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Abstract

The bursty nature of tra�c over many time scales is one of the most chal-

lenging characteristics of high speed networks. In this paper we deal with the

generalized peakedness as a promising candidate measure of this poorly under-

stood phenomenon. An extension of the framework of the theory of generalized

peakedness in discrete time with the applications for the most important traf-

�c models are developed and the results are demonstrated in the paper. A

new model �tting technique is also given in this framework with examples.

Finally, the engineering aspects of the measurement of peakedness and appli-

cations for various real tra�c (MPEG video, aggregated ATM, Ethernet) are

presented.

1 INTRODUCTION

An important experience from recent measurement studies (including Ether-

net, ATM LAN/WAN networks [7, 14, 16]) regarding the nature of broadband

tra�c is that tra�c exhibits bursty properties over many time scales.

One of the key concepts for capturing the bursty character of tra�c is self-

similarity which resulted in active research on fractal characterization [7, 14].

So far it is not clear how successfully we can utilise self-similarity from a

practical tra�c engineering point of view but one thing is for sure: burstiness

seems to be the most important yet poorly understood characteristic of tra�c

in high-speed networks. Our work is motivated by this need. In this paper we

focus on peakedness as one of the most promising candidate measures of tra�c

burstiness.

The simplest burstiness measures take only the �rst-order properties of

the tra�c into account. A set of candidates are the moments of the inter-

arrival time distribution. In practice the peak to mean ratio and the squared

coe�cient of variation are the most frequently used �rst-order measures [13,

15].

Measures expressing second-order properties of the tra�c are more com-

plex. The autocorrelation function, the indices of dispersion [4, 18] and the

generalized peakedness [2, 3] are the most well known measures from this

class.
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Moreover, there are a number of burstiness measures based on di�erent con-

cepts, e.g. we can use burst length measures [15, 19] or parameters of a leaky

bucket for burstiness characterization [12]. By the concept of self-similarity

the Hurst parameter and other fractal parameters are also candidates for

burstiness measures [7, 14].

In this paper we review the theory of generalized peakedness and further

develop the basic concept by introducing the generalized peakedness in dis-

crete time. The advantage of this approach is that it allows us to apply the

general framework of peakedness for tra�c engineering. We provide the com-

putation of peakedness for a number of important discrete time models in-

cluding the Markov modulated batch Bernoulli process and the batch renewal

process. The relationship between IDC and peakedness is also presented. We

discuss the challenges of measuring peakedness in practice. Moreover, we show

a technique how Markov modulated tra�c models can be �tted to a measured

peakedness curve. Finally, the practical applicability of peakedness and our

modeling technique are demonstrated by examples based on measured MPEG

video, aggregated ATM and Ethernet tra�c.

2 PEAKEDNESS MEASURES

Peakedness of a tra�c stream has been found a useful characterization tool

in blocking approximations and in trunking theory [5]. It has been de�ned

as the variance to mean ratio of the number of busy servers in an in�nite

hypothetical group of servers to which the tra�c is o�ered, where the service

times of the servers are independent and exponentially distributed with a

common parameter.

2.1 Generalized peakedness

Eckberg [2] extended this de�nition by allowing arbitrary service time distri-

bution and de�ned generalized peakedness as a functional which maps holding

time distributions into peakedness values. For a given complementary holding

time distribution F

c

(x) = P fholding time > xg, Eckberg de�nes the peaked-

ness functional zfF

c

g as the variance to mean ratio of the number of busy

servers in a hypothetical in�nite group of servers with independent holding

times distributed according to F

c

. The general de�nition provides a way to

characterize the variability of an arrival stream with respect to a given service

system.

Let us have a stationary arrival process S in continuous time with counting

function N(t) = the number of arrivals in (0; t] for t � 0. The mean arrival

intensity is denoted by m = E fN(t)g =t, which is independent of t due to the

stationarity of S.

Arrivals are allowed to come in batches of random size B. We de�ne the
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batchiness parameter as b = E

�

B

2

	

=EfBg which can be shown to be the

mean size of a batch that an arbitrary arrival �nds itself in. The di�erential

process [1] �N(t) is de�ned for a �xed �t as the number of arrivals in (t; t+

�t], that is, N(t+�t)�N(t). We de�ne the covariance density of the arrival

process k(s) for s > 0 as the covariance of the di�erential process as �t goes

to zero: k(s) = lim

�t!0

Covf�N(t);�N(t+s)g

(�t)

2

which is independent of t due to

the stationarity of S. For s < 0 we let k(s) = k(�s).

We o�er the arrival process S to an in�nite server group where the service

times are independent and have a complementary holding time distribution

of F

c

(x) (x � 0; for x < 0, we de�ne F

c

(x) = 0), mean holding time of

1=� =

R

1

�1

F

c

(x)dx where � is the service rate, and �nally the autocorrelation

of F

c

is �

F

c

(x) =

R

1

�1

F

c

(s)F

c

(s+ x)ds.

Denoting the number of busy servers at time t by L(t), the generalized

peakedness functional is de�ned as

zfF

c

g =

Var fL(t)g

E fL(t)g

: (1)

If the arrival stream is de�ned for the whole time axis (�1;1), it is indepen-

dent of t due to the stationarity of S. In practice, we never have an arrival pro-

cess for an in�nitely long time; in this case, we have to de�ne the peakedness

for a t which is large enough for the initial transient period in the service sys-

tem to be negligible. (More precisely, zfF

c

g = lim

t!1

Var fL(t)g=E fL(t)g.)

With the notation introduced above, the peakedness of the arrival stream

can be expressed in terms of the covariance density function as [2]

zfF

c

g = 1 +

�

m

Z

1

�1

(k(s)�m�(s))�

F

c

(s)ds (2)

where �(s) is the Dirac delta function.

The important case of exponential service time simpli�es to

z

exp

(�) =

b+ 1

2

+

1

m

k

�

(�) (3)

where k

�

(�) =

R

1

0+

k(s)e

��s

ds, the Laplace transform of the covariance den-

sity function. Here we have the peakedness of a given arrival stream as a

function of the service rate �.

It is shown [2] (and is suggested by eq. (3)) that the peakedness function

z

exp

(�) together with m determines k(s) and therefore the pair (z

exp

(�);m)

is a complete second order characterization of the arrival process.

The peakedness function z

exp

(�) can be used to compute the peakedness

functional for a large class of holding time distributions as shown in [2]. The

method is elaborated in [11] to give the peakedness functional for Coxian
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holding time distributions. The importance of Coxian holding times lies in the

fact that any holding time distribution can be approximated with arbitrary

accuracy by Coxian distributions. Eckberg also investigated the application of

generalized peakedness in delay systems [3]. Eckberg's de�nition of generalized

peakedness for point processes has been extended in [8, 9] to allow 
uid 
ow

models given by a rate function.

2.2 Peakedness in discrete time

In order to use the peakedness measures in a B-ISDN framework, we now

extend the peakedness concept for discrete time arrival streams.

We use the following notation: w[i] is the number of arrivals at epoch i,

where i = : : :�1; 0; 1; : : :. We assume the stationarity of w[i]. The �rst and

second moments of w[t] (independent of t) are denoted by m

1

and m

2

. The

covariance density of continuous time is replaced here by the autocovariance

function k[s] = Cov fw[i]; w[i+ s]g = k[�s]. (It is seen that k[0] = m

2

�m

2

1

.)

The service time random variable T is also discrete and has the distribution

t[1]; t[2]; : : : on positive integers. (It cannot take on zero value.) � = 1=EfTg is

again the service rate, and it is easily shown that 1=� = E fTg =

P

1

s=�1

F

c

[s]

where F

c

[x] is the complementary holding time distribution function: F

c

[x] =

P

1

u=x+1

t[u] = P fT > xg if x � 0 and F

c

[x] = 0 if x < 0. The autocorrelation

function is now �

F

c

[x] =

P

1

s=�1

F

c

[s]F

c

[s + x]. It is seen that �

F

c

[0] =

P

1

s=�1

(F

c

)

2

[s].

The tra�c is o�ered to an in�nite group of servers with independent iden-

tically distributed service times determined by F

c

[x]. Each arrival takes a

separate server. The peakedness of the arrival stream is de�ned as the vari-

ance to mean ratio of the number of busy servers in the in�nite server group:

zfF

c

g =

Var fL[t]g

E fL[t]g

(4)

where L[t] is the number of busy servers at time epoch t.

An important modi�cation of the de�nition is to let the service time depend

on the arrival epoch only (have a common service time for all w[t] arrivals at

epoch t). We call (in accordance with [9]) the peakedness value de�ned in this

way the modi�ed peakedness ~zfF

c

g. As we have shown [10],

~zfF

c

g � zfF

c

g =

�

m

2

m

1

� 1

�

(1� �

F

c

[0]�): (5)

that is, their di�erence is constant (cf. (35) in [9]). The �rst factor in the

di�erence is zero if and only if the arrival stream has no simultaneous ar-
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rivals, the second factor is zero if and only if the holding time distribution is

deterministic.

The importance of this modi�ed de�nition lies in the fact that it gives a

way to handle a whole batch of arrivals together, which can save a lot of

computational e�ort in the case of measuring the peakedness for a general

holding time distribution. However, in the case of geometric service times, the

original de�nition of peakedness is easier to measure as shown in section 3.1.

We will use the original de�nition of peakedness (eq. (4)) below.

We can express peakedness in terms of the autocovariance function k[s]

similarly to eq. (2) as

zfF

c

g = 1 +

�

m

1

1

X

s=�1

�

F

c

[s](k[s]�m

1

�[s]): (6)

The most important case in discrete time is the case of geometrically dis-

tributed holding times: t[i] = �(1��)

i�1

, 0 < � < 1 (with E fTg = 1=� which

justi�es the notation).

In order to simplify the formulas, let us introduce the notation

K[s] =

�

2

m

1

k[s] if s > 0

1

m

1

k[0] if s = 0

and let its z-transform be K

�

(!) =

P

1

s=0

K[s]!

s

.

The peakedness function of the arrival stream with respect to geometric

holding time distribution, as we derived in [10], is given by

z

geo

(�) = 1 +

K

�

(1� �)� 1

2� �

(7)

2.3 Peakedness and IDC

The widely used measure to characterize the variability of an arrival stream

on di�erent time scales is the index of dispersion for counts (IDC). It is de�ned

as I [t] =

V [t]

E[t]

=

V [t]

m

1

t

where E[t] and V [t] are the mean and variance of the

number of arrivals in t consecutive epochs (t = 1; 2; : : :).

The connection of IDC and peakedness for geometric holding times is, as

we have shown [10]

z

geo

(�) = 1 +

�

2

d

d!

I

�

(!)j

!=1��

� 1

2� �

(8)

where I

�

(!) is the z-transform of I [t].
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We can use eq. (8) to get asymptotic results which connect them [10]:

z

geo

(0) =

lim

s!1

I [s] + 1

2

; z

geo

(1) = I [1] =

Var fw[i]g

E fw[i]g

(9)

2.4 Peakedness of tra�c models

Next, we present the peakedness results for important tra�c models. We

consider discrete time models for the number of arrivals in consecutive epochs.

(a) Batch Bernoulli process

A very simple type of arrival stream model is the model with the number of

arrivals in a time epoch be independent identically and generally distributed

with mean m

1

and second moment m

2

.

In this case, k[i] = 0 for all i > 0. Thus, K

�

(1� �) = K[0] =

Varfw[i]g

Efw[i]g

and

z

geo

(�) = 1 +

Varfw[i]g

Efw[i]g

�1

2��

For the special case of Poisson batch arrivals, the

distribution of arrivals in an epoch is Poissonian, thus

Varfw[i]g

Efw[i]g

= 1 which

gives z

geo

(�) = 1.

The Poisson process can be considered as a reference process with respect

to peakedness characterization. Batch arrival processes that are more bursty

than the Poisson process have higher peakedness values, smoother processes

have lower peakedness. (In the case of deterministic tra�c, z

geo

(�) = 1�

1

2��

.)

(b) Markov modulated batch Bernoulli process

A very general Markovian process is the Markov modulated batch Bernoulli

process (MMBBP). In this model, we have a discrete time Markov process as

a modulating process. In each state of the modulating Markov-process, batch

arrivals are generated according to a general distribution corresponding to the

state.

Let P and D denote the transition probability matrix and the steady-state

distribution vector of the modulating Markov process, respectively (DP=D).

Let M

1

and M

2

be diagonal matrices corresponding to the �rst and second

moments of the number of arrivals in the corresponding states. Let e be a

vector of all ones and let I be the identity matrix.

We can express the mean number of arrivals asm

1

= DM

1

e and the second

moment as m

2

= DM

2

e. The autocovariance function of the arrival process

is given by k(i) = DM

1

P

i

M

1

e�m

2

1

.

Using eq. (7) we have derived the peakedness function as [10]

z

geo

(�) = 1 +

1

2� �

�

2(1 � �)DM

1

P(I� (1� �)P)

�1

M

1

e+m

2

m

1

� 1

�

�

m

1

�

(10)
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A very important case of MMBBP is the Markov modulated Bernoulli pro-

cess (MMBP); its peakedness curve is the special case of eq. (10).

(c) Switched batch Bernoulli process

Another important special case of MMBBP is the 2-state MMBBP (SBBP,

switched batch Bernoulli process). Let us use the following notation: the tran-

sition matrix is P =

�

1� �

1

�

1

�

2

1� �

2

�

and the steady state distribution is

thus D =

1

�

1

+�

2

(�

2

�

1

):

Denote 
 = 1 � �

1

� �

2

. In state 1, the �rst and second moments of the

number of arrivals are m

1;(1)

and m

1;(2)

, respectively; in state 2, the moments

are m

2;(1)

and m

2;(2)

.

The �rst and second moments of the number of arrivals are given by

m

1

=

1

�

1

+�

2

(�

2

m

1;(1)

+ �

1

m

2;(1)

), m

2

=

1

�

1

+�

2

(�

2

m

1;(2)

+ �

1

m

2;(2)

). Let

us also introduce the notation m

�

=

1

�

1

+�

2

(�

2

m

2

1;(1)

+ �

1

m

2

2;(1)

): Note that

if the distribution of the batch size in a given state is deterministic, or if it is

geometric or Bernoulli, we have m

2

i;(1)

= m

i;(2)

(i = 1; 2) and thus m

�

= m

2

.

If the batch distribution is Poisson, we have m

�

+m

1

= m

2

.

Using eq. (10) and the possibility to explicitly compute the inverse of I �

(1� �)P in the 2-state case, we get

z

geo

(�) = 1+

1

2 � �

�

2

m

1

(1� �)

�

�

m

�

�

(m

�

�m

2

1

)(1� 
)

1� 
(1� �)

�

+

m

2

m

1

� 1

�

�

m

1

�

(11)

and by eq. (7) we get the peakedness curve.

It is interesting and important to note that the peakedness curve depends

on the SBBP parameters only through m

1

;m

2

;m

�

; 
. Therefore, we can get

identical peakedness values for di�erent SBBPs if these four parameters coin-

cide.

(d) Batch renewal process

The batch renewal process is important to consider because of its ability to

model the correlation structure of tra�c [6]. The discrete time batch renewal

process is made up of batches of arrivals, where the intervals between batches

are independent and identically distributed random numbers, and the batch

sizes are also independent and identically distributed, furthermore, the batch

sizes are independent from the intervals between batches.

We use the following notation for the discrete time batch renewal process:

a and b are the mean length of intervals between batches and the mean batch

size, respectively. The �rst and second moments of the number of arrivals in

an epoch is given bym

1

= b=a, andm

2

= m

1

b(C

2

b

+1) where C

2

b

is the squared

coe�cient of variation (variance to mean square ratio) of the batch size. The

probability generating function of the distribution of time between batches is
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denoted by A

�

(!). (A

�

(!) =

P

1

s=1

a[s]!

s

where a[s] is the probability that

the time between two consecutive batches is s.)

We have derived the peakedness for geometric holding times which is given

by [10]

z

geo

(�) = 1 +

1

2� �

�

1 +A

�

(1� �)

1�A

�

(1� �)

� b+

m

2

m

1

� 1

�

�

m

1

�

(12)

If the distribution of time between batches follows a shifted generalized

geometric distribution [6], that is, a[t] = 1 � � if t = 1 and a[t] = ��(1 �

�)

t�2

if t = 2; 3; : : : ; then its probability generating function is: A

�

(!) =

!

�

1� � +

��!

1�(1��)!

�

which makes the peakedness values easily computable.

2.5 Fitting tra�c models to peakedness curves

The peakedness shows the variability of the arrival stream with respect to

di�erent service holding times. It is of interest to investigate whether we can

�t tra�c models to peakedness curves based on measurements.

We outline here a �tting procedure based on the mean ratem

1

of the arrival

tra�c, the peakedness value at � = 1 and at three other points, �

1

; �

2

; �

3

.

The model we �t to the peakedness curve is an interrupted batch Bernoulli

process (IBBP): in one state of the modulating Markov process, the arrival

number has a general distribution, in the other state, there are no arrivals.

First, by z(1) = m

2

=m

1

� m

1

, we get m

2

. Introducing ! = 1 � �, !

i

=

1��

i

and using the notations of section c, we can compute (using the values

K

�

(!

i

) = (z

geo

(�

i

)� 1)(!

i

+ 1) + 1)

Y

i

= Y (!

i

) = m

1

1� !

i

2!

i

�

K

�

(!

i

) +m

1

1 + !

i

1� !

i

�

m

2

m

1

�

(13)

Using eq. (11), Y (!) = m

�

�

(m

�

�m

2

1

)(1�
)

1�
!

Let us denote

~

Y =

Y

1

�Y

2

Y

2

�Y

3

which evaluates to

~

Y =

�

!

2

�!

1

!

3

�!

2

��

1�
!

3

1�
!

1

�

and

we get 
 =

~

Y

!

3

�!

2

!

2

�!

1

�1

~

Y

!

3

�!

2

!

2

�!

1

!

1

�!

3

Once we have 
, we can obtain an estimation for m

�

as m

�

=

1

3

P

3

i=1

Y

i

�

m

2

1

(1�
)

1�
!

i

1�

1�


1�
!

i

where we have on the right hand size an average

for the known values !

i

; Y

i

.

Then it is possible to �t an IBBP (no arrivals in state 2) as follows:m

1;(1)

=

m

�

m

1

; �

2

=

m

1

(1�
)

m

1;(1)

; �

1

= 1 � 
 � �

2

;m

1;(2)

= m

2

�

1

+�

2

�

2

. Given the �rst and

second moments of the number of arrivals in state 1, we can use for example

a generalized geometric distribution for modeling the batch size distribution.
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In this case, there are no arrivals with probability 1�', and there is a batch

of arrivals with geometrically distributed size of parameter  . The moments

are given by m

1;(1)

= '= , m

1;(2)

= '= 

2

by which we can get ';  for the

model.

If it is possible to exactly �t an IBBP to the �

i

, z

geo

(�

i

) pairs, the values

that are summed in the equation for m

�

are identical. If there is no IBBP

that exactly �ts the given peakedness values, m

�

gives an estimation and

the peakedness curve of the �tted IBBP model approximates the �

i

, z

geo

(�

i

)

pairs.

3 GENERALIZED PEAKEDNESS OF REAL TRAFFIC

3.1 Measuring peakedness

To measure the generalized peakedness of a tra�c with a given holding time

distribution, one can simulate the in�nite server group. In discrete time, one

can keep track of the �rst and second moment of the number of busy servers

and compute the variance to mean ratio from them. The following points

should be made about the estimation.

� We should take care of the initial phase of the simulation. If we have no

prior knowledge about the tra�c, we do not know what the mean number

of busy servers will be. In this case, we can start from an empty system.

The initial transient in the number of busy servers should be excluded from

measurements.

� According to the de�nition, we should assign a server to each arrival, that

is, assign a random holding time variable to every arrival in an epoch,

which could involve a huge amount of computational e�ort. However, us-

ing the modi�ed de�nition of peakedness and eq. (5), we can reduce the

computational e�ort by assigning only one random service time variable to

all arrivals in an epoch.

� When the service time is geometric, we can minimize the computational

e�ort by making use of the memoryless property. If at epoch t we have L[t]

busy servers, then at the next epoch we have L[t+1] = L[t]+w[t+1]�D[t]

where D[t] is the number of departures from the service system at epoch t.

The distribution of D[t] is known to be binomial with parameters L[t] and �

because each of the L[t] servers �nish service with probability �. Therefore,

in the measurement, it is enough to keep track of L[t] together with the

�rst and second moments of the previous L[i]; i � t values.

This gives us the following procedure for computing the peakedness value

for geometric holding time distribution with parameter �:

1. Reset L

1

= 0, L

2

= 0, L

old

=initial value (see comments below);
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2. Set L

new

= L

old

+w

new

�d where d is a random number with distribution

binom(L

old

; �) and w

new

is the number of new arrivals in the next epoch;

3. Set L

1

= L

1

+ L

new

, L

2

= L

2

+ L

2

new

;

4. Set L

old

= L

new

and loop back to 2. unless the measurement is over;

5. Compute l

1

= L

1

=T; l

2

= L

2

=T; z = l

2

=l

1

� l

1

where T is the length of

the total measurement time.

The setting of the initial value of L

old

depends on the amount of a priori

information that we have about the tra�c. If we know the mean rate, we

can set the initial L

old

to its mean value determined by Little formula as

m

1

=�. If we do not know the mean rate, we have to start from an empty

system (initial L

old

= 0) and simulate the service system without actually

measuring (executing step 3.) until the initial transient is over.

� An important advantage of using peakedness characterization is that we can

measure peakedness by going through the tra�c trace in only one sequence.

This gives us the possibility of measuring peakedness for real-time tra�c

on the 
y.

Computing peakedness for one value of � involves N cycles of the above

procedure (where N is the total length of the measured tra�c); if we want

to measure peakedness at several � values, we can easily implement the par-

allel execution of the procedure. In each cycle, we only have to compute a

small number of additions and multiplications, and generate one binomially

distributed random variable. Therefore, the complexity of the measurement

is O(N). The most time-consuming step in the measurement is the gen-

eration of the binomially distributed random number. We can reduce the

computational cost of the measurement tremendously by approximating

it with a normally distributed random number, for which pre-computed

look-up tables can be used.

� The advantage of our approach compared to Eckberg's method for estimat-

ing peakedness for exponential holding times (cf. [3, 9]) is that our method

does not neglect a lot of arrivals in the computation due to the selection of

an arbitrary arrival.

3.2 Peakedness of video tra�c

Video tra�c is a very important example of variable rate tra�c. We investi-

gated the application of peakedness measure for the characterization of vari-

ability of MPEG video traces [17]. The MPEG sequences that we consid-

ered had a GOP (Group of Pictures) length of 12 frames, a GOP pattern of

IBBPBBPBBPBB, and frames capture frequency of 25 frames per second.

Figure 1 shows the peakedness curve of an an MPEG video trace of a movie

(MrBean) as a function of the service rate �. The mean service time of a server

is therefore 1=� time epochs, where one time epoch is now 40ms. The solid
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curve is the peakedness function for the frame sequence (one frame corre-

sponds to one epoch), whereas the dashed curve is the peakedness function

for the GOP sequence (one GOP corresponds to 12 epoch so that is has the

same time-length as the frame sequence) The scaling in the vertical axis is

such that one arrival corresponds to one bit.

By decreasing the service rate, the service times become longer, and the

number of busy servers in the in�nite server group depends on the tra�c

properties on longer time scales. In this way, the peakedness curves show the

variability of the tra�c on di�erent time scales, i.e. on the time scale of 1=�.

Figure 1 shows that on short time scales, the variability of the frame se-

quence is much greater compared to the GOP sequence. But as we go to

longer and longer time scales, the variability of the two sequences converge.

What we can learn from this is that on longer time scales (for example, when

dimensioning larger bu�ers), the statistical characteristics of GOP structure

is less signi�cant, and it is enough to consider the GOP sequence.

Figure 2 shows the peakedness curves for geometric service time distribu-

tions for �ve MPEG video GOP size traces. It gives us a relative comparison

of the variability of di�erent kinds of video sequences. (In this �gure, one time

epoch is set to one GOP which introduces a scaling compared to Figure 1.)

The highest values of peakedness are exhibited by the MTV sequence, which

is known to have lots of scene changes. Movie sequences show lower peaked-

ness compared to the MTV sequence. The peakedness of a video conference

sequence is found to be the smallest by orders of magnitude.

Figure 3 shows an IBBP �tted to an MPEGmovie trace (MrBean, [17]). The

solid line is the peakedness curve of the GOP sequence, the dashed line shows

the peakedness curve of the �tted model. The circles show the peakedness

values where the �tting was made. The points were chosen to represent the

variability of the tra�c on a long time scale (corresponding to the time scale

of 1/0.01=100 epoch, here one epoch corresponds to 0.48 sec). As we can

see, the model is able to capture the variability of the arrival stream on the

investigated time scales.

3.3 Peakedness of aggregated ATM tra�c

We analysed the peakedness curve of an aggregated ATM tra�c trace taken

from the Finnish University and Research ATM WAN network (FUNET)

[14]. The trace was approximately one hour long and consisted of the number

of cell arrivals in each second. Figure 4 shows the peakedness curve of the

measurement and two IBBPs �tted to it. The IBBP that was �tted at short

time scale �ts the measured peakedness curve well for shorter time scales, but

it gives lower peakedness values for time scales longer than 1=0:05 = 20sec.

The other IBBP was �tted at a longer time scale; this model gives lower

peakedness values for time scales shorter than 20sec.
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3.4 Peakedness of Ethernet tra�c

Figure 5 and Figure 6 show the peakedness curve of an Ethernet tra�c taken

from the Bellcore measurements [7]. The measurement covers 1 million arrivals

(approx. one hour). Figure 5 depicts peakedness on a lin-lin plot, Figure 6 is

a log-log plot. We can investigate 5 di�erent time scales in Figure 6. The

interesting �nding is that the peakedness increases linearly on the log-log

plot as we decrease the rate (go to long time scales). Due to eq. (9) and

knowing that lim

s!1

I [s] = 1 if there is long range dependence (LRD) in

the tra�c, the peakedness diverges as the rate goes to zero. This observation

of monotonicity in Figure 6 supports the presence of LRD assuming that

the tra�c stationarity assumption holds. It is important to note that the

peakedness curve can be used as an indicator of LRD.

At di�erent time scales we �tted simple Markovian models (IBBPs) to

capture the peakedness curves in Figure 6. We can see that the burstiness

scaling property of these models are not appropriate i.e. these models can

cover a shorter range of time scales in burstiness than it would be necessary

to follow the burstiness of the real tra�c over all the investigated time scales.

Our investigations of the aggregated ATM and Ethernet tra�c indicate that

simple Markovian models are not able to capture the burstiness characteristic

of tra�c over many time scales. For this case fractal tra�c models seem to

be more appropriate [7, 14]. However, for several practical cases we do not

need to focus on all time scales but only on our working time scales (e.g. time

scales of queueing) which can be e�ciently modeled by Markovian models,

too.

4 CONCLUSION

We have shown that peakedness can be used to characterize the bursty nature

of tra�c. Peakedness curves show the variability of tra�c on di�erent time

scales and can be e�ciently computed for real time tra�c. We have extended

the peakedness theory to discrete time and applied the peakedness charac-

terization to variable rate video tra�c, Ethernet tra�c and aggregated ATM

tra�c as well as to the most important tra�c models. We have shown that

generalized peakedness can also be used for detecting long range dependence.

We have also presented a new model �tting technique based on the concept

of peakedness.

The basic idea of peakedness characterization is that we characterize tra�c

by its interactions with the service system. Its generality is shown by the

observation that peakedness gives a complete second order characterization,

i.e. it contains all information about the correlation structure of the tra�c.

The further development of peakedness theory including its extension to

characterize non-stationary tra�c are the topics of our future research.
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Figure 1: Peakedness of the frame (solid)

and GOP (dashed) sequence of MPEG

video trace (MrBean).

Figure 2: Peakedness of MPEG GOP video

sequences. From the uppermost down-

wards, the sequences are from: TV (MTV),

movie (MrBean), TV (News), movie (Star-

Wars), video conference.
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Figure 3: Peakedness curves of MPEG

GOP movie trace (MrBean, solid) and its

IBBP model (dashed).

Figure 4: Peakedness of aggregated ATM

tra�c (solid) and IBBP models (dotted)

�tted to it. The two IBBPs are �tted at

short (stars) and long (circles) time scales.
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Figure 5: Peakedness of Ethernet trace

(solid) and IBBP models (dotted) �tted

to it. The two IBBPs are �tted at short

(stars) and long (circles) time scales.

Figure 6: Peakedness of Ethernet trace

(solid) in log-log plot. On �ve time scales

(separated by vertical lines) IBBP models

are �tted (dashed).


