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Networking in the absence of congestion control

S�andor Moln�ara and Lajos V�ag�ob
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Budapest University of Technology and Economics, Budapest, Hungary

ABSTRACT
We study a future Internet networking paradigm where
instead of congestion control an open loop traffic control is
applied. We aim to give theoretical foundations for data trans-
fer controlled only by the access points of the network. The
key characteristics of networks without congestion control are
stability and efficiency addressed in this paper. We consider
the queue length processes of data-flows on directed graphs.
The stability is characterized by the ergodicity of these proc-
esses and the efficiency of the network is measured by the
Price of Anarchy. Under restrictions on the input traffic rates
we derive an achievable efficiency limit in a stable network
for very general conditions, namely, for any network topology
and for any buffer management policy. Moreover, we show that
even for cyclic networks, which usually cause severe instability
in networks, an upper bound for the loss of efficiency can be
given independently of the size of the network under a fair
AQM buffer management policy. Furthermore, for monotonic
networks we present a reasonable choice for setting access
capacities. Our results demonstrate that with a proper setting of
access capacities of incoming flows the congestion collapse of
the Internet can be avoided even without congestion control.
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1. Introduction

This paper investigates a communication network model where we use no
closed loop control to appeal for traffic congestion. While the motivation
comes from technology, we chose to investigate a specific stochastic model of
the network without going much into the technological details and concen-
trate on the mathematical challenges raised by the topic. For completeness we
give a brief summary of the motivation in the following paragraphs.

1.1. Motivation, historical background

There is a common belief that the stability of the Internet is mainly due
to the congestion control algorithm performed by the Transport Control
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Protocol (TCP). The history of TCP dates back to 1981 when the first ver-
sion of TCP was published[22]. Over the past four decades TCP has been
step by step developed in order to meet the requirements of the continu-
ously evolving Internet and to efficiently protect the network from conges-
tion collapse[13]. It can be concluded based on the history of the Internet
that the closed-loop congestion control implemented by TCP, which trans-
ports more than 85% of Internet traffic, was a successful paradigm to avoid
congestion collapse and the related performance degradation due to the
overload of network resources. The basic algorithm of the congestion con-
trol mechanism of TCP is that the sender gradually increases the sending
rate until a packet loss is detected. In case of packet loss a feedback signal
is sent back from the receiver to the sender indicating a possible congestion
in the network. As a result, the sending rate is cut in half and the
cycle repeats.
As researchers faced new challenges of the modern heterogeneous net-

working environments of the Internet a number of new TCP versions had
been suggested[1,11,16,20,21]. In addition, several alternative ideas have also
been proposed to find a transport protocol that provides good Quality of
Experience (QoE) to the users. For example, Google introduced a new
experimental protocol called Quick UDP Internet Connections (QUIC)[24]

in 2013. QUIC uses User Datagram Protocol (UDP) in the transport layer
instead of the traditional TCP and combines a collection of techniques to
achieve better performance than TCP does. Google implemented QUIC in
its popular Chrome browser. Another promising protocol called Bandwidth
Bottleneck and Round (BBR)-trip propagation time[7] was proposed by
Google in 2016. BBR was design to obtain an optimal operation point sug-
gested by Kleinrock in 1979[14]. It can avoid bufferbloat and it seems to be
an efficient protocol for achieving small buffer sizes. However, BBR is still
under development (currently BBR v2) and regarding its application a lot
of questions remained unanswered.

1.2. Related literature, mathematical background

A shocking idea of networking without congestion control first appeared in
a research plan of Global Environment for Network Innovations (GENI)[8]

in 2007. They proposed the omission of the congestion control mechanism
and suggested to use efficient erasure coding to cope with congestion in
the network. Some related works have only been published in this area as
follows. Raghavan and Snoeren[23] have shown that even a congested net-
work can achieve good performance and fairness. They have introduced a
concept called decongestion control, presuming that a protocol relying
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upon greedy, high-speed transmission has the potential to perform better
than TCP.
From the mathematical point of view the most relevant for this paper is

the work of Bonald et al. and Feuillet[3,10]. They have studied the conse-
quences of operating a network without congestion control, and have con-
cluded that it does not inevitably lead to congestion collapse as believed
earlier. In these papers the authors model a communication network with a
directed graph with edge capacities and the data flowing through it follows
a continuous time discrete space Markov process. They conjecture that if
the underlying directed graph is acyclic then the asymptotic efficiency of
the network is optimal as the individual access rate of the users to the net-
work approaches 0. They verify this conjecture in the important special
cases of tree and line network topologies. One of the key approaches they
use is to show that in the above limit the stochastic process they investigate
approaches a deterministic process called fluid limit.
There are a number of other suggestions applying efficient erasure cod-

ing (e.g., fountain codes[6,9,15,17,19]) instead of congestion control but the
sound theoretical foundations of networking avoiding congestion control
mechanisms have not been established yet. As a conclusion we have found
that networking without congestion control is still a new and unexplored
approach for future networks especially regarding basic theoretical founda-
tions of the idea, and this is the main motivation behind our research.

1.3. Our contribution

Our work is close in the spirit to the work by Bonald et al.[3] and
Feuillet[10] but our investigated architecture and model are different. These
differences are discussed in the following section in details. Our ultimate
goal is to contribute to the understanding of networks where congestion
control is not applied and establish the theoretical foundations for
such networks.
The main contribution of this paper is to present some theoretical results

regarding the stability and efficiency of network models where congestion
control is not applied. Concerning stability we study the ergodicity of the
processes under investigations. As an efficiency measure we focus on the
Price of Anarchy, which is a frequently used metric, also used in Bonald
et al.[3] Most results are valid on the packet level (Theorems 3.1, 3.2 and
3.3, for the description of packet model see Sections 2.1 and 2.2), and one
assumes fluid model (Theorem 3.4, see Section 2.5 for definition). Namely,
on the packet level first we give a result (Theorem 3.1) for general topology
and general buffer management policy for the case where the input rates
are approximately specified. Then we investigate the circle network
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topology (Theorems 3.2 and 3.3), which is an interesting class of special
network topology from stability point of view since circles usually cause
instability in networks, and therefore represent worst-case network topolo-
gies[3]. In this case we assume a fair Active Queue Management (AQM)[12]

in order to ensure the fair capacity distribution of the link between the
competitive flows. It is a frequently applied method to do this job and it is
supported by the current Internet routers since such mechanisms, e.g.,
Weighted Fair Queueing (WFQ)[27] or Deficit Round Robin (DRR)[25] are
widely implemented in these routers. As results we show upper bounds for
the achievable efficiency where stability can be held. In addition, we inves-
tigate acyclic and monotonic networks in the fluid model (Theorem 3.4)
and show that these processes are stable under minimal conditions with
the proper access capacity setting.
The rest of the paper is organized as follows: In Section 2 we introduce

our network and traffic model and the most important notions. Then we
present and discuss the main results of this paper in Section 3. The proofs
are given in Section 4. Finally, Section 5 concludes the paper.

2. Network and traffic model

First we give a brief introduction to our network and traffic model, and
then we introduce the necessary notations and work out the details in the
following sections.
We consider flows on a given directed graph with given link capacities,

see Figure 1 and notations are given in Section 2.1. We refer to this graph
as the base graph. Note that we use the “flow” as a general entity in our
model and it can be applied in practical cases like aggregate of flows, etc.

Figure 1. Network model. The notations are introduced in Section 2.1. The boldfaced edges are
the links of route rk. Rl is the offered input rate of link l, and hik is the throughput of flow k on
the i-th segment of route rk.
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Note also that the flow in our proposed network has a different practical
interpretation compared to what we have in our congestion controlled net-
works of today. For example, there is no similar meaning of the concept of
streaming flows or elastic flows in our case. Flows join to the network
through access links with given access capacities. In each flow packets
arrive according to a Poisson process. We use the Poisson assumption only
for analytic tractability, but we believe that the results could be generalized
without this assumption as well, e.g., this assumption is not needed in
Theorem 3.1. Packets of the same flow can queue up at the beginning of
their path in an unbounded buffer, that is, no packet losses are assumed
here. Packets are transmitted at maximum rate in each flow, i.e., with the
rate equal to the capacity of its access link. Competing flows share flow
rate according to some buffer management policy at each node of the net-
work as described later in details.
We assume that there are no packet buffers considered before the subse-

quent links of the flows in the network nodes. Therefore, in this network if
a flow has sent some data via the first few links of its path and after that it
cannot reach enough flow rate on the next link, then the extra data gets
lost. In order to cope with such packet loss, which are often called as dead
packets, we assume an erasure coding scheme accomplished by fountain
codes[18], e.g., the technique and our recently published transport protocol
called Digital Fountain based Communication Protocol (DFCP)[19]. This
digital fountain based method uses no congestion control and the lost
packets are recovered by efficient Raptor codes[26]. The principle of this
method is that the sender can transfer a theoretically infinite stream of
encoded symbols from the original message of size k. Successful decoding
can be performed with high probability as once any subset of size
d 1þ eð Þke encoded symbols (here e > 0 denotes the amount of redundancy
added to the original message) arrive to the receiver. It is important to
note that in realistic scenarios only slightly more packets are required for
successful decoding than the original size of the message. It means that the
price we pay for the open loop control in this solution is the overhead of
the applied fountain code based erasure coding scheme, which can be
smaller than 5% in practical cases[19]. By the application of this method the
information for recovering the loss packets are already” coded” into the
sent packets so we can avoid the traditional retransmission procedures for
recovery of lost data. We mention that erasure coding scheme accom-
plished by fountain codes is just one possible solution to the mentioned
dead packet problems caused by packet losses. Any other mechanism can
also be applicable which makes flows robust to packet loss.
We emphasize that our approach is an open-loop control method in con-

trast to the closed-loop method of TCP congestion control. The only traffic

STOCHASTIC MODELS 5



control we apply in this network model is to put access capacities where
flows are injected into the network, which can shape the maximum sending
rate. The access rate can be set and policed e.g., by traffic shaping techni-
ques, which is a widely known and supported functionality in current
access points. However, our proposal addresses a new networking paradigm
which is not necessarily based on the infrastructure of today’s networks.
Our goal is to find an access capacity setup which maximizes the through-
put settings (in some sense as described later) such that the obtained queue
length process in the access buffers is stable (ergodic).
A similar problem was investigated in Bonald et al. and Feuillet[3,10] but

our model is different. In our model we consider a bufferless packet level
network model where each flow has an access capacity to the network with
an unlimited access buffer (outside the network).
The motivation of using this network model is that effects of buffers

inside the network is rather unpredictable (e.g., bufferbloat) and these buf-
fers are often difficult to control so if we have a network without such buf-
fers we can get a more controllable and computable networking
architecture. On the other hand, a policy function is usually implemented
at the edge of the network so implementing access buffers is a reasonable
assumption. In this paper we are setting up the theoretical foundations of
such networks and we apply the unbounded access buffer assumption here
as a first step. From a practical point of view the implementation of the
access capacities can be easily managed by traffic shapers which are com-
monly used in today’s networks.
We suppose Poisson packet arrivals to the access buffer resulting in a

Markovian model for the queue length dynamics in the access buffer of each
flow. In contrast, authors in Bonald et al. and Feuillet[3,10] considered a similar
bufferless network model at flow level and in their model there are no access
buffers and they modeled the number of flows in progress as a Markovian pro-
cess as flows are generated by users and also cease upon completion. It also
means a significant technical difference: in case of the model in Bonald et al.
and Feuillet[3,10], as the number of flows tends to infinity their joint access
rates grows to infinity as well, while in our model the access rate of each flow
is fixed, no matter how big the number of queueing packets is.
Note that the Poisson assumption of the arrival process is a technical

assumption which makes the mathematical calculations easier, but we
believe that this assumption can be relaxed.

2.1. Notations

We use the following notations in the paper, see also Figure 1. Link l has
capacity Cl (packet/sec). There are a total number of K flows in the
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network. Let us denote by kk (1/sec) the incoming Poissonian intensity of
new packets of flow k and by nk tð Þ the number of queueing flow-k packets

in the access buffer at time t. We denote by rk ¼ r1k , :::, r
dk
k

� �
the ordered

list of links in the path of flow k, where dk stands for the number of links
in that path. In addition, each flow k is connected to the first node of the
network by a link of access capacity Kk:

2.2. Queue length process

We assume any fair AQM (Active Queue Management) policy as a buffer
management mechanism in our network model at each node. For example,
Weighted Fair Queueing (WFQ)[27] or Deficit Round Robin (DRR)[25] can
be applied since they are used by Internet routers. Such AQM policies can
fairly distribute the capacity of the link between the competitive flows.
According to this, the applied AQM works in such a way that competing

flows are allowed to send an amount of data per second proportional to
their demand at each link. This is described by formulas in the follow-
ing way.
Let us denote by Rl the total (or offered) input rate of link l. In addition,

let hik stand for the output rate of flow k on the i-th segment of its route,
which is the same as the input rate of flow k on its iþ 1-th link. Put

h0k tð Þ ¼ 1nk tð Þ>0 tð ÞKk, (1)

which is the input rate of flow k on its first link. That is, flows send data
with the maximal bandwidth allowed by the access capacities whenever
there is data in the queue. We often suppress the dependence on t in the
notation. By definition

Rl ¼
X

k, i:rik¼l

hi�1
k :

The output rate of flow k on the first and i-th link of its path due to the
fair AQM policy are as follows:

hik ¼ hi�1
k min

Cl

Rl
, 1

� �
if l ¼ rik, i ¼ 1, :::dk: (2)

Note that (2) is the same as Equation (5) in Bonald et al.[3] and Equation
(3) in Feuillet[10], which describes the effect of the Tail Dropping buffer
management policy on the sharing of the link resources among the com-
peting users (the” users” are packets in this packet-level model, flows in
Bonald et al. and Feuillet[3,10]). Bonald et al.[3] showed that transmission
rates hik are uniquely defined by (2). Let us denote by wk the throughput of
flow k:

STOCHASTIC MODELS 7



wk ¼ hdkk , (3)

and by w we denote the throughput vector:

w ¼ w nð Þ ¼ w1, :::,wKð Þ:

We note that the throughput w ¼ w tð Þ depends only on the non-empty
queues regardless of their queue lengths.
Let n tð Þ ¼ n1 tð Þ, :::, nK tð Þð Þ be the queue length process at the sources.

With the above input and service rates it is a continuous time Markov pro-
cess with transition rates

kk : n ! nþ ek,

wk : n ! n� ek,

(

where ek stands for the vector with 1 in its k-th coordinate and 0 in
the others.
To determine the throughput of the flows at a given time we only need

to know which flows have positive, and which have zero queueing data, so
the exact number of packets does not matter. Hence, from the point of
view of the throughput there are 2K different states. We call these the
queue length indicator and denote by I tð Þ 2 f0, 1gK , where the k-th coord-
inate of I tð Þ is 0 if nk tð Þ ¼ 0, and it is 1 if nk tð Þ > 0:

Ik tð Þ ¼ 1nk tð Þ>0:

Therefore we can consider hik and wk as functions from f0, 1gK to R
K
þ, 0,

where Rþ, 0 ¼ ½0,1Þ:

2.3. Networks with partially decreasing throughput function

Later in Theorem 3.4 (and also in the proofs of Theorem 3.2 and 3.3) we
will use a monotonicity property defined in the following way.

Definition 2.1. We say that the throughput vector w is partially decreasing
if for all x ¼ x1, :::, xKð Þ, y ¼ y1, :::, yKð Þ 2 f0, 1gK, such that xi ¼ yi and for
all j xj � yj, we have

wi xð Þ � wi yð Þ:

Among many others, dumbbell topologies and directed trees are monotonic
networks in the above sense. On the other hand, the parking lot topology is
an example of an acyclic but non-monotonic network, see Figure 2.
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2.4. Stability and efficiency

We say that a network with given input rates and access capacities is stable
if n tð Þ form an ergodic process, or equivalently any queue empties in finite
expected time.
Given a network we say that the input rates k ¼ k1, :::, kKð Þ satisfy the

optimal stability condition if

8l
X
k:l2rk

kk < Cl: (4)

This is the biggest set of input rates for which one can get ergodicity with
an optimal traffic control, and for example for a-fair allocations it is also
sufficient[4]. However, our congestion control is suboptimal, i.e., there may
be packets sent to the network which eventually get lost due to capacity
limitations, so-called dead packets. These packets occupy resources in the
network, so from efficiency point of view this is waste of resources. In add-
ition, as (4) is the optimal stability condition implied by the inside links of
the network, a non-optimal traffic control can unnecessarily limit traffic
flows at the access points which may also result in loss of efficiency.
Because of these suboptimalities the set of stable input rates can be smaller
than the optimal one, see Figure 3.
Let us fix some set of the admissible input rates D � R

K
þ, 0 such that if

u 2 D, then for all c> 0 we have cu 2 D as well. For a given network and
fixed access capacities K1, :::,KK we define the Price of Anarchy as in
Bonald et al.[3], which quantifies the efficiency loss caused by omitting
closed loop control and letting the users to follow a greedy tactic and inject
as much data to the network as they can. It is defined by

PD K1, :::,KKð Þ ¼ max
u2D

a uð Þ � b uð Þ
a uð Þ

� �
, (5)

where a uð Þ is the supremum of those a-s for which au satisfies the optimal
stability condition, and b uð Þ is the supremum of those b-s for which bu is
stable according to the traffic control determined by the access capacities
and by a buffer management policy (e.g., fair AQM), see Figure 3.
Then we denote by PD the least loss of efficiency which can be reached

by optimizing access capacities, that is

Figure 2. Parking lot topology with L¼ 4 links and 5 flows. For L � 2 links this network is
non-monotonic: If there is queuing data in the first short flow (leftmost) then this flow blocks
the long flow, hence lets more flow rate to the second short flow.

STOCHASTIC MODELS 9



PD ¼ inf
K1, :::,KK

PD K1, :::,KKð Þ:

Clearly a uð Þ � b uð Þ for any access capacities because stability with some
input rates under a fair AQM policy immediately implies stability under
optimal control as well. Hence PD 2 ½0, 1�, if PD ¼ 0 it means that the net-
work has maximum, 100% efficiency. Note that the Price of Anarchy is
typically defined in such a way that the range of possible values is ½1,1�,
but instead we chose to use the notations of Bonald et al.[3]. In the follow-
ing we always consider efficiency determined by 1� PD: Note that there are
two opposite mechanisms that may cause efficiency loss: On the one hand,
if control capacities are too high then dead packets may waste capacity,
and on the other hand, if access capacities are unnecessarily strict then in
some cases the capacity of the network is not fully exploited.

2.5. Fluid model

In this paper we also study a deterministic fluid model fx tð Þg related to the
above random process of queue lengths. We define the dynamics of fx tð Þg –
similarly to Feuillet[10] [Theorem 3, (24)] – by the differential equation system

_xk tð Þ ¼ kk � wk x tð Þð Þ (6)

for all k, where wk is the throughput of flow k defined almost the same
way as wk n tð Þð Þ: We define by (2) and (3) the throughput of flow k on

Figure 3. An example of stability and optimal stability regions of two flows. The striped area
refers to the stability region, while the union of striped and dotted areas is the optimal stabil-
ity region.
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later edges of its path, but applied for x instead of n. But it is necessary to
define the input rate on the first edge in a slightly different way when
xk tð Þ ¼ 0: This is simply because the values of w x tð Þð Þ when xk tð Þ > 0 for
all k define the values of it when xk tð Þ ¼ 0 for some coordinates k.
Therefore, instead of (1) we define h0k tð Þ by

h0k tð Þ ¼ Kk if xk tð Þ > 0,

h�k x tð Þð Þ if xk tð Þ ¼ 0,

(

where h�k x tð Þð Þ is maximal such that wk x tð Þð Þ � kk and h�k x tð Þð Þ � Kk:
Note that kk and wk are just the average input and throughput rates,

respectively, therefore the fx tð Þg process is the mean field approximation
of fn tð Þg: Also note that by the definition the throughput vector w x tð Þð Þ
depends only on which elements of x tð Þ are nonzero.
If the optimal stability conditions (4) are satisfied, then x � 0 is clearly a

fixed point of the fluid process with h�k 0ð Þ ¼ k and no congestion. In
Theorem 3.4, we provide conditions under which the fluid process con-
verges to this fixed point 0:

3. Main results on stability and efficiency

In this section we state and discuss our main results regarding the stability
and efficiency of networks without congestion control. The proofs are in
Section 4. The results are divided into three parts. In the first one we con-
sider the packet-level model with general topology and general buffer man-
agement policy for the case where the input rates are restricted to a narrow
domain D (as in (5)). In this case stability is guaranteed under mild condi-
tions (Theorem 3.1). As the assumption is quite restrictive, we consider
this result as a reference and exclude this assumption in the follow-
ing results.
The second part serves as a worst case example. We investigate the

packet model with circle network topologies (Theorems 3.2 and 3.3), which
usually cause instability in networks. This is the part where we rely both
on the Poisson packet-arrival model and the fair AQM policy. We use the
Poisson assumption for analytic tractability only and we believe that the
results on circle networks hold without it as well, but we did not prove it
here. Although the proofs of Theorems 3.2 and 3.3 strongly rely on the
symmetry of the circle topology and therefore can’t be directly generalized,
we consider these results very relevant because they emphasize two import-
ant and complementing facts: (i) we can’t expect perfect efficiency from
every network with the given control method; and (ii) even a cyclic net-
work can be controlled with a limited efficiency loss. In addition, we also
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consider cycles as a basic building block representing the effect of feedback,
which also motivates its investigation.
Finally, we investigate acyclic and monotonic networks in the third part.

Here, we consider the fluid model for analytic tractability. We obtain the
stability of queue length processes in such models under weak, necessary
conditions (Theorem 3.4).
Note that our results are not built on one another, the order in which we

present them is just a matter of taste and does not reflect their importance.

3.1. General network topology

First we consider general network topology, i.e., the underlying directed
graph with edge capacities on which the flows transmit data is arbitrary.
We give an upper bound on the Price of Anarchy if the set of admissible
input rates form a cone. Let us use the notation Rþ ¼ 0,1ð Þ and Rþ, 0 ¼
½0,1Þ: For u 2 R

K
þ and c � 0 let Dc uð Þ � R

K
þ be defined by

Dc uð Þ ¼
�
k ¼ k1, :::, kKð Þ 2 R

K
þ

��� 8i, j ¼ 1, :::,K :

1
1þ c

ui
uj

� ki
kj

� 1þ cð Þ ui
uj

�
,

(7)

see Figure 4. That is, the ratios of the input rates of flows are restricted to
a neighborhood of prescribed rate ratios.

Theorem 3.1. Let u 2 R
K
þ, i.e., 8 iui > 0. For any network topology and for

any buffer management policy we have

PDc uð Þ � c
1þ c

,

which is reached by the access capacity setting

Kk ¼ a uð Þuk,
where a uð Þ is defined in (5). We note that a uð Þu is the boundary point of
the optimal stability region in direction u:

This theorem has practical significance if c is close to 0, i.e., the aspect
ratio of the cone is small (see Figure 4), hence the loss of efficiency is close
to 0 as well. We also note that if c is small we have a strong bound on the
ratios ki=kj of the input rates regardless of the rates themselves.
The above access capacity setting ensures that there is no congestion at

all in the network. From the engineering point of view, this theorem shows
how efficiently we can allocate resources. The strength of this theorem is
that it holds for any network topology and for any buffer management pol-
icy. Moreover, even the Markov condition on the input process can be
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omitted. It is enough to suppose that incoming data comes from a station-
ary process.
In the following the circle network topology is investigated, which repre-

sents a worst-case network topology from the point of view of stability[10].

3.2. Circle network topology

We consider a circle network structure. Let the graph be a directed circle
of K � 2 links, with the links labeled by 1, :::,K according to the orienta-
tion of the graph. We have K flows on this graph each going through two
consecutive links, i.e., rk ¼ k, kþ 1ð Þ, k ¼ 1, :::,K � 1, rK ¼ K, 1ð Þ, see
Figure 5. The optimal stability condition (4) is satisfied iff

kk þ kkþ1 < Ckþ1 8k ¼ 1, :::,K � 1 and kK þ k1 < C1: (8)

For the Price of Anarchy of this network we prove the followings.

Theorem 3.2. In case of the circle network with K¼ 2 flows and fair AQM
policy, the followings hold for the Price of Anarchy:

1. The worst case is when C1 ¼ C2, for which

P :¼ P
R

K
þ, 0

¼ 3� 2
ffiffiffi
2

p
	 0:1716,

which is achieved by the access capacity setting

K1 ¼ K2 ¼ C1 2
ffiffiffi
2

p
� 2


 �
:

2. If C1 6¼ C2 then the efficiency increases:

P � 3� 2
ffiffiffi
2

p
	 0:1716, (9)

which is achieved by

K1 ¼ K2 ¼ minfC1,C2g 2
ffiffiffi
2

p
� 2


 �
:

Figure 4. The striped area is an example of the cone DcðuÞ for two flows, u ¼ ð2, 1Þ
and c¼ 0.1.
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3. Moreover, if 3=2C1 � C2, then the efficiency is maximum, i.e.,

P ¼ 0,

reached by the access capacity setting K1 ¼ K2 ¼ C1:

Point (1) of Theorem 3.2 shows that when the two links have the same
capacity, then for any access capacity settings the stability region is strictly
smaller than the optimal one. Nevertheless, the Price of Anarchy (and
hence the efficiency) is acceptable and the best access capacity setting is
explicitly given in the theorem.
Point (2) of Theorem 3.2 shows that when the two capacities are differ-

ent then the efficiency increases, and again the best access capacity setting
is explicitly given.
Moreover, according to point (3) of Theorem 3.2 if 3=2C1 � C2, then

the stability region coincides with the optimal one and hence maximum
efficiency is achieved with the given access capacities.
Note that in Theorem 3.2 our goal is to find a universal access capacity

setting without the knowledge of the actual input rates and regardless of
the ratio of k1=k2: Equivalently to the statement, we can say that if the
access capacities are set as above, then in order to achieve stable queues we
must limit the input rates to 1� 3� 2

ffiffiffi
2

p
 �
 �
k 	 0:8284k where k satisfies

the optimal stability condition.
We also remark that loss of efficiency may occur because of two phe-

nomena. One is the existence of so-called dead packets, i.e., in case of the
circle network with two flows it can happen that both flows use bigger flow
rate on their first link than they are able to use on the second one. It
means that they start sending data which gets lost before arriving to the
destination. This waste of resources can lead to loss of efficiency. The other

Figure 5. Circle networks. Tubes represent links, lines with arrows are the flows.
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one is the flow rate limit forced by the access capacities even in the case if
there was no congestion without them. For example, in case of point (1) of
Theorem 3.2 if we set the access capacities as suggested by this theorem,
then there can be dead packets and unnecessary access capacity limitations
as well (as it turns out from the proof). By increasing access capacities the
number of dead packets increases as well so that the efficiency decreases
altogether. On the other hand, by decreasing access capacities the impact of
limitations of access capacities are more severe than that of the decrease of
dead packets resulting in a decrease of efficiency.
In the following theorem we consider the general circle topology with K

flows and links as in Figure 5b, where K¼ 3.

Theorem 3.3. In case of the circle network with K � 3 flows, C ¼ C1 ¼ ::: ¼
CK and fair AQM policy, for the Price of Anarchy we have the following
bounds independently of the number of flows.

0:1716 	 3� 2
ffiffiffi
2

p
� P :¼ P

R
K
þ, 0

� 0:262: (10)

The upper bound holds for the access capacities

Kk ¼ C
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9þ

ffiffiffiffiffi
33

p
 �
=24

q
	 0:784C:

This theorem shows that for a circle of arbitrary number of links with
the same capacities the efficiency (1� P) can be given in a 10% accuracy
range, i.e., it is between 74% and 83%. Note that these bounds are inde-
pendent of the number of flows K.
We have to remark that in case of the flow-level models investigated in

Bonald et al.[3], the authors showed that the above structure leads to con-
gestion collapse if the tail dropping policy is applied whenever all the input
rates are positive, therefore P¼ 1. Please note, that this is not the case in
our packet-level model, which is very promising from the application point
of view. More precisely, the undesired effect of circle networks can be stabi-
lized by introducing access capacities as suggested in our model. Therefore
these common structures do not have to be excluded from networks where
no congestion control is applied. Note that under another policy called fair
dropping (see Bonald et al.[3, p.3]) there is no problem with the stability of
circles even in flow-level models: In Bonald et al.[3], it was shown that if
fair dropping is applied the optimal stability condition is sufficient for sta-
bility for any network topology, in particular for cycles.

3.3. Fluid model analysis of acyclic and monotonic networks

The previous results are quite restrictive either for the average input rate
(Theorem 3.1) or the network topology (Theorems 3.2 and 3.3). To obtain
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results for more general topology and arbitrary input rates we investigate a
somewhat simpler network dynamics, namely the fluid process fx tð Þg
defined in Section 2.5.
We say that the network is acyclic if the defining base graph contains no

directed circles. In addition to this, we also assume that the throughput
vector is partially decreasing, see Definition 2.1.

Theorem 3.4. Suppose we are given an acyclic network topology with edge
capacities Cl, l ¼ 1, :::, L such that the throughput vector w is partially
decreasing. Suppose also that the optimal stability conditions (4) are satisfied
for the input rates k. Set the access capacities Kk ¼ minfCl j l 2 rkg for all
flows k. Then the fluid process fx tð Þg defined by (6) converges to the zero
vector 0, regardless to the starting point x 0ð Þ:
That is, no matter how big the” queue lengths” x 0ð Þ at beginning are,

the process fx tð Þg stabilizes and converges to 0. In case of temporary
queue length dynamics resulting in big queues congestion may appear.
Nevertheless, according to the theorem above, queue lengths eventually
smooth out within a finite time. In contrast with circle networks discussed
in the previous section, in case of an acyclic and monotonic network con-
gestion does not lead to a decrease of efficiency in the fluid model. This
theorem also gives us a simple guideline to set up proper access capacities
keeping the network stable.

4. Proofs

4.1. General network topology

Proof of Theorem 3.1. The main idea of the proof is to show that if the
input rates are distributed according to the coordinates of u, then we can
reach optimal stability. This is achieved by simply partitioning the capaci-
ties of the links among the flows. Then it is not so hard to see that input
rates close to u are near optimal as well.
Namely, choose the access capacity setting

Kk ¼ a uð Þuk:
By definition a uð Þu is a bordering point of the optimal stability region.
Therefore, according to the optimal stability condition (4), for all link l we
have X

k:l2rk
Kk � Cl:

Thus there is no congestion and no lost packets if we choose this access
capacity setting. Hence, the queue length processes evolve independently of
each other, that is each flow k has Kk flow rate independently from the
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other queue lengths. Moreover, if for c > 0 the network with input rates cu
is stable under the optimal conditions, or equivalently c < a uð Þ, then all
queue length processes are also stable if the network is controlled by the
access capacities, under any buffer management policy. In other words,
b uð Þ ¼ a uð Þ, where b uð Þ is defined in (5).
In the followings we show that this access capacity setting fits the other

input rates of Dc uð Þ (defined in (7)) as well in the sense of Theorem 3.1.
Let k 2 Dc uð Þ: Without any loss a generality we assume that kuk2 ¼

kkk2 ¼ 1 and that

k1
u1

� k2
u2

� ::: � kK
uK

: (11)

Let

a� :¼ a uð Þ u1
k1

and b� :¼ a uð Þ uK
kK

, (12)

see Figure 6. Then a�k is not optimally stable. For contradiction, suppose it
is. By definition a�k1 ¼ a uð Þu1, and

a�kk ¼ a�k1
kk
k1

� a uð Þu1 uku1 ¼ a uð Þuk
for all k ¼ 2, :::,K, where we used (11) in the inequality. Then, since
a uð Þu � a�k coordinate-wise, hence the optimal stability of a�k implies the
optimal stability of a uð Þu, which is contradiction (since the strict inequality
in (4) implies that the” upper” border of the optimal stability region
is open).
Similarly, by (11) and (12) we have b�kk � a uð Þuk for all k ¼ 1, :::,K:

Since a uð Þu is a bordering point of the stability region, hence, using that
the queues evolve independently, we obtain that b�k is stable, or a border-
ing point of the stability region.
Putting the above observations together we have

a kð Þ � a� and b kð Þ � b� 8k 2 Dc uð Þ:
Hence

PDc uð Þ � a� � b�

a�
¼ 1� kK=uK

k1=u1
¼ 1� kK=k1

uK=u1
� 1� 1

1þ c
,

where in the last inequality we used that k 2 Dc uð Þ: w

4.2. Circle network topology

We start with some preliminaries. The proofs in this Section very much
rely on the monotonicity property defined in Def. 2.1. For networks of par-
tially decreasing and bounded throughput vector Borst et al.[5] described a
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sharp condition for stability. It turns out that to show stability the first
thing we have to do is to find a queue which is stable even if the queue
lengths of other queues tend to infinity (this is the worst case because of
the monotonicity), and then to determine its stationary distribution
under this condition. After that we have to find another stable queue
under the condition that the length of the first queue is in its stationary
distribution while the others are infinitely long. Now again these two
stable queue lengths have a unique joint stationary distribution. Then we
have to find the next stable queue and so on until there aren’t any. If we
are able to show the stability of all queues one by one in this way, then
we conclude that the whole queue length process is stable. Moreover,
this criterion is necessary as well in the sense of Theorem 3, p.13. of
Borst et al.[5].
To formalize the above algorithm precisely we introduce some notations.

Let

Lki k1, :::, kk;wð Þ :¼
X

x2f0, 1gk
wi I1, :::, Ik, 1, :::, 1ð Þpk Ið Þ,

where pk Ið Þ stands for the stationary distribution of the queue length indi-
cator of the first k queues under the assumption that the last K – k queues
are non-empty. We use the following theorem.

Theorem 4.1 (Theorem 2, p.11 of Borst et al.[5]). Let n1, :::, nKð Þ be the
queue length process with arrival rates k1, :::, kK and bounded partially

Figure 6. An example with two flows. The striped area refers to the stability region, while the
union of striped and dotted areas is the optimal stability region. For the border of the optimal
stability region we have the upper bound a�k in direction k, and for the border of the stability
region we have the lower bound b�k:
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decreasing throughput vector w ¼ w1, :::,wKð Þ. Assume that there exists k
such that

ki < Li�1
i k1, :::, ki�1;wð Þ

for all i ¼ 1, :::, k. Then the processes n1, :::, nk are stable, regardless of the
initial state.

Proof of Theorem 3.2. First suppose C1 ¼ C2. We suppose without loss of
generality that C1 ¼ C2 ¼ 1: The symmetry of network topology suggests
to search for equal access capacities:

K1 ¼ K2 ¼: K:

Suppose 1=2 � K � 1:
First, we determine the throughputs of flows in all the possible 4 states

I 2 f0, 1g2 of the queue length indicator. By symmetry we have to distin-
guish only 2 types of states depending on the number of nonempty queues:
when both queues are non-empty, and when only one of the flows has
queueing data. If only one of them is nonempty, say flow 1, then
w1 1, 0ð Þ ¼ K: Else if both are nonempty, then the (common) throughput
of the flows are obtained from the following equations: recall that we
denoted by h1k ¼ h1k 1, 1ð Þ and by h2k ¼ h2k 1, 1ð Þ the (mutual) output rates
on the first and on the second link on the way of the flow, respectively.
Then we have

h2k ¼ h1k
h1kþK ,

h1k þ h2k ¼ 1:

8<
: (13)

The first equation follows from the fair AQM policy, and the second one
holds because the links are saturated whenever both flows send data and
K � 1=2: The solution of these equations is clearly wk 1, 1ð Þ ¼ h2k ¼
2þK�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4KþK2

p� �
=2:

Set

K ¼ 2
ffiffiffi
2

p
� 2: (14)

Then

w1 1, 0ð Þ ¼ 2
ffiffiffi
2

p
� 2 and wk 1, 1ð Þ ¼

ffiffiffi
2

p
� 1: (15)

Note that this is the choice for which the total throughput of two flows is the
same as the throughput of one flow when the other queue is empty. We will
later see that the Price of Anarchy is minimal with this K choice. Once the
throughputs are known one can obviously conclude the following:

Lemma 4.2. w The throughput vector w ¼ w1,w2ð Þ is partially decreasing.
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First we prove that P < 3� 2
ffiffiffi
2

p
cannot be achieved for any access

capacities. If the input rates are proportional to u ¼ 1, 0ð Þ, i.e., when only
flow 1 has incoming packages, the Price of Anarchy is clearly 1�Kð Þ=1,
which increases while reducing K:
On the other hand, consider the case u ¼ 1=2, 1=2ð Þ, i.e., the input rates

of the flows are equal. If both queues are nonempty then according to the
solution of (13) we can guarantee that they empty iff for their input rate
vector k we have k1 ¼ k2 < wk 1, 1ð Þ: Therefore the Price of Anarchy in
this case is 1=2� wk 1, 1ð Þ
 �

= 1=2ð Þ ¼ 1�K as before, compared to the bor-
der 1=2, 1=2ð Þ of the optimality region. In addition, since wk 1, 1ð Þ decreases
if we increase K, hence this loss increases while increasing K: So we have
proved that one cannot hope P < 3� 2

ffiffiffi
2

p
:

Second, we show that the Price of Anarchy does not increase if we consider
other cases as well. Suppose that a vector u satisfies the optimal stability (8).
Suppose u1 � u2: Our aim is to show that for k1, k2ð Þ ¼ Ku ¼ 2

ffiffiffi
2

p � 2

 �

u
stability holds under fair AQM policy. To this end, we use Theorem 4.1. We
claim that flow 1 is stable under the worst case assumption that flow 2 always
has data in its buffer. For contradiction, suppose that k1 � wk 1, 1ð Þ: Then
using (14) and (15) we get

u1 þ u2 � 2u1 ¼ 2k1=K � 2wk 1, 1ð Þ=K ¼ 1,

which contradicts the optimal stability condition. Hence flow 1 is stable
under the condition that flow 2 is nonempty. Moreover

p1 1ð Þ ¼ k1=wk 1, 1ð Þ and p1 0ð Þ ¼ 1� k1=wk 1, 1ð Þ:
Then flow 2 is also stable while the queue length indicator of flow 1 is in

its stationary distribution:

L12 k1;wð Þ ¼ k1
wk 1, 1ð Þwk 1, 1ð Þ þ 1� k1

wk 1, 1ð Þ
� �

K ¼ k1 þ 1� k1
wk 1, 1ð Þ

� �
2wk 1, 1ð Þ ¼ K � k1 > k2,

where in the last inequality we used that, according to the optimal stability
of u ¼ k=K, we have k1 þ k2 < K:
There remains the case 3=2C1 � C2: Suppose C1 ¼ 1: Setting K1 ¼ K2 ¼

1, it is easy to see that when both queues are nonempty, for the through-
put rates we have

h11 1, 1ð Þ ¼ 1
2
, h21 1, 1ð Þ ¼ 1

2
, h12 1, 1ð Þ ¼ 1 and h22 1, 1ð Þ ¼ 1

2
:

Otherwise, when exactly one flow has data to send, then it has flow rate 1,
which, similarly to the above calculations, implies stability under the opti-
mal conditions k1 þ k2 < 1: w
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Before turning our attention to the proof of Theorem 3.3 we note that
circles with 4 or more flows are not partially decreasing in general. For
example, let K¼ 4 and K ¼ C ¼ 1: Then it is easy to see that from the
point of view of the first flow it is better if flow 3 (which is disjoint of flow
1) is nonempty, because it makes bottleneck for flow 2 and flow 4, which
are competing with flow 1. Numerically, after straightforward computations
we have

w1 1, 1, 1, 1ð Þ ¼ 1��1þ ffiffiffi
5

p

2
	 0:382

and

w1 1, 1, 0, 1ð Þ ¼ 0:5
0:5þ 1

¼ 1
3
,

which contradicts to the partially decreasing property. In the following
proof we estimate the throughput vector with a partially decreasing one
which enables us to use Theorem 4.1.

Proof of Theorem 3.3. Again, the symmetry of network topology suggests to
search for equal access capacities:

K1 ¼ ::: ¼ KK ¼: K:

Without loss of generality we suppose C¼ 1. Since the flows use two links,
hence one can show that P � 3� 2

ffiffiffi
2

p
with the setting K ¼ 2

ffiffiffi
2

p � 2 in the
same way as in the proof of Theorem 3.2.
Now let us give an upper bound on the Price of Anarchy. Suppose K �

1=2: Our aim is to show that if for the input rates we have

kk þ kkþ1 < 0:738 8k ¼ 1, :::,K � 1 and kK þ k1 < 0:738,

then the circle network is stable if K is chosen appropriately. We show that
the queue length process of flow 1 is ergodic, which is, by symmetry,
equivalent to the ergodicity of all queues. We do it in such a way that we
define another queue length process on the three flows: flow 1, flow 2 and
flow K (i.e., flow 1 and its neighbors) with the same input rates but esti-
mated throughput vector. We will see that the new, estimated throughput
vector is partially decreasing, and the queue lengths of the processes sto-
chastically dominate the original ones. Therefore, the ergodicity of the
queue length of flow 1 under the new settings implies the ergodicity in the
original case.
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Let the first coordinate of the estimated throughput vector ~w be defined by

~w1 1, 0, I3, :::, IK�1, 0ð Þ ¼ K,

~w1 1, 1, I3, :::, IK�1, 0ð Þ ¼ ~w1 1, 0, I3, :::, IK�1, 1ð Þ
¼ K

K þK ¼ 1
2
, and

~w1 1, 1, I3, :::, IK�1, 1ð Þ ¼ 1=2
1=2þK ,

(16)

where I3, :::, IK�1 can be either 0 or 1. It is easy to see that for any state I
we have ~w1 Ið Þ � w1 Ið Þ: In addition, since ~w is partially decreasing, hence
we give a lower bound on the total throughput of flow 1 if we estimate the
throughput of flow 2 and flow K from below by

~w2 I1, 1, I3, :::, IKð Þ ¼ ~wK I1, :::, IK�1, 1ð Þ ¼ 1=2
1=2þK ,

where I1, :::, IK can be either 0 or 1.
Moreover, due to the partially decreasing property, we can suppose that

the input rates of flow 2 and flow K equal k :¼ maxfk2, kKg: We focus on
the estimated process of flow 1, flow 2 and flow K defined by the new
throughput vector ~w and input rates k1, k, k, and our goal is to determine
the set of those parameters k1, k for which flow 1 is ergodic.
Let

l kð Þ :¼ supfk1 j the queue length of flow 1 of the

estimated process is stable

if the input rates of flows 1, 2,K

are k1, k, k, respectively:g
Our goal is to show that for any 0 � k � 0:738 we have l kð Þ þ k � 0:738,
which immediately implies that for k1 þ k < 0:738 the queue length of flow
1 of the estimated process is ergodic.
By the definition of the estimated throughput rates, the queue lengths of

flows 2 and K evolve independently of each other and of flow 1. Note that

they not always form an ergodic process. Namely, if k < 1=2
1=2þK , then the

stationary distribution exists and it is denoted by fp I, Jð Þg1I, Jð Þ¼0, where I

and J are the queue length indicators of flow 2 and flow K, respectively.
Clearly fp I, Jð Þg1I, Jð Þ¼0 is the product of the stationary distributions of

flow 2 and flow K, since they are independent. Otherwise, if k � 1=2
1=2þK ,

then we can suppose p 1, 1ð Þ ¼ 1 because of the partially decreas-
ing property.
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Theorem 4.1 yields

l kð Þ ¼
X1
I, J¼0

p I, Jð Þ~w1 1, I, I3, :::, IK�1, Jð Þ:

If k < 1=2
1=2þK , then by (16)

l kð Þ ¼ 1� k 1=2þKð Þ
1=2

� �2

K

þ 2
k 1=2þKð Þ

1=2
1� k 1=2þKð Þ

1=2

� �
1
2

þ k 1=2þKð Þ
1=2

� �2 1=2
1=2þK :

If 1=2
1=2þK � k � 1, then we get

l kð Þ ¼ 1=2
1=2þK :

Setting K ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9þ ffiffiffiffiffi

33
p
 �

=24
q

	 0:784, for any input rate 0 � k < 1 we
have l kð Þ þ k � 0:738: w

4.3. Fluid model

The sketch of the proof of Theorem 3.4 is quite simple. First we show that
even if all the flows have positive queuing data some of them will get more
bandwidth than their input rate. Moreover, thanks to the monotonicity
property in Definition 2.1 we see that these queue lengths indeed converge
monotonically to 0, which helps to show that other queues are going to
become empty as well.

Proof of Theorem 3.4. We start with two basic observations:


 Setting up control links conserves the partially decreasing property and
does not introduce circles, and


 The control links defined in Theorem 3.4 does not decrease the opti-
mally stable region.

The worst case scenario from the point of view of a flow is when all the
other flows have “queueing data”, xk tð Þ > 0 for all k, let us assume this. If
at some time T � 0 there is no saturated link in the network, then because
of Kk > kk we have wk tð Þ ¼ Kk > kk for all t>T as long as xk tð Þ > 0, that
is all queues decrease to 0 linearly. Moreover, because of the partially
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decreasing property saturation cannot occur after a queue empties, there-
fore all xk tð Þ converges to 0.
Now suppose that there is saturation on some links at the beginning. As

the network is acyclic, there is a numbering of the links (including control
links) such that each flow follows a path of links with increasing number.
Let us fix such a numbering. We show that there are flows getting enough
flow rate even if xk tð Þ > 0 for all k. As there are saturated links, there is a
last one among them at time t0 ¼ 0 (the link with highest number among
the saturated ones, l0, say). Now consider the set F0 of flows going through
l0. From the optimal stability condition (4) follows thatX

k2F0
wk x t0ð Þð Þ ¼ Cl0 >

X
k2F0

kk,

and thus there are k 2 F0 such that wk x 0ð Þð Þ > kk: Flows transmitting
enough data in this worst case empty linearly. Let us denote by F1 the set
of flows k which get enough bandwidth when all queues are positive, that
is

F1 ¼ fk j wk x ¼ 1ð Þ > kkg:
F1 is nonempty by the above argument. By the monotonicity property,
queue lengths of flows in F1 converge to 0, let t1 be such that for t � t1
xk tð Þ ¼ 0 for all k 2 F1: For these flows for t � t1 the final throughput is
wk x tð Þð Þ ¼ kk: Due to saturation of links these flows might use more band-
width than kk on early links of their path, but on the last saturating edge
and after that on nonsaturating ones its exactly kk. Then we can go on
with the proof by induction: For t � t1 if there is no saturation, then all
flows empty linearly as we argued before, or if there is a last saturating
link, then for some flows k outside F1 we have wk x tð Þð Þ > kk and these
flows will empty, and so on. w

5. Conclusion

We investigated a network traffic model to contribute to the theoretical
foundations of a future Internet without congestion control, focusing on
the stability and efficiency characteristics. We found that if input rates can
vary in a cone then the loss of efficiency (Price of Anarchy) can be
bounded by the size of the cone with explicitly determined access capacity
settings. The importance of this result from a practical point of view is that
it shows the limit of achievable efficiency in a stable network operating
without any congestion control for very general conditions, namely, for any
network topology and for any buffer management policy.
For cyclic networks with fair AQM buffer management policy we

obtained upper bounds for loss of efficiency (Price of Anarchy), which is
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independent of the size of the network. The result is interesting enough
since circles are in general the worst network topologies causing instability
in networks, for example, in the model of Bonald et al.[3], the loss of effi-
ciency (Price of Anarchy) is 100% for circles.
Finally, in order to design proper access capacities of the network from

the point of view of the stability of the network, we studied the relationship
of stability and access capacities in the fluid model. We proved that in
acyclic networks if the partially decreasing property holds then the network
can easily be stabilized with the proper access capacity setting. In addition,
the setting that we use in Theorem 3.4 is explicitly given and is the smallest
one that one could use without decreasing the stability region as compared
to the optimal region.
As our future work we intend to generalize our fluid flow results for

non-monotonic networks. Our goal is to analyze arbitrary networks com-
posed by both monotonic network structures like trees and non-monotonic
network elements like circles. Circle networks and other non-monotonic
blocks composed with other elements may not be optimally efficient, there-
fore analyzing the performance of such constructions could be the aim of
future simulations. Furthermore, we work on omitting the Markovian
assumptions of the queue length dynamics to obtain general results, as we
believe that the Markovian property is only a technical assumption.
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