

 Acta Universitatis Sapientiae

 Electrical and Mechanical Engineering, 13 (2021) 114124

 DOI: 10.2478/auseme-2021-0009

114

Comparison of TCP SIAD and TCP BBR Congestion

Control in Simulated 5G Networks

Donát Scharnitzky1, Zsolt Krämer2, Sándor Molnár3

Budapest University of Technology and Economics,

Faculty of Electrical Engineering and Informatics,

Department of Telecommunications and Media Informatics, Budapest, Hungary

e-mail: 1 scharnitzky@tmit.bme.hu, 2 kramer@tmit.bme.hu, 3molnar@tmit.bme.hu

Manuscript received November 19, 2021; revised December 06, 2021

Abstract: 5G cellular networks have introduced a completely novel air interface

called New Radio (NR). This technology delivers numerous benefits compared to

previous generations, including significantly higher peak data rates. However, due to the

propagation properties of the frequencies used in NR, the volatility of the available

downlink capacity also increases. In this paper, we study two TCP congestion control

algorithms which are designed to be able to quickly utilize sudden increases in available

capacity. We present an implementation of TCP SIAD in the ns-3 open source network

simulator and compare its performance with TCP BBR using the mmWave module of

the simulator.

Keywords: TCP BBR, TCP SIAD, mmWave, 5G, ns-3

1. Introduction

The commercial deployment of 5G mobile networks is still ongoing,

however, the benefits provided by the new air interface are already well

established. New Radio (NR) is able to provide lower delay, better energy

efficiency, and higher data rates compared to previous generations. Meanwhile,

transport layer protocols and mechanisms also continue to evolve. Congestion

control is a classic problem in transport layer performance optimization, and

Cardwell et al. proposed a new algorithm in 2017 called Bottleneck Bandwidth

and RTT (BBR) [1], which promised significant improvements. BBR has been

compared to the current default congestion control algorithm in the Linux

kernel, CUBIC in a number of recent studies.

In this paper, we study the interplay between congestion control algorithms

and 5G mmWave environments. We present the implementation of TCP SIAD

 Comparison of TCP SIAD and TCP BBR Congestion Control in Simulated 5G Networks 115

(Scalable Increase, Adaptive Decrease), an algorithm with similar design goals

as BBR in the ns-3 open source network simulator. Then we present the first

performance comparison between the two algorithms in a scenario involving

transitions between line of sight (LOS) and non-line-of-sight (NLOS) states.

The paper is organized as follows. In Section 2 we discuss the related work

(namely TCP BBR, TCP SIAD and transport layer performance in 5G

mmWave networks), then in Section 3 we describe the implementation of TCP

SIAD in ns-3. Section 4 presents the simulation environment and the

performance results, and Section 5 concludes the paper.

2. Related work

A. TCP BBR

BBR was introduced by Google in 2017 in [1]. Compared to loss-based and

delay-based congestion control algorithms, it represents a new approach, which

can be called model-based, where the algorithm tries to maintain an estimation

of the bottleneck bandwidth and RTT by active probing. The probing of

bandwidth and RTT happens in separate phases, as probing for bandwidth

increases latency and probing for RTT drains the queue, thus decreasing

throughput. The other two phases of BBR’s operation are called startup - and

drain phases. The startup behavior is similar to the slow start in CUBIC. The

drain phase after the startup tries to drain the additional queue at the bottleneck

before the probing for bandwidth can begin.

A formal analysis and measurement study has been presented in [2] on the

performance of BBR, which confirmed the intended behavior, however, also

identified some cases where excess packet loss and fairness problems may

occur. The authors of [3] compared the performance of BBR and CUBIC in real

LTE networks on the highway, finding that while the achieved throughput was

similar, BBR operated at significantly lower latency.

B. TCP SIAD

TCP Scalable Increase Adaptive Decrease [4] is a congestion control

algorithm proposed by Kühlewind with the aim of having low delay while

maintaning high utilization in different network conditions. The rate of

feedback is independant of the bandwidth and can be manually set via a control

point. To achieve this, the increase rate of the congestion window at congestion

events is calculated in a way that the next congestion event is expected to

happen after the same time as the previous one. This time is measured in the

number of RTTs, and this is the configurable control point. The epoch is the

time between two congestion events (congestion events in the same RTT are

116 D. Scharnitzky, Z. Krämer, and S. Molnár

regarded as the same). The buffers in the network have an impact on the delay,

since congestions are needed for high utilization and they require the buffers to

fill. TCP SIAD tries to empty the buffer every RTT when the delay is too large,

which it can achive with reducing the congestion window. After the reduction

the increase rate is recalculated to keep high utilization and congestion to

happen for feedback (after the expected time since the last congestion event).

The algorithm adapts to network environment changes, it detect new bandwidth

with a similar method as Slow Start.

ISPs in a lot of cases set the buffer sizes to high values to reach high

utilization [4], which leads to high delays and standing queues in case of packet

loss based congestion control algorithms because the fillment of buffers. TCP

SIAD is packet-loss based, but it also takes into account the delay, it avoids

standing queues and reaches high utilizaton with small buffer sizes as well, thus

the ISPs can lower the buffer sizes. The configurable control point allows

external entities to control how aggressively the algorithm behaves, which

makes it possible to apply higher level flow control mechanisms.

TCP SIAD consist of two main parts [4]: Scalable Increase and Adaptive

Decrease. Scalable Increase calculates alpha, the rate of increase, in every

epoch such that the epochs will have the same length, but it does not modify

alpha in an epoch. Adaptive Decrease calculates beta, the rate of decrease,

based on the estimation of the number of packets in queue. TCP SIAD contains

three additional algorithms: Fast Increase (to allocate new bandwidth),

Additional Decrease (to empty buffers) and Trend Calculation (to improve

convergence).

C. Transport layer performance in mmWave environments

The potential and challenges that 5G mmWave networks bring to the

transport layer have motivated studies on the interplay between transport layer

mechanisms and the characteristics of NR. A list of possible challenges are

identified by the authors of [5], including rate adaptation, link quality

judgement, bufferbloat, and beam misalignment. A more detailed analysis in [6]

studies two deployment scenarios specified by 3GPP: high speed train and

dense urban. The authors consider numerous factors that influence transport

layer performance and thus different congestion control algorithms, TCP

segment sizes, RLC (Radio Link Control) buffer sizes and server locations are

compared. Regarding the server location, it is argued that the volatility of 5G

networks increase the benefits of a shorter control loop for TCP. This is

analyzed in detail in [7], presenting a comprehensive performance evaluation of

transparent performance enhancing proxies in 5G mmWave networks.

Regarding the different end-to-end congestion control algorithms, [6] finds that

BBR significantly outperforms CUBIC, NewReno and HighSpeed in terms of

 Comparison of TCP SIAD and TCP BBR Congestion Control in Simulated 5G Networks 117

goodput, especially in the case of smaller RLC buffers. This holds true in both

the remote server and the edge deployment cases.

One particularly interesting case in a NR environment is the one involving

transitions between LOS and NLOS states. The performance of different TCP

variants have been studied in great detail under these conditions. [8] shows that

many TCP congestion control algorithms struggle to recover after the NLOS

state, especially if the RTT is higher than 5 ms. The more aggressive algorithms

(e.g., Scalable) achieved significantly higher throughput compared to CUBIC

and Reno in these cases. [9] also investigates LOS-NLOS transitions in an

urban deployment, and finds that in most configurations, BBR is able to

outperform other TCP algorithms in terms of throughput and latency, and it was

the only variant that could benefit from small buffers. In [10] the authors argue

that for a 28GHz mmWave deployment, a 7MB RLC buffer results in optimal

transport layer performance. A detailed investigation showed the effects of

blockage on the different TCP variants, where BBR achieved lower latency than

the loss-based algorithms.

All the aforementioned studies used the mmWave module of the ns-3

simulator, and assumed a 28 GHz frequency. An emulation-based measurement

study presented in [11] assumed a 60 GHz frequency. Short blockages and long

blockages were both studied and BBR avoided the large latency spikes

experienced by CUBIC in both cases.

3. Implementing TCP SIAD in ns3

Network Simulator 3 (ns-3) is an open source discrete time network

simulation tool [12]. We used an extended version of ns-3, which contains a

module for mmWave (5G) that can be used to add mmWave EPC, User

Equipment, buildings, etc., to scenarios [13]. We used version 2.0 of the

mmWave module, with the BBR implementation (and Internet module) from

ns-3.35. Our implementation of TCP SIAD and the complete simulation setup

can be found in a public repository [14].

A. Class hierarchy

TCP SIAD is implemented in the Linux kernel [15], we used it to guide our

own implementation in ns-3. To add a congestion control algorithm to ns-3, one

has to subclass the TcpCongestionOps class. Similarly how most of the

congestion control algorithms use TcpNewReno as base class (which is a

specialization of TcpCongestionOps) [16] we subclass TcpNewReno as can be

seen in Fig 1. We added the new TCP SIAD class to the TypeId system for ease

of access from scenarios.

118 D. Scharnitzky, Z. Krämer, and S. Molnár

Figure 1: Class inheritance of congestion control, with the added TcpSiad class

(green background)

B. Implementation details

We added a header and a source file to ns3 (these contain the SIAD

implementation), other changes were not required. The algorithm is realized

with four functions:

 GetSsThresh: calculates the new congestion window on a congestion

event.

 IncreaseWindow: approximately called on ACKs, increases the

congestion window.

 CwndEvent: resets the delay-related variables.

 PktsAcked: called after every ACK, determines the delay.

The variables are stored as class member variables, since the socket object

that the functions get doesn't contain as much information as the Linux kernel's

socket struct. config_num_rtt and configNumMs are registered by TypeId

function, these variables provide the control loopback of TCP SIAD. The

following two subchapters describe some implementation details.

C. Scalable Increase

The connection starts in Slow Start. If the congestion window is larger than

incthresh, it needs to be grown via Fast Increase (Formula 1.) starting from the

value 1 [4]:

2

,
cwnd

alphaACK,every
cwnd

alpha
+alpha=alpha (1)

If it is lesser than ssthresh, then via Slow Start. In these cases, there is no

Additional Decrease, and this is indicated by setting min_delay_seen to true.

 Comparison of TCP SIAD and TCP BBR Congestion Control in Simulated 5G Networks 119

Additional Decrease can happen only after Adaptive Decrease or Additional

Decrease (with approximately one RTT offset) in the linear increase phase.

If Additional Decrease is not needed, the congestion window is increased.

snd_cwnd_cnt counts the segments, the counter is set to 0 when an increase

happens, or when decrease happens (somewhere else).

alpha needs to be modified in the following four cases:

 We just entered linear increase phase after Slow Start (before the

increase the congestion window is lesser than ssthresh, after that it is

greater). alpha needs to be calculated according to Formula 2. [4]:

 ssthresh<alpha<
Num

ssthreshincthresh
=alpha

RTT

1,

 (2)

 If we just left Slow Start, but there is no valid incthresh yet (incthresh <

sshthresh) or we just left incthresh we switch to Fast Increase, thus

alpha needs to be set to 1.

 We are in Fast Increase (congestion window is greater than incthresh).

We add inc to alpha if it is less than half of the congestion window.

 We are in Slow Start (congestion window is lesser than ssthresh). alpha

will always be the congestion window, with which we achieve to

double the window.

D. Additional Decrease

Additional Decrease: snd_cwnd_cnt is set to 0 (see below). The congestion

window is reduced according to Formula 3. [4]:

 1ssthersh
RTT

RTT
=cwnd

curr

min (3)

Then, if the congestion window is greater than the minimum congestion

window, alpha_new (Formula 4.) and red (Formula 5.) is calculated [4]:

1

decRTT

new
cntNum

cwndincthresh
=alpha (4)

decRTT cntNum

cwnd
=red

 (5)

If red is greater than alpha_new, alpha is recalculated and the congestion

window is reduced by red. If red is not greater that alpha_new, then alpha is set

to alpha_new and is substracted from the congestion window. If the congestion

window was the minimum congestion window, alpha has to be calculated

120 D. Scharnitzky, Z. Krämer, and S. Molnár

again. If at any point the congestion window becames minimal, min_delay_seen

is set to true to disable the running of more Additional Decrease. If alpha is

greater than the congestion window, then no more Additional Decreases happen

(but alpha is not restricted, otherwise incthresh would not be reached in time).

4. Performance evaluation

A. Simulation environment

We created a scenario to test how TCP BBR and TCP SIAD behave in a

volatile environment. It contains an EPC network which is connected to a

remote host, this simulates a connection via the Internet. The topology has one

eNodeB that is connected to one User Equipment (UE). The UE has a constant

linear movement, after 5 seconds a building blocking its LOS to the eNodeB

and then after another 5 seconds it goes back in LOS again.

We measured the received bytes and the RTT. Table 1 shows the parameters

that we changed from the default values. We compared TCP BBR and TCP

SIAD congestion control algorithms in the same environment, where the

environment was constant except for the RLC buffer size (and a random seed

parameter).

Table 1: ns3 configuration parameters

Parameter Value

Internet link RTT 25 ms

Internet link bandwidth 100 Gbps

Internet link MTU 1500 byte

TcpSocket segment size 10000 byte

TcpSocket min RTO 1000 ms

TcpSocket send buffer size 131072 * 50 byte

TcpSocket receive buffer size 131072 * 50 byte

AQM Disabled

HARQ Enabled

Center Frequency 28 GHz

Path loss model BuildingsObstaclePropagationLossModel

Scheduler type MmWaveFlexTtiMacScheduler

Simulation time 15 s

RLC mode AM

RCL buffer size [4, 7, 20, 40] MB

 Comparison of TCP SIAD and TCP BBR Congestion Control in Simulated 5G Networks 121

B. Performance results

Table 2 shows the Average Throughputs and RTTs for the different RLC

buffer sizes and algorithms. At high buffers (7MB or greater), the congestion

control algorithms behave virtually the same (they have a difference of less than

1%), thus having the same throughput and delay, which concludes that using

more buffer than 7MB has no effect. Fig 2 shows the utilization and fast

adaptation of both algorithms in this case. Lowering the buffer however can

negatively impact the throughput, especially in case of TCP BBR. TCP SIAD

could still keep 90% of its utilization, and with this it achieved a 41% higher

throughput than TCP BBR, while having the same delay.

At 4MB buffer the delay was 37% smaller compared to at 7MB buffers,

which can justify using smaller buffers for delay sensitive applications.

Table 2: Average throughput and RTT for the different RLC buffer sizes

RLC buffer

Average Throughput

(Mbps)
Average RTT (ms)

SIAD BBR SIAD BBR

4 MB 1157.87 819.84 28.84 28.69

7 MB 1289.20 1295.10 46.03 45.81

20 MB 1290.57 1301.14 46.05 45.76

40 MB 1290.57 1301.14 46.05 45.76

When the UE moves behind the building, the throughput decreases and the

delay increases significantly. After going in LOS again with the eNodeB, in

case of higher buffer values, the throughput and delay get back to the previous

values, as can be seen in Fig 2. In case of 4MB RLC buffer, after going back in

LOS, TCP SIAD is able to utilize the bandwidth as well as before going in

NLOS, however TCP BBR struggles to do so, as depicted in Fig 3.

It is worth highlighting that we have used an increased TCP MSS of 10KB

based on previous studies [6] that showed how using larger segments can enable

TCP to achieve higher throughput in mmWave environments. BBR however

does not benefit from this due to its fundamentally different design.

122 D. Scharnitzky, Z. Krämer, and S. Molnár

Figure 3: Throughput and delay of TCP BBR and TCP SIAD

at 4MB RLC buffer

Figure 2: Throughput and delay of TCP BBR and TCP SIAD

at 7MB RLC buffer

 Comparison of TCP SIAD and TCP BBR Congestion Control in Simulated 5G Networks 123

5. Conclusion

The interplay between transport layer mechanisms and 5G mmWave

network dynamics are complex and provide opportunities for optimizations. In

this paper we have implemented TCP SIAD, an algorithm designed to quickly

adapt to increased available bandwidth while keeping the delay low, and

compared it to TCP BBR in a 5G mmWave environment using ns-3. We have

shown that both algorithms perform well in terms of utilization and adaptation

for RLC buffer sizes 7MB and higher, but at 4MB they start to struggle

(especially TCP BBR). For low latency, however, 4MB buffer with TCP SIAD

is a better choice, since it has only a small reduction in link utilization.

Our future work includes extending this analysis to different segment sizes

and internet link RTTs.

References

[1] Cardwell, N., Cheng, Y., Stephen Gunn, C., Yeganeh, S. H., and Jacobson, V., “BBR:

Congestion-Based Congestion Control”, Communications of the ACM 60.2, 2017, pp.

5866.

[2] Hock, M., Bless, R., and Zitterbart, M., “Experimental Evaluation of BBR Congestion

Control”, IEEE 25th International Conference on Network Protocols (ICNP). IEEE, 2017.

[3] Feng, L., Chung, J. W., Jiang, X., and Claypool, M., “TCP CUBIC Versus BBR on the

Highway”, International Conference on Passive and Active Network Measurement.

Springer, Cham, 2018.

[4] Kühlewind, M., “TCP SIAD: Congestion Control Supporting High Speed and Low

Latency”, arXiv preprint arXiv:1612.07947, 2016.

[5] Ren, Y., Yang, W., Zhou, X., Chen, H., Liu, B., “A Survey on TCP Over mmWave.”,

Computer Communications, 2021.

[6] Zhang, M., Polese, M., Mezzavilla, M., Zhu, J., Rangan, S., Panwar, S., Zorzi, M., “Will

TCP Work in mmWave 5G Cellular Networks?”, IEEE Communications Magazine 57.1,

pp. 6571, 2019.

[7] Hayes, D. A., Ros, D., and Alay, Ö., “On the Importance of TCP Splitting Proxies for

Future 5G mmWave Communications”, IEEE 44th LCN Symposium on Emerging Topics in

Networking (LCN Symposium, IEEE, 2019.

[8] Pieska, M., and Kassler, A., “TCP Performance over 5G mmWave Links—Tradeoff

Between Capacity and Latency”, IEEE 13th International Conference on Wireless and

Mobile Computing, Networking and Communications (WiMob), IEEE, 2017.

[9] Poorzare, R., and Calveras Augé, A., “How Sufficient is TCP When Deployed in 5G

mmWave Networks Over the Urban Deployment?”, IEEE Access 9, 2021, 3634236355.

[10] Mateo, P. J., Fiandrino, C., and Widmer, J., “Analysis of TCP Performance in 5G mm-wave

Mobile Networks.”, ICC IEEE International Conference on Communications (ICC). IEEE,

2019.

[11] Srivastava, A., Fund, F., and Panwar, S. S., “An Experimental Evaluation of Low Latency

Congestion Control for mmwave Links”, IEEE INFOCOM Conference on Computer

Communications Workshops (INFOCOM WKSHPS), IEEE, 2020.

[12] https://www.nsnam.org/ [Online, last checked: 2021.11.18]

124 D. Scharnitzky, Z. Krämer, and S. Molnár

[13] Mezzavilla, M., Zhang, M., Polese, M., Ford, R., Dutta, S., Rangan, S., Zorzi, M., “End-to-

End Simulation of 5G mmWave Networks,” in IEEE Communications Surveys & Tutorials,

vol. 20, no. 3, pp. 22372263, 2018.

[14] https://github.com/dscharnitzky/mmwave-siad-bbr [Online, last checked: 2021.11.18]

[15] http://mirja.kuehlewind.net/src/tcp_siad.c [Online, last checked: 2021.11.18]

[16] https://www.nsnam.org/docs/release/3.35/doxygen/classns3_1_1_tcp_congestion_ops.html

[Online, last checked: 2021.11.18]

