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Abstrat

One of the most promising ative queue management shemes being proposed for de-

ployment in the Internet is the Random Early Detetion (RED) sheme. However, researh

results on RED performane are highly mixed, espeially in the �eld of tuning its parame-

ters. In this paper, a omprehensive performane analysis of RED is presented. We revisit

some features in RED and study them in greater detail. We point out that RED, in general,

does not possess proportional loss between ows as laimed and widely adopted in previ-

ous researh. We suggest the generalization of the PASTA property and give a proof for

TCP ows. We also evaluate the performane of the Exponential Weighted Moving Average

(EWMA) algorithm in RED. We �nd that EWMA in RED is an unbiased estimator of the

average queue-length, regardless of the weighting value w

q

. We also point out the theoretial

and pratial limits of EWMA in RED. Finally, we propose the use of Fuzzy EWMA to RED

(Fuzzy RED) to alleviate the inexibility of RED tuning. We use simulations to evaluate

the performane of Fuzzy RED and ompare it with other versions of RED. Our simulations

show that, in the ase of a high workload and a high level of variation, Fuzzy RED, by

traking system variation in an on-line manner, improves RED performane in a number of

important router-based metris like paket loss rate, average queueing delay, link utilization,

and global power.

1 Introdution

TraÆ in the Internet is omposed of ows with di�erent nature and di�erent harateristis,

as more and more new IP-based appliations are brought into existene. Some of them are



ongestion-aware and some are not. As a onsequene, end-to-end ongestion ontrol algorithms

suh as those in TCP are not enough to prevent ongestion in the Internet, and they must be

supplemented by ontrol mehanisms inside the network. Sine routers are the ommon points

for all ows, it is reasonable to detet and ontrol ongestion at these plaes, at least globally.

The Drop Tail bu�er management sheme does little in this respet. To fae this problem, Sally

Floyd et al in [6℄ proposed the Random Early Detetion (RED) sheme that an eÆiently man-

age the bu�er at the router to avoid ongestion. Basially, RED provides ongestion avoidane

by ontrolling the average queue size and dropping inoming pakets at random before the bu�er

gets full. The average queue size should be kept low, while utuations in the atual queue size

should be allowed to aommodate bursty traÆ and transient ongestion. RED was laimed in

[6℄ to provide: ongestion avoidane, appropriate time sales, no global synhronization, max-

imizing global power and fairness. However, RED has some problems to fae. First, it is not

a thoroughly understood sheme [13℄. Seond, it has many parameters, and onsequently, it is

hard to tune [3℄.

Regarding the literature on RED, we devide it into two lasses. The �rst lass largely

deals with analyzing and on�guring RED, while keeping the algorithm intat. The seond

lass onsiders how to hange the original RED to have better performane. In fat, there

is no distint border between the two lasses. In respet to analyzing RED, May et al [14℄

proposed a simple analyti model of RED and onluded (among others) that RED, in ertain

irumstanes, provides no better performane than Drop Tail. Christiansen et al evaluated

RED with pure web traÆ and onluded that RED o�ers no lear advantage over Drop Tail, at

least in terms of delay. The paper also reports that performane is quite sensitive to the setting

of RED parameters. Problems with tuning and on�guring RED parameters an also be found

in [24℄,[16℄,[5℄. In respet to new modi�ation to RED, we would mention Self-Con�guring RED

in [4℄ and reently Adaptive RED in [7℄. Basially, the authors propose adapting the dropping

probability max

p

as a funtion of average queue size to ahieve the spei�ed target average

queue size in a wide variety of traÆ senarios. Other modi�ations to RED an be found in

[23℄, [18℄, [12℄,[17℄,[1℄, [21℄.

In this paper, we �rst reexamine some features and performane of the RED mehanism.

The main observation is that RED does not, in general, guarantee proportional loss to ows as

laimed in [6℄. We use the generalization of Poisson Arrivals See Time Averages (PASTA) as

suggested in [14℄ to study this property for TCP arrivals. Regarding RED performane, we �nd

that although hoosing the right value for the weighting parameter (w

q

) is diÆult and sensitive,

the Exponential Weighted Moving Average algorithm in RED is an unbiased estimator of the



average queue-length, regardless of the value w

q

. Furthermore, we propose the use of the Fuzzy

Exponential Average instead of EWMA in RED to alleviate the inexibility of a �xed weighting

value to hanging system onditions. We �nd that Fuzzy RED has a more stable performane

than standard RED when hanges to the ongestion level are frequent.

The rest of the paper is organized as follows. In Setion II, we give a detailed analysis

of proportional loss in RED. Setion III shows the simulation topology. Setion IV disusses

the motivation for Fuzzy RED. Setion V desribes the Fuzzy RED Mehanism. Setion VI

evaluates the performane of Fuzzy RED. Finally, Setion VII onludes the paper.

2 Proportional Loss Revisited

Loosely speaking, the proportional loss property means that the fration of marked pakets for

eah onnetion is proportional to that onnetion's share of the bandwidth. RED is laimed

to possess this property [6℄. In addition, proportional loss is widely adopted in the fairness

analysis of RED, [12℄, [9℄. However, M. May et al in [14℄ suggested that the laim is true only if

the arrival ows are Poisson arrivals. This is based on the PASTA (Poisson Arrivals See Time

Averages) property of Poisson proesses. We take one step further. Notie that PASTA an

be generalized to ASTA (Arrivals See Time Averages), [15℄, and Burke in [2℄ has shown that

the omposite stream of exogenous Poisson arrivals and feedbak ustomers is not Poisson even

though this stream sees a time average. Sine TCP ows aount for a large portion of Internet

traÆ, TCP arrivals are mainly of interest. The question that arises is then: Do TCP arrivals

see time averages or not?

Proposition 1 TCP arrivals do not see time averages either with RED, or with Drop Tail.

Proof. Let N � fN(t); t � 0g be the queue length proess and A � fA(t); t � 0g be the arrival

proess. For an arbitrary set B in the value spae of N , de�ne

U(t) =

8

<

:

1 if N(t) 2 B

0 otherwise

If B is the stationary queue-length, then U is the event that N remains in that state. Aording

to Theorem 1 in [20℄, the future inrements of A should not depend on the past of U . Formally,

it is the Lak of Antiipation Assumption (LAA). That is, for eah t � 0; fA(t+u)�A(t); u � 0g

and fU(s); 0 � s � tg are independent. Now, let us onsider the mehanism of TCP. For the

sake of simpliity, we take TCP Reno for our analysis. LetW be the ongestion window size and

W

th

the threshold value. Notie that if the sender always has data to send then the ongestion



window is approximately the number of pakets that were sent but not yet aknowledged. The

number of pakets going in a forward diretion, in a stable period, is approximately half of this

value (sine the other half are ACKs in the bakward diretion). Consequently, the dynamis

of the ongestion window reet the dynamis of the paket ows feeding a router.

1. After every nonrepeated aknowledgment: if W < W

th

, set W =W +1; Slow Start Phase

else set W =W + 1=W ; Congestion Avoidane Phase

2. When the dupliate aknowledgments exeed a threshold, retransmit next ex-

peted paket; set W

th

=W=2, then set W =W

th

and enter Fast Reovery Phase

3. Upon timer expiration, the algorithm goes into slow start: set W

th

=W=2 set W = 1.

Let's onsider Phase 2, when the ongestion window is halved after sensing dupliate a-

knowledgements. Dupliate ACKs imply dropping of pakets at the bu�er and that the bu�er

at the router is full (for Drop Tail) or potentially full (for RED). That is, the future inrements

of A in this phase are dependent on the past of U . And so, the LAA fails. Consequently, TCP

arrivals do not see time average either with RED, or with Drop Tail gateway. Q.E.D.

Corollary 1 We annot ahieve proportional loss between TCP ows either with RED or with

Drop-Tail.

Remark 1 A more general ondition of ASTA is LBA [15℄(Lak of Bias Assumption) whih

only requires that U and the onditional intensity, �

U

, of N , given U , are point-wise unorrelated.

Certainly the unorrelated ondition is weaker than the independene ondition. However, we

an similarly show that this ondition also fails.

Remark 2 ASTA, in the absene of Poisson ows, are all in the ategory of networks of quasi-

reversible queues; in partiular, for the M/M/1 queue with feedbak. One again, Burke in [2℄

has shown that the omposite stream of exogenous Poisson arrivals and feedbak ustomers is

not Poisson even though this stream sees a time average.

Remark 3 It is noteworthy, however, that for quasi-reversible queues in isolation, LBA im-

plies Poisson arrivals [15℄.

Remark 4 Let us assume that the servie time at the router is exponentially distributed (Marko-

vian servie). In this ase, onsider the G/M/1 queue. We allow the arrival proess to be general.

Certainly, the arrivals generally (exept Poisson ones) do not see time averages, but due to the

duality of M/G/1 and G/M/1, we an expliitly express these two values by eah other [11℄.



3 Simulation Topology
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Figure 1.: Simulation Topology

Figure 1. shows the topology template for all of our simulations throughout this paper. We

onsider the general topology of N senders S

1

; S

2

; ::; S

N

and N aess links. The i-th aess link

is spei�ed by bandwidth B

Si

and delay D

Si

. Router1 is the aess router. We suppose the link

between Router1 and Router2 is a bottlenek link with bandwidth B

BN

and delay D

BN

. We

also add M reeivers at the other end in ase we want to generate bakward traÆ. However,

unless otherwise stated, we onsider the bottlenek link is the only sink.

4 Motivation for Fuzzy RED

4.1 Pitfalls in Tuning RED Parameters

One of the inherent weaknesses of RED is parameter sensitivity. Extensive researh has been

devoted to this issue and many publiations have highlighted various aspets of this issue.

However, the question of how to on�gure the parameters of RED for optimal performane

is still open. Christiansen et al in [3℄ examined the impats of tuning RED's parameters on

end-user delay, and onluded that for links arrying only web traÆ, RED queue management

appears to provide no lear advantage over the Drop-Tail gateway for end-user response times.

M. May et al in [14℄ use a simple analyti model to evaluate RED performane in terms of loss

rate, link utilization, delay and delay variation.

In this setion, we use simulations to examine the impats of tuning di�erent RED parameters

and ompare their performane with Drop-Tail. We onentrate on three router-based metris:

link utilization, link loss rate and average queuing delay. We believe that these metris learly



provide insight into the performane of queueing management algorithms at routers beause

end-user metris of interest (suh as end-user delay) are mainly dependent on these metris.

Our simulations reveal two main points. First, RED with �xed, default parameters is no better

than Drop-Tail, at least in terms of the examined metris. Seond, there exist parameter tunings

of RED so that they an perform somewhat better than Drop-Tail. However, these parameter

settings do not inrease RED performane both in link utilization and average queuing delay

simultaneously. Rather, in this ase, RED performs better than Drop-Tail in terms of global

power de�ned in [6℄ as the ratio of throughput to delay.

Impat of weighting parameter w

q

. We examine the impat of tuning the weighting param-

eter w

q

when other parameters are left unhanged and equal to the default values (max

p

=0.1,

min

th

=10 pakets, max

th

=30 pakets aording to the bu�er size of 50 pakets). The bottle-

nek link bandwidth is 15 Mb/s, with delay 50 ms. The aess links are all 100 Mb/s. All

onnetions are TCP onnetions with a paket size of 1000 bytes. To simulate the impat of

w

q

on di�erent workloads, we examine it with an inreasing number of onnetions (4, 16, 64,

256, aordingly). Inreasing the number of onnetions means inreasing the workload feeding

the router at the bottlenek link. To simulate high level of variation of inoming TCP traÆ,

we set the aess link delays in a range from 10ms to (10+N �1) ms, where N is the number of

onnetions (nodes). The simulation time used is 30 seonds. We experiene a large utuation

in queue length dynamis in the �rst few seonds (typially around 5 seonds in our ase) due

to TCP's �rst slow starts. So, the simulation time should not be too short. We �nd that 30

seonds simulation time is adequate to ensure statistial auray and to math TCP session

time details.

RED is tuned aording to the reommendation found in [7℄. We set

w

q

= 1� exp(�1=B

BN

) (1)

where B

BN

is the bottlenek link apaity. In our simulation, B

BN

is set to 15 Mb/s, so w

q

is

set to 0.005, aordingly.

Figure 2.(a) shows the impat of tuning w

q

on link loss rates. As we an see, Drop-Tail

performs better than the default tuning of RED, at least in terms of link loss rates. We observe

that as the number of onnetions is small and the round-trip times are relatively in the same

range, link loss rates are relatively similar. However, as the number of onnetions inreases, the

di�erene beomes signi�ant. The simulation results reveal to us that there exists a parameter

tuning for RED that produes better performane than Drop-Tail. However, Drop-Tail seems

to be more robust than a number of ases with RED, espeially when max

th

is far from bu�er

size and max

p

is high (aggressive early detetion). Figure 2.() shows the performane of RED
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Figure 2.: Impat of weighting parameter on router-based performane metris: RED vs. Drop-

Tail

and Drop-Tail in terms of link utilization. We observe that default RED is rather aggressive in

detetion, thus reduing the utilization of link apaity, espeially when the workload is high

(inreased onnetion number).

As expeted, the results are di�erent with delay. Figure 2.(b) shows that both versions of

RED (default and tuned) have smaller average queueing delay than Drop-Tail. However, we

have to �nd the trade-o� between average queueing delay and link utilization. We use global

power to judge the trade-o� performane of Drop-Tail and di�erent parameter settings of RED.

Figure 2.(d) shows that RED indeed performs better than Drop-Tail in terms of global power.

However, this metris is hardly observable by the end-user.

Impat of dropping parameter max

p

. We examine the impat of tuning the dropping param-

eter max

p

when other parameters are left unhanged and equal to the default value(w

q

=0.02,

min

th

=10 pakets, max

th

=30 pakets aording to the bu�er size of 50 pakets). The simulation

topology is the same as the simulation with w

q

. The bottlenek link bandwidth is 15 Mb/s,

with a delay of 50 ms. The aess links are all 100 Mb/s. All onnetions are TCP onnetions



with a paket size of 1000 bytes. To simulate the impat of max

p

on di�erent workloads, we

examine it with an inreasing number of onnetions (4, 16, 64, 256, aordingly). To simulate

a high level of variation of inoming TCP traÆ, we set aess link delays ranging from 10ms

to (10 +N � 1) ms, where N is the number of onnetions (nodes). The simulation time is 30

seonds.

RED is tuned aording to the reommendation in [4℄, with � and � are set to 3 and 2,

respetively.
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Figure 3.: Impat of dropping parameter on router-based performane metris: RED vs. Drop-

Tail

As we an see in Figure 3.(a) and 3.(b), we have similar results in terms of loss rates

and delay as with the w

q

tuning simulations. However, Figure 3.() shows that tuning max

p

aording to Adaptive RED in [4℄, unlike the w

q

tuning simulations, also improve link utilization.

Power, as a ratio of throughput to delay, is thus ertainly improved.

What we an onlude here is that, �xed, default RED shows no lear advantage over Drop-

Tail in a number of ruial router-based performane metris. However, there exists a parameter

tuning that an improve RED performane. The problem remains here is that, as the onditions



are hanging, how to adapt the tuning properly to maintain robust performane.

4.2 Adaptive RED

Consider the dropping funtion in RED. We observe that the adaptation of any parameter will

a�et the overall system performane. We see no lear justi�ation for adapting only max

p

rather than min

th

and max

th

, as long as min

th

< max

th

< K.

In Sally's Adaptive RED, the authors proposed the tuning of w

q

based on link apaity.

However, what we really onsider here is available apaity, whih is hanging, and the dynamis

of whih is yet to be estimated.

4.3 Reasons for Fuzzy Extension

4.3.1 Theoretial Limits of EWMA in RED

For any �xed w

q

2 [0; 1℄, let ^avg

t

be the estimator of the average queue length by:

^avg

t

= w

q

q

t

+ (1�w

q

) ^avg

t�1

(2)

where q

t

is the instantaneous queue length at time t.

Lemma 1 If fq

t

g is stationary with E(q

t

) = �

q

then ^avg

t

is an unbiased estimator of �

q

,

regardless of the weighting value w

q

.

We onsider this as a well-known fat in statistis.

Now, let's onsider the variane of this estimator. Without losing generality, we an suppose

that q

1

= 0, that is the queue starts from empty. Let �

2

be the variane of fq

t

g.

Lemma 2 [22℄ If q

1

; q

2

; ::: are independent (unorrelated) then the variane of the estimator

an be alulated as:

D

2

( ^avg

t

) = �

2

w

q

� w

q

(1� w

q

)

2t�2

2� w

q

(3)

From Equation 3, if w

q

is small (w

q

� 0) then D

2

( ^avg

t

) � �

2

w

q

2

as t ! 1. Now onsider the

ase when q

1

; q

2

; :: are orrelated. Denote (k) = E

h

(q

t+k

��

q

)(q

t

��

q

)

i

the ovariane funtion

of fq

t

g at lag k and %(k) = (k)=(0) the orrelation funtion of fq

t

g at lag k.

Proposition 2 The variane of the estimator an be alulated as:

D

2

( ^avg

t

) = �

2

w

q

� w

q

(1� w

q

)

2t�2

2� w

q

+ 2

t�2

X

k=1

%(k)

t�2�k

X

j=0

w

2

q

(1� w

q

)

2j+k

(4)



This proposition is atually the orollary of Lemma 1 and Lemma 2.

Remark 5 The oeÆient %(k) !

w

q

2�w

q

(1 � w

q

)

k

as t ! 1. Interestingly, the orrelation

funtion %(k) in the expression is also "exponentially weighted" with the weighting parameter

1� w

q

.

Remark 6 The additional term ontributes to the variane of the estimator. This makes the

estimator worse (it is not so good already, ompared with a moving window), sine it inreases

the variane of the estimator. In pratie, empirial and simulation analysis in [19℄ show that

the queue-length proess is not only orrelated, but exhibits fratal properties, e.g. self-similarity.

4.3.2 Pratial Limits of EWMA in RED

The standard Exponential Weighted Moving Average applied in RED possesses a number of

good properties. It is easy to be implemented and it requires only a small bu�er size for the

storage of samples. It is, as mentioned in the previous setion, also an unbiased estimator of

the mean. However, it is inexible in some points. First, when we average the queue-length,

we are impliitly hoosing a time sale over whih to average it. The problem is then "What

should that time sale be?". Intuitively, it should math the round-trip time of a typial TCP

onnetion through the RED bu�er. In pratie, however, TCP onnetions an have round-

trip times whih vary by several orders of magnitude. Furthermore, TCP is self-loking and so

already has its own averaging mehanism built-in whih automatially averages over a round-

trip time. So why should we try to average something that is already doing its own averaging

and when it's simply impossible to get the time sale right anyway? Seond, RED was basially

designed to fae with transient ongestion [6℄ and highly periodi network traÆ, espeially TCP

traÆ. In this respet, the standard EWMA gives a �xed weight to past history, thus ignoring

transient phases in system dynamis. In [6℄, the authors proposed an analysis of bounds (or

guide-lines) for the weighting value w

q

. The analysis in that paper is only for a given burst size

and bu�er size. In other words, we need to know these parameters a priori in order to �nd an

appropriate w

q

to meet our performane target. A �xed w

q

is inexible in the sense that the

EWMA algorithm annot adapt to the hanging ondition of the inoming traÆ. To alleviate

this problem, we propose the use of Fuzzy Exponential Averaging [10℄, whih automatially

determines a 'good' value of w

q

, and is able to hange this value on-line if the system behavior

hanges. Sine the RED dropping mehanism is based on the estimated average queue-length,

with "good value", we mean that RED an better keep trak with queue-length variations, and

onsequently, redues the number of unneessarily dropped pakets at the router.



5 Fuzzy RED Mehanism

We basially keep the RED mehanism intat and only modify the weighting parameter w

q

.

When estimating the average queue-length at the router, instead of using a �xed weighting

parameter, we apply Fuzzy EWMA. Details about Fuzzy EWMA are desribed in the original

paper [10℄. Now, we shall disuss how Fuzzy EWMA works in our ase.

5.1 Constrution of Fuzzy RED Mehanism

Consider a disrete time system with q

k

, the queue length at the bu�er at time k, as the state

variable. The system an span a spetrum varying from 'steady' (stationary) to 'noisy' (non-

stationary). Let q̂

k

be the estimate of q

k

, then observation noise (error) is q

k

� q̂

k

. To see the

relation between error and the preditor, we de�ne saled error as jq

k

� q̂

k

j=q̂

k

. From now on,

if not further mentioned, we deal with this error, beause it gives us insight into how the error

is related to the estimated queue-length. The variane of system and observation noise is the

problem. We need to onstrut a preditor that an adapt to the hanging of system dynamis.

We onsider the Fuzzy EWMA for this purpose.

The �rst question we need to deal with is how to de�ne the ontrol rules. We assume that

when the queue stays in its stationary (stable) state, the estimation error is small. That is, if the

dynamis of queue-length in the bu�er has little perturbation, then the exponential averaging

tehnique will produe a preditor that is usually lose to the atual system state (error is small).

In this ase, w

q

should be large. In ontrast, when there is a large variation in queue-length,

past history annot predit the future well (the error is high). In this ase, we set w

q

low,

so that the estimator an trak hanges in the system. Finally, sine we do not have a good

grasp of the state dynamis, we only de�ne three gradations in the values of w

q

and error. In

addition, keeping the number of gradations minimal redues the overhead omputing time for

the algorithm. Thus, we adopt the following ontrol rules:

� IF error is high THEN w

q

is low

� IF error is medium THEN w

q

is medium

� IF error is low THEN w

q

is high

Seondly, we need to answer the question: high, medium, low are related to what? The

answer for this question is equivalent to de�ning the membership funtions for error and w

q

.

For the sake of simpliity, we use the trapezoid form (the onventional and simplest form) for

these two variables. The question that remains is how to speify the membership funtions.
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Figure 4.: Membership Funtions

5.1.1 How to Speify Membership Funtions

This question is equivalent to speifying m

e

and m

w

q

, as shown in Figure 4.. It an be done

on-line by neural network training algorithms (suh as bak propagation), but this is time

onsuming and laks simpliity. So we do the training o�-line to �nd appropriate values for these

parameters. When it is good, it an be �xed. The outome of the training, for the topology of

our simulations, have m

w

q

in [0.002..0.05℄ range and m

e

in [0.06..0.2℄ range. Interestingly, the

results for medium value of w

q

are lose to the value proposed by Sally Floyd et al in [7℄. At

this point, it seems that we arrive at the point where we started. That is, we still need to train

the system for some a priori knowledge. The only di�erene here, and also the intuitive fore

behind our approah, is that one a good trained parameter is hosen, it an be �xed, and from

that point, the system will adapt to the hanging ondition of the inoming traÆ.

It should be mentioned that we only apply the simpli�ed version of Fuzzy EWMA proposed

in [10℄ without a smoothed proportional error beause we �nd that it is very time onsuming

and in onsequene greatly a�ets the performane.

We implemented the proposed algorithm in ns-2. Exept for the EWMA algorithm part, all

other features in RED are kept intat.

6 Simulation Results

6.1 Stationary Performane

To examine the stationary behavior of Fuzzy RED, we �rst run the simulation with the same

parameters as in previous Setions. That is, the aess links are all 100 Mb/s. The bottlenek

link bandwidth is 15 Mb/s, with delay 50 ms. Bu�er size at router-1 is set to 50 pakets, min

th

is set to 10 pakets, max

th

is set to 30 pakets. Connetions are TCP onnetions with a paket



Z-1

w
q

e
rr

o
r

Dropping

DecisionEstimated

Average

Queue-length

q
k

Control Rules

Fuzzy System

Specification

- IF error is HIGH THEN wq is

LOW

- IF error is MEDIUM THEN

wq is MEDIUM

- IF error is LOW THEN wq is

HIGH

Membership Functions of  error

and w
q

Fuzzy  Labels (LOW,

MEDIUM, HIGH) Specification

- m
e
 and m

wq
 values

- Training off-line

EWMA: q^k=w
q
*q

k
+(1-w

q
)q^

k-1

Figure 5.: Flow diagram of Fuzzy RED

size of 1000 bytes. To simulate the impat of di�erent workloads on performane of versions

of RED and Drop-Tail, we examine them with an inreasing number of onnetions (4, 16, 64,

256, aordingly). The simulation time is 30 seonds. We ompare our proposed Fuzzy RED

not only with Drop Tail and default RED, but also with other Adaptive RED versions, suh

as Adaptive RED in [4℄ (we all it Adaptive RED-Feng), and Adaptive RED in [7℄ (we all it

Adaptive RED-Sally).

Senario 1. TCP inoming traÆ with di�erent RTTs. To simulate high level of variation

of inoming TCP traÆ, we set aess link delays range from 10ms to (10 +N � 1) ms, where

N is the number of onnetions (nodes).

Figure 6. shows omparative performane of Fuzzy RED against other versions of RED

and Drop Tail. As mentioned and explained in previous setions, we onentrate on router-

based performane metris. We learned from our simulations that under light-weight load (few

number of onnetions), there is no signi�ant di�erene between versions of RED and Drop

Tail, and the orders are hanging from simulation to simulation. But the situation is di�erent

with heavily loaded inoming traÆ (eg. 256 onnetions). In most of our simulations, three

versions of Adaptive RED perform losely together in all examined performane metris. The

bene�ts of Fuzzy RED are more visible when the workload is high (ie. there are many TCP

ows, suÆient training data for the Fuzzy Sheme) and the level of variation of burstiness is

high (di�erent round-trip times of TCP onnetions as in this senario). Original default RED
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Figure 6.: Router-based performane metris- di�erent RTTs: Fuzzy RED vs. Adaptive RED

versions and Drop-Tail

su�ers from a high loss rate beause of �xed parameter setting. These �xed default parameters

seem to be too aggressive. In terms of loss rate, RED with �xed default parameters, in our ase,

perform even worse than Drop-Tail. We believe that, this happens beause RED, in this ase,

unneessarily and too early dropped the inoming pakets. Paket loss rates with versions of

Adaptive RED in the ase of heavy load (256 TCP ows, with di�erent round-trip time setting)

osillate around 5 perent whereas it is far above for Drop Tail and Default RED (6-10 perent).

Figure 6.(b) shows the omparative performane of the queueing management algorithms in

terms of average queueing delay. We experiene the situation where Drop Tail performs worst

beause Drop Tail only drops pakets when the queue is full thus keeping the queue potentially

full all of the time. One more thing to mention is that RED with �xed default parameters has

low utilization as shown in Figure 6.(). Interestingly, Figure 6.(d) reveals that all versions

of RED (default RED inluded) perform better than Drop-Tail in terms of global power as

mentioned in previous setions. This means that what we really bene�t from RED is not only



a low average queueing delay but also the trade-o� between delay and utilization, at least in

terms of global power as de�ned in [6℄.

Senario 2. TCP inoming traÆ with the same RTTs. To simulate a low level of variation

of burstiness, we set aess link delays all equal to 10ms.
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Figure 7.: Router-based performane metris- Same RTTs: Fuzzy RED vs. Adaptive RED

versions and Drop-Tail

Figure 7. shows omparative performane of Fuzzy RED against other versions of RED and

Drop Tail. As we an see in Figure 7.(a), paket loss rates with versions of Adaptive RED in

the ase of heavy load (256 TCP ows) osillate around 3 perent whereas it is muh higher

for Drop Tail and Default RED (4-5 perent), whih are signi�antly smaller than simulation

with di�erent RTTs. The situation is similar with delay and link utilization (nearly 100% with

Adaptive RED-Sally and Fuzzy RED, 256 onnetions) in the way that all the versions perform

somewhat better with the same RTTs than with di�erent RTTs, as shown in Figure 7.(b) and

Figure 7.(). Global power, as a result and shown in Figure 7.(d), is ertainly improved in all

ases. An important observation to be notied here is that, for this senario, Adaptive RED-



Sally out-performs all other versions of RED and Drop-Tail. This outome shows the bene�t of

simpliity in Adaptive RED-Sally ompared to Fuzzy RED. However, as we mentioned earlier, we

basially design Fuzzy RED to deal with high workload and high level of variations of burstiness

whih is, we believe, a realisti ondition of today's Internet.

What we have been disussing so far is only for pure TCP traÆ. However, as RED routers

are also responsible for direting and managing other ows of di�erent traÆ suh as voie and

video traÆ. For these appliations, other performane metris are also of importane. For

example, for VoIP (Voie over IP) appliations, not only the average delay but delay variation

(jitter) heavily a�ets the end-user view of performane. So in ase both TCP ows and UDP

ows sharing the router, queue-length variation should be kept low for the sake of the Quality

of Servie (QoS) for voie appliations. We simulate RED and Fuzzy RED with 1000 ows (500

TCP ows and 500 UDP ows). Sine the number of onnetions in this signi�antly inreased,

we also inrease the duration time of the simulation to 180 seonds in order to ensure statistial

auray of our results.

Senario 3. Queue-length variation with the same RTTs. To simulate low level of variation

of burstiness, we set aess link delays all equal to 100ms.
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Figure 8.: Queue-length variations: Fuzzy RED vs. RED

Figure 8. shows that although the overall long run average queue-length is quite similar for

RED and Fuzzy RED (around 25 pakets), the variation in queue length of RED is signi�antly

higher with RED than with Fuzzy RED. High variation in queue-length results in high delay

variation (jitter), thus dereasing the quality of voie servies.

Senario 4. Queue-length variation with di�erent RTTs. To simulate a high level of vari-



ation of inoming TCP traÆ, we set aess link delays to range from 100ms to (100 +N � 1)

ms, where N is the number of onnetions (nodes).
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Figure 9.: Queue-length variations: Fuzzy RED vs. RED

As we an see in Figure 9., queue-length variation with RED is signi�antly higher with

RED than with Fuzzy RED. Moreover, Figure 8. and Figure 9. learly show that performane

of both RED and Fuzzy RED, respetively, derease when we simulate with di�erent RTTs.

6.1.1 Performane with Non-Stationarities

We examine performane of Fuzzy RED with level-shifts, whih are the most ommon non-

stationarity e�ets observed. We run the simulation in three parts eah with length of 20

seonds. First, 10 TCP ows are ative. After 20 seonds, an addition of 10 TCP ows enter.

After 20 seonds, these 10 ows are terminated. All other parameters are the same as the

simulation for the stationary ase.

Senario 5. Performane without bakground traÆ

Figure 10. shows the dynami of queue-length with RED and Fuzzy RED. After the inrease

in workload (additional 10 ows enter), atual queue-length with RED vary widely in the full

range between 1 and 50. Fuzzy RED adapts to the sudden hange in ondition, and do not

allow the queue-length to hange quikly, keeping the atual queue-length in the target of 15 to

35 pakets. After the derease in workload (10 ows leave), it takes around 2 seonds for both

RED and Fuzzy RED to get bak to a normal ondition, but Fuzzy RED produe somewhat

smaller values for average queue-length and queue-length variation.



0 10 20 30 40 50 60 70
0

5

10

15

20

25

30

35

40

45

50

Time [seconds]

Q
u

e
u

e
 [

p
a

c
k
e

ts
]

queue length        
average queue length

(a) Original Default RED

0 10 20 30 40 50 60 70
0

5

10

15

20

25

30

35

40

45

50

Time [seconds]

Q
u

e
u

e
 [

p
a

c
k
e

ts
]

queue length        
average queue length

(b) Fuzzy RED

Figure 10.: Performane with level-shifts: RED vs. Fuzzy RED

Senario 6. Performane with bakground traÆ. We run the simulation with some bak-

ground web (http) traÆ by adding short http soures to the examined long FTP onnetions.

Eah http soure sends a request (a paket) to its destination, whih replies with a �le of size

that is exponentially distributed with a mean of 125 KB-pakets (the �le size distribution an

also be modeled by the Weibull distribution, but here, we use exponential distribution, for the

sake of simpliity). The waiting time for another request is also exponentially distributed with

a mean of 1 seond.
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Figure 11.: Performane with Non-Stationarities: RED vs. Fuzzy RED



We observe in Figure 11. periodiity with both RED and Fuzzy RED. Periodiity is well-

known in the dynamis of queue-length in a bu�er and it seems that Fuzzy RED does not �lter

out periodiity, but it adapts to hanges somewhat quiker. More importantly, although the

average queue-lengths both for Default Original RED and Fuzzy RED are similar, the atual

queue-length is higher with RED than with Fuzzy RED.

7 Conlusion

We have demonstrated that RED in general does not guarantee proportional loss to ows and

gave a proof for the TCP ase. We also analytially evaluated the performane of the EWMA

algorithm in RED. We found that the EWMA algorithm in RED is an unbiased estimator of

average queue-length, regardless of the weighting value w

q

. We also pointed out the theoretial

and pratial limits of the EWMA in RED. We proposed the use of Fuzzy EWMA to RED

(Fuzzy RED). Simulation results show that our proposed Fuzzy RED has some advantages over

the original RED in the ase of frequently hanging ongestion. Analytially evaluating Fuzzy

RED is a subtle and diÆult task, whih is left as our future work.
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