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Abstra
t

One of the most promising a
tive queue management s
hemes being proposed for de-

ployment in the Internet is the Random Early Dete
tion (RED) s
heme. However, resear
h

results on RED performan
e are highly mixed, espe
ially in the �eld of tuning its parame-

ters. In this paper, a 
omprehensive performan
e analysis of RED is presented. We revisit

some features in RED and study them in greater detail. We point out that RED, in general,

does not possess proportional loss between 
ows as 
laimed and widely adopted in previ-

ous resear
h. We suggest the generalization of the PASTA property and give a proof for

TCP 
ows. We also evaluate the performan
e of the Exponential Weighted Moving Average

(EWMA) algorithm in RED. We �nd that EWMA in RED is an unbiased estimator of the

average queue-length, regardless of the weighting value w

q

. We also point out the theoreti
al

and pra
ti
al limits of EWMA in RED. Finally, we propose the use of Fuzzy EWMA to RED

(Fuzzy RED) to alleviate the in
exibility of RED tuning. We use simulations to evaluate

the performan
e of Fuzzy RED and 
ompare it with other versions of RED. Our simulations

show that, in the 
ase of a high workload and a high level of variation, Fuzzy RED, by

tra
king system variation in an on-line manner, improves RED performan
e in a number of

important router-based metri
s like pa
ket loss rate, average queueing delay, link utilization,

and global power.

1 Introdu
tion

TraÆ
 in the Internet is 
omposed of 
ows with di�erent nature and di�erent 
hara
teristi
s,

as more and more new IP-based appli
ations are brought into existen
e. Some of them are




ongestion-aware and some are not. As a 
onsequen
e, end-to-end 
ongestion 
ontrol algorithms

su
h as those in TCP are not enough to prevent 
ongestion in the Internet, and they must be

supplemented by 
ontrol me
hanisms inside the network. Sin
e routers are the 
ommon points

for all 
ows, it is reasonable to dete
t and 
ontrol 
ongestion at these pla
es, at least globally.

The Drop Tail bu�er management s
heme does little in this respe
t. To fa
e this problem, Sally

Floyd et al in [6℄ proposed the Random Early Dete
tion (RED) s
heme that 
an eÆ
iently man-

age the bu�er at the router to avoid 
ongestion. Basi
ally, RED provides 
ongestion avoidan
e

by 
ontrolling the average queue size and dropping in
oming pa
kets at random before the bu�er

gets full. The average queue size should be kept low, while 
u
tuations in the a
tual queue size

should be allowed to a

ommodate bursty traÆ
 and transient 
ongestion. RED was 
laimed in

[6℄ to provide: 
ongestion avoidan
e, appropriate time s
ales, no global syn
hronization, max-

imizing global power and fairness. However, RED has some problems to fa
e. First, it is not

a thoroughly understood s
heme [13℄. Se
ond, it has many parameters, and 
onsequently, it is

hard to tune [3℄.

Regarding the literature on RED, we devide it into two 
lasses. The �rst 
lass largely

deals with analyzing and 
on�guring RED, while keeping the algorithm inta
t. The se
ond


lass 
onsiders how to 
hange the original RED to have better performan
e. In fa
t, there

is no distin
t border between the two 
lasses. In respe
t to analyzing RED, May et al [14℄

proposed a simple analyti
 model of RED and 
on
luded (among others) that RED, in 
ertain


ir
umstan
es, provides no better performan
e than Drop Tail. Christiansen et al evaluated

RED with pure web traÆ
 and 
on
luded that RED o�ers no 
lear advantage over Drop Tail, at

least in terms of delay. The paper also reports that performan
e is quite sensitive to the setting

of RED parameters. Problems with tuning and 
on�guring RED parameters 
an also be found

in [24℄,[16℄,[5℄. In respe
t to new modi�
ation to RED, we would mention Self-Con�guring RED

in [4℄ and re
ently Adaptive RED in [7℄. Basi
ally, the authors propose adapting the dropping

probability max

p

as a fun
tion of average queue size to a
hieve the spe
i�ed target average

queue size in a wide variety of traÆ
 s
enarios. Other modi�
ations to RED 
an be found in

[23℄, [18℄, [12℄,[17℄,[1℄, [21℄.

In this paper, we �rst reexamine some features and performan
e of the RED me
hanism.

The main observation is that RED does not, in general, guarantee proportional loss to 
ows as


laimed in [6℄. We use the generalization of Poisson Arrivals See Time Averages (PASTA) as

suggested in [14℄ to study this property for TCP arrivals. Regarding RED performan
e, we �nd

that although 
hoosing the right value for the weighting parameter (w

q

) is diÆ
ult and sensitive,

the Exponential Weighted Moving Average algorithm in RED is an unbiased estimator of the



average queue-length, regardless of the value w

q

. Furthermore, we propose the use of the Fuzzy

Exponential Average instead of EWMA in RED to alleviate the in
exibility of a �xed weighting

value to 
hanging system 
onditions. We �nd that Fuzzy RED has a more stable performan
e

than standard RED when 
hanges to the 
ongestion level are frequent.

The rest of the paper is organized as follows. In Se
tion II, we give a detailed analysis

of proportional loss in RED. Se
tion III shows the simulation topology. Se
tion IV dis
usses

the motivation for Fuzzy RED. Se
tion V des
ribes the Fuzzy RED Me
hanism. Se
tion VI

evaluates the performan
e of Fuzzy RED. Finally, Se
tion VII 
on
ludes the paper.

2 Proportional Loss Revisited

Loosely speaking, the proportional loss property means that the fra
tion of marked pa
kets for

ea
h 
onne
tion is proportional to that 
onne
tion's share of the bandwidth. RED is 
laimed

to possess this property [6℄. In addition, proportional loss is widely adopted in the fairness

analysis of RED, [12℄, [9℄. However, M. May et al in [14℄ suggested that the 
laim is true only if

the arrival 
ows are Poisson arrivals. This is based on the PASTA (Poisson Arrivals See Time

Averages) property of Poisson pro
esses. We take one step further. Noti
e that PASTA 
an

be generalized to ASTA (Arrivals See Time Averages), [15℄, and Burke in [2℄ has shown that

the 
omposite stream of exogenous Poisson arrivals and feedba
k 
ustomers is not Poisson even

though this stream sees a time average. Sin
e TCP 
ows a

ount for a large portion of Internet

traÆ
, TCP arrivals are mainly of interest. The question that arises is then: Do TCP arrivals

see time averages or not?

Proposition 1 TCP arrivals do not see time averages either with RED, or with Drop Tail.

Proof. Let N � fN(t); t � 0g be the queue length pro
ess and A � fA(t); t � 0g be the arrival

pro
ess. For an arbitrary set B in the value spa
e of N , de�ne

U(t) =

8

<

:

1 if N(t) 2 B

0 otherwise

If B is the stationary queue-length, then U is the event that N remains in that state. A

ording

to Theorem 1 in [20℄, the future in
rements of A should not depend on the past of U . Formally,

it is the La
k of Anti
ipation Assumption (LAA). That is, for ea
h t � 0; fA(t+u)�A(t); u � 0g

and fU(s); 0 � s � tg are independent. Now, let us 
onsider the me
hanism of TCP. For the

sake of simpli
ity, we take TCP Reno for our analysis. LetW be the 
ongestion window size and

W

th

the threshold value. Noti
e that if the sender always has data to send then the 
ongestion



window is approximately the number of pa
kets that were sent but not yet a
knowledged. The

number of pa
kets going in a forward dire
tion, in a stable period, is approximately half of this

value (sin
e the other half are ACKs in the ba
kward dire
tion). Consequently, the dynami
s

of the 
ongestion window re
e
t the dynami
s of the pa
ket 
ows feeding a router.

1. After every nonrepeated a
knowledgment: if W < W

th

, set W =W +1; Slow Start Phase

else set W =W + 1=W ; Congestion Avoidan
e Phase

2. When the dupli
ate a
knowledgments ex
eed a threshold, retransmit next ex-

pe
ted pa
ket; set W

th

=W=2, then set W =W

th

and enter Fast Re
overy Phase

3. Upon timer expiration, the algorithm goes into slow start: set W

th

=W=2 set W = 1.

Let's 
onsider Phase 2, when the 
ongestion window is halved after sensing dupli
ate a
-

knowledgements. Dupli
ate ACKs imply dropping of pa
kets at the bu�er and that the bu�er

at the router is full (for Drop Tail) or potentially full (for RED). That is, the future in
rements

of A in this phase are dependent on the past of U . And so, the LAA fails. Consequently, TCP

arrivals do not see time average either with RED, or with Drop Tail gateway. Q.E.D.

Corollary 1 We 
annot a
hieve proportional loss between TCP 
ows either with RED or with

Drop-Tail.

Remark 1 A more general 
ondition of ASTA is LBA [15℄(La
k of Bias Assumption) whi
h

only requires that U and the 
onditional intensity, �

U

, of N , given U , are point-wise un
orrelated.

Certainly the un
orrelated 
ondition is weaker than the independen
e 
ondition. However, we


an similarly show that this 
ondition also fails.

Remark 2 ASTA, in the absen
e of Poisson 
ows, are all in the 
ategory of networks of quasi-

reversible queues; in parti
ular, for the M/M/1 queue with feedba
k. On
e again, Burke in [2℄

has shown that the 
omposite stream of exogenous Poisson arrivals and feedba
k 
ustomers is

not Poisson even though this stream sees a time average.

Remark 3 It is noteworthy, however, that for quasi-reversible queues in isolation, LBA im-

plies Poisson arrivals [15℄.

Remark 4 Let us assume that the servi
e time at the router is exponentially distributed (Marko-

vian servi
e). In this 
ase, 
onsider the G/M/1 queue. We allow the arrival pro
ess to be general.

Certainly, the arrivals generally (ex
ept Poisson ones) do not see time averages, but due to the

duality of M/G/1 and G/M/1, we 
an expli
itly express these two values by ea
h other [11℄.



3 Simulation Topology
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Figure 1.: Simulation Topology

Figure 1. shows the topology template for all of our simulations throughout this paper. We


onsider the general topology of N senders S

1

; S

2

; ::; S

N

and N a

ess links. The i-th a

ess link

is spe
i�ed by bandwidth B

Si

and delay D

Si

. Router1 is the a

ess router. We suppose the link

between Router1 and Router2 is a bottlene
k link with bandwidth B

BN

and delay D

BN

. We

also add M re
eivers at the other end in 
ase we want to generate ba
kward traÆ
. However,

unless otherwise stated, we 
onsider the bottlene
k link is the only sink.

4 Motivation for Fuzzy RED

4.1 Pitfalls in Tuning RED Parameters

One of the inherent weaknesses of RED is parameter sensitivity. Extensive resear
h has been

devoted to this issue and many publi
ations have highlighted various aspe
ts of this issue.

However, the question of how to 
on�gure the parameters of RED for optimal performan
e

is still open. Christiansen et al in [3℄ examined the impa
ts of tuning RED's parameters on

end-user delay, and 
on
luded that for links 
arrying only web traÆ
, RED queue management

appears to provide no 
lear advantage over the Drop-Tail gateway for end-user response times.

M. May et al in [14℄ use a simple analyti
 model to evaluate RED performan
e in terms of loss

rate, link utilization, delay and delay variation.

In this se
tion, we use simulations to examine the impa
ts of tuning di�erent RED parameters

and 
ompare their performan
e with Drop-Tail. We 
on
entrate on three router-based metri
s:

link utilization, link loss rate and average queuing delay. We believe that these metri
s 
learly



provide insight into the performan
e of queueing management algorithms at routers be
ause

end-user metri
s of interest (su
h as end-user delay) are mainly dependent on these metri
s.

Our simulations reveal two main points. First, RED with �xed, default parameters is no better

than Drop-Tail, at least in terms of the examined metri
s. Se
ond, there exist parameter tunings

of RED so that they 
an perform somewhat better than Drop-Tail. However, these parameter

settings do not in
rease RED performan
e both in link utilization and average queuing delay

simultaneously. Rather, in this 
ase, RED performs better than Drop-Tail in terms of global

power de�ned in [6℄ as the ratio of throughput to delay.

Impa
t of weighting parameter w

q

. We examine the impa
t of tuning the weighting param-

eter w

q

when other parameters are left un
hanged and equal to the default values (max

p

=0.1,

min

th

=10 pa
kets, max

th

=30 pa
kets a

ording to the bu�er size of 50 pa
kets). The bottle-

ne
k link bandwidth is 15 Mb/s, with delay 50 ms. The a

ess links are all 100 Mb/s. All


onne
tions are TCP 
onne
tions with a pa
ket size of 1000 bytes. To simulate the impa
t of

w

q

on di�erent workloads, we examine it with an in
reasing number of 
onne
tions (4, 16, 64,

256, a

ordingly). In
reasing the number of 
onne
tions means in
reasing the workload feeding

the router at the bottlene
k link. To simulate high level of variation of in
oming TCP traÆ
,

we set the a

ess link delays in a range from 10ms to (10+N �1) ms, where N is the number of


onne
tions (nodes). The simulation time used is 30 se
onds. We experien
e a large 
u
tuation

in queue length dynami
s in the �rst few se
onds (typi
ally around 5 se
onds in our 
ase) due

to TCP's �rst slow starts. So, the simulation time should not be too short. We �nd that 30

se
onds simulation time is adequate to ensure statisti
al a

ura
y and to mat
h TCP session

time details.

RED is tuned a

ording to the re
ommendation found in [7℄. We set

w

q

= 1� exp(�1=B

BN

) (1)

where B

BN

is the bottlene
k link 
apa
ity. In our simulation, B

BN

is set to 15 Mb/s, so w

q

is

set to 0.005, a

ordingly.

Figure 2.(a) shows the impa
t of tuning w

q

on link loss rates. As we 
an see, Drop-Tail

performs better than the default tuning of RED, at least in terms of link loss rates. We observe

that as the number of 
onne
tions is small and the round-trip times are relatively in the same

range, link loss rates are relatively similar. However, as the number of 
onne
tions in
reases, the

di�eren
e be
omes signi�
ant. The simulation results reveal to us that there exists a parameter

tuning for RED that produ
es better performan
e than Drop-Tail. However, Drop-Tail seems

to be more robust than a number of 
ases with RED, espe
ially when max

th

is far from bu�er

size and max

p

is high (aggressive early dete
tion). Figure 2.(
) shows the performan
e of RED
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Figure 2.: Impa
t of weighting parameter on router-based performan
e metri
s: RED vs. Drop-

Tail

and Drop-Tail in terms of link utilization. We observe that default RED is rather aggressive in

dete
tion, thus redu
ing the utilization of link 
apa
ity, espe
ially when the workload is high

(in
reased 
onne
tion number).

As expe
ted, the results are di�erent with delay. Figure 2.(b) shows that both versions of

RED (default and tuned) have smaller average queueing delay than Drop-Tail. However, we

have to �nd the trade-o� between average queueing delay and link utilization. We use global

power to judge the trade-o� performan
e of Drop-Tail and di�erent parameter settings of RED.

Figure 2.(d) shows that RED indeed performs better than Drop-Tail in terms of global power.

However, this metri
s is hardly observable by the end-user.

Impa
t of dropping parameter max

p

. We examine the impa
t of tuning the dropping param-

eter max

p

when other parameters are left un
hanged and equal to the default value(w

q

=0.02,

min

th

=10 pa
kets, max

th

=30 pa
kets a

ording to the bu�er size of 50 pa
kets). The simulation

topology is the same as the simulation with w

q

. The bottlene
k link bandwidth is 15 Mb/s,

with a delay of 50 ms. The a

ess links are all 100 Mb/s. All 
onne
tions are TCP 
onne
tions



with a pa
ket size of 1000 bytes. To simulate the impa
t of max

p

on di�erent workloads, we

examine it with an in
reasing number of 
onne
tions (4, 16, 64, 256, a

ordingly). To simulate

a high level of variation of in
oming TCP traÆ
, we set a

ess link delays ranging from 10ms

to (10 +N � 1) ms, where N is the number of 
onne
tions (nodes). The simulation time is 30

se
onds.

RED is tuned a

ording to the re
ommendation in [4℄, with � and � are set to 3 and 2,

respe
tively.
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Figure 3.: Impa
t of dropping parameter on router-based performan
e metri
s: RED vs. Drop-

Tail

As we 
an see in Figure 3.(a) and 3.(b), we have similar results in terms of loss rates

and delay as with the w

q

tuning simulations. However, Figure 3.(
) shows that tuning max

p

a

ording to Adaptive RED in [4℄, unlike the w

q

tuning simulations, also improve link utilization.

Power, as a ratio of throughput to delay, is thus 
ertainly improved.

What we 
an 
on
lude here is that, �xed, default RED shows no 
lear advantage over Drop-

Tail in a number of 
ru
ial router-based performan
e metri
s. However, there exists a parameter

tuning that 
an improve RED performan
e. The problem remains here is that, as the 
onditions



are 
hanging, how to adapt the tuning properly to maintain robust performan
e.

4.2 Adaptive RED

Consider the dropping fun
tion in RED. We observe that the adaptation of any parameter will

a�e
t the overall system performan
e. We see no 
lear justi�
ation for adapting only max

p

rather than min

th

and max

th

, as long as min

th

< max

th

< K.

In Sally's Adaptive RED, the authors proposed the tuning of w

q

based on link 
apa
ity.

However, what we really 
onsider here is available 
apa
ity, whi
h is 
hanging, and the dynami
s

of whi
h is yet to be estimated.

4.3 Reasons for Fuzzy Extension

4.3.1 Theoreti
al Limits of EWMA in RED

For any �xed w

q

2 [0; 1℄, let ^avg

t

be the estimator of the average queue length by:

^avg

t

= w

q

q

t

+ (1�w

q

) ^avg

t�1

(2)

where q

t

is the instantaneous queue length at time t.

Lemma 1 If fq

t

g is stationary with E(q

t

) = �

q

then ^avg

t

is an unbiased estimator of �

q

,

regardless of the weighting value w

q

.

We 
onsider this as a well-known fa
t in statisti
s.

Now, let's 
onsider the varian
e of this estimator. Without losing generality, we 
an suppose

that q

1

= 0, that is the queue starts from empty. Let �

2

be the varian
e of fq

t

g.

Lemma 2 [22℄ If q

1

; q

2

; ::: are independent (un
orrelated) then the varian
e of the estimator


an be 
al
ulated as:

D

2

( ^avg

t

) = �

2

w

q

� w

q

(1� w

q

)

2t�2

2� w

q

(3)

From Equation 3, if w

q

is small (w

q

� 0) then D

2

( ^avg

t

) � �

2

w

q

2

as t ! 1. Now 
onsider the


ase when q

1

; q

2

; :: are 
orrelated. Denote 
(k) = E

h

(q

t+k

��

q

)(q

t

��

q

)

i

the 
ovarian
e fun
tion

of fq

t

g at lag k and %(k) = 
(k)=
(0) the 
orrelation fun
tion of fq

t

g at lag k.

Proposition 2 The varian
e of the estimator 
an be 
al
ulated as:

D

2

( ^avg

t

) = �

2

w

q

� w

q

(1� w

q

)

2t�2

2� w

q

+ 2

t�2

X

k=1

%(k)

t�2�k

X

j=0

w

2

q

(1� w

q

)

2j+k

(4)



This proposition is a
tually the 
orollary of Lemma 1 and Lemma 2.

Remark 5 The 
oeÆ
ient %(k) !

w

q

2�w

q

(1 � w

q

)

k

as t ! 1. Interestingly, the 
orrelation

fun
tion %(k) in the expression is also "exponentially weighted" with the weighting parameter

1� w

q

.

Remark 6 The additional term 
ontributes to the varian
e of the estimator. This makes the

estimator worse (it is not so good already, 
ompared with a moving window), sin
e it in
reases

the varian
e of the estimator. In pra
ti
e, empiri
al and simulation analysis in [19℄ show that

the queue-length pro
ess is not only 
orrelated, but exhibits fra
tal properties, e.g. self-similarity.

4.3.2 Pra
ti
al Limits of EWMA in RED

The standard Exponential Weighted Moving Average applied in RED possesses a number of

good properties. It is easy to be implemented and it requires only a small bu�er size for the

storage of samples. It is, as mentioned in the previous se
tion, also an unbiased estimator of

the mean. However, it is in
exible in some points. First, when we average the queue-length,

we are impli
itly 
hoosing a time s
ale over whi
h to average it. The problem is then "What

should that time s
ale be?". Intuitively, it should mat
h the round-trip time of a typi
al TCP


onne
tion through the RED bu�er. In pra
ti
e, however, TCP 
onne
tions 
an have round-

trip times whi
h vary by several orders of magnitude. Furthermore, TCP is self-
lo
king and so

already has its own averaging me
hanism built-in whi
h automati
ally averages over a round-

trip time. So why should we try to average something that is already doing its own averaging

and when it's simply impossible to get the time s
ale right anyway? Se
ond, RED was basi
ally

designed to fa
e with transient 
ongestion [6℄ and highly periodi
 network traÆ
, espe
ially TCP

traÆ
. In this respe
t, the standard EWMA gives a �xed weight to past history, thus ignoring

transient phases in system dynami
s. In [6℄, the authors proposed an analysis of bounds (or

guide-lines) for the weighting value w

q

. The analysis in that paper is only for a given burst size

and bu�er size. In other words, we need to know these parameters a priori in order to �nd an

appropriate w

q

to meet our performan
e target. A �xed w

q

is in
exible in the sense that the

EWMA algorithm 
annot adapt to the 
hanging 
ondition of the in
oming traÆ
. To alleviate

this problem, we propose the use of Fuzzy Exponential Averaging [10℄, whi
h automati
ally

determines a 'good' value of w

q

, and is able to 
hange this value on-line if the system behavior


hanges. Sin
e the RED dropping me
hanism is based on the estimated average queue-length,

with "good value", we mean that RED 
an better keep tra
k with queue-length variations, and


onsequently, redu
es the number of unne
essarily dropped pa
kets at the router.



5 Fuzzy RED Me
hanism

We basi
ally keep the RED me
hanism inta
t and only modify the weighting parameter w

q

.

When estimating the average queue-length at the router, instead of using a �xed weighting

parameter, we apply Fuzzy EWMA. Details about Fuzzy EWMA are des
ribed in the original

paper [10℄. Now, we shall dis
uss how Fuzzy EWMA works in our 
ase.

5.1 Constru
tion of Fuzzy RED Me
hanism

Consider a dis
rete time system with q

k

, the queue length at the bu�er at time k, as the state

variable. The system 
an span a spe
trum varying from 'steady' (stationary) to 'noisy' (non-

stationary). Let q̂

k

be the estimate of q

k

, then observation noise (error) is q

k

� q̂

k

. To see the

relation between error and the predi
tor, we de�ne s
aled error as jq

k

� q̂

k

j=q̂

k

. From now on,

if not further mentioned, we deal with this error, be
ause it gives us insight into how the error

is related to the estimated queue-length. The varian
e of system and observation noise is the

problem. We need to 
onstru
t a predi
tor that 
an adapt to the 
hanging of system dynami
s.

We 
onsider the Fuzzy EWMA for this purpose.

The �rst question we need to deal with is how to de�ne the 
ontrol rules. We assume that

when the queue stays in its stationary (stable) state, the estimation error is small. That is, if the

dynami
s of queue-length in the bu�er has little perturbation, then the exponential averaging

te
hnique will produ
e a predi
tor that is usually 
lose to the a
tual system state (error is small).

In this 
ase, w

q

should be large. In 
ontrast, when there is a large variation in queue-length,

past history 
annot predi
t the future well (the error is high). In this 
ase, we set w

q

low,

so that the estimator 
an tra
k 
hanges in the system. Finally, sin
e we do not have a good

grasp of the state dynami
s, we only de�ne three gradations in the values of w

q

and error. In

addition, keeping the number of gradations minimal redu
es the overhead 
omputing time for

the algorithm. Thus, we adopt the following 
ontrol rules:

� IF error is high THEN w

q

is low

� IF error is medium THEN w

q

is medium

� IF error is low THEN w

q

is high

Se
ondly, we need to answer the question: high, medium, low are related to what? The

answer for this question is equivalent to de�ning the membership fun
tions for error and w

q

.

For the sake of simpli
ity, we use the trapezoid form (the 
onventional and simplest form) for

these two variables. The question that remains is how to spe
ify the membership fun
tions.
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Figure 4.: Membership Fun
tions

5.1.1 How to Spe
ify Membership Fun
tions

This question is equivalent to spe
ifying m

e

and m

w

q

, as shown in Figure 4.. It 
an be done

on-line by neural network training algorithms (su
h as ba
k propagation), but this is time


onsuming and la
ks simpli
ity. So we do the training o�-line to �nd appropriate values for these

parameters. When it is good, it 
an be �xed. The out
ome of the training, for the topology of

our simulations, have m

w

q

in [0.002..0.05℄ range and m

e

in [0.06..0.2℄ range. Interestingly, the

results for medium value of w

q

are 
lose to the value proposed by Sally Floyd et al in [7℄. At

this point, it seems that we arrive at the point where we started. That is, we still need to train

the system for some a priori knowledge. The only di�eren
e here, and also the intuitive for
e

behind our approa
h, is that on
e a good trained parameter is 
hosen, it 
an be �xed, and from

that point, the system will adapt to the 
hanging 
ondition of the in
oming traÆ
.

It should be mentioned that we only apply the simpli�ed version of Fuzzy EWMA proposed

in [10℄ without a smoothed proportional error be
ause we �nd that it is very time 
onsuming

and in 
onsequen
e greatly a�e
ts the performan
e.

We implemented the proposed algorithm in ns-2. Ex
ept for the EWMA algorithm part, all

other features in RED are kept inta
t.

6 Simulation Results

6.1 Stationary Performan
e

To examine the stationary behavior of Fuzzy RED, we �rst run the simulation with the same

parameters as in previous Se
tions. That is, the a

ess links are all 100 Mb/s. The bottlene
k

link bandwidth is 15 Mb/s, with delay 50 ms. Bu�er size at router-1 is set to 50 pa
kets, min

th

is set to 10 pa
kets, max

th

is set to 30 pa
kets. Conne
tions are TCP 
onne
tions with a pa
ket
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Figure 5.: Flow diagram of Fuzzy RED

size of 1000 bytes. To simulate the impa
t of di�erent workloads on performan
e of versions

of RED and Drop-Tail, we examine them with an in
reasing number of 
onne
tions (4, 16, 64,

256, a

ordingly). The simulation time is 30 se
onds. We 
ompare our proposed Fuzzy RED

not only with Drop Tail and default RED, but also with other Adaptive RED versions, su
h

as Adaptive RED in [4℄ (we 
all it Adaptive RED-Feng), and Adaptive RED in [7℄ (we 
all it

Adaptive RED-Sally).

S
enario 1. TCP in
oming traÆ
 with di�erent RTTs. To simulate high level of variation

of in
oming TCP traÆ
, we set a

ess link delays range from 10ms to (10 +N � 1) ms, where

N is the number of 
onne
tions (nodes).

Figure 6. shows 
omparative performan
e of Fuzzy RED against other versions of RED

and Drop Tail. As mentioned and explained in previous se
tions, we 
on
entrate on router-

based performan
e metri
s. We learned from our simulations that under light-weight load (few

number of 
onne
tions), there is no signi�
ant di�eren
e between versions of RED and Drop

Tail, and the orders are 
hanging from simulation to simulation. But the situation is di�erent

with heavily loaded in
oming traÆ
 (eg. 256 
onne
tions). In most of our simulations, three

versions of Adaptive RED perform 
losely together in all examined performan
e metri
s. The

bene�ts of Fuzzy RED are more visible when the workload is high (ie. there are many TCP


ows, suÆ
ient training data for the Fuzzy S
heme) and the level of variation of burstiness is

high (di�erent round-trip times of TCP 
onne
tions as in this s
enario). Original default RED
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Figure 6.: Router-based performan
e metri
s- di�erent RTTs: Fuzzy RED vs. Adaptive RED

versions and Drop-Tail

su�ers from a high loss rate be
ause of �xed parameter setting. These �xed default parameters

seem to be too aggressive. In terms of loss rate, RED with �xed default parameters, in our 
ase,

perform even worse than Drop-Tail. We believe that, this happens be
ause RED, in this 
ase,

unne
essarily and too early dropped the in
oming pa
kets. Pa
ket loss rates with versions of

Adaptive RED in the 
ase of heavy load (256 TCP 
ows, with di�erent round-trip time setting)

os
illate around 5 per
ent whereas it is far above for Drop Tail and Default RED (6-10 per
ent).

Figure 6.(b) shows the 
omparative performan
e of the queueing management algorithms in

terms of average queueing delay. We experien
e the situation where Drop Tail performs worst

be
ause Drop Tail only drops pa
kets when the queue is full thus keeping the queue potentially

full all of the time. One more thing to mention is that RED with �xed default parameters has

low utilization as shown in Figure 6.(
). Interestingly, Figure 6.(d) reveals that all versions

of RED (default RED in
luded) perform better than Drop-Tail in terms of global power as

mentioned in previous se
tions. This means that what we really bene�t from RED is not only



a low average queueing delay but also the trade-o� between delay and utilization, at least in

terms of global power as de�ned in [6℄.

S
enario 2. TCP in
oming traÆ
 with the same RTTs. To simulate a low level of variation

of burstiness, we set a

ess link delays all equal to 10ms.
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Figure 7.: Router-based performan
e metri
s- Same RTTs: Fuzzy RED vs. Adaptive RED

versions and Drop-Tail

Figure 7. shows 
omparative performan
e of Fuzzy RED against other versions of RED and

Drop Tail. As we 
an see in Figure 7.(a), pa
ket loss rates with versions of Adaptive RED in

the 
ase of heavy load (256 TCP 
ows) os
illate around 3 per
ent whereas it is mu
h higher

for Drop Tail and Default RED (4-5 per
ent), whi
h are signi�
antly smaller than simulation

with di�erent RTTs. The situation is similar with delay and link utilization (nearly 100% with

Adaptive RED-Sally and Fuzzy RED, 256 
onne
tions) in the way that all the versions perform

somewhat better with the same RTTs than with di�erent RTTs, as shown in Figure 7.(b) and

Figure 7.(
). Global power, as a result and shown in Figure 7.(d), is 
ertainly improved in all


ases. An important observation to be noti
ed here is that, for this s
enario, Adaptive RED-



Sally out-performs all other versions of RED and Drop-Tail. This out
ome shows the bene�t of

simpli
ity in Adaptive RED-Sally 
ompared to Fuzzy RED. However, as we mentioned earlier, we

basi
ally design Fuzzy RED to deal with high workload and high level of variations of burstiness

whi
h is, we believe, a realisti
 
ondition of today's Internet.

What we have been dis
ussing so far is only for pure TCP traÆ
. However, as RED routers

are also responsible for dire
ting and managing other 
ows of di�erent traÆ
 su
h as voi
e and

video traÆ
. For these appli
ations, other performan
e metri
s are also of importan
e. For

example, for VoIP (Voi
e over IP) appli
ations, not only the average delay but delay variation

(jitter) heavily a�e
ts the end-user view of performan
e. So in 
ase both TCP 
ows and UDP


ows sharing the router, queue-length variation should be kept low for the sake of the Quality

of Servi
e (QoS) for voi
e appli
ations. We simulate RED and Fuzzy RED with 1000 
ows (500

TCP 
ows and 500 UDP 
ows). Sin
e the number of 
onne
tions in this signi�
antly in
reased,

we also in
rease the duration time of the simulation to 180 se
onds in order to ensure statisti
al

a

ura
y of our results.

S
enario 3. Queue-length variation with the same RTTs. To simulate low level of variation

of burstiness, we set a

ess link delays all equal to 100ms.
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Figure 8.: Queue-length variations: Fuzzy RED vs. RED

Figure 8. shows that although the overall long run average queue-length is quite similar for

RED and Fuzzy RED (around 25 pa
kets), the variation in queue length of RED is signi�
antly

higher with RED than with Fuzzy RED. High variation in queue-length results in high delay

variation (jitter), thus de
reasing the quality of voi
e servi
es.

S
enario 4. Queue-length variation with di�erent RTTs. To simulate a high level of vari-



ation of in
oming TCP traÆ
, we set a

ess link delays to range from 100ms to (100 +N � 1)

ms, where N is the number of 
onne
tions (nodes).
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Figure 9.: Queue-length variations: Fuzzy RED vs. RED

As we 
an see in Figure 9., queue-length variation with RED is signi�
antly higher with

RED than with Fuzzy RED. Moreover, Figure 8. and Figure 9. 
learly show that performan
e

of both RED and Fuzzy RED, respe
tively, de
rease when we simulate with di�erent RTTs.

6.1.1 Performan
e with Non-Stationarities

We examine performan
e of Fuzzy RED with level-shifts, whi
h are the most 
ommon non-

stationarity e�e
ts observed. We run the simulation in three parts ea
h with length of 20

se
onds. First, 10 TCP 
ows are a
tive. After 20 se
onds, an addition of 10 TCP 
ows enter.

After 20 se
onds, these 10 
ows are terminated. All other parameters are the same as the

simulation for the stationary 
ase.

S
enario 5. Performan
e without ba
kground traÆ


Figure 10. shows the dynami
 of queue-length with RED and Fuzzy RED. After the in
rease

in workload (additional 10 
ows enter), a
tual queue-length with RED vary widely in the full

range between 1 and 50. Fuzzy RED adapts to the sudden 
hange in 
ondition, and do not

allow the queue-length to 
hange qui
kly, keeping the a
tual queue-length in the target of 15 to

35 pa
kets. After the de
rease in workload (10 
ows leave), it takes around 2 se
onds for both

RED and Fuzzy RED to get ba
k to a normal 
ondition, but Fuzzy RED produ
e somewhat

smaller values for average queue-length and queue-length variation.
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Figure 10.: Performan
e with level-shifts: RED vs. Fuzzy RED

S
enario 6. Performan
e with ba
kground traÆ
. We run the simulation with some ba
k-

ground web (http) traÆ
 by adding short http sour
es to the examined long FTP 
onne
tions.

Ea
h http sour
e sends a request (a pa
ket) to its destination, whi
h replies with a �le of size

that is exponentially distributed with a mean of 125 KB-pa
kets (the �le size distribution 
an

also be modeled by the Weibull distribution, but here, we use exponential distribution, for the

sake of simpli
ity). The waiting time for another request is also exponentially distributed with

a mean of 1 se
ond.
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Figure 11.: Performan
e with Non-Stationarities: RED vs. Fuzzy RED



We observe in Figure 11. periodi
ity with both RED and Fuzzy RED. Periodi
ity is well-

known in the dynami
s of queue-length in a bu�er and it seems that Fuzzy RED does not �lter

out periodi
ity, but it adapts to 
hanges somewhat qui
ker. More importantly, although the

average queue-lengths both for Default Original RED and Fuzzy RED are similar, the a
tual

queue-length is higher with RED than with Fuzzy RED.

7 Con
lusion

We have demonstrated that RED in general does not guarantee proportional loss to 
ows and

gave a proof for the TCP 
ase. We also analyti
ally evaluated the performan
e of the EWMA

algorithm in RED. We found that the EWMA algorithm in RED is an unbiased estimator of

average queue-length, regardless of the weighting value w

q

. We also pointed out the theoreti
al

and pra
ti
al limits of the EWMA in RED. We proposed the use of Fuzzy EWMA to RED

(Fuzzy RED). Simulation results show that our proposed Fuzzy RED has some advantages over

the original RED in the 
ase of frequently 
hanging 
ongestion. Analyti
ally evaluating Fuzzy

RED is a subtle and diÆ
ult task, whi
h is left as our future work.
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