

 Acta Universitatis Sapientiae
 Electrical and Mechanical Engineering, 3 (2011) 5-14

Action Descriptive Strings

Péter Megyesi1, Sándor Molnár2

Department of Telecommunications and Media Informatics,
Faculty of Electrical Engineering and Informatics,

Budapest University of Technology and Economics, Budapest, Hungary
 e-mail: megyo@fazekas.hu1, molnar@tmit.bme.hu2

Manuscript received December 20, 2011; revised January 16, 2012.

Abstract: An outcome of a measurement frequently contains too many and
redundant elements so extracting similar patterns can be a hard task. This paper presents
an idea to convert time streaming measurement results into a special string format and
to use existing motif finding methods for further analysis. We have created the Action
Descriptive String (ADS) which is a projection of series of events. Although these
strings are not an accurate description of the actual events they had been defined from,
they are helpful in finding typical occurrences of short term events and comparing two
series of events.

Following the presentation of the existing motif finding methods and the benefit of
applying them for the Action Descriptive Strings, we give the idea of converting
measurement results into ADS format. The method for finding frequently occurring
patterns in the converted string format is also presented. We discuss the possibility of
emulating long term events by a series of the extracted typical short term patterns. We
have implemented an algorithm which is able to score the similarities between two
Action Descriptive Strings. This algorithm is used for finding the most similar typical
pattern for an arbitrarily given ADS. Since the scoring scheme of the algorithm is highly
dependent on the measured phenomenon, we also present a process for adjusting the
scoring values to a given measurement.

Keywords: String matching, motif finding, measurement analysis.

1. Introduction

Converting time serial measurement results into appropriate short string
format can help us applying existing string based algorithms for further analyze.

6 P. Megyesi, S. Molnár

This motivation led us to create a special string format (Action Descriptive
Strings) from these raw measurement results.

Motif finding is widely used method in bioinformatics and has a deep
literature that we can rely on. In bioinformatics the algorithms tend to find
similarities in protein chains, typically in amino acid. These algorithms usually
use a simple string input which contains the markings of the four proteins DNA
is built from: A for Adenine, T for Thymine, G for Guanine and C for Cytosine.
MEME suite is a comprehensive tool for discovering motifs in a group of
related DNA or protein sequences [1].

Similar architectures are presented in [2], [3] and [4] for using string
matching algorithms for signature generation in various network appliances. In
these cases one byte represents a unit in the sequence therefore there are 256
different symbols.

The Action Descriptive Strings (ADS) can be used for representing any kind
of time series measurement result. Using these strings and the algorithms
presented in this paper the measurements can be further analyzed from a
different point of view. We have implemented the ADS in a general way that
can be suitable for various measurement types.

In the next section the general structure of the Action Descriptive Strings is
presented. The idea of extracting typical patterns from converted measurements
results is discussed in Section 3. Section 4 presents an algorithm which is able
to suit a series of typical patterns for any given measurement result stream. The
algorithm we implemented for scoring the similarities between two ADS is
given in Section 5. Section 6 presents the idea of adjusting the scoring
algorithm for unique measurement types. Finally, in Section 7 a summary of our
work is found where we present a few possible utilizations for the Action
Descriptive Strings.

2. Action Descriptive Strings

 In an Action Descriptive String there are two types of characters: the action
characters and the time delimiter characters. Although the time delimiter
character can be chosen arbitrarily, we chose the “Z” characters for separating
equal time intervals in an ADS. The other characters refer for one type of
action. Thus an example an example for them looks like the following:

AZAZABZABZACZAZAZ

 Since this example contains seven “Z” characters, this ADS represents a
seven-time-unit-long scenario. This means that in this scenario an “A” type of

 Action Descriptive Strings 7

action occurred in every seven time unit, a “B” type of action happened in the
third and the fourth, and a “C” type occurred in the fifth time unit.
 During the conversation of measurement results the data must be separated
to individual sources. Thus in case of an aggregated measurement the first step
must be a discrimination of the sources (typically location based). In the next
step every different action must be investigated for every time unit. If an action
occurred in the given time unit we write its character into the ADS than we
close the given time unit by the “Z” character.
 The definition of the actions is a heuristic process which is highly dependent
on the measurement itself. They can be simple event occurrences (for example
if a motorcycle has crossed the road or a costumer has bought milk) or a limit
for event occurrences (for example if the number of cars that crossed the road is
greater than 100). Limit bands are also usable in event definition for detailed
resolution but since the idea is to simplify the measurement results these bands
should be minimized.
 The choice of the used time resolution is also has to be adjusted for the given
measurement type. Too short time units can result to an output where typical
patterns are not extractable. On the other, hand using a too long time unit could
hide the differences between distant inputs.

Figure 1: The format of the input ADS file.

 Taking these into account the format of the required input file is given in
Figure 1. As the figure shows the input should also contain the UNIX
timestamp of the beginning of the different sources’ action which will be used
during the long term event emulation.

3. Extracting typical patterns

 During the extract of typical patterns we tend to find substrings which are
frequently occur in the input. In this procedure we search for fixed time length
patterns between lower and a higher limit. The reason for the lower limit is that
too short patterns are not describing stable event series. On the other hand, the
longer a pattern the lesser it would occur in the input stream. Thus these limits
have to be defined considering the time input’s time resolution.
 As a first solution we have inspected bioinformatics problems. We have
examined the possibility of applying the same architecture presented in [2] with

1223378304 ABZABZABZABZABZABZABZABZABZABZ
1223378306 HIZHIZHIZHIZHIZHIZHIZHIZHIZHIZ
1223378809 FZFZFZFZFZFZFZFZFZFZ

8 P. Megyesi, S. Molnár

a different preprocessing method. In this paper the authors present a framework
using Glam2 for signature generation. Glam2 is a software package for finding
motifs in sequences, typically amino-acid or nucleotide sequences [5].
Glam2Scan is a part of the Glam2 software package which can find matches in a
sequence database to a motif discovered by Glam2 [6]. Glam2Scan gives a score
for each match indicating how well it fits the given motif so it also could be the
base an approximately match algorithm during a long term event emulation.
 However, after a long investigation process we have found that we can’t use
this technique for the general architecture of Action Descriptive Strings. The
main reason behind this is that bioinformatics algorithm use alphabet where the
roles of the characters are the same. In ADSs the time delimiter (“Z”) character
has completely different meaning than the others. Moreover, in our case we
would like to have a method to define suitable replacements for certain event
types therefore defining subclasses where the events are similar with each other
and distant from the others.
 Thus we implemented a unique algorithm which is able to extract typical
patterns from the input. The key point in the algorithm is to split the Action
Description Strings along the time delimiter (“Z”) characters. That way we
make sure that the individual time units’ activities won’t be corrupted. For
preprocessing the algorithm does two things. First, it filters out the long idle
periods (multiple consecutive “Z” characters) in the sources’ activities thus the
algorithm won’t give back patterns in which the idle period is longer than the
actual activity. Secondly, for symmetric ADS patterns (where the same
characters occur in every time unit) the algorithm recalculates the real number
occurrences. For example, in case of a 200 time-unit-long “AZ” run the
occurrence for the five-time-unit-long “AZAZAZAZAZ” should be 40 not 196.
 In the algorithm two limits have to be declared: a hard limit and soft limit.
First, the tool counts the occurrences for every occurring ADS substring which
has the given time length. Then the algorithm calculates the most similar ADS
for every pattern below the soft limit using the scoring mechanism presented in
Section 5 and increase the result’s occurrence by one. After that, the ADS
substrings occurring more than the hard limit are added into the typical patterns
pool.
 The choice of the limits is dependent on the result we would like to achieve.
For example, setting the two limits to the same value will avoid the usage of the
scoring mechanism and result in only the ADSs which occurrence is greater
than then the given limit. On the other hand, setting the soft limit to 1 will give
the most detailed result but it can significantly increase the run time of the
algorithm.

 Action Descriptive Strings 9

4. Long term event emulation

 The main idea behind the emulation of long term events is to substitute the
entire stream of one source by a series of typical patterns. In order to do that, we
have the input Action Descriptive String file and the database of the extracted
typical patterns. The input ADS can be one line from the measurement result or
can be generated artificially. The second method allows us to emulate arbitrary
event type that would otherwise not occur in real measurements. In practice it
means that we need an algorithm which is able to cover a source’s entire Action
Descriptive String with the extracted typical patterns’ ADSs. Moreover, the
algorithm must calculate the accurate timing information.
 The first part of the implemented algorithm is a search for full-matching
typical patterns in the input ADS. During this process two rules should be kept.
First, we have to start the search with the longer patterns. During the emulation
process we prefer the usage of longer term typical patterns since we consider
their activity more stabile. With this action we make sure that we use the longer
scenarios as much as possible. The second rule is that if we find a full-matching
user pattern somewhere in the input ADS we have to switch that substring to
only time delimiter (“Z”) characters. That way we guarantee that the time units
in the input stream will be covered by only one pattern. However, we have to
leave the time delimiter characters in the ADS in order to properly calculate the
timing information.
 Since an arbitrary Action Description String can unlikely be covered by only
typical patterns we have implemented an approximate matching part for the
algorithm as well. During this procedure the algorithm uses a scoring scheme
introduced in the next section which is able to find the most similar typical
pattern for any given ADS.
 After full-matching the remaining ADS may contain many consecutive time
delimiter (“Z”) characters. Since this “Z” runs means an inactive period or that
it has been previously covered by a full-matching typical pattern, as a next step
the algorithm splits the remaining string along three or more consecutive “Z”
characters. The last step of the algorithm searches for the most similar typical
pattern for every remaining substring after the split. These time period in the
input stream will be emulated by the same action as the most similar typical
pattern describes. If a reaming substring is longer than the higher time limit of
the typical patterns the algorithm calculates the score for every prefix from the
lower time limit to the higher. The one with the best result score will be
emulated by the most similar pattern than the algorithm removes that ADS from
the substring and repeats the approximate matching procedure.

10 P. Megyesi, S. Molnár

5. The ADS scoring algorithm

 When we were designing the ADS scoring algorithm the following rules
were laid down:

1) If we compare an A sting to a B sting, the returned score must be less than
or equal to score the algorithm returns comparing the A string with itself.

2) The equality must only stand if the same characters with the same amount
are in both A and B.

3) The algorithm must inspect the time length of the ADSs and give lesser
score if it differs.

4) We must have a way of setting unique values for which action types are
suitable substitutions for each other and which are completely excluded.

 Taking these considerations into account, we have defined a scoring matrix
labeling its rows and columns with the defined types’ characters. We also add
the “X” character which will refer to no action. If we substitute an “A”
character from the first string to a “B” character in the second string the score
under the “A” row and “B” column will be added to the total score. Firstly, the
algorithm concatenates “X” characters to the shorter string until both of them
contain the same amount of characters. After this, a dynamic programming
algorithm finds the best substitution solution for the characters calculating the
maximal possible score [7], [8]. As the last step the algorithm modifies the
given score with a divider if the time lengths of two strings differ.
 In order to get the most ideal values of the scoring matrix and the length
modifier we created a test database of Action Descriptive Strings. In contrast
with the typical patterns this artificial database contains only ADSs in which the
actions are the same in every minute. We integrated every variation of
minimum four maximum ten minute long scenarios which contains maximum 4
type of action simultaneously. In the following section we will present a method
for proper adjustment of the scoring values using the test database.

6. Adjusting scoring values

 In this example we use Action Descriptive Stings which are made of four
different characters: “A”, “B”, “C” and “D”. The initial scoring matrix is
shown in Table 1. The scoring values were set up as following. “A” is the least
significant action and we prefer to substitute it primarily to “B” and secondly to
no action (“X”). Substitute “A” to “C” or “D” will decrease the score as their
action is considered to be too distant. In case of the action marked by “B” the
suitable substitutes are primarily “C” and secondly “A”. For “C” we prefer “D”

 Action Descriptive Strings 11

and “B” while for “D” the suitable substitutions are “C” and “B”. If one action
is replaced by itself five points are added to the final score.
 All the values in the first row of Table 1 are negative. This step is required
for keeping the first rule since positive values would result in more score in case
of adding more extra action. The values are different thus in case of an extra
action the least significant actions will be preferred.

Table 1: An initial scoring matrix.

 X A B C D

X 0 -2 -3 -4 -5

A 2 5 3 -1 -2

B 0 2 5 3 1

C -2 0 2 5 3

D -5 -1 1 3 5

Table 2: Results for the initial scoring values.

Rank Score Relative score Time unit ADS
0 30 1 5 AZAZAZAZABZ
1 25 0.83 5 AZAZAZAZAZ
2 19 0.63 5 BZBZBZBZBZ
3 18 0.6 5 ABZABZABZABZABZ
4 12 0.4 5 ACZACZACZACZACZ
5 6 0.2 5 ADZADZADZADZADZ

 Table 2 shows the five most similar ADS from the test database for the input
AZAZAZAZABZ. This is a five-time-unit-long event which contains the action
“A” in every time unit and the action “B” in the last one. The first row (rank 0)
contains the result comparing the input string with itself. As it can be seen in
Table 2, this result is 30 since there are six action characters in this ADS thus
the final score is six times five.

12 P. Megyesi, S. Molnár

 Although the results show what can be previously expected, the actual
rankings and the given points can be further investigated. For example, the
second and the third result show that these scoring values prefer the substitution
of an entire action to another than using both of them. An adjustment procedure
for real measurement result can be inspected in many ways which are highly
dependent on the phenomenon. For example, if the actions are fairly different
from each other the scoring values for the preferred substitutions should be
decreased significantly.
 An example for this type of scoring matrix is presented in Table 3. The
difference between this scoring matrix and the initial one is that the positive
values for the substitutions are divided by ten. That way, substitute one
character for a different one will result in lesser score. The results for the same
input as in the previous test is given in Table 4. In this case the ADS where both
“A” and “B” occurred in every time unit is the second most similar to input with
the same score while the pattern containing only “B” got significantly less
score. If this similarity is closer to the realty than the first one the modified
scoring matrix should be used.

Table 3: Example for modified scoring matrix.

 X A B C D

X 0 -2 -3 -4 -5

A 0.2 5 0.3 -1 -2

B 0 0.2 5 0.3 0.1

C -2 0 0.2 5 0.3

D -5 -1 0.1 0.3 5

As a last example we let the algorithm to test Action Descriptive Strings which
time length differs from the input. In these cases the calculated score from the
scoring matrix is divided by a constant. The results using 1.2 as the length
divider are presented in Table 5. As the results show the four and six time-unit-
long variants of the previously best two results appeared in the array.

 Action Descriptive Strings 13

Table 4: Results for the modified scoring matrix.

Rank Score Relative score Time unit ADS
0 30 1 5 AZAZAZAZABZ
1 25 0.83 5 AZAZAZAZAZ
2 18 0.6 5 ABZABZABZABZABZ
3 9.3 0.31 5 ACZACZACZACZACZ
4 6.4 0.21 5 BZBZBZBZBZ
5 5.1 0.17 5 ADZADZADZADZADZ

Table 5: Results using different time lengths.

Rank Score Relative score Time unit ADS
0 30 1 5 AZAZAZAZABZ
1 25 0.83 5 AZAZAZAZAZ
2 21 0.7 6 AZAZAZAZAZAZ
3 18 0.6 5 ABZABZABZABZABZ
4 16.83 0.56 4 AZAZAZAZ
5 16.08 0.53 4 ABZABZABZABZ
6 10.83 0.36 6 ABZABZABZABZABZABZ

7. Conclusion

We have presented Action Descriptive Strings (ADS) which is a projection
of real measurement results. By this conversation we are able to use existing
motif finding methods for further analyzing a time stream measurement.

We have given methods for finding short term typical patterns in the input
stream and use them for emulating long term activities. Both of these processes
use an algorithm which can score the similarities between two Action
Descriptive Strings. This paper contains an example for adjusting the scoring
values of the ADS scoring algorithm using an artificially created pattern
database.

An example for the application of the Action Descriptive Strings can be
found in [7]. In [7] the author uses the same architecture for describe network
traffic and determine the typical way of how users are using the Internet.

14 P. Megyesi, S. Molnár

Acknowledgements

 The authors would like to thank Géza Szabó, coworker of Ericsson Hungary
Ltd. for providing support for this project.

References

[1] MEME suite: http://meme.sdsc.edu/meme/
[2] Szabó, G., Turányi, Z., Toka, L., Molnár, S., Santos, A.: “Automatic Protocol Signature

Generation Framework for Deep Packet Inspection”, VALUETOOLS 2011, ENS, Cachan,
France, May 16-20, 2011.

[3] Ye, M., Xu, K., Wu, J., and Po, H.: “Autosig-automatically generating signatures for
applications”, in CIT (2)- IEEE Computer Society, 2009, pp. 104–109.

[4] Conrad, E., “Detecting Spam with Genetic Regular Expressions”, http://www.sans.org/
reading_room/whitepapers/email/detecting_spam_with_genetic_regular_expressions_2006.

[5] Glam2 manual: http://meme.sdsc.edu/meme/doc/glam2_man.html.
[6] Glam2Scan manual: http://meme.sdsc.edu/meme/doc/glam2scan_man.html.
[7] Megyesi, P., “Matching Algorithm for Network Traffic Descriptive Strings”, Scientific

Students’ Associations Conference, Faculty of Electrical Engineering and Informatics,
Budapest University of Technology and Economics, Nov 2011.

[8] “Dynamic Programming”, http://www.cs.berkeley.edu/~vazirani/algorithms/chap6.pdf.

