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Zoltán Móczár, Sándor Molnár
High Speed Networks Laboratory, Department of Telecommunications and Media Informatics

Budapest University of Technology and Economics, Budapest, Hungary
E-mail: {moczar, molnar}@tmit.bme.hu

Abstract—In the recent years, a significant research effort
has been devoted to the development of bandwidth estimation
techniques and tools due to the broad range of possible appli-
cations. The vast majority of bandwidth estimation algorithms
are designed and optimized for wired networks. Therefore,
these solutions not only provide inaccurate results in wireless
environments but also rely on some information usually not
known in advance or produce a severe additional load on the
network. Specifically, in mobile networks the continuously vary-
ing characteristics of radio links make it an extreme challenge
to estimate the currently available bandwidth. In this paper we
present a bandwidth estimation method worked out for mobile
networks, which models the dynamics of the bottleneck queue and
identifies its busy periods. Our algorithm can estimate the unused
bandwidth by exploiting the user-generated downlink network
traffic with negligible extra load. The operation of the algorithm
is demonstrated on real traffic traces captured by a mobile device
in a 3G network.

I. INTRODUCTION

Bandwidth estimation has received considerable attention
in the last decades due to its key role in many areas of
networking such as transport layer protocols, admission con-
trol, network management and multimedia streaming, just to
mention a few. For example, transport protocols like TCP
(Transmission Control Protocol) can use available bandwidth
information to properly adjust the transmission rate, making
possible the efficient utilization of network resources without
causing congestion. Bandwidth estimation results also help
network operators to identify the change of user demands
by monitoring the network utilization and to plan capacity
upgrades.

In this paper we present a bandwidth estimation algorithm
for mobile networks with the following capabilities:

no specific information about the network is needed
(e.g. bottleneck link capacity);

the bandwidth estimation algorithm runs only when
the user is active (e.g. browsing the web), and a probe
traffic is injected into the user-generated downlink
network traffic;

since the probe traffic consists of a sequence of small-
sized packets, the estimation scheme causes a very low
additional network load;

by modeling the dynamics of the bottleneck queue and
identifying the busy periods it can provide reasonable
accuracy in spite of quick and high variations often
seen in mobile data networks.

The paper is structured as follows. First, in Section II
we discuss the notion of bandwidth together with its most
important interpretations, and give a survey about the different
models and tools worked out to estimate these measures. Sec-
tion III introduces our bandwidth estimation scheme designed
for mobile networks with detailed description. The operation
of the algorithm is demonstrated in Section IV on real traffic
traces captured in a 3G mobile network. Finally, Section V
concludes the paper.

II. RELATED WORK

Traditionally, bandwidth is used as a measure quantifying
the data transfer rate that a network link or path can provide.
However, it is important to distinguish between the different
meanings of the term bandwidth. In the literature there are
three frequently used interpretations: the maximum possible
bandwidth that a link or path can deliver (capacity), the maxi-
mum unused bandwidth at a link or path (available bandwidth),
and the maximum throughput can be obtained by a single TCP
connection (bulk transfer capacity).

In the last decade, a plenty of bandwidth estimation al-
gorithms and tools have been developed in order to meet the
increasing demands [1], [2]. The design of efficient bandwidth
estimation methods is not easy because some contradicting
requirements are need to be fulfilled. An ideal algorithm
would provide high estimation accuracy, fast operation and
low overhead. However, in practice not all these features are
equally relevant, and it highly depends on the application
area which ones have to be optimized. For example, in case
of transport protocols low overhead and low estimation time
are required, but they do not need high accuracy for proper
operation, a rough estimate is acceptable [2].

Available bandwidth estimation (ABwE) is one of the
most challenging tasks in the context of bandwidth estimation
methods addressed in many papers [1], [3]. The majority of
ABwE techniques send probe packets to the receiver utilized
in the estimation process and are based on two basic models:
the Probe Gap Model (PGM) and the Probe Rate Model
(PRM). PGM exploits the information about gap dispersion
between two consecutive probe packets at the receiver. The gap
dispersion has a strong correlation with the amount of cross-
traffic in the tight link, that is, with the link having the lowest
available bandwidth. The methods using PGM (e.g. Abing,
IGI, Spruce) first determine the amount of cross-traffic, and
then subtract the result from the known capacity of the tight
link. PRM tools (e.g. Pathload, pathChirp, DietTopp) are based
on the idea of self-induced congestion where probe packets
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Fig. 1. Operation of the bandwidth estimation scheme

are sent at increasing rates to the receiver, and the available
bandwidth is determined by studying the change of the queuing
delay and measuring the output rate.

The issue of estimating the bulk transfer capacity (BTC)
is investigated only in a few papers. BTC is defined as the
maximum throughput can be obtained by a single TCP connec-
tion [4]. For example, Allman introduces a BTC measurement
tool in [5] and presents its empirical evaluation together with
the investigation of reliability. Gardner et al. propose a novel
method for estimating the BTC of an IPv6 network path,
conducted from a single point to a non-instrumented target [6].
In fact, BTC is very hard to measure since it can be affected by
several factors such as the type of cross-traffic, the number of
competing TCP connections, the buffer space in routers along
the network path and queuing policies [1].

Unfortunately, the vast majority of bandwidth estimation
tools discussed above are designed for wired networks, there-
fore they cannot provide accurate results and short convergence
time in wireless environments, especially in mobile networks.
Cellular networks bring a lot of additional challenges, which
make bandwidth estimation more difficult compared to wired
networks. The bandwidth available by the user is continuously
varying due to the changing network conditions such as the
location and motion speed of the mobile device, the number
of users in the current cell, the signal strength, handovers and
many other effects [7]. Negreira et al. discuss the issues of end-
to-end measurements over GPRS-EDGE networks in [8] and
present a new methodology capable of providing acceptable
results in such environments. The authors of [9] defines a so-
called in-context network performance measure to express the
user experience when they are interacting with their mobile
devices. They carried out a large-scale measurement study
using data collected across cell subscribers and controlled
experiments. They pointed out that, to obtain accurate results,
performance measurements must be conducted on devices,
which are actively used during the measurement time frame,
currently exchanging limited user traffic and can be found in
the same position and environment since the last usage of the
device. Bergfeldt et al. performed an evaluation of bandwidth
measurement tools over a high-speed downlink UMTS channel
by running experiments in a commercial mobile network [10].

In this work they investigated several test scenarios by using
various types of cross-traffic and bottlenecks. The results
showed that algorithms can significantly under- or overestimate
the available bandwidth under certain network conditions.

III. BANDWIDTH ESTIMATION ALGORITHM
FOR MOBILE NETWORKS

In this section we introduce our bandwidth estimation
scheme designed for mobile networks. First, the main concept
is presented by a high-level description, then the operating
mechanism of the algorithm is given in detail.

A. Basic Idea

Our bandwidth estimation method is designed to estimate
the unused bandwidth available on a mobile device by exploit-
ing the user-generated downlink network traffic with negligible
extra load. Figure 1 shows the main concept in an architectural
view with the main hardware and software components.

The bandwidth estimation scheme works as follows. The
downlink network traffic generated by the user is continuously
monitored on the mobile device. When the type and amount
of traffic are considered as sufficient to initiate the bandwidth
estimation process, the mobile device sends a request signal
to the test server. The test server starts to generate a sequence
of test packets with a specified frequency and sends it towards
the mobile device. The generation of test packets at the test
server is finished if a stop request is received from the mobile
device or a timeout is occurred. By this way test packets are
injected into the user-generated downlink traffic. Our algorithm
running on the mobile device simply estimates the unused
bandwidth by dividing the amount of traffic observed between
two test packets by the elapsed time. However, it can be highly
inaccurate, therefore the key step is to determine which periods
of the data flow are eligible for performing estimation. The
algorithm utilizes two basic information to achieve this: (1) the
fixed test packet generation interval and (2) the measured test
packet inter-arrival times (IAT). Based on these information
our method models the queue dynamics of the bottleneck
link (assumed to be the wireless connection between the base
station and the mobile device) and identify its busy periods in
order to enhance the estimation accuracy.



B. Algorithm Description

The most challenging task is to capture the busy periods of
the bottleneck queue. In other words, we find those intervals
in the downlink traffic trace when the queue is not empty,
and hence, enqueued packets will be serviced at maximal rate.
The pseudocode of the algorithm can be seen in Algorithm 1
where d, th, and gap denote the delay between the generation
of test packets, the positive threshold used for busy period
detection and the highest IAT can be accepted in the queue
modeling phase, respectively. Furthermore, ti is the arrival time
of the ith test packet captured at the mobile device, ti+1 is the
arrival time of the (i+1)th test packet and n is the number of
test packets in the traffic trace. The boolean variables m and
b indicate if the queue modeling and busy period detection
phases are active.

Algorithm 1: Bandwidth estimation algorithm
input : trace, d, th, gap
output: bw

1 m← false; b← false;
2 for i← 1 to n− 1 do
3 if ti+1 − ti = d and m = false then
4 q ← 0;
5 m← true;
6 else if ti+1 − ti > gap and m = true then
7 m← false;
8 b← false;
9 else if m = true then

10 q ← ti+1 − ti − d+ q;
11 if q ≥ th and b = false then
12 s← ti;
13 b← true;
14 else if q < th and b = true then
15 rates← Add

(
amount of traffic in [s,ti]

ti−s

)
;

16 b← false;
17 end
18 end
19 end
20 return bw ← Mean(rates);

In the followings we discuss each main step performed by
our bandwidth estimation scheme:

Step 1 (initialization). As a first step, the algorithm
detects whether the queue is empty by finding an IAT
of two successive test packet arrivals, which is equal
to the test packet generation interval (ti − ti−1 = d).
In ideal case, it means that the ith test packet will
experience zero waiting time (qi = 0).

Step 2 (queue dynamics modeling). The algorithm
starts to model the queue dynamics and computes
the current waiting time by determining the difference
between the IAT (ti− ti−1) and the generation interval
(d). In the following time slots current waiting time
comes from the sum of this difference and the waiting
time calculated in the previous slot (qi = ti − ti−1 −
d+qi−1). In theory the result should be a non-negative
value, but in practice there are some factors (e.g. jitter),
which can turn it to negative.

Step 3 (busy period detection). Ideally, when the
cumulative waiting time (referred to as queue length)
becomes greater than zero, we could say that the queue
is busy. However, to make the detection more accurate
in realistic environments, the algorithm uses a positive
threshold (th) instead of zero as a reference point to
identify the start of the busy period (see Figure 2). If
the waiting time drops below this threshold, it indicates
the end of the busy period. Another effect which can
lead to the termination of the busy period detection
and the queue modeling phase is observing a high
test packet IAT probably not due to the impact of
user-generated traffic. We call these IATs as outliers,
and the outlier detection can also be controlled by a
threshold parameter (gap). When the queue modeling
phase ends, the algorithm finds the next empty state of
the queue to restart the modeling process.

Step 4 (bandwidth estimation). Once the busy periods
are captured the algorithm performs bandwidth esti-
mation by computing the fraction of the amount of
downlink traffic observed between the first and last test
packets of the busy period and the elapsed time. We
note that, depending on the length of the traffic sample,
our method may identify several busy periods. The
final result will be the mean of the estimated values.
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Fig. 2. Busy period detection by modeling the queue dynamics

IV. EVALUATION RESULTS

To evaluate the operation of our heuristic bandwidth esti-
mation scheme we conducted several measurement scenarios in
a controlled environment. In this section we show an example
from our test results obtained on a real traffic trace captured in
a 3G mobile network. As discussed in Section III the algorithm
was designed to estimate the currently available bandwidth
by exploiting the user-generated downlink traffic. To examine
typical user behaviors, we used a multi-functional network
traffic emulator presented in [11]. This tool can accurately
simulate different types of user activity such as web browsing,
or the use of video streaming services (e.g. YouTube) and
social networking applications (e.g. Facebook).

The measurements were performed on a smartphone with
HSDPA support and Android operating system where we
generated realistic web traffic based on user behavior em-
ulation. The test packets were sent periodically from the
server towards the mobile device over UDP with an inter-
arrival time of 100 ms. We measured the IAT distribution at
the receiver with no cross-traffic and observed that the time



spaces between consecutive UDP packets were only slightly
changed (in the order of few milliseconds). However, to take
this effect into account, mostly caused by the variation of
signal quality, a positive busy threshold was applied in the
queue modeling phase according to Algorithm 1. In order to
mitigate the network load induced by the test traffic, small-
sized (i.e. 60 bytes) UDP packets were injected into the user’s
downlink stream. At the mobile device we captured 60 minutes
long packet traces for evaluation purposes and carried out an
extensive analysis by investigating many different aspects.

The following results present the traffic intensity for the
measured and estimated time series, the busy period statistics,
as well as the histograms and distribution functions of the
download rate. To identify the busy periods of the bottleneck
queue we used a positive threshold of 50, and for outlier
detection we defined the maximum acceptable inter-arrival
time as 1000 ms. During our evaluation tests we experimented
with different busy thresholds and concluded that a positive
value has to be applied in order to filter out the impact of
some undesirable phenomena like jitter. However, in general,
above a certain threshold we get very similar estimation results
including the distribution and mean of the estimated bandwidth
values (Figure 3a), but a higher value leads to a smaller
number of detected busy periods over a given time interval
(Figure 3b). To obtain the best outcome it is practical to
choose the lowest possible threshold which otherwise can be
considered as sufficient to avoid the issues mentioned above.
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(a) Mean estimated available bandwidth
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(b) Number of busy period samples

Fig. 3. The choice of busy threshold

Figure 4 shows the measured downlink traffic intensity
in one second resolution and the estimated available band-
width calculated for the busy periods. Web traffic is eligible
to demonstrate the capabilities of our bandwidth estimation
method since typical users frequently check their emails and
favorite social networking sites, or simply browse the web.
Our main goal was to design such an algorithm, which can
give an estimate for the unused bandwidth even if the user
generates only a small amount of network traffic, for example,
by web browsing. The figure indicates that the downlink traffic
highly fluctuates due to the characteristics of user activity,

but we can identify many intervals when a page load utilizes
the instantaneous available bandwidth. This means that during
several periods of time the bottleneck queue is busy, or in
other words, it works at the maximum service rate. The figure
depicts the estimated bandwidth calculated for these busy
periods. We emphasize that it is really hard to give an accurate
estimation, because in a mobile network available bandwidth
is continuously changing and affected by many conditions like
motion speed, the number of users in the current cell, signal
strength, handovers, and so on [7], [8]. In spite of this fact,
one can see that the busy periods identified by our heuristic
algorithm covers well the highest download rates offered by
the network.
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Figure 5 presents the relative frequencies of busy period
lengths. The results clearly show that busy periods are quite
short in case of web traffic. Specifically, almost 50% and
75% of all captured busy periods are shorter than half and
one second, respectively. Web browsing typically results in
bursty traffic since users spend at least a few seconds on
a page before proceeding. Nevertheless, the length of the
downloading periods is still sufficient to calculate proper
bandwidth estimates.

0 0.5 1 1.5 2 2.5 3 3.5 4
0

5

10

15

20

Busy period length [s]

R
e

la
ti
v
e

 f
re

q
u

e
n

c
y
 [
%

]

Fig. 5. Busy period statistics

Figure 6 and Figure 7 depict the histogram and the cu-
mulative distribution function of the measured download rate
and the estimated available bandwidth, respectively. Looking at
Figure 6 we can find low download rates much more frequent
compared to high rates in the measured packet trace. This is
due to the phenomenon discussed earlier in the paper, namely,
the maximum bandwidth is utilized only in the cases of traffic
bursts, which are separated by idle periods. For example,
more than 70% of transmission rates fall below 0.5 Mbps,
because once a page is loaded no further network traffic is
usually generated or only small amount of data is need to be
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Fig. 6. Measured rate characteristics

exchanged (e.g. for online advertisements). Our purpose was
to capture those intervals when downloading consumes the
available bandwidth. We ran 100 rounds of the widely used
Speedtest [12] on the mobile device with half minute breaks
before and after the one hour long measurement period. The
perceived available downlink bandwidth was between 1.6 and
4.2 Mbps in accordance with our estimation results calculated
for the busy periods, see Figure 7a. Furthermore, the mean
bandwidth provided by Speedtest was 3.1 Mbps, which is also
very close to our estimate of 3 Mbps (Figure 3a). As pointed
out in the discussion of Figure 5 busy periods are short in
time. Moreover, Figure 7b suggests that web traffic originated
from a typical smartphone user contains small number of
busy periods, hence it is crucial how accurately the detection
method can capture them. While each estimated bandwidth
value exceeds 1.7 Mbps, about 85% of measured rates are
below this limit (Figure 6b), accordingly, do not fall into any
of the identified busy periods.

V. CONCLUSION

Bandwidth estimation in cellular networks is challenging
due to the nature of radio communication. Currently available
bandwidth is a continuously changing metric affected by
numerous environmental factors. In this paper we proposed a
heuristic approach, which can exploit the user-generated traffic
and is capable of modeling the dynamics of the bottleneck
queue and capturing its busy periods. We demonstrated the
operability of our algorithm on a packet trace gathered in a
3G mobile network by using a realistic traffic emulator. It has
been found that busy periods can be relatively short, but the
presented method is able to capture them with high reliability.
The results suggest that proper identification of busy periods
makes it possible to estimate the available bandwidth.
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