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� In this paper we present a novel method for the construction of a stochastic process whose
multifractal spectrum has been prescribed. The main idea of the construction is to choose
a suitable time-change reparametrizing the time of a fractional Brownian motion with an
appropriately chosen Hurst parameter. Under certain conditions every given linear spectrum
can be reproduced using this construction. Moreover, a wide range of Legendre spectra can be
arbitrarily closely approximated. The properties of the model are also discussed and the possible
use of the model is shown in a simulation study.
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1. INTRODUCTION

The general concept of “fractality” encompasses a broad range of
phenomena which share the common feature of displaying complex
and irregular behavior on several different space and/or time scales[12].
The related mathematical theories (geometric and stochastic self-
similarity, long-range dependence, extremal statistics, etc.) have found
numerous applications in various scientific and engineering fields such
as hydrodynamics, geophysics, biophysics, financial modelling, signal and
image processing and, more recently, network traffic modelling[10,13,14].
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As far as the latter field of research – the one the authors are most
familiar with – is concerned, fractal modelling techniques have been in
use since the early 90’s[10]. First, the presence of long-range dependence
and statistical self-similarity was established in network measurement data
and several traffic models, such as fractional Brownian motion (fBm)[16].
Fractionally integrated ARMA models, on/off models, were proposed to
explain these properties. Further studies[1,7,19] showed that some types
of data traffic (e.g., TCP traffic) have a more complex scaling behavior
which cannot be described by long-range dependence and self-similarity
especially on small time scales. It was shown that the aggregate network
traffic is asymptotically self-similar over time scales of the order of
magnitude of a few hundred milliseconds (a typical packet round-trip time
in the network) and above, but below this time scale the variations in the
data cannot be explained using a single parameter as it is the case for fBm.
This time dependence of the scaling properties is called multiscaling in the
engineering terminology. The mathematical objects able to model this kind
of behavior are the multifractals.

The same transition from monofractals to multifractals can be
observed within other fields like finance and geophysics[13,14]. To perform
the statistical analysis of data with assumed multifractal properties,
sophisticated estimation techniques were developed[2,18].

Several processes can be considered for multifractal modelling,
multiplicative cascades being the simplest and most wide-spread ones[8,18].
Combining this process with the fBm model we can define a new class
called the fractional Brownian motion in multifractal time[11]. This process has
several nice properties, e.g., it is able to capture LRD and multifractal
scaling independently. The self-similar �-stable process[20] is another option,
but it has an irregular multifractal structure since its higher order moments
are infinite. One of the simplest process from this class is the linear fractional
stable motion[20].

In spite of the large number of studies using multifractal models,
only a few papers address the issue of generating multifractal processes.
As an example, Kant proposes a multifractal traffic generation method
to obtain desired scaling and queueing properties based on a cascade
construction[9]. Veitch et al. present a method for on-line generation of
time-series with certain multifractal properties[21]. Our research aims at
providing a generation method based on some characteristic descriptor of
the multifractal process.

Multifractal processes can be characterized by a real function called
the multifractal spectrum (for details see next section). This spectrum
(not to be confused with the power spectrum in time series analysis)
describes the “unevenness” of the complexities present in the process.
For example, the fBm, whose scaling behavior can be described by one
single parameter, has a multifractal spectrum consisting of only one point
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(more precisely its spectrum is non-zero for only one point). Our main
question in this research is that if we are given a multifractal spectrum as
an input, how can we construct a process which possesses this spectrum?
The main idea of this construction is to find an appropriate time-change
parametrization of a fBm with appropriately chosen Hurst parameter. The
construction proposed in this paper is able to reproduce certain linear
spectra. Moreover, a wide range of Legendre spectra can be arbitrary closely
approximated.

The paper is structured as follows: In Section 2 we review the exact
definitions of the multifractal spectrum. Starting with the approximation
problem of a given Legendre spectrum, in Section 3 we present the
analytical construction of the time-change (the main result of the
paper) and present some further considerations related to the covariance
structure of the process, stationarity, long-range dependence and possible
generalizations. Section 4 provides some simulation results which validate
our method. Finally, in the Appendix we add some further clarifying
remarks concerning the model and provide a (highly technical) formal
proof of the theorem.

2. THE BACKGROUND OF MULTIFRACTALS

As mentioned above, self-similar processes are the precursors of
multifractals. In the stochastic setting, the simplest way of defining them is
by prescribing the scaling of their moments[3]:

E[|X (t)|q ] = c(q)t �(q), for all t ∈ � , q ∈ �, (1)

where � and � are intervals on the real line, 0 ∈ � , [0, 1] ⊆ �. �(q) is called
the scaling function and the prefactor c(q) is independent of t .

Strictly speaking, fractality is related to the geometric shape of an
object, so the first approach to multifractals is based on the study of the
local erratic behavior of functions. For stochastic processes this can be
done for the sample paths. Once the degree of the local irregularity for
functions is defined, we will “measure” the set of points at which the
function has the same degree of irregularity.

2.1. Hausdorff Spectrum

The Hausdorff �-measure of a set G ⊂ � is defined for � > 0 by

H �(G) = lim
�→0

inf
{ ∑

G⊂⋃
i Ii

(�(Ii))� : Ii closed interval and �(Ii) ≤ �

}
, (2)
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where � is the Lebesgue measure. It is known that there is a number �0

such that H �(G) = +∞ if � < �0 and H �(G) = 0 if � > �0 (the number
H �0(G) itself may vary between 0 and +∞).

The Hausdorff dimension of the set G ⊂ [0, 1] is given by

dim� G = inf�� ≥ 0 : H �(G) = 0� = �0� (3)

Let Y (t), t ∈ [0, 1] be a continuous function or a continuous sample
path of a stochastic process. The definition of local Hölder continuity exponent
of Y at time instant t is the following:

�Y (t) = sup�a : ∃	 > 0, ∃c > 0,∀s|s − t |< 	, |Y (t) − Y (s)|≤ c |t − s|a� (4)

To allow for more generality one can define the lower and the upper
grained Hölder-continuity exponents:

hY (t) = lim inf
�→∞

1
log2(2�)

log2 sup
|s−t |<�

|Y (s) − Y (t)|

hY (t) = lim sup
�→∞

1
log2(2�)

log2 sup
|s−t |<�

|Y (s) − Y (t)|�

Let EY
a = �t : hY (t)= a�, E

Y
a = �t : hY (t)= a�, and EY

a = �t : �Y (t)= a� =
EY

a ∩ E
Y
a . The function Y is said to have multifractal structure if the EY

a sets
are highly interwoven, each lying dense on the line[18]. Thus the Hausdorff
spectrum, which is defined by

f Y
H : [0,+∞) � a �→ dim� EY

a ∈ [0, 1], (5)

describes the connection between the local variability and the measure of
the set of all points having the same given local variability. The Hausdorff
spectrum is also termed the multifractal spectrum in the “classical” fractal
literature.

2.2. Grained Spectrum

An alternative approach to the above description of multifractals
consists in replacing the Hausdorff dimension by the familiar box
dimension[6]: we count the coarse exponents at resolution n sufficiently close
to the given Hölder exponent and take appropriate limits of the rescaled
logarithmic number thus obtained. This method is closely related to the
probabilistic law of large numbers and large deviation theory, yielding the
coarse grained or large deviation spectrum.

Consider again a function Y (t) defined on I = [0, 1]. For any n
this interval can be decomposed as the disjoint union of 2n dyadic
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subintervals I kn = [k2−n , (k + 1)2−n), where k = 0, 1, � � � , 2n − 1. The coarse
Hölder exponents at resolution n are defined as the rescaled logarithmic
increments of the process on I kn , i.e., �kn = − 1

n log2
∣∣Y (

(k + 1)2−n
) −

Y (k2−n
)∣∣.

The large deviation spectrum measures, loosely speaking, how fast the
probability of observing a coarse Hölder exponent different from the
expected value tends to zero as the resolution tends to infinity[11].

Let N �
n (�) be of the form

N �
n (�) = #

{
k = 0, 1, � � � , (2n − 1) : �kn ∈ [� − �, � + �]}, (6)

where #A denotes the cardinality of the finite set A and � > 0 is the scale
of measurement. Then the large deviation spectrum, denoted by f Y

G , is
defined by

f Y
G (�) = lim

�→0
lim sup

n→∞

logN �
n (�)

n
� (7)

The large deviation spectrum describes the distribution of the local
singularities, since the number of dyadic intervals of size 2−n with coarse
Hölder exponent close to � varies roughly on a logarithmic scale as 2nf

Y
G (�)

for large n. With the usual informal notation

Pn

[
�kn ≈ �

] � 2−n(1−f YG (�)), (8)

where the probability is related to a random choice of k uniformly in
�0, 1, � � � , (2n − 1)�, i.e., Pn is the uniform distribution on the set of all
dyadic intervals I kn of size 2−n .

2.3. Legendre Spectrum

The Legendre spectrum provides a robust estimation of the large
deviation spectrum when the data satisfies some necessary conditions[11].
Let Z k

n = |Y ((k + 1)2−n)−Y (k2−n)|, k = 0, 1, � � � , 2n − 1 denote the discrete
increment process of Y . Define the partition sum Sn(q) with q ∈ �:

Sn(q) =
2n−1∑
k=0

|Y ((k + 1)2−n) − Y (k2−n)|q=
2n−1∑
k=0

(Z k
n )

q � (9)

Then the so-called scaling function can be given by

�(q) = lim inf
n→∞

log Sn(q)
−n log 2

, (10)
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and thus the Legendre spectrum of Y is defined by the following

fL(�) = �∗(�) = inf
q∈�

(�q − �(q))� (11)

Consider the moment-generating function of the random variable
Xn = logZK

n where K is uniformly distributed on �0, 1, � � � , 2n − 1�

cn(q) = − 1
n
logEn[e qXn ] = − 1

n
log(2−nSn(q))� (12)

The Gärtner–Ellis theorem[5] shows that if limn→∞ cn(q) exists (in which
case cn(q) = �(q) + 1) and differentiable, then the following relation holds

fL(�) = fG(�), (13)

The Legendre spectrum provides a method for detection and
delineation of multifractal properties. Moreover, it is favorable since its
computation is much easier than the direct computation of the large
deviation spectrum which requires the evaluation of local quantities and of
a double limit[11]. This description of multifractality is used in our study.

3. RANDOM MULTIFRACTALS WITH GIVEN SPECTRA

3.1. The Model Construction

Fractional Brownian motion (fBm) is the best known fractal process.
The local Hölder continuity exponent of the fBm is the same and equal to
the Hurst parameter for all points all along its trajectory with probability 1.
In other words, fBm is a monofractal, i.e., its different multifractal spectra
(fH , fG , fL) are non-zero for only one point. Our proposed multifractal
model is a suitably time-changed fBm process. We note that the idea of
time-changing a multifractal process was first introduced by Mandelbrot
and Taylor in[15].

Our aim is to modify the trajectory of the fBm at one point using a very
simple function. More precisely, let 
t(x) = sign(x − t)|x − t |�+C0 where
C0 is a real number ensuring that 
t is positive on the positive real line. In
the sequel we call 
t the elementary time-change function around t of order �.

Denote by B(t) a fractional Brownian motion with Hurst parameter
H (the dependence on this parameter is suppressed in the notation).
Consider the time-changed fBm B(
t(x)), x ≥ 0. Due to the time-change
the Hölder continuity exponent of all the trajectories is unchanged except
at t where the exponent is equal to �H . Thus, depending on �, we can
accelerate or slow down “the velocity of the variability of the fBm” at t .
However, we cannot affect the spectrum because to do so the Hölder
continuity exponents should be changed at uncountably many points.
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The first step consists in the construction of a process with a given linear
spectrum.

The next result proves to be one of the most useful tools in this
construction. It implies that for a time-changed fBm we only have to find
a continuous increasing function as a time-change such that the given
spectrum is the scaled-down version of the spectrum of this time-change.

Theorem 3.1.1 (Ref.[18]). Let B be a fBm with Hurst-parameter H and � be
an almost surely continuous random time-change independent of B, and set�(t) :=
B(�(t)). For almost every path the following fact is true for any a > 0

f �
G (a) = f �

G (a/H )� (14)

Let �, 	 be two positive real numbers such that 	 < � and 0 <
	 < 1. An important result of this paper is the construction of a time-
change function F�,	, called the basic time-change with parameter (�, 	),
whose grained spectrum and the Legendre spectrum consists of a line
connecting the points (1, 1) and (�, 	). By Theorem 3.1.1 the spectrum
of B(F�,	(x)), 0 ≤ x ≤ 1, connects (H , 1) and (�H , 	). In our construction
F�,	 is an integral of the (� − 1)th power of a core function �	 depending
only on 	 : F�,	(x) = ∫ x

0 (�	(y))�−1dy, x ∈ [0, 1]. The precise construction is
presented in the next subsection.

Next the method to approximate an arbitrary given Legendre spectrum
fL is presented. (This type of spectrum is considered because it can be easily
calculated in practice.) Suppose that fL reaches its maximum at exactly one
point H , fL(H ) = 1, and fL(�) ≤ �/H for any �, i.e., the whole spectrum
lies under the straight line which goes through the origin and has slope
1/H (see Figure 1). Let (A,�) be a set of some arbitrarily chosen points on

FIGURE 1 The spectrum of the time-change function and the time-changed fBm (H = 0�7).



490 Székely et al.

the graph of fL : (A,�) = �(�i , 	i)�ni=1. We will construct a process � := �A,�

whose Legendre spectrum and grained spectrum are the ones given at the
points �i : f �

G (�i) = 	i (1 ≤ i ≤ n) and the spectrum equals 1 at the point
H and f �

G (x) < fL(x) for the remaining points x �= �i .
Since the Legendre spectrum f �

L is the concave hull of the grained
spectrum f �

G (see, e.g., Ref.[18]) any given Legendre spectrum fL can be
arbitrary closely approximated by f �

L , see details in Figure 1.
Instead of constructing FA,� we first construct F�,	 on [0, 1] for any pair

of (�, 	). After that joining the individual functions F�,	, (�, 	) ∈ (A,�) while
keeping the continuity will result FA,�. Clearly, this provides the spectrum
depicted above.

The detailed procedure of this construction is given in Subsection 3.3.
One can find more sophisticated but only heuristical methods for getting
suitable time-change in Subsection 3.4.

3.2. The Basic Time-Change Function F�,�

3.2.1. The Irregularities of F�,� and the Core Function H�

We present a Cantor-type fractal construction taken from[6]. Given a
constant 0 < C < 1/2, set out from the interval [0, 1] and remove the
interval (C , 1 − C) from it. In the next step, remove the middle intervals
from [0,C ] and [1 − C , 1] proportionally as in the first step, more precisely
(C 2,C(1 − C)) and (1 − C + C 2, 1 − C + C(1 − C)). Going on indefinitely
with this procedure we get the set �. The Hausdorff dimension of this set
is 	, the solution of the equation 2C 	 = 1.

For a given 	 compute C by means of the previous equation. To define
the set � let us define the following sequences of embedded sets containing
the endpoints of the removed subintervals, namely

�0 = �0, 1�, �1 = �0,C , 1 − C , 1�, � � � ,�i+1 = C�i ∪ (1 − C + C�i), � � �

and denote �∗ = ⋃∞
i=0 �i . Furthermore, we distinguish between two types

of points in �∗. In the sequel, let right(left)-hand side point �(	) mean
that any points of �(	) is a right(left)-hand side endpoint of a closed
interval appearing in some step during the construction of �. 
i := �i\�i−1

denotes the set of the new endpoints in �i coming up in the ith step.
We also separate the right-hand side and the left-hand side endpoints in

i : �i = � ∩ 
i and 	i = 	 ∩ 
i .

3.2.2. The Heuristical Construction of the Function F�,�

First of all, remember that the function

sign(x − t)|x − t |�+C0
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has local Hölder-continuity exponent � at point t . It proves to be the most
important fact for understanding the construction and the proof.

Now, suppose that � and 	, and C are given. Let KC = min�C , 1− 2C�
and ri = C iKC . For t ∈ 
i let I (t) = [t − ri , t + ri] be the so-called
modificational interval around t . (For a better understanding of the choice
of these quantities read the Remarks 1 and 2 in Section 6.) Define the
modifying function gt(x) around t , t ∈ 
i , such that

gt(x) =



0, if x ≤ t − ri ,
f (i−1)(x) − sign(x − t)|x − t |�−f (i−1)(t − ri) − r �i , if t ∈ I (t),
f (i−1)(t + ri) − f (i−1)(t − ri) − 2r �i , if x ≥ t + ri �

(15)

Using these gt ’s define the following sequence of functions on [0, 1]:
f (0)(x) = x

f (i)(x) = f (i−1)(x) −
∑
t∈
i

gt(x) (16)

The desired F�,	 of Theorem 3.2.3.1 exists and it is built as the limit of
these f (i)s. For the proof see the remark after Theorem 3.2.3.1.

3.2.3. The Integral Construction of the Function F�,�

To define the core function �	 let us introduce the following sequence
of functions

{
�(i)

	

}∞
i=1

on [0, 1] by the next recursion (see Figure 2 for
example):

�(0)
	 (x) = 1, x ∈ �

�(i)
	 (x) =



�(i−1)

	 (x), if x ∈ [0, 1]\
( ⋃

t∈
i

I (t)
)

|x − t |, if x ∈ I (t) for some t ∈ 
i

, i ≥ 1

The limit of �	 functions exists since ��(i)
	 �∞

i=1 is a decreasing sequence
of non-negative functions. Naturally, we have the following identity:

F�,	(x) = lim
i→∞

f (i)(x) =
∫ x

0
(�	(y))�−1dy� (17)

The advantage of the usage of such an integral representation is that
we can separate the effect of the component � (the local Hölder-continuity
exponent) and the effect of the component 	 (the Hausdorff measure).
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FIGURE 2 An example: �0�7 and F0�7,0�9.

Our main result is stated by the following theorem:

Theorem 3.2.3.1. For any given � and 	, 	 < �, F = F�,	 makes sense and the
following facts are true for F :

If 1 < � then f F
G (�) =




−∞, if � < 1,

1 − (� − 1)
1 − 	

� − 1
, if 1 ≤ � ≤ �,

−∞, if � < ��

(18)

If 	 < � < 1 then f F
G (�) =




−∞, if � < �,

1 − (� − 1)
1 − 	

� − 1
, if � ≤ � ≤ 1,

−∞, if 1 < ��

(19)

The proof can be found in Section 6.2.
An illustration of the spectrum and the scaling function of the F�,	(·)

function is shown in Figure 3. We distinguish between two main cases:
� < 1 and � > 1. The related spectrum and the corresponding scaling
function can be seen in Figure 3(a) for the case � < 1 and in Figure 3(b)
for the case � > 1.
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FIGURE 3 The grained spectra and the scaling functions of F�,	 with different parameters.

The scaling function of the time-changed fBm of Hurst parameter H
with the time-change function F�,	(·) is given in Figure 4.

3.3. Approximation of a Given Spectrum

Recall from Section 2 that the scaling function �(q) is defined by
E[|X (t)|q ] = c(q)t �(q). Assume that the scaling function �(q) is given. Our

FIGURE 4 Scaling function of the time-changed fBm with time-change function F�,	.
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FIGURE 5 Approximation of a given spectrum.

proposed method approximates �(q) by a piecewise linear function, which
is characterized by the set

�H , (q1, 
1), � � � , (qk , 
k)�, (20)

where H is the initial slope of �, qi ’s are the breakpoints, and 
i ’s are the
slopes of � on the corresponding intervals [qi , qi+1]’s (see Fig. 5). With the
set �H , (q1, 
1), � � � , (qk , 
k)� our task is to determine the sequence

�(�1, 	1), � � � , (�k , 	k)� (21)

from which one can build F�i ,	i -s and the time-change function FA,� as
aforementioned. Let �(H ) be a fBm with parameter H given above. The
Legendre transform of the scaling function of the process �H (FA,�) will
give the desired approximation of �.

Denote by ��
(H )(FA,�) and �FA,� the scaling function of �(H )(FA,�) and FA,�,

respectively. By the relation

�FA,�(q) = ��
(H )(FA,�)(q/H ) = �(q/H )

and by the definition of Legendre transformation we can evaluate the
breakpoints of the Legendre spectrum of FA,� (cf. Eq. (21)):

�(
1/H , 	0 − q1(
0 − 
1)), � � � , (
k/H , 	i−1 − qi(
i−1 − 
i))�, 	0 = 1�

Recall from convex analysis[5] that for strictly concave functions the double
application of Legendre transform returns the original function, i.e.,

f (a) = inf
q
(aq − �(q))
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Elementary calculations show that the spectra corresponding to
Eq. (20) and the spectrum of �(H )(FA,�) with breakpoints (A,�) =
�(�1, 	1), � � � , (�k , 	k)� are the following

fL(a) =




−∞ if a < 
k

qka − �(qk) if 
k ≤ a < 
k−1

� � � � � �

q2a − �(q2) if 
2 ≤ a < 
1

q1a − �(q1) if 
1 ≤ a < H
1 if H = a
−∞ if H < a

f
�(H )(FA,�)
L (a) =




−∞ if a < H �k

	k−1 − 	k

H �k−1 − H �k
a + 	k if H �k ≤ a < H �k−1

� � � � � �

	1 − 	2

H �1 − H �2
a + 	2 if H �2 ≤ a < H �1

1 − 	1

H − H �1
a + 	1 if H �1 ≤ a < H

1 if H = a
−∞ if H < a

Solving the equation fL(a) = f
�(H )(FA,�)
L (a) we get a sequence of

equations:

�i = 
i/H

qi = 	i−1 − 	i

�i−1 − �i

1
H

for 1 ≤ i ≤ k, 	0, �0 := 1,
(22)

from which

	i = 	i−1 − qi(
i−1 − 
i) for 1 ≤ i ≤ k�

One can find more advanced methods to get suitable time-changes. In
this paper we will not present any exact results on general joining. The next
proposition shows a difficulty about this sort of consideration.

Proposition 3.3.1. Let X (t) and Y (t) be two increasing continuous functions
on the real line starting from zero. The following facts hold on the local Hölder-
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continuity exponents:

�X+Y (t) = min��X (t),�Y (t)�, �XY (t) = min��X (t),�Y (t)�

for t > 0.

It means that any additive and multiplicative method combining F�,	−s
with different parameters may ignore the slow-downs in the resulted time-
change functions. Therefore, working with �	’s (in Subsection 3.2.3) could
be more promising. For example, one can choose two pairs of parameters

and build �(x) = ∫ x
0

�
�1−1
	1

�
�2−1
	2

max
{
�
�1−1
	1

,�
�2−1
	2

}(y)dy as the time-change function on

[0, 1].

3.4. Properties of the Proposed Multifractal Model

1. The effect of sign(x − t)|x − t |�+C0 like functions can be depicted as
follows. If � > 1 or � < 1 sign(x − t)|x − t |� slows down or accelerates
the process at the point t and so increases or decreases respectively the
local Hölder continuity exponent.

2. Properties of the time-changed fBm:

(2a) Easy calculation shows the correlation structure of � is the
following:

r (t , s) := Cov[�(t),�(s)] = KH

[
F (t)2H + F (s)2H − |F (t) − F (s)|2H ]

for an appropriate constant KH .
(2b) � = B(F ) is a Gaussian process which can be seen via its finite

dimensional characteristic function (Ref.[20] Section 7.2):

E
[
exp

(
i

n∑
k=1

xk�(tk)
)]

= exp
(

−1
2

n∑
k=1

n∑
l=1

r (tk , tl)xkxl

)

(2c) To get a process on the whole positive real line one can continue
F�,	 beyond 1 by joining other only just dilated F�,	-s such that the
joined function F [0,∞)

�,	 remains continuous. It is easy to evaluate
that the process �∞ = B(F [0,∞)

�,	 ) inherits the long-range dependent
property of B, i.e., �∞ is long-range dependent if 1/2 < H < 1.

3. Extra randomization: If multifractal process with non-Gaussian marginal
is desired there are two straightforward possibilities. First, one can
apply an extra random time-change � : [0, 1] → [0, 1] to reparameterize
� as B(�(�t)) and B(�t�t). Second, we can take the support of
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FIGURE 6 Estimation of scaling function using the moment method.

the irregularities of F randomly (random Cantor set), see (Ref.[6],
Chapter 15). Following this trace the properly modified version
of Theorem 3.2.3.1 should be proved, which seems to be rather
sophisticated. However, in the first case the spectra of the new processes
are the same as those of the original ones.

4. SIMULATION RESULTS

Simulation validation of our new multifractal model is presented in
this section. To demonstrate the effectiveness of the method we generate
a time-change function and simulate the time-changed fBm and then
estimate the multifractal spectrum.

4.1. Simulation of the Basic Time-Change Function

As we have discussed, there are two typical cases of the time-change
function F�,	 when � < 1 and � > 1. We simulated 218 samples for both
cases. The parameter pair (�, 	) was set as (0�7, 0�6) and (1�4, 0�8).

The scaling functions of the generated multifractal time-change
functions were estimated using the simple moment method (see Ref.[4] for
more details). The result of this method for the function F0�7,0�6 is shown
in Figure 6. The lines for the moments of different orders q indicate
the existence of scaling properties in the process. The scaling function is
estimated from the slopes of these lines.

Estimation of the scaling functions of the mentioned two cases is
presented in Figure 7. Both figures consist of two line segments connected
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FIGURE 7 Scaling function of simulated F�,	 with (�, 	) = (0�7, 0�6) (left) and (1�4, 0�8) (right).

by a breakpoint. In the case of F0�7,0�6 the lines have slopes 1 and 0.72. These
values are 1.38 and 1 in the case of F1�4,0�8. Comparing the results with the
theoretical calculation presented in Figure 3 we can see that these results
are almost exactly what we expected.

4.2. Generation of Multifractals with the Given Spectrum

Now, turn back the problem from the original point of view:
suppose that we are given a process with multiscaling properties which is
characterized by its scaling function. The process can be the aggregate
traffic of high speed backbone network considered at small timescales;
see, e.g., Ref.[7] for details. Our aim is to create a multifractal model with
approximated scaling function as discussed.

Suppose that the given scaling function is approximated by a piecewise
linear function with slopes 0.7 for moment order 0 ≤ q < 2, 0.56 for
2 ≤ q < 3, and 0.5 for 3 ≤ q (see Figure 5). This means that the Hurst
parameter of the fBm we should use in the model is 0.7. Furthermore,
using the results of Eq. (22) the values of parameters of two time-change
functions, which are responsible for the slopes 0.56 and 0.5, respectively,
are (�1, 	1) = (0�8, 0�72) and (�2, 	2) = (0�72, 0�55).

The reparameterization procedure is done as follows: we use the fast
Fourier transform-based routine provided by Paxson[17] to generate the
incremental process of the fBm. Thus we have the function B(t) for integer
values of t . We then normalize and round the samples of time-change
functions to make integer samples. Then the reparameterization of B(t) by
time-change functions is straightforward.

The scaling function of the data series generated by our multifractal
model is given in Figure 8. Two breakpoints at moment order q = 2 and
3 can be observed as we expected. The slopes of the component lines of
the plot are 0.7, 0.59, and 0.53 for the moment order interval [0, 2), [2, 3),
and [3,+∞), respectively. This result, disregarding the small deviations
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FIGURE 8 The scaling function of a simulation example of the model fitting a given scaling
function.

for the two later slopes, verifies that the multifractal model matches the
given multifractal characteristics. The reason for the slight deviations from
the expected slopes (0.56 and 0.5) may be due to the method used for
fBm reparameterization (explained above), which is definitely not an exact
procedure. An exact solution is under development.

5. CONCLUSION

We presented a new multifractal model which is able to approximately
reproduce a given multifractal spectrum. The model consists of an
appropriately time-changed version of a fractional Brownian motion. We
gave a detailed description for the construction of time-change function
used in the model. The construction is verified in a simulation study and it
is shown that the model can be easily applied in practice.

The proposed multifractal model can be useful in simulation and
analytical investigation of wide-area network traffic having long-range
dependent and multiscaling properties.

6. APPENDIX

6.1. Remarks

In the following section we add some clarifying remarks concerning the
construction of the multifractal process.

6.1.1. The Definiteness of F�,� and the Meaning of the Condition � < �
We will show that the function F�,	 is finite for all �, 	 if and only if 	 < �.

Since F�,	 is an increasing function on [0, 1] if the previous statement is true
for F�,	(1), i.e., F�,	(1) < ∞ if 	 < � and F�,	(1) = ∞ if 	 ≥ �.
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If 1 < �, the finiteness is straightforward because f (i) is a decreasing
sequence of functions.

If 	 < � < 1, the increment of f (i) in each step can be appropriately
estimated from above. Recall from Eq. (16) the increment is − ∑

t∈
i
gt(1)

in the ith step which is estimated from above by − ∑
t∈
i

gt(1) < 2i2r �i =
2K �

C (2C
�)i . F�,	(1) < 1 + 2K �

C

∑∞
i=1(2C

�)i is finite because 2C � = 21−�/	 < 1
(	 < �).

In the reversed case, if 	 ≥ � then F�,	(1) = ∞. For all t ∈ 
i we have

f (i−1)(t + ri) − f (i−1)(t − ri) ≤ (C i + KCC i)� − (C i − KCC i)�

= [(1 + KC)
� − (1 − KC)

�]C i��

Hence, gt(1) ≤ [(
(1 + KC)

� − (1 − KC)
�
) − 2K �

C

]
C i� = −�CC i� for some

�C > 0. Thus, − ∑
t∈
i

gt(1) > �C2iC i�. In the case 	 ≥ � we have the
estimation F�,	(1) ≥ �C

∑∞
i=1(2C

�)i = ∞, that is, F�,	 does not make sense
in this case.

After all, note that the necessity of the criteria 	 < � comes from the
relation f

F�,	
G (�) ≤ �, which is what we expect for increasing functions,

c.f.[18].

6.1.2. The Choice of the Approximating Basic Time-Change Function f (i)

First, we ensure the local Hölder continuity exponent � at the points
of 
i by inserting the functions sign(x − t)|x − t |� on the intervals I (t) =
[t − ri , t + ri]. Formally, it is achieved by subtracting the functions

∑
t∈
i

gt
from f (i−1). This implies that the Hölder continuity exponent of F�,	 is � at
the points of �∗ = ⋃


i . As Theorem 3.2.3.1 implies, one can extend this
Hölder continuity exponent from �∗ to �. This is interesting since �∗ is
countable while � is not.

Next, there are two criteria that restrict the values of KC . On one hand,
we have to avoid the modification of the Hölder continuity exponent in
some neighborhood of the points of �i−1 when we are accomplishing the
ith refinement. On the other hand, the refining intervals at the same
level must be disjoint so that the definition of f (i)-s and F�,	 remains non-
ambiguous. The benefit of such a choice of KC is that the order of the
modification around the points of 
i in the ith step can be arbitrary.

The first restriction states that the radius ri of an interval centered at a
point of 
i must be such that ri + �i < C i for some �i > 0. Thus the choice
ri = C i min�C , 1 − 2C� is appropriate.

The second restriction is that ri must be smaller than the half of
the minimal distance between two neighboring 
i points. More precisely,
ri < Ci−1−2Ci

2 , that is, ri = C i min�C , 1 − 2C� also works properly in this case.
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6.1.3. Hausdorff Spectrum of F�,�

We defined f F
G to be −∞ (not 0) where f F

G is not positive in
Theorem 3.2.3.1 so that the scaling function �(q) makes sense.

It is interesting to note, without proof, that the Hausdorff spectrum
f F
H of F�,	 consists of only two remarkable points (1, 1) and (�, 	). Namely,
f F
H (1) = 1 and f F

H (�) = 	. Furthermore, there may exist some pairs (�, �)
such that 1 ≤ � < � if � > 1 (	 ≤ � ≤ 1 if � < 1) and 0 ≤ � < (1 − �)	
such that for these pairs we have f F

H (�) = � and for all remaining Hölder
continuity exponents �, f F

H (�) = −∞.

6.2. The Formal Proof of Theorem 3.2.3.1

The proof is shown for any fixed � and 	, thus we write F instead of F�,	
in this section for simplicity.

The core of the proof is that we estimate the value of Nn(�, �) for all
possible n, �, �. (The value Nn(�, �) appears in the definition of the grained
spectrum in Eq. (7).)

The exact proof consists of two similar parts. The first part deals
with the case � > 1 and the second with 1 > � > 	. Since the function

t(x) = sign(x − t)|x − t |� is different concerning its slope in t only some
elementary estimations differ in these two parts. The method is the same,
so we omit the proof of the case 1 > � > 	.

For simplicity, we introduce some notations:

• Let I nk := [k2−n , (k + 1)2−n) and for some interval I = [a, b] define the
difference �I F := F (b) − F (a)

• 
∗
t (x) = sign(x − t)|x − t |�+F (t) is called the basis function centered

at t .
• An interval is called i -level interval if it is one of the remaining intervals
after the ith removal step. We remark that its length is C i .

• Let a(n) and b(n) be two sequences in the form of a(n) = e �(n)A(n) and
b(n) = e�(n)B(n) where �, �,A,B are generalized polynomials in n with
negative powers allowed. So a(n) and b(n) tend to either to 0 or ∞ as
n tends to infinity. The exponential parts of a(n) and b(n) are equal,
i.e., a(n) =log b(n), if � = �. a(n) ≤log b(n) if there exists a sequence c(n)
such that a(n) =log c(n) and c(n) ≤ b(n). This definition implies that if
a(n) ≤ b(n) then b(n) + a(n) =log b(n).

Practically, these relations ignore the polynomial multipliers.

6.2.1. Proof of the Case � > 1
Step 0: The following facts are simple consequences of the

definition of F .
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For arbitrary i ∈ � if t ∈ �i then the increments of f (i)s do not change
on [t , t + ri] and decrease on [t − ri , t ], i.e.,

F �[t ,t+ri ] = 
∗
t �[t ,t+ri ]; F �[t−ri ,t ] ≥ f (j+1)

t �[t−ri ,t ] ≥ f (j)
t �[t−ri ,t ] ≥ 
∗

t �[t−ri ,t ] (23)

if x ∈ [t , t + ri] and j ≥ i . Moreover,

�[t ,x]F = �[t ,x]
∗
t ; �[x ,t ]F ≤ �[x ,t ]


(j+1)
t ≤ �[x ,t ] f

(j)
t ≤ �[x ,t ]
∗

t (24)

if x ∈ [t − ri , t ].
Similar statement is true for t ∈ 	:

F �[t ,t+ri ] ≤ f (j+1)
t �[t ,t+ri ] ≤ f (j)

t �[t ,t+ri ] ≤ 
∗
t �[t ,t+ri ]; 
∗

t �[t−ri ,t ] = F �[t−ri ,t ]
(25)

if t ∈ 	i , j ≥ i , and

�[x ,t ]F = �[x ,t ]
∗
t ; �[t ,x]F ≤ �[t ,x]f

(j+1)
t ≤ �[t ,x]f

(j)
t ≤ �[t ,x]
∗

t (26)

if x ∈ [t , t + ri].
Observe that if t ∈ �i

�I nk1
F < �I nk2

F (27)

for some k1 < k2 such that I nk1 , I
n
k2

⊂ [t , t + ri]. Similar result is also given for
t ∈ 	i .

In the sequel, the proof is organized as follows:

• Step 1 estimates N ∅
n (�, �) := #

{
I nk : � − � ≤ log2�I nk

F

−n ≤ � + �, I nk ∩ �∗ = ∅}
for all 1 ≤ � ≤ �.

• Step 2 estimates N ∩
n (�, �) := #

{
I nk : � − � ≤ log2�I nk

F

−n ≤ � + �, I nk ∩ �∗ �= ∅}
for all 1 ≤ � ≤ �. In this part only the key steps of the proof are
presented, some long, technical calculations are omitted.

• In Step 3 Nn(�, �) is estimated for any � < 1 and � < � (1 < �). Finally,
we summarize the results of the previous steps and conclude the proof.

Step 1. First of all, remark that Nn(�, �) = #
{
I nk : (� − �) ∨ 1 ≤

log2�I nk
F

−n ≤ (� + �) ∧ �, I nk ∩ �∗ = ∅}
because for all I nk and arbitrarily small

positive � we have 1 − � ≤ log2�I nk
F

−n ≤ � + � for n above a large enough
threshold. The proof is omitted.

Next, three subcases are separated: (a) 1 < � < �; (b) � = �; and (c)
� = 1.
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Case (a): 1 < � < �. For any fixed � there exists a real number �
such that 1 < � − � < � + � < �. We use two important estimations, which
are straightforward consequences of Eq. (27).

1. If t ∈ �i and I nk ⊂ [t , t + ri] then
log2�I nk

F

−n decreases as k increases.
Moreover, if d is the distance between t and I nk then thanks to the
Lagrange’s theorem one has

�d �−12−n ≤ �I nk
F ≤ �(d + 2−n)�−12−n � (28)

This elementary result means that if f is a real function which is
differentiable on the interval [a, b] then for every subinterval [c , d] ∈ [a, b]
the following inequality holds

|f (c) − f (d)|≤ sup
x∈[c ,d]

|f ′(x)| |c − d |�

In addition, if t ∈ 	i and I nk ⊂ [t , t − ri] then
log2�I nk

F

−n decreases as k
decreases and by symmetry we have the same inequality as in Eq. (28).

2. If t is a right-hand side endpoint, (the estimations are similar
in the case of left-hand side endpoints because of the symmetry of the
construction), there exist a minimal distance d�,n and a maximal distance
D�,n such that

� − � ≤ log2 �I nk
F

−n
≤ � + � or equivalently 2−n(�−�) ≥ �I nk

F ≥ 2−n(�+�)�

(29)

for all k: I nk ⊂ (t + d�,n , t + D�,n).
Using Eqs. (28) and (29) one gets the lower estimates

(
dl
�,n ,D

l
�,n

)
and

the upper estimates
(
du
�,n ,D

u
�,n

)
of

(
d�,n ,D�,n

)
:

du
�,n = 1

�
2−n �−1+�

�−1 , Du
�,n = 1

�
2−n �−1−�

�−1 , dl
�,n = du

�,n − 2−n , Dl
�,n = Du

�,n − 2−n

(30)

with � > 0, � − 1 − � > 0 (d�,n might be 0).

The proof continues with the estimation of N ∅
n (�, �).

The lower estimate of N ∅
n (�, �). For fixed n let il(n) be the largest i

for which the following condition is satisfied

t ∈ �i : (
t + d�,n , t + Du

�,n

) ⊂ (t , t + ri)�
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Because of symmetry we get the same number if we consider the sets
	i instead of �i in this condition. Let �il (n) be the set of endpoints such
that this property holds independently whether they are in � or 	.

Define the following set of intervals

{
I nk : I nk ⊂ (

t + du
�,n , t + Dl

�,n

)
if t ∈ �il (n) ∩ �

}
∪{

I nk : I nk ⊂ (
t − Dl

�,n , t − du
�,n

)
, if t ∈ �il (n) ∩ 	

}
�

By the definitions of d�,n , du
�,n ,D

l
�,n ,D

u
�,n ,�il (n), any I nk interval of this set

fulfills the property

� − � ≤ log2 �I nk
F

−n
≤ � + �, (31)

which results that the number of these intervals estimates N ∅
n (�, �) from

below. The more detailed calculation is shown below.
First, we have il(n) = max�i : C iKC > Du

�,n�. By Eq. (30), il(n) =⌊
n −1

log2C
�−1−�

�−1

⌋ + cl = ⌊
n	�−1−�

�−1

⌋ + cl for an appropriate constant cl . Hence

#�il (n) = 21 + 22 + · · · + 2il (n) =log 2n	
�−1−�
�−1 .

Besides, if t ∈ �il (n) ∩ � on the interval
[
t + du

�,n , t + Dl
�,n

]
or t ∈

�il (n) ∩ 	 on
[
t − Dl

�,n , t − du
�,n

]
we count Nn(t) = Nn = (

Dl
�,n − du

�,n

) : 2−n =
1
�
2n

�−�+�
�−1

(
1 − 2−n 2�

�−1
) − 1 =log 2n

�−�+�
�−1 intervals with length 2−n .

Summarizing these two estimations we get

N ∅
n (�, �) ≥

∑
t∈�il (n)

Nn(t) = #�il (n)Nn =log 2n	
�−1−�
�−1 2n

�−�+�
�−1 � (32)

The upper estimate of N n(�, �). Basically, we follow the procedure
described in the lower estimation above. Taking the points t ∈ �∗ such
that |I (t)|/2 ≥ dl

�,n we have estimated from above the number of the
possible points t ∈ �∗ such that

[
t + dl

�,n , t + Du
�,n

] ⊂ I (t) or
[
t − Du

�,n ,
t − dl

�,n

] ⊂ I (t). Denote the set of these points by �iu (n) where iu(n) =
max�i : C iKC ≥ dl

�,n�.
The idea of the upper estimation is that we consider the basis functions


∗
t (x) centered at t , t ∈ �∗, as if they do not change on both the left-hand

and the right-hand side of the interval I (t) during the later refinements.
Virtually, it means that we also involve those intervals in the calculation
that may be cut out in some later refinement (that is, the procedure
overwrites them). Thus, we get upper estimation because each interval I nk
which fulfills Eq. (31) may have been counted for more than one t ∈ �iu (n).
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We obtain the upper estimation for the number of intervals in[
t + dl

�,n , t + Du
�,n

]
or

[
t − Du

�,n , t − dl
�,n

]
if we take

Nn(t) = Nn = (Du
�,n − dl

�,n) : 2−n = 1
�
2n

�−�+�
�−1

(
1 − 2−n 2�

�−1
) + 1 =log 2n

�−�+�
�−1

intervals with length 2−n in one branch of a basic function centered at some
point of �iu (n).

Using Eq. (30), easy calculation shows that iu(n) = ⌊
n	�−1+�

�−1

⌋ + cu for
an appropriate constant cu . Therefore #�iu (n) = 21 + 22 + · · · + 2iu (n) =log

2n	
�−1+�
�−1 .
It follows from the above discussion that

N ∅
n (�, �) ≤

∑
t∈�iu (n)

2Nn(t) = #�iu (n) 2Nn =log 2n	
�−1+�
�−1 2n

�−�+�
�−1 (33)

From Eq. (32) and Eq. (33) one gets

2n	
�−1−�
�−1 2n

�−�+�
�−1 ≤log N ∅

n (�, �) ≤log 2n	
�−1+�
�−1 2n

�−�+�
�−1 � (34)

Case (b). � = �. Similar proof as the previous case results Eq. (34)
with � = � and the change d�,n = 0.

Case (c). � = 1. Define the following set of intervals �n(1) = �I nk ∈
�n : d(I nk ,�) > 2−n−1�. Put �I nk ∈ �n(1) : I nk ⊂ ⋃

�m(1)� for any n such that
m < n. This is the set of intervals in �n(1) which are also included in⋃

�m(1). For the elements of this set we have the estimation

(2−m−1)�−12−n =
(
min

{
d(I nk ,�) | I nk ⊂

⋃
�m(1)

})�−1
2−n ≤ �I nk

F ≤ 2−n

(35)

using the Lagrange inequality and the trivial estimation on the right. Thus
for these intervals we have

1 ≤ log2 �I nk
F

−n
≤ 1 + m + 1

n
(� − 1)�

Fixing � > 0 and taking n such that m+1
n (� − 1) ≤ � we have N ∅

n (1, �) ≥
#�m(1)2n−m . Using this estimate and the trivial estimation N ∅

n (1, �) ≤ 2n

one obtains

N ∅
n (1, �) =log 2n � (36)

Step 2. The following will be proved:

N ∩
n (�, �) =log 2n	 and N ∩

n (�, �) ≤log 2n	 for 1 ≤ � < �� (37)
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Let �n(�) = {
I nk ∈ �n : I nk ∩ � �= ∅}

. We provide a lower and some
upper estimations of �I nk

F if I nk ∈ �n(�).

The lower estimate of �I nk
F . Define the level of minimal cover for

arbitrary integer n: i(n) = min�i : 2−nKC > C i�. Hence, i(n) = �n	� + �C

where �C is a suitable constant.
If I nk ∩ �∗ �= ∅ then it is easy to show that I nk intersects at least one

i(n)-level interval. Hence, I nk ∩ �i(n) �= ∅. Let t nk ∈ �i(n) be the endpoint for
which t nk ∈ I nk . If there is more than one endpoint with this property one of
them is chosen arbitrarily.

Since ri ≤ rj if i ≥ j , the choice of t nk and the definition of i(n) implies
that

[
t nk − ri(n), t nk

) ⊂ I nk or
[
t nk , t

n
k + ri(n)

) ⊂ I nk . Therefore, if I
n
k ∈ �n(�) we

have

min
{
�[tnk −ri ,tnk )

F ,�[tnk ,tnk +ri )F
} ≤ �I nk

F �

We can estimate both terms on the left from below, the lower estimation of
�I nk

F is of the form:

�I nk
F ≥log C i(n)� =log 2−n�� (38)

The upper estimate of �I nk
F . Let i∗(n) = max

{
i : 2KC2−n < C i

}
and

define the set �n(�)∗ = {
I nk : there exists a point tI nk ∈ 
i∗(n) such that

I nk ⊂ I (tI nk )
}
. If I nk ∈ �n(�)∗, we have a trivial upper estimation using

Eqs. (23) and (24) and Eqs. (25) and (26):

�I nk
F ≤ sup

x∈I nk

∣∣x − tI nk
∣∣� ≤ sup

x∈I (tI nk )

∣∣x − tI nk
∣∣� = (C i∗(n))� ≤ c2−n� (39)

for some constant c . On �n(�)\�n(�)∗ we also have the trivial estimate
�I nk

F ≤ c2−n�.

Summarizing the results on the lower and the upper estimates we get
the following: if I nk ∈ �n(�)∗ then

log2 �I nk
F

−n
=log 2−n�,

and if I nk ∈ �n(�)\�n(�)∗ then

log2 �I nk
F

−n
≤log 2−n �
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Therefore, the estimations of N ∩
n (�, �) and N ∩

n (�, �) for � < � are the
following

2n	 =log #�n(�)∗ ≤ N ∩
n (�, �) ≤ #�n(�) =log 2n	

N ∩
n (�, �) ≤ #�n(�)\�n(�)∗ ≤ #�n(�) =log 2n	 for � < ��

(40)

Step 3. Recall that Nn(�, �) = N ∅
n (�, �) + N ∩

n (�, �) for all possible
�, �,n. Using Eqs. (34), (36), (37), and (40) one gets

Nn(�, �) =log



2n if � = 1,

2n	
�−1+�
�−1 2n

�−�+�
�−1 if 1 < � < �,

2	n if � = ��

(41)

Taking f F
G (�)= lim�→0 lim supn→∞

log2(Nn (�,�))
n we get f F

G (�)= 1− (1− 	)�−1
�−1

for 1 ≤ � ≤ �.
In the previous steps we have proved that 2−n� ≤log �I nk

F ≤log 2−n for all
I nk . Therefore, if �� [1, �]

f F
G (�) = lim

�→0
lim sup

n→∞

log2(Nn(�, �))
n

= −∞

as it was required.
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