS

The SCReAM algorithm can be implemented in two dif-

ferent methods as stated in [28]. The first method is by

using a Windows-based test application through the Visual

Studio software, which we are currently using. The other

method is by using Linux based BW test application, which

we used previously to ensure that the SCReAM is working

as expected. SCReAM BW test application can be built and

worked on Ubuntu 16.04 and later [28]. The method that

we are currently using to implement the algorithm consists

of multiple c++ codes including sender, receiver, supportive

classes (RTP Queue, Net Queue, and Video Encoder),

and the coordinator code (scream_v_a) which creates the

environment and controls all of the other codes. The RTP

Queue class is used for the Rudimentary RTP queue while the

Net Queue class is used for the Simple delay and bandwidth

limitation. In addition, the video encoder class is used as a

Simple model of a video encoder.

For the tracing, we used the video model trace file (2-70KB)

[28] as input frames. As shown in Fig.3, we print the input

file from the Video Encoder part to ensure that the frames

are properly inserted into the algorithm. The total size of the

file is 61.8 MBps (494.4 Mbps). After encoding, the input file

will be multiplied by a scale factor + RTP overhead. Note

that the time required to read one video file is equal to 47.74

seconds which is the total number of frames (2387) divided

by the Frame Rate (FR) which was set in the algorithm as 50

Frames Per Second (FPS).

We tested the SCReAM algorithm performance in the 5G

Network by using the 5G dataset traces, which are collected

over a 60GHz WLAN testbed hosted at the University of New

York NYU [29], shown in Fig.4. The bitrate range of the 5G

dataset is between 0 - 3080 Mbps. We used the 5G dataset

to control the available bandwidth of the data transmission to

emulate the 5G environment. In this study, we have used 5G

datasets that represent measurements of dynamically changing

233

Authorized licensed use limited to: BME OMIKK. Downloaded on October 05,2022 at 19:00:20 UTC from IEEE Xplore. Restrictions apply.

scream_v_a represents the main |

file that runs SCReAM algorithm

by creating a full environment

that contains RTP Queue, Video

Encoder, Network Queue,

Transmitter, and Receiver.

Scream_v_a

(6) Define a variable in the

main file that takes the value

of rtpBytes

(7) Call newMediaFrame ScreamTx::

function from the transmitter, this | newMediaFrame

function assigns bytes as input (bytes)

(8) In the transmitter, bytes is

replaced with bytesRtp for bytesRtp
further processing

(9) stream->bytesRtp is

differrent from the previous

parameter, here it is used to
contain the size of multiple stream->

Trace_Video

(1) Trace_key file contains virtual

frames that represents the input,

these frames will be encoded and |

transmitted as packets

(2) Call function

encode() that performs

the encoding process

Video Encoder::

encode

Video

Encoder

bytes

(3) Calculate the size (in

Bytes) of each frame

based on a scale value

(4) Divide the bytes
into packets with a

maximum size of
1200 bytes + 12

bytes overhead

(5) Calculate the total

size of all packets

(accumulated values

of all rtpSize)

rtpBytes

(9) TotalBytes is a new variable

that we defined in the congestion

control algorithm, it represents the

bytesRtp

packets that will be used to

adjust the rate, later this.

parameter is reset to zero

total number of transmitted bytes

which illustrates the output (total

size of all frames inside

Trace_Video file

Fig. 2: Flowchart of the Input/Output Frame Size.

network bandwidth (Capacity) that have been extracted from

real-time 5G measurements. Hence, it characterizes as a real

5G environment because we are using the extracted data

as input in our experiments. Thus, we are emulating a 5G

environment.

70

60

50

40

30

10

OMAN DOMOnRTAADNNADOMOR TA DNATDOMORTAADANNDAO
ONMNOOMORMNGRMORMORTFORTORTOR TARTAR TAR ST SRARSTRSSRSSHRSSSANHATERSERSSHASSAIANS SSASSRZA SS SGSAARRAAANN

V-Axis: Frame Size (KB) / H-Axis: Frame Number

Fig. 3: Original Video Trace.

V. RESULTS

In this section, we will introduce two experiments that

aim to test the performance of the SCReAM congestion

control algorithm in order to identify the input and output

regarding video frames and bitrate. These two experiments

3500

3000

2500

2000

1500

Bi
tr

at
e

(M
bp
s)

1000

500

ARMA M ARMA NHIAR MAM GO RMAHMDIGO RM AI
AMTWOAMRIANTORDONT NR DONMY OY

SAAB RP ANNNNNN HOMO M MG

no. 5G dataset samples

Fig. 4: 5G Dataset Traces Used as Network Shaping.

are realized to illustrate the difference between the default

and our modified (using 5G dataset) implementations. Several

metrics were investigated to illustrate our results properly. The

following metrics were selected for our experiments: frame

size, target bitrate, throughput (rateTransmitted), RTP

queue delay, network queue delay, bytes in flight, and

congestion window (CWND). These metrics were chosen due

to their importance in presenting the effect of any modification

to the algorithm.

234

Authorized licensed use limited to: BME OMIKK. Downloaded on October 05,2022 at 19:00:20 UTC from IEEE Xplore. Restrictions apply.

In the first experiment, the available bandwidth of the

algorithm is fully controlled by a step function (throttling

function) divided into two intervals with a total simulation

time of 100 seconds. For the second experiment, the available

bandwidth of the algorithm is controlled by a step function

in the first interval, and it is controlled by the 5G dataset in

the second interval for the same simulation time. The first

interval is from 0 - 47.73 seconds and 95.49 - 100 seconds,

while the second interval is from 47.74 - 95.48 seconds. We

divided the simulation time into two intervals (assuming that

the third interval of 95.48 - 100 seconds does not pose a

considerable effect on our results), each with a time of 47.74

seconds represents the time length required to read one video

trace file in order to show the impacts of the various throttling

function values on the encoded video file.

In the first experiment, the encoded video trace file of the

algorithm is represented in Fig.5. It is worth mentioning that

the slow start that follows the target bitrate and rateTransmitted

respectively is important in the SCReAM algorithm itself to

avoid congestion in the network. However, it does create a

certain loss in the first 200 frames. In addition, there is a slight

difference deviated from the actual value of the algorithm

throughput (rateTransmitted) due to the adaptation effect. Tar-

get bitrate and rateTransmitted are presented in Fig.6. Hence,

the target bitrate (the expected throughput) directly affects the

scale value resulting in changing the actual size of the frame.

140

120

100

| Hl} | men 1

60

40

20

 V-Axis: Encoded Video Frames (KB) / H-Axis: Timestamp (s)

Fig. 5: Encoded Video Trace.

target bitrate is different at each time interval which implies

that the calculations within this algorithm are constantly done

to alter the values of different parameters to result in a less

congested network.

To identify that the algorithm is performing properly, we set

up the algorithm with a specific throttling value that is used

for the network shaping to limit the output throughput. All

experiments done in this phase are represented in 100 seconds

which are divided into two intervals. The throttling value for

the first interval was 20Mbps while the throttling value for the

second interval was 10Mbps. We also modified the number

of output values to simplify the results for proper illustration

(hence that over 100 seconds, it is possible to result with 100

or 100000 values based on the specified time interval). Fig.7

shows the value of SCReAM initial network rate (Blue), which

represents the throttling values for the two intervals, and the

SCReAM throughput (rateTransmitted) (Red).

20600

15000

10000

5000

N
e
t
w
o
r
k

ra
te

&
T
h
r
o
u
g
h
p
u
t

(K

bp
s)

a

0.
00

15
2

3.
25

39
2

6.
50

62
3

9.
75

86
2

13
.0

10
9

16
.2

63
3

19
.5

15
6

Fig. 7: Initial Network Rate and Throughput (rateTransmitted).

The RTP queue delay (Blue) and network queue delay (Red)

are shown in Fig.8. RTP queue delay is related to the video

frame delay through the network node. The simulation results

of RTP queue delay were between 0 and 101 ms. The network

Queue delay is the time needed for a network request to

go between the sender and the receiver back and forth. The

simulation results of network queue delay were between 0 and

76 ms.

0.12
25

0.
00

15
25

2.
46

48
1

= a a 3 a 3 3 FA 2 2 oO

a
 zB = £

Fig. 6: Target Bitrate and Throughput (rateTransmitted).

It is very important to mention that the algorithm is designed

to continue transmitting the video file until the end of the

simulation time, which is set to 100 seconds. The output for

the second interval is not necessarily the same because the

0.1

0.08

0.06

| AAA —A

oon VATA QAI

FUNG MAAN NNR

 °

81
.6

60
5

%
76

.8
57

1

79
.2

58
8

<= Psd

a “ 3 x 2 2 5 2 5 a 2 = <
 e = & w z g z GQ
 g x 2 2 oa
 2 5 a
 a = & = z & zs =

Fig. 8: RTP Queue Delay and Network Queue Delay (sRtt).

Finally, Fig.9 shows the bytes in flight (Red) and congestion

window CWND (Blue). The term “bytes in flight” represents

how many bytes can be in the network while CWND is used

by the transmission scheduler to calculate the number of bytes

to send into the network. The initial value of CWND is set

235

Authorized licensed use limited to: BME OMIKK. Downloaded on October 05,2022 at 19:00:20 UTC from IEEE Xplore. Restrictions apply.

to 15 KB (default value). The values range of the Bytes in

Flight for the interval of using the throttling value of 10 Mbps

is between 32 - 150 KB, while this range for the CWND is

between 95 - 150 KB.

250

200 hy

150 rar

33
21

68
38

03
55

38
72

73
89

09
06

44
23

79
4

14
57

49
74

84
91

20
08

55
25

,

90
42

25
59

60
76

95
93

82
.3

11

35 44,

54,

56.
 58 70:

77

79:

3 & g 3 3 =z

Fig. 9: CWND and Bytes in Flight.

The second experiment is done to evaluate and analyze the

performance of the SCReAM algorithm in 5G Networks by

replacing the fixed throttling value (for a certain interval) with

the bitrate values from the 5G dataset Fig.4. We successfully

modified the algorithm code to be able to read the bitrate

from the 5G dataset file, which has a bitrate range of 0 -

3080 Mbps. We modified the default values of some param-

eters including the initial network rate, MaxBitrate. Since the

algorithm’s maximum bitrate is 100Mbps, we set the value

of the MaxBitrate and the initial rate to 100Mbps to get

the optimal performance. Regarding the throttling values, we

maintained the throttling value of 20 Mbps in the first interval,

while changing the second interval’s throttling value to the 5G

dataset’s values. The video trace file used in both experiments

is the same because it is important to monitor and analyze the

changes in SCReAM’s performance when the 5G dataset is

applied.

700

600 t

500

400

300 | }

200

100 +

> F x mn a 2 o Qa

Oo a
 Ss a

oOo

° Zz a 5 oO
 3 2 &

Fig. 10: Encoded Video Trace with 5G Dataset.

Fig.10 illustrates the impact of using the 5G dataset in the

encoded trace video file. The reason behind such changes in

the encoded frames’ sizes is due to the higher value of the

target bitrate that is used as a scale value to calculate each

frame size. The frames’ size of the second interval (from 47.74

- 95.48 seconds) is almost five times the frames’ size of the

first interval when we used a fixed throttling value of 20 Mbps.

It happened because the bitrate of the algorithm is limited to

approximately 100 Mbps, which is the maximum bandwidth

limitation of the SCReAM. For instance, a frame size of 100

KB will become ~500 KB when the 5G dataset is applied.

This implies that the algorithm mimics the encoding at higher

resolution (better video quality) at the higher bitrates.

120

100

80. 7

60

49
91

90
23

30
55

70
86

11
17

51
49

88
.9
18

91
.3
21
2

93
.7
24
4

96
.1
27
5

98
.5
30
6

74.

2
76

79
3

81
.

>
34

=

36
.

Fig. 11: Target Bitrate and Throughput (ratetransmitted) with

5G Dataset.

The target bitrate; the expected bitrate of the output (Blue)

and the rateTransmitted; the actual bitrate of the output (Red)

when using the 5G dataset are shown in Fig.11. The interval

of using the 5G dataset (from 47.74 — 95.48 seconds) has a

maximum bitrate of 96.85Mbps, which approximately equals

the maximum algorithm bitrate 1O0Mbps. As previously men-

tioned, The target bitrate can be also defined as the desired

bitrate and it is related to the media rate control. After the

video frames are encoded to RTP packets and then pushed

into the RTP queue, the RTP queue length is reported to the

media rate control unit which calculates the optimal target

bitrate and then feeds it to the video encoder to regulate its

bitrate.

 c
o
]

81
.6
60
5

86
.4
64

86
57

“1
79
.2
58
8

Fig. 12: RTP Queue Delay vs Network Queue Delay (sRtt)

with 5G Dataset.

Fig.12 presents the RTP queue delay (Blue) and Network

Queue delay (Red) when the 5G dataset is used. The values

range of the RTP queue delay in the first interval is between

0 and 172 ms, while this range is between 20 and 30ms when

the 5G dataset is used. On the other hand, the values range

of the network queue delay is between 0 and 98 ms in the

first interval, while it is between 0 and ~20 ms when the 5G

dataset is applied.

Finally, Fig.13 depicts the bytes in flight and the congestion

window. The following results illustrated the second interval

only (when the 5G dataset is applied). The range of values

236

Authorized licensed use limited to: BME OMIKK. Downloaded on October 05,2022 at 19:00:20 UTC from IEEE Xplore. Restrictions apply.

for bytes in flight is 46 - 245 KB, while

congestion window is 163 - 306 KB.

the range of the

600

500

agaqd Hm oa h am RS eosgas Se38aq8
oN gna 12

.0
10
2

14
.4
12

79
.2

58
8

81
.6

60
5

“=

84
.0

62
2

86
.4

64

zB

2 ~ = a 4 a

Fig. 13: CWND and Bytes in Flight with 5G Dataset.

VI. CONCLUSION

In this study, we aim to explore the possibility of achieving

optimal streaming in a 5G environment. We are especially

interested in choosing the appropriate congestion control al-

gorithm to achieve this purpose. As a candidate, we are

focusing on the Self-Clocked Rate Adaptation for Multimedia

(SCReAM) congestion control algorithm. Also, we aim to pro-

vide guidelines for achieving the video streaming performance

of SCReAM in 5G networks. We discussed the design of

SCReAM and its parameters followed by the measurement

setup and the used datasets. Finally, we evaluated the perfor-

mance of SCReAM based on two scenarios; a step-function

controlled available bandwidth scenario with default settings

and the 5G dataset which is used as a throttling function to

specify the available bandwidth for the algorithm.

Many parameters were investigated with and without throt-

tling in the default settings and the 5G dataset such as frame

size, target bitrate, throughput (rateTransmitted), RTP queue

delay, network queue delay, bytes in flight, and congestion

window (CWND). Our work supports our further research

plan to implement it in different scenarios such as [30],

environments, and parameters to reach optimum performance.

Furthermore, since we modified the algorithm to be used

in 5G-like networks, one of the future goals is to test this

algorithm in a dedicated 5G scenario after making major

modifications to it.

REFERENCES

[1] A. Kumar, P. Srinivas, and A. Govardhan, “A review on congestion

control approaches for real-time streaming application on the internet,”

International Journal of Computer Science and Information Security

(IJCSIS), vol. 16, no. 4, pp. 23-28, 2018.

[2] V. Kushwaha and R. Gupta, “Congestion control for high-speed wired

network: A systematic literature review,’ Journal of Network and

Computer Applications, vol. 45, pp. 62-78, 2014.

[3] B. Subramani and E. Chandra, “A survey on congestion control,” Global

Journal of Computer Science and Technology, 2010.

[4] L. De Cicco, G. Carlucci, and S. Mascolo, “Congestion control for

webrtc: Standardization status and open issues,” IEEE Communications

Standards Magazine, vol. 1, no. 2, pp. 22-27, 2017.

[5] I. Johansson, “Self-clocked rate adaptation for conversational video in

Ite,’ in Proceedings of the 2014 ACM SIGCOMM workshop on Capacity

sharing workshop, 2014, pp. 51-56.
[6] I. Johansson and Z. Sarker, “Self-clocked rate adaptation for multime-

dia,” Tech. Rep., 2017.

[7]

[8]

[9]

[10]

(11)

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

237

S. H. Low, F. Paganini, and J. C. Doyle, “Internet congestion control,”

IEEE control systems magazine, vol. 22, no. 1, pp. 28-43, 2002.

R. Jain and K. Ramakrishnan, “Congestion avoidance in computer

networks with a connectionless network layer, part i: Concepts, goals

and methodology,” arXiv preprint cs/9809095, 1998.

M. Allman, V. Paxson, and E. Blanton, “Tcp congestion control,” Tech.

Rep., 2009.

M. Allman, V. Paxson, and W. Stevens, “Rfc2581: Tcp congestion

control,” 1999.

S. Floyd, T. Henderson, and A. Gurtov, “The newreno modification to

tcep’s fast recovery algorithm,” Tech. Rep., 2004.

L. S. Brakmo, S. W. O’Malley, and L. L. Peterson, “Tcp vegas: New

techniques for congestion detection and avoidance,’ in Proceedings

of the conference on Communications architectures, protocols and

applications, 1994, pp. 24-35.

S. Fahmy and T. P. Karwa, “Tcp congestion control: overview and survey

of ongoing research,” 2001.

G. A. Abed, M. Ismail, and K. Jumari, “A survey on performance of

congestion control mechanisms for standard tcp versions,” Australian

Journal of Basic and Applied Sciences, vol. 5, no. 12, pp. 1345-1352,

2011.

O. Ait-Hellal and E. Altman, “Analysis of tcp vegas and tcp reno,”

Telecommunication systems, vol. 15, no. 3, pp. 381-404, 2000.

J. Mo, R. J. La, V. Anantharam, and J. Walrand, “Analysis and

comparison of tcp reno and vegas,” in IEEE INFOCOM’99. Conference

on Computer Communications. Proceedings. Eighteenth Annual Joint

Conference of the IEEE Computer and Communications Societies. The

Future is Now (Cat. No. 99CH36320), vol. 3. TEEE, 1999, pp. 1556—

1563.
M. R. Kanagarathinam, S. Singh, I. Sandeep, H. Kim, M. K. Mahesh-

wari, J. Hwang, A. Roy, and N. Saxena, “Nexgen d-tcp: Next generation

dynamic tcp congestion control algorithm,’ [EEE Access, vol. 8, pp.

164 482-164 496, 2020.

I. A. Najm, M. Ismail, J. Lloret, K. Z. Ghafoor, B. Zaidan, and A. A.-r. T.

Rahem, “Improvement of sctp congestion control in the lte-a network,”

Journal of Network and Computer Applications, vol. 58, pp. 119-129,

2015.

G. Carlucci, L. De Cicco, S. Holmer, and S. Mascolo, “Analysis and

design of the google congestion control for web real-time communica-

tion (webrtc),” in Proceedings of the 7th International Conference on

Multimedia Systems, 2016, pp. 1-12.

G. Carlucci, L. De Cicco, and S. Holmer, “Congestion control for

web real-time communication,’ IEEE/ACM Transactions on Networking,

vol. 25, no. 5, pp. 2629-2642, 2017.

L. De Cicco, G. Carlucci, and S. Mascolo, “Understanding the dynamic

behaviour of the google congestion control for rtcweb,” in 20/3 20th

International Packet Video Workshop. YEEE, 2013, pp. 1-8.

S. H. Choi and M. Handley, “Fairer tcp-friendly congestion control

protocol for multimedia streaming applications,” in Proceedings of the

2007 ACM CoNEXT conference, 2007, pp. 1-2.

V. Jacobson, “Congestion avoidance and control?’ ACM SIGCOMM

computer communication review, vol. 18, no. 4, pp. 314-329, 1988.

H. Schulzrinne, S. Casner, R. Frederick, and V. Jacobson, “Rtp: A

transport protocol for real-time applications,’ Tech. Rep., 2003.

C. Holmberg, S. Hakansson, and G. Eriksson, “Web real-time communi-

cation use cases and requirements,’ Request for Comments (RFC), vol.

7478, 2015.

S. Shalunov, G. Hazel, J. Iyengar, M. Kuehlewind et al., “Low extra

delay background transport (ledbat),” in RFC 6817, 2012.

I. Johansson, M. Westerlund et al., “Support for reduced-size real-time

transport control protocol (rtcp): Opportunities and consequences,” RFC

5506, April, Tech. Rep., 2009.

Ericsson-Research, “Scream - mobile optimised congestion control

algorithm.” [Online]. Available: https://github.com/EricssonResearch/

scream

S.-H. GitHub. Traces of link capacity collected over a 60ghz

wlan testbed hosted at nyu wireless. [Online]. Available: https:

//gist.github.com/Shreeshail- Hingane

S. Zhang, W. Lei, W. Zhang, and Y. Guan, “Congestion control for

rtp media: A comparison on simulated environment,” in International

Conference on Simulation Tools and Techniques. Springer, 2019, pp.

43-52.

Authorized licensed use limited to: BME OMIKK. Downloaded on October 05,2022 at 19:00:20 UTC from IEEE Xplore. Restrictions apply.

