
Available Bandwidth Measurement in Software Defined
Networks

Péter Megyesi*, Alessio Botta†‡, Giuseppe Aceto†‡, Antonio Pescapè†‡, Sándor Molnár*
*High Speed Networks Lab., Budapest University of Technology and Economics

†University of Napoli Federico II
‡NM2 SRL (Italy)

*{megyesi, molnar}@tmit.bme.hu, †{a.botta, giuseppe.aceto, pescape}@unina.it

ABSTRACT
Software Defined Networking (SDN) is an emerging paradigm
that is expected to revolutionize computer networks. With
the decoupling of data and control plane and the introduc-
tion of open communication interfaces between layers, SDN
enables programmability over the entire network, promising
rapid innovation in this area. The SDN concept was al-
ready proven to work successfully in cloud and data center
environments thus the proper monitoring of such networks
is already in the focus of the research community. Meth-
ods for measuring Quality of Service (QoS) parameters such
as bandwidth utilization, packet loss, and delay have been
recently introduced in literature, but they lack a solution
for tackling down the question of available bandwidth. In
this paper, we attempt to fill this gap and introduce a novel
mechanism for measuring available bandwidth in SDN net-
works. We take advantage of the SDN architecture and build
an application over the Network Operating System (NOS).
Our application can track the topology of the network and
the bandwidth utilization over the network links, and thus
it is able to calculate the available bandwidth between any
two points in the network. We validate our method using
the popular Mininet network emulation environment and the
widely used NOS called Floodlight. We present results pro-
viding insights into the measurement accuracy and showing
its relationship with the delay in the control network and
the polling frequency.

1. INTRODUCTION
Today computer networks are everywhere. In our everyday
life we are almost always connected to the Internet and, in
most cases, we are also connected in our working hours since
many business-critical applications also need network con-
nection. The different demands of heterogeneous networks
has led to a situation where nowadays IP networks are very
complex to both build and manage. Current network ar-

Publication rights licensed to ACM. ACM acknowledges that this con-
tribution was authored or co-authored by an employee, contractor or
affiliate of a national government. As such, the Government retains a
nonexclusive, royalty-free right to publish or reproduce this article, or
to allow others to do so, for Government purposes only.
SAC 2016,April 04 - 08, 2016, Pisa, Italy

ACM 978-1-4503-3739-7/16/04. . . $15.00
http://dx.doi.org/10.1145/2851613.2851727

chitectures are rigid thus it is especially hard to add new
features to them. Software Defined Networking (SDN) of-
fers a solution for this problem mainly through the following
features: i) data and control planes are decoupled; ii) control
logic is moved out of the network devices (SDN switches) to
an external Network Operating System (also called the SDN
controller); iii) external applications can program the net-
work using the abstraction mechanisms provided by the SDN
controller. The SDN concept has quickly gained significant
focus by the research community after the introduction of
OpenFlow in 2008 [1]. In the last few years there have been
several proposals for monitoring Quality of Service (QoS)
parameters in SDN networks. They mostly tackle the prob-
lems of e.g. bandwidth utilization [2–6], packet loss ratio [6],
packet delay [6,7], and route tracing [8]. On the other hand,
we could not find any paper in literature that deals with
the problem of available bandwidth (ABW) measurement
in SDN. However, ABW measurement can have significant
importance for both service provider and application per-
spectives. Service providers use this parameter for network
management and traffic engineering purposes. Furthermore,
nowadays, video streaming generates the largest portion of
Internet traffic, where ABW measurement techniques play a
significant role in adapting to the current network load. In
general, knowledge about the available bandwidth over the
network would benefit many users and operators of network
applications and infrastructures.

The main contributions of this paper are to present a method
for available bandwidth measurement in Software Defined
Networks, and to discuss the related trade-offs, specific of
this architecture. Taking advantage of the features that
SDN offers, we present a solution for ABW measurement in
three different scenarios: (i) when paths in the network are
out of our control and we want to know the route between
two points and the associated available bandwidth, (ii) when
paths are under our control and we want to find the highest
available bandwidth between two arbitrary points in the net-
work and the associated route, (iii) the same scenario as the
previous one in multipath environment and we want to find
the best possible multipath solution. We also validate our
method on a test environment using the Mininet network
emulation tool [9] and the Floodlight SDN controller [10].
We estimate and discuss the impact of delays in the con-
trol network over the accuracy and relate it with polling
frequency, providing to the best of our knowledge the first
evaluation of this important aspect. The reminder of this

paper is structured as follows. Sec. 2 presents a short back-
ground on Software Defined Networks and the related work.
In Sec. 3 we present our method for measuring available
bandwidth in SDN. Sec. 4 describes the test configuration
we used to validate our method (Sec. 4.1) and the results of
tests (Sec. 4.2). Finally, Sec. 5 ends the paper with conclud-
ing remarks.

2. BACKGROUND AND RELATED WORK
Software Defined Networking gained significant focus after
the introduction of OpenFlow [1]. However, its main con-
cepts root in earlier works in the fields of active networks,
control and data plane separation, and network virtualiza-
tion. In this paper we follow the definition of SDN as pre-
sented in [17], which are based on the following four ele-
ments: (i) Control and data planes are separated from each
other. Network devices no longer have control functionali-
ties, they become simple forwarding elements. (ii) Forward-
ing rules are made based on a set of fields in the packet
headers. This also guarantees unified behavior of networking
elements such as switches, routes or firewalls. (iii) Control
plane is moved to an external entity called the Network Op-
erating System (NOS) or SDN controller. NOS is a software
platform that runs on commodity hardware and can com-
municate the forwarding rules to the switches via open stan-
dards. (iv) Third party applications can program the net-
work over the NOS. The controller must also provide the nec-
essary abstractions and interfaces for serving these applica-
tions. The SDN controller can communicate with the switch
over the control network via the southbound API, where the
most used standard is OpenFlow, and there are also other
proposals, e.g. OVSDB [14], POF [15] or ROFL [16]. For
NOS platform there are many available open software such
as NOX [11], POX [11], Floodlight [10].Moreover, there are
ongoing industrial consortia projects for controller platforms
specialized for data centers, for e.g. OpenDayLight [12] or
OpenStack [13]. SDN applications can program the network
using the northbound API of the NOS. However, these APIs
are specific to the controller thus most of the currently avail-
able SND applications are only able to operate over one NOS
platform. We refer to [17] for a comprehensive taxonomy of
different elements in Software Defined Networking.

In the recent years, there has been several proposals for mon-
itoring Software Defined Networks. FlowSense authors [2]
propose to use only the mandatory OpenFlow messages to
monitor the bandwidth utilization over the network. Al-
though this approach offers bandwidth monitoring with zero
extra load to the network, it has been proven to work in-
accurately under dynamic traffic conditions [4]. Other pa-
pers propose to use the FlowStatsReq message in OpenFlow
to poll the interface and flow counters in the switches for
bandwidth measurement [4–6]. Furthermore, PayLess [4]
and MonSamp [5] offer adaptive sampling algorithms that
can adapt for the current network load. However, their ap-
proaches are conflicting since PayLess suggests to increase
the sampling rate when the traffic load is high (for increasing
the accuracy), whereas MonSamp suggests to decrease the
sampling rate under high load (so the higher the network
load the lower monitoring load should be generated).

OpenNetMon [6] offers a solution for loss and delay moni-

toring as well. For loss measurement, it polls the flow coun-
ters on the ingress and egress switches for a given flow and
calculates the difference. For delay measurement, it uses
the SDN controller to inject probe packets into the network
along a given path and than loop them back to the con-
troller. The tool is able to calculate the delay for the given
path using the round trip time between ingress and egress
switches. Phemius and Bouet [7] use the same approach for
delay measurement, but observe a constant difference be-
tween the measured and reference time values. They also
present a method to calculate this value and calibrate the
delay measurement accordingly. We found that the current
literature lacks a solution for measuring available bandwidth
in SDN. Available bandwidth is an important dynamic char-
acteristic of a network path, being equivalent to the amount
of traffic that can be added to the path without affecting the
other flows that traverse part of it, and independently from
their bandwidth-sharing properties. Such definition tells it
apart from other bandwidth-related metrics such as bulk
transfer capacity and from the maximum achievable through-
put [18]. In traditional networks, available bandwidth esti-
mation techniques are typically classified into active and pas-
sive. Passive techniques use multiple measurement points in
the network to monitor bandwidth utilization, packet loss
ratio, and packet delay. These techniques are very complex
to deploy in traditional networks thus they are rarely used
in practice. Active techniques send probe packets into the
network and analyze how network traversal affected their
spacing/arrival to infer network status. On the basis of the
hypotheses on the analyzed path and on the type of prob-
ing procedure adopted, active ABW estimation techniques
in the literature can be referred to two models: probe gap
and packet rate. Probe gap tools such as Spruce or Trace-
band use packet pairs as probes, and require knowledge of
link capacity. Probe rate tools use multiple series of pack-
ets, injected at different rates, aimed at causing a temporary
congestion. Examples of probe rate tools include PathLoad
and PathChirp. The performance of most of active ABW es-
timation tools currently available is scenario-dependent and
require non-trivial calibration [19, 20]. In our approach we
use a passive technique taking advantage of the NOS in the
architecture of SDN. We use the northbound API to discover
the topology of the network and to monitor the bandwidth
utilization of the links. With this information we calculate
the available bandwidth for any path in the network in any
given time.

Host Server

Virtual Machine

Mininet Network
Emulation

Floodlight
Controller

ABW
Application

Figure 1: The assembled test configuration.

3. MEASURING AVAILABLE BANDWIDTH
IN SDN NETWORKS

In our available bandwidth application we take advantage
of the network abstractions provided by the NOS. Using
the northbound API of the SDN controller we query all the
switches inside the network and the links between them.
Firstly, our application uses this information to build up a
network topology graph G(V,E), where the node set V cor-
responds to the switches and the edge set E corresponds to
the links. In such model, PA→B is the set of all available
paths from A to B, ei is the ith link in the network topol-
ogy graph, ci is the capacity of ei, bi its current bandwidth
load and ai the related available capacity (ai = ci − bi).
Furthermore, we assume that the capacity ci of every link
is known in the network. This is a viable assumption since
the type of every link is known by the NOS, and if any fur-
ther policy limits the bandwidth on a given link the network
operator should have information about it. The application
is also able to measure the current load bi of every link.
For this we use an approach similar to the one previously
presented in [4–6]: we periodically poll the counters in the
SDN switches using the FlowStatsReq OpenFlow message.
We calculate current load bi(t) at time t as

bi(t) =
ni(t)− ni(t− T)

T
. (1)

where ni(t) is the counter value and T is the polling period.
After this step, we calculate the available capacity ai on
every link in the network. Based on the ai values we then
calculate the available bandwidth on a given path P through
the following equation

ABWP = min
ei∈P

ai. (2)

Differently from ABW estimation in traditional networks,
the method we adopt is not affected by estimation error
related to link utilization. The source of error in our case is
mainly related with time: the instant the flow counters are
read on the switch is unknown, as there is no timestamp field
in the OpenFlow spec. In our current implementation, we
approximate such time instant with the arrival time of the
FlowStatsReq message at the controller. This approximation
is directly reflected on the duration of the averaging interval,
and thus on the current load (see Eq.1). We evaluate its
impact empirically in the following section.

Our method is also able to distinguish between three dif-
ferent scenarios and calculate the ABW according to them.
They are the following: ABW on fixed paths. In this sce-
nario the routing policies are fixed. Thus for a given flow,
first we have to find out its route on the network, and then
calculate the available bandwidth using (2).

Our method uses the northbound API of the NOS for this
task, e.g. Floodlight’s REST API provides an interface for
reporting the route of a flow in the network (for any given
header on a given entry point) according to the policies set
up in the controller.

Best available path. In this case we have to find the path
P between two points in the network where the available
bandwidth is the largest. This can be calculated through

Table 1: Configuration hardware and software.

Host CPU Intel Xeon E5-2640 v2 @ 2.00GHz

Host Memory 32 GB

Host OS Ubuntu 14.04, Linux kernel 3.13.0-24

Virtualization VirtualBox 4.3.20

Guest OS1 Ubuntu 14.04 64-bit

VM configuration 4 CPU cores, 2 GB memory

Mininet version 2.2.0

Floodlight version 1.0

S1

S4

S2

S3

10 Mbit 20 Mbit

10 Mbit5 Mbit

10 Mbit

H1

H2

H4

H5

H3

Figure 2: The test topology in Mininet.

the following equation:

ABWA→B = max
P∈PA→B

min
ei∈P

ai. (3)

For solving this equation we use a modified Dijkstra algo-
rithm where the metric of a path is not measured by the
sum of the edge capacities (distances) but by (2). This al-
gorithm also gives the best possible path for the best AWB
solution in O(|E|+|V | log |V |) (like a standard shortest-path
Dijkstra algorithm would do).

Multipath scenario. In this case we can use multiple
paths between two points in the network. We consider this
as an important scenario since the SDN architecture can
easily enable solutions for multipath routing, for e.g. using
MPTCP in the transport layer [21]. In this case we face off a
classical max-flow problem over the network topology graph
G(V,E) which can be solved through the Ford-Fulkerson
Algorithm in O(|E|f) complexity (where f is the maximum
flow in the graph).

4. EXPERIMENTAL RESULTS

4.1 Test Configuration
Fig. 1 presents the schematics of our testbed. We use Mininet
for network emulation and Floodlight [10] as SDN controller.
Mininet is running inside a virtual machine1 on the host
server using VirtualBox. We chose to run Floodlight directly
in the host server since we often faced load issues when we
run it inside the virtual machine. For further reference, we
collected the used hardware and software versions in Tab. 1.

Fig. 2 sketches the network topology we created in Mininet
for our tests. S1, S2, and S3 create a classical Y topology

1Virtual machine image was downloaded from Mininet web-
site: https://github.com/mininet/mininet/wiki/Mininet-
VM-Images

0

2

4

6

8

10

12

14

0 50 100 150 200 250 300 350 400

Th
ro

ug
hp

ut
 [M

bp
s]

Time [s]

Traffic from H1 to H5
Traffic from H3 to H4
ABW with Floodlight
Reference ABW

Delay: m=100ms, σ=5ms; Polling: 1 sec

(a) CBR traffic measurement.

0

2

4

6

8

10

12

0 50 100 150 200 250 300 350 400

Th
ro

ug
hp

ut
 [M

bp
s]

Time [s]

Traffic from H1 to H5
Traffic from H3 to H4
ABW with Floodlight
Reference ABW

Delay: m=100ms, σ=5ms; Polling: 1 sec

(b) VBR traffic measurement.

0

50

100

150

200

0 50 100 150 200 250 300 350 400

Th
ro

ug
hp

ut
 [M

bp
s]

Time [s]

Delay: m=100ms, σ=5ms; Polling: 1 sec
Traffic from H3 to H4
ABW with Floodlight
Reference ABW

(c) Real traffic measurement.

Figure 3: Measuring bandwidth on the link between S2 and S3 and the available bandwidth over the Mininet test network.

which is frequently used as a testbed for testing ABW appli-
cations [19]. The idea is to set up the link between S1 and S2
to serve as the bottleneck link (lowest capacity on the path)
and then use H3 to generate cross traffic on link between
S2 and S3. If this cross traffic is high enough, the bottle-
neck link and the tight link will become different, which is
an important test case for the calculations of current ABW
tools [19]. To realize such scenario, we use TrafficControl to
maximize the bandwidth capacities of the links and also, (in
some scenarios) to add variable delay between the switches
and the Floodlight controller.

The default route policy in Floodlight will not allow to send
any traffic through S4. This enables us to use the feature
in our application which can predict the best possible al-
ternative route even if such route is not the default one. If
the volume of cross traffic from H3 to H4 is larger than 10
Mbps, the alternative route through S4 would provide path
with larger available bandwidth.

Furthermore, we use D-ITG [22–24] for traffic generation,
which was proven to work much reliably than other traffic
generation platforms [25]. Using D-ITG, we were able to
define the following three traffic scenarios:

CBR Traffic. In this scenario we generate three flows with
constant bit rate with the following timing. At the begin-
ning of the measurement, H1 starts to send 4 Mbps of UDP
traffic to H5 for 100 seconds, than the host sleeps for 100
s (generating no traffic) and restarts sending with 8 Mbps
rate. Parallel to this, H3 starts to send 10 Mbps of UDP
traffic to H4 for 100 s after the start of the measurement
until the end. Fig. 3a presents the traffic from H1 to H5
and from H3 to H4, and also the available bandwidth be-
tween H1 and H5. Although the bandwidth measured by
the Floodlight controller is varying due to the variable delay
introduced between the switches and the NOS, in some cases
the measured ABW is constant. This can happen when the
alternative route through S4 provides a better ABW solu-
tion: e.g. in the last 100 s of the measurement, the band-
width between S1 and S2 is 8 Mbps thus the best path is
S1→S4→S3 with 5 Mbps available bandwidth.

VBR Traffic is generated by D-ITG using Pareto distribu-
tion for the inter-departure times of packets. We generated
two flows, one from H1 to H5 and the other one from H3 to
H4. We tested different values of shape and scale parame-
ters and report the most interesting cases in the following.

Fig. 3b plots the traffic from H1 to H5 and from H3 to H4,
and the available bandwidth between H1 to H5. In this case
we used λ = 1.75 as shape parameter for both flows, whereas
for scale parameter we used XH1 = 1ms and XH3 = 0.5ms
for H1 and H3, respectively. As shown, the error of the
ABW measurement is larger than in case of CBR traffic
using frequent polling rates. On the other hand, since the
inter-departure times of packets are identically and indepen-
dently distributed on larger time scales, the traffic becomes
smoother making the error rate similar to CBR results.

Real Traffic. We are able to collect real traffic measure-
ments from the campus network of the Budapest University
of Technology using a Cisco 6500 Layer-3 switch that aggre-
gates the traffic of two buildings and links them to the core
layer of the network. The 10-minute-long trace we used for
this purpose was recorded in Nov 2013 and contains about
12 million packets, 10 GB total data, 3000 individual users
and 170k flows. We extracted the inter-packet times and
packet sizes from the trace and set up D-ITG to send the
same traffic from H3 to H4. Since this traffic rate is much
higher than the one we used for the previous cases, we also
increased the capacity of the links tenfold. Fig. 3c presents
generated traffic and the ABW measurement in this sce-
nario. In this case the throughput also varies in larger time
scales, thus we expect to measure higher ABW error rates
using larger polling frequency.

D-ITG uses logging mechanism which we used for further
reference, tracking of the inter-departure times of packets.
Moreover, hosts are configured with the CPU isolation method
introduced in Mininet HiFi [26], thus they can not interfere
with the traffic generation process of each other.

4.2 Results
As a first step we conducted measurement on the Mininet
environment using a wide range of polling rates and without
adding any delay, thus emulating an ideal case. The first row
of Table 2 reports the mean and the standard deviation of
the measured error values: they represent errors intrinsic
to the measurement setup, due to the fact that it is not
possible to know the timestamp of the counters provided
by the switches in the current OpenFlow spec. However,
we notice that the average error rate with 0.5 sec polling
is under 1%, and the error is further decreasing with the
increase of the polling period. The reason for this decrease is
that with larger polling interval we average on a larger time

0

0.2

0.4

0.6

0.8

1

-4 -2 0 2 4

C
D

F

Relative error [%]

No extra delay
μ=5ms, σ=5ms
μ=10ms, σ=5ms

μ=100ms, σ=25ms
μ=25ms, σ=10ms

(a) Error values for 1 ms polling using different de-
lay.

0

0.2

0.4

0.6

0.8

1

-4 -2 0 2 4

C
D

F

Relative error [%]

0.5 sec polling
1 sec polling
2 sec polling
5 sec polling
10 sec polling

(b) Error values for 25ms delay using different
polling periods.

Figure 4: The CDF of the relative errors of the available
bandwidth measurements using the Floodlight controller
compared to reference values.

scale while the difference in the timestamp approximation
remains the same, thus having a smaller relative effect. If we
consider the minute time scale (not shown in table), where
typically the current ABW tools operate [20], the average
error rate is less than 10−5 which can be considered as very
accurate.

-15

-10

-5

0

5

10

15

0.5 1 2 5 10

E
rr

o
r

[%
]

Polling period [s]

μ=100ms, σ=25ms
μ=25ms, σ=10ms
μ=10ms, σ=5ms
μ=5ms, σ=5ms
No extra delay

Figure 5: Box plot of relative error values for measurements
using real traffic. We plotted the min and max values, the
75% percentile and the average of the absolute values.

Hereafter, we introduce artificial delay between the switches
and the Floodlight controller to investigate its effect over the
error rate. Furthermore, the presented cases correspond to
the real measurements since the results were quantitatively
very similar in the other two scenarios. Fig. 4 shows the
CDF of the error for different delay values using frequent
polling rates. In Fig. 4a we fixed the polling period to 1
s and used different delay values between the switches and
the Floodlight controller. In details, we added delay values
following a normal distribution, with mean values of 5 ms,
10 ms, 25 ms and 100 ms and standard deviation of 5 ms, 5
ms, 10 ms and 25 ms, respectively. Here, one can investigate
the effect of monitoring packet delay on the error rate of
the ABW measurement. Interestingly, even with very large
delay values (e.g. mean value of 100 ms) the error is usually
smaller than 4% using 1 sec polling period. Using smaller
delay setups the resulting curves are close to each other.

In Fig. 4b we show only one delay value (25 ms mean with 5
ms standard deviation) and used the following polling rates
to calculate the available bandwidth: 0.5 s, 1 s, 2 s, 5 sec and
10 sec. The results confirm that increasing the polling period
the measurement error decreases since the uncertainty on

Table 2: Error rate of ABW measurements using real traffic replayed by D-ITG.

Polling period in seconds

0.5 1 2 5 10

µ σ µ σ µ σ µ σ µ σ

S
w

it
ch

es
→

N
O

S
d

el
a
y

no
0.72% 0.94% 0.39% 0.51% 0.19% 0.23% 0.09% 0.11% 0.05% 0.06%

delay

µ = 5ms
1.29% 1.62% 0.6% 0.75% 0.3% 0.37% 0.13% 0.16% 0.06% 0.07%

σ = 5ms

µ = 10ms
1.34% 1.67% 0.73% 0.93% 0.36% 0.45% 0.19% 0.28% 0.07% 0.09%

σ = 5ms

µ = 25ms
2.5% 3.11% 1.12% 1.43% 0.62% 0.78% 0.24% 0.29% 0.14% 0.16%

σ = 10ms

µ = 100ms
5.6% 7.04% 2.28% 3.59% 1.47% 1.85% 0.54% 0.66% 0.3% 0.37%

σ = 25ms

the time remains the same while the measurement interval
increases, thus the relative effect of delay will be smaller. As
a consequence, increasing the polling period we can achieve
more precise ABW values in case we do not need very fre-
quent results. This leads to the conclusion that the proper
value for polling rate and maximum delay acceptable is a
function of the application that is in need of the ABW es-
timation. Some applications (e.g. for streaming server se-
lection) may require infrequent but accurate estimations.
Others (e.g. for routing) may require frequent estimation,
tolerating a lower accuracy.

Tab. 2 summarizes the mean and the standard deviation of
the measurement result in the most interesting cases. In-
terestingly, when the standard deviation of the delay is set
to 5 ms the resulting error values for 5 ms and 10 ms mean
delay are really close to each other (2nd and 3rd rows in
Tab 2). This suggest that the variance of the delay has larger
impact on the measurement error. We will investigate this
phenomenon in our future work. On the other hand, increas-
ing the polling period decreases the measurement error. For
further reference we also created a box plot based on these
result in Fig. 5. Here we plotted the min and max error
values along with the quartiles, and we also marked the av-
erage error rate of the absolute values. Fig. 5 and Tab. 2
clearly show the trade-off constrains between the error rate,
the polling frequency, and the monitoring packet delay. Ap-
plications working with SDN networks and in need of ABW
estimations can be properly devised looking at these results.

5. CONCLUSION
In this paper we presented for the first time in literature an
approach to measure end-to-end available bandwidth (ABW)
in Software Defined Networks (SDN). Our proposal uses the
Network Operating System (NOS) to generate a graph rep-
resentation of the network topology and then uses Open-
Flow messages to track the bandwidth utilization of every
link in the network. Based on this information, it is able
to calculate the ABW on every path in the network. We
implemented and validated our application by means of a
testbed using Mininet for network emulation and Flood-
light for SDN controller. We reported results obtained in
different network configurations, with different traffic types
(CBR, VBR, and real traffic), and with different random de-
lays between the switches and the controller (to reproduce
different possible SDN deployments). Our results show that
our approach provides accurate results if compared with the
ground truth. These results also constitute a reference for
ABW applications willing to operate in SDN environments,
which require a proper trade-off between accuracy, polling
rate, and network delay constrains. In our ongoing work
we are investigating the possible impact of the specific im-
plementation of the NOS on the accuracy and timeliness
of estimations, as well as applications of our technique to
hybrid scenarios mixing SDN and traditional networks.

Acknowledgment
This work is partially funded by the MIUR in the context
of Art. 11 DM 593/2000 for NM2 SRL.

6. REFERENCES
[1] N. McKeown et al. Openflow: Enabling innovation in

campus networks. SIGCOMM Computer
Communnication Review, 38(2):69–74, Mar. 2008.

[2] C. Yu, C. Lumezanu, Y. Zhang, V. Singh, G. Jiang,
and H. Madhyastha. Flowsense: Monitoring network
utilization with zero measurement cost. In Passive and
Active Measurement, volume 7799 of Lecture Notes in
Computer Science, pages 31–41. 2013.

[3] M. Jarschel, T. Zinner, T. Hohn, and P. Tran-Gia. On
the accuracy of leveraging SDN for passive network
measurements. In Australasian Telecommunication
Networks and Applications Conference 2013 (ATNAC
’13), pages 41–46, Nov 2013.

[4] S. Chowdhury, M. Bari, R. Ahmed, and R. Boutaba.
Payless: A low cost network monitoring framework for
software defined networks. In Network Operations and
Management Symposium, pages 1–9, May 2014.

[5] D. Raumer, L. Schwaighofer, and G. Carle. Monsamp:
A distributed sdn application for qos monitoring. In
Federated Conference on Computer Science and
Information Systems (FedCSIS), Sept. 2014.

[6] N. van Adrichem, C. Doerr, and F. Kuipers.
Opennetmon: Network monitoring in openflow
software-defined networks. In Network Operations and
Management Symposium (NOMS), 2014 IEEE, pages
1–8, May 2014.

[7] K. Phemius and M. Bouet. ”Monitoring latency with
openflow”. In 9th International Conference on Network
and Service Management (CNSM), pages 122–125,
2013.

[8] K. Agarwal, E. Rozner, C. Dixon, and J. Carter. Sdn
traceroute: Tracing sdn forwarding without changing
network behavior. In Proceedings of the Third
Workshop on Hot Topics in Software Defined
Networking, pages 145–150, 2014.

[9] B. Lantz et al. A network in a laptop: Rapid
prototyping for software-defined networks. In
Proceedings of the 9th ACM SIGCOMM Workshop on
Hot Topics in Networks, pages 19:1–19:6, 2010.

[10] Floodlight. retrieved: Sept., 2015.
[11] NOX and POX SDN Controllers. retrieved: Sept.,

2015.
[12] OpenDayLight Project. retrieved: Sept., 2015.
[13] OpenStack Project. retrieved: Sept., 2015.
[14] B. Pfaff and B. Davie. The Open vSwitch Database

Management Protocol, RFC7047.
https://tools.ietf.org/html/rfc7047.

[15] H. Song. Protocol-oblivious forwarding: Unleash the
power of sdn through a future-proof forwarding plane.
In Proc. of the Second ACM SIGCOMM Workshop on
Hot Topics in Software Defined Networking, HotSDN
’13, pages 127–132, 2013.

[16] M. Sune, V. Alvarez, T. Jungel, U. Toseef, and
K. Pentikousis. An openflow implementation for
network processors. In Third European Workshop on
Software Defined Networks (EWSDN), pages 123–124,
Sept 2014.

[17] D. Kreutz, F. Ramos, P. Esteves Verissimo,
C. Esteve Rothenberg, S. Azodolmolky, and S. Uhlig.
Software-defined networking: A comprehensive survey.
Proceedings of the IEEE, 103(1):14–76, Jan 2015.

[18] R. Prasad, C. Dovrolis, M. Murray, and K. Claffy.
Bandwidth estimation: metrics, measurement
techniques, and tools. Network, IEEE, 17(6):27–35,
2003.

[19] A. Botta, A. Davy, B. Meskill, and G. Aceto. Active
techniques for available bandwidth estimation:
Comparison and application. In Data Traffic
Monitoring and Analysis, volume 7754 of Lecture

Notes in Computer Science, pages 28–43. 2013.
[20] G. Aceto, A. Botta, A. Pescapè, and M. D’Arienzo.

Unified architecture for network measurement: The
case of available bandwidth. J. Network and Computer
Applications, 35(5):1402–1414, 2012.

[21] B. Sonkoly et al. SDN based testbeds for evaluating
and promoting multipath tcp. In Proc. IEEE
International Conference on Communications (ICC
2014), pages 3044–3050, June 2014.

[22] S. Avallone, A. Pescapè, and G. Ventre. Distributed
internet traffic generator (d-itg): analysis and
experimentation over heterogeneous networks. In
International Conference on Network Protocols,
Atlanta, Georgia, 2003.

[23] D. Emma, A. Pescapè, and G. Ventre. Analysis and
experimentation of an open distributed platform for
synthetic traffic generation. In Proc. FTDCS 2004.,
pages 277–283, May 2004.

[24] A. Botta, A. Dainotti, and A. Pescapè. A Tool for the
Generation of Realistic Network Workload for
Emerging Networking Scenarios. Computer Networks,
56(15):3531 – 3547, 2012.

[25] A. Botta, A. Dainotti, and A. Pescapè. Do you trust
your software-based traffic generator? IEEE
Communications Magazine, 48(9):158–165, Sept 2010.

[26] N. Handigol, B. Heller, V. Jeyakumar, B. Lantz, and
N. McKeown. Reproducible network experiments
using container-based emulation. In Proc. of the 8th
International Conference on Emerging Networking
Experiments and Technologies (CoNEXT ’12), pages
253–264, 2012.

