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Abstract: An outcome of a measurement frequently contains too many and 
redundant elements so extracting similar patterns can be a hard task. This paper presents 
an idea to convert time streaming measurement results into a special string format and 
to use existing motif finding methods for further analysis. We have created the Action 
Descriptive String (ADS) which is a projection of series of events. Although these 
strings are not an accurate description of the actual events they had been defined from, 
they are helpful in finding typical occurrences of short term events and comparing two 
series of events. 

Following the presentation of the existing motif finding methods and the benefit of 
applying them for the Action Descriptive Strings, we give the idea of converting 
measurement results into ADS format. The method for finding frequently occurring 
patterns in the converted string format is also presented. We discuss the possibility of 
emulating long term events by a series of the extracted typical short term patterns. We 
have implemented an algorithm which is able to score the similarities between two 
Action Descriptive Strings. This algorithm is used for finding the most similar typical 
pattern for an arbitrarily given ADS. Since the scoring scheme of the algorithm is highly 
dependent on the measured phenomenon, we also present a process for adjusting the 
scoring values to a given measurement. 

 
Keywords: String matching, motif finding, measurement analysis. 

1. Introduction 

Converting time serial measurement results into appropriate short string 
format can help us applying existing string based algorithms for further analyze. 
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This motivation led us to create a special string format (Action Descriptive 
Strings) from these raw measurement results. 

Motif finding is widely used method in bioinformatics and has a deep 
literature that we can rely on. In bioinformatics the algorithms tend to find 
similarities in protein chains, typically in amino acid. These algorithms usually 
use a simple string input which contains the markings of the four proteins DNA 
is built from: A for Adenine, T for Thymine, G for Guanine and C for Cytosine. 
MEME suite is a comprehensive tool for discovering motifs in a group of 
related DNA or protein sequences [1]. 

Similar architectures are presented in [2], [3] and [4] for using string 
matching algorithms for signature generation in various network appliances. In 
these cases one byte represents a unit in the sequence therefore there are 256 
different symbols. 

The Action Descriptive Strings (ADS) can be used for representing any kind 
of time series measurement result. Using these strings and the algorithms 
presented in this paper the measurements can be further analyzed from a 
different point of view. We have implemented the ADS in a general way that 
can be suitable for various measurement types. 

In the next section the general structure of the Action Descriptive Strings is 
presented. The idea of extracting typical patterns from converted measurements 
results is discussed in Section 3. Section 4 presents an algorithm which is able 
to suit a series of typical patterns for any given measurement result stream. The 
algorithm we implemented for scoring the similarities between two ADS is 
given in Section 5. Section 6 presents the idea of adjusting the scoring 
algorithm for unique measurement types. Finally, in Section 7 a summary of our 
work is found where we present a few possible utilizations for the Action 
Descriptive Strings. 

2. Action Descriptive Strings 

 In an Action Descriptive String there are two types of characters: the action 
characters and the time delimiter characters. Although the time delimiter 
character can be chosen arbitrarily, we chose the “Z” characters for separating 
equal time intervals in an ADS. The other characters refer for one type of 
action. Thus an example an example for them looks like the following: 
 

AZAZABZABZACZAZAZ 
 

 Since this example contains seven “Z” characters, this ADS represents a 
seven-time-unit-long scenario. This means that in this scenario an “A” type of 
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action occurred in every seven time unit, a “B” type of action happened in the 
third and the fourth, and a “C” type occurred in the fifth time unit. 
 During the conversation of measurement results the data must be separated 
to individual sources. Thus in case of an aggregated measurement the first step 
must be a discrimination of the sources (typically location based). In the next 
step every different action must be investigated for every time unit. If an action 
occurred in the given time unit we write its character into the ADS than we 
close the given time unit by the “Z” character. 
 The definition of the actions is a heuristic process which is highly dependent 
on the measurement itself. They can be simple event occurrences (for example 
if a motorcycle has crossed the road or a costumer has bought milk) or a limit 
for event occurrences (for example if the number of cars that crossed the road is 
greater than 100). Limit bands are also usable in event definition for detailed 
resolution but since the idea is to simplify the measurement results these bands 
should be minimized. 
 The choice of the used time resolution is also has to be adjusted for the given 
measurement type. Too short time units can result to an output where typical 
patterns are not extractable. On the other, hand using a too long time unit could 
hide the differences between distant inputs. 

 
 

 
 
 

Figure 1: The format of the input ADS file. 
 

 Taking these into account the format of the required input file is given in 
Figure 1. As the figure shows the input should also contain the UNIX 
timestamp of the beginning of the different sources’ action which will be used 
during the long term event emulation.  

3. Extracting typical patterns 

 During the extract of typical patterns we tend to find substrings which are 
frequently occur in the input. In this procedure we search for fixed time length 
patterns between lower and a higher limit. The reason for the lower limit is that 
too short patterns are not describing stable event series. On the other hand, the 
longer a pattern the lesser it would occur in the input stream. Thus these limits 
have to be defined considering the time input’s time resolution. 
 As a first solution we have inspected bioinformatics problems. We have 
examined the possibility of applying the same architecture presented in [2] with 

1223378304 ABZABZABZABZABZABZABZABZABZABZ 
1223378306 HIZHIZHIZHIZHIZHIZHIZHIZHIZHIZ 
1223378809 FZFZFZFZFZFZFZFZFZFZ 
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a different preprocessing method. In this paper the authors present a framework 
using Glam2 for signature generation. Glam2 is a software package for finding 
motifs in sequences, typically amino-acid or nucleotide sequences [5]. 
Glam2Scan is a part of the Glam2 software package which can find matches in a 
sequence database to a motif discovered by Glam2 [6]. Glam2Scan gives a score 
for each match indicating how well it fits the given motif so it also could be the 
base an approximately match algorithm during a long term event emulation.  
 However, after a long investigation process we have found that we can’t use 
this technique for the general architecture of Action Descriptive Strings. The 
main reason behind this is that bioinformatics algorithm use alphabet where the 
roles of the characters are the same. In ADSs the time delimiter (“Z”) character 
has completely different meaning than the others. Moreover, in our case we 
would like to have a method to define suitable replacements for certain event 
types therefore defining subclasses where the events are similar with each other 
and distant from the others. 
 Thus we implemented a unique algorithm which is able to extract typical 
patterns from the input. The key point in the algorithm is to split the Action 
Description Strings along the time delimiter (“Z”) characters. That way we 
make sure that the individual time units’ activities won’t be corrupted. For 
preprocessing the algorithm does two things. First, it filters out the long idle 
periods (multiple consecutive “Z” characters) in the sources’ activities thus the 
algorithm won’t give back patterns in which the idle period is longer than the 
actual activity. Secondly, for symmetric ADS patterns (where the same 
characters occur in every time unit) the algorithm recalculates the real number 
occurrences. For example, in case of a 200 time-unit-long “AZ” run the 
occurrence for the five-time-unit-long “AZAZAZAZAZ” should be 40 not 196. 
 In the algorithm two limits have to be declared: a hard limit and soft limit. 
First, the tool counts the occurrences for every occurring ADS substring which 
has the given time length. Then the algorithm calculates the most similar ADS 
for every pattern below the soft limit using the scoring mechanism presented in 
Section 5 and increase the result’s occurrence by one. After that, the ADS 
substrings occurring more than the hard limit are added into the typical patterns 
pool. 
 The choice of the limits is dependent on the result we would like to achieve. 
For example, setting the two limits to the same value will avoid the usage of the 
scoring mechanism and result in only the ADSs which occurrence is greater 
than then the given limit. On the other hand, setting the soft limit to 1 will give 
the most detailed result but it can significantly increase the run time of the 
algorithm. 
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4. Long term event emulation 

 The main idea behind the emulation of long term events is to substitute the 
entire stream of one source by a series of typical patterns. In order to do that, we 
have the input Action Descriptive String file and the database of the extracted 
typical patterns. The input ADS can be one line from the measurement result or 
can be generated artificially. The second method allows us to emulate arbitrary 
event type that would otherwise not occur in real measurements. In practice it 
means that we need an algorithm which is able to cover a source’s entire Action 
Descriptive String with the extracted typical patterns’ ADSs. Moreover, the 
algorithm must calculate the accurate timing information. 
 The first part of the implemented algorithm is a search for full-matching 
typical patterns in the input ADS. During this process two rules should be kept. 
First, we have to start the search with the longer patterns. During the emulation 
process we prefer the usage of longer term typical patterns since we consider 
their activity more stabile. With this action we make sure that we use the longer 
scenarios as much as possible. The second rule is that if we find a full-matching 
user pattern somewhere in the input ADS we have to switch that substring to 
only time delimiter (“Z”) characters. That way we guarantee that the time units 
in the input stream will be covered by only one pattern. However, we have to 
leave the time delimiter characters in the ADS in order to properly calculate the 
timing information. 
 Since an arbitrary Action Description String can unlikely be covered by only 
typical patterns we have implemented an approximate matching part for the 
algorithm as well. During this procedure the algorithm uses a scoring scheme 
introduced in the next section which is able to find the most similar typical 
pattern for any given ADS. 
 After full-matching the remaining ADS may contain many consecutive time 
delimiter (“Z”) characters. Since this “Z” runs means an inactive period or that 
it has been previously covered by a full-matching typical pattern, as a next step 
the algorithm splits the remaining string along three or more consecutive “Z” 
characters. The last step of the algorithm searches for the most similar typical 
pattern for every remaining substring after the split. These time period in the 
input stream will be emulated by the same action as the most similar typical 
pattern describes. If a reaming substring is longer than the higher time limit of 
the typical patterns the algorithm calculates the score for every prefix from the 
lower time limit to the higher. The one with the best result score will be 
emulated by the most similar pattern than the algorithm removes that ADS from 
the substring and repeats the approximate matching procedure. 
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5. The ADS scoring algorithm 

 When we were designing the ADS scoring algorithm the following rules 
were laid down: 

1) If we compare an A sting to a B sting, the returned score must be less than 
or equal to score the algorithm returns comparing the A string with itself. 

2) The equality must only stand if the same characters with the same amount 
are in both A and B. 

3) The algorithm must inspect the time length of the ADSs and give lesser 
score if it differs. 

4) We must have a way of setting unique values for which action types are 
suitable substitutions for each other and which are completely excluded. 

 
 Taking these considerations into account, we have defined a scoring matrix 
labeling its rows and columns with the defined types’ characters. We also add 
the “X” character which will refer to no action. If we substitute an “A” 
character from the first string to a “B” character in the second string the score 
under the “A” row and “B” column will be added to the total score. Firstly, the 
algorithm concatenates “X” characters to the shorter string until both of them 
contain the same amount of characters. After this, a dynamic programming 
algorithm finds the best substitution solution for the characters calculating the 
maximal possible score [7], [8]. As the last step the algorithm modifies the 
given score with a divider if the time lengths of two strings differ. 
 In order to get the most ideal values of the scoring matrix and the length 
modifier we created a test database of Action Descriptive Strings. In contrast 
with the typical patterns this artificial database contains only ADSs in which the 
actions are the same in every minute. We integrated every variation of 
minimum four maximum ten minute long scenarios which contains maximum 4 
type of action simultaneously. In the following section we will present a method 
for proper adjustment of the scoring values using the test database. 

6. Adjusting scoring values 

 In this example we use Action Descriptive Stings which are made of four 
different characters: “A”, “B”, “C” and “D”. The initial scoring matrix is 
shown in Table 1. The scoring values were set up as following. “A” is the least 
significant action and we prefer to substitute it primarily to “B” and secondly to 
no action (“X”). Substitute “A” to “C” or “D” will decrease the score as their 
action is considered to be too distant. In case of the action marked by “B” the 
suitable substitutes are primarily “C” and secondly “A”. For “C” we prefer “D” 
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and “B” while for “D” the suitable substitutions are “C” and “B”. If one action 
is replaced by itself five points are added to the final score. 
 All the values in the first row of Table 1 are negative. This step is required 
for keeping the first rule since positive values would result in more score in case 
of adding more extra action. The values are different thus in case of an extra 
action the least significant actions will be preferred. 
 
 

Table 1: An initial scoring matrix. 
 

 X A B C D 

X 0 -2 -3 -4 -5 

A 2 5 3 -1 -2 

B 0 2 5 3 1 

C -2 0 2 5 3 

D -5 -1 1 3 5 
 
 

Table 2: Results for the initial scoring values. 
 

Rank Score Relative score Time unit ADS 
0 30 1 5 AZAZAZAZABZ 
1 25 0.83 5 AZAZAZAZAZ 
2 19 0.63 5 BZBZBZBZBZ 
3 18 0.6 5 ABZABZABZABZABZ 
4 12 0.4 5 ACZACZACZACZACZ 
5 6 0.2 5 ADZADZADZADZADZ 

 
 
 Table 2 shows the five most similar ADS from the test database for the input 
AZAZAZAZABZ. This is a five-time-unit-long event which contains the action 
“A” in every time unit and the action “B” in the last one. The first row (rank 0) 
contains the result comparing the input string with itself. As it can be seen in 
Table 2, this result is 30 since there are six action characters in this ADS thus 
the final score is six times five. 
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 Although the results show what can be previously expected, the actual 
rankings and the given points can be further investigated. For example, the 
second and the third result show that these scoring values prefer the substitution 
of an entire action to another than using both of them. An adjustment procedure 
for real measurement result can be inspected in many ways which are highly 
dependent on the phenomenon. For example, if the actions are fairly different 
from each other the scoring values for the preferred substitutions should be 
decreased significantly. 
 An example for this type of scoring matrix is presented in Table 3. The 
difference between this scoring matrix and the initial one is that the positive 
values for the substitutions are divided by ten. That way, substitute one 
character for a different one will result in lesser score. The results for the same 
input as in the previous test is given in Table 4. In this case the ADS where both 
“A” and “B” occurred in every time unit is the second most similar to input with 
the same score while the pattern containing only “B” got significantly less 
score. If this similarity is closer to the realty than the first one the modified 
scoring matrix should be used. 
 
 

Table 3: Example for modified scoring matrix. 
 

 X A B C D 

X 0 -2 -3 -4 -5 

A 0.2 5 0.3 -1 -2 

B 0 0.2 5 0.3 0.1 

C -2 0 0.2 5 0.3 

D -5 -1 0.1 0.3 5 
 
 
As a last example we let the algorithm to test Action Descriptive Strings which 
time length differs from the input. In these cases the calculated score from the 
scoring matrix is divided by a constant. The results using 1.2 as the length 
divider are presented in Table 5. As the results show the four and six time-unit-
long variants of the previously best two results appeared in the array. 
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Table 4: Results for the modified scoring matrix. 
 

Rank Score Relative score Time unit ADS 
0 30 1 5 AZAZAZAZABZ 
1 25 0.83 5 AZAZAZAZAZ 
2 18 0.6 5 ABZABZABZABZABZ 
3 9.3 0.31 5 ACZACZACZACZACZ 
4 6.4 0.21 5 BZBZBZBZBZ 
5 5.1 0.17 5 ADZADZADZADZADZ 

 
 

Table 5: Results using different time lengths. 
 

Rank Score Relative score Time unit ADS 
0 30 1 5 AZAZAZAZABZ 
1 25 0.83 5 AZAZAZAZAZ 
2 21 0.7 6 AZAZAZAZAZAZ 
3 18 0.6 5 ABZABZABZABZABZ 
4 16.83 0.56 4 AZAZAZAZ 
5 16.08 0.53 4 ABZABZABZABZ 
6 10.83 0.36 6 ABZABZABZABZABZABZ 

7. Conclusion 

We have presented Action Descriptive Strings (ADS) which is a projection 
of real measurement results. By this conversation we are able to use existing 
motif finding methods for further analyzing a time stream measurement. 

We have given methods for finding short term typical patterns in the input 
stream and use them for emulating long term activities. Both of these processes 
use an algorithm which can score the similarities between two Action 
Descriptive Strings. This paper contains an example for adjusting the scoring 
values of the ADS scoring algorithm using an artificially created pattern 
database. 

An example for the application of the Action Descriptive Strings can be 
found in [7]. In [7] the author uses the same architecture for describe network 
traffic and determine the typical way of how users are using the Internet. 
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