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KivonatAz elmult �evtizedekben az �uj t�avk�ozl�esi szolg�altat�asok ig�enyei valamint a t�avk�ozl�esivil�ag azon t�orekv�ese, hogy az �osszes t�avk�ozl}o szolg�alatot ugyanazon h�al�ozaton val�os��ts�akmeg a sz�eless�av�u h�al�ozati koncepci�o (B-ISDN, Broadband Integrated Services DigitalNetwork) kifejleszt�es�et eredm�enyezte. A B-ISDN �atviteli technik�aj�anak az ATM-et(Asynchronous Transfer Mode) v�alasztott�ak, melynek kidolgoz�asa sz�amos kutat�asi feladatmegold�as�at ig�enyli.A dolgozat t�avk�ozl�esi h�al�ozatok teljes��t}ok�epess�egi �es min}os�egi jellemz}oinekvizsg�alat�aval foglalkozik, kiemelten az ATM alap�u h�al�ozatok m}uk�od�es�enek min}os�egielemz�es�evel.Az els}o r�esz n�eh�any objekt��v besz�edtorz��t�asi m�ert�ek �ert�ekel�es�enek kutat�asieredm�enyeit ismerteti. A vizsg�alatokban a m�ert�ekek ki�ert�ekel�ese szabv�anyos��tott p�aros�osszehasonl��t�asos m�odszerrel t�ort�ent. A kutat�as a besz�edk�odol�ok �es kommunik�aci�osh�al�ozatok tervez�es�ehez elterjedten haszn�alt spektr�alis burkol�o objekt��v m�ert�ekek alkal-mazhat�os�agi korl�atainak kimutat�as�at, valamint az objekt��v m�ert�ekek egy tov�abbfejleszt�esiir�any�at eredm�enyezte.A dolgozat m�asodik r�esz�enek t�em�aja az ATM h�al�ozatok h��v�asszint}u vizsg�alata, melynekegyik c�elja annak kimutat�asa, hogy a B-ISDN forgalom le��r�as�ara mennyire alkalmas ahagyom�anyos telefonforgalomn�al haszn�alt Poisson/exponenci�alis jellemz�es. A r�esz tov�abbic�elja �uj forgalomle��r�asi m�odszerek �es linkblokkol�asi m�ert�ekek kidolgoz�asa. Ez a r�esz tartal-mazza a linkfoglalts�ag anal��zis�et k�ul�onb�oz}o �erkez�esi �es kiszolg�al�asi folyamatok eset�en, �esk�et approxim�aci�os m�odszert is ismertet. Az els}o m�odszer a BPP (Bernuolli-Poisson-Pascal) eloszl�ason alapul, m��g a m�asodik m�odszer egy entr�opia maximaliz�aci�os elj�ar�as.A m�odszerek a v�arhat�o �ert�eket �es a sz�or�ast haszn�alj�ak a linkfoglalts�ag eloszl�as�anakbecsl�es�ere. A sz�or�as sz�am��t�as�ara az �altal�anos��tott cs�ucsoss�agi m�ert�ek ker�ul bemutat�asraegy �uj analitikus m�odszerrel. A dolgozat az approxim�aci�os elj�ar�asok seg��ts�eg�evel sz�amos�uj link blokkol�asi m�ert�eket, valamint ezek hat�ekony alkalmaz�as�anak illusztr�al�as�ara egy �ujATM h�al�ozatdimenzion�al�asi algoritmust is ismertet.A harmadik r�esz ATM h�al�ozatok cellaszint}u elemz�es�evel, az egyik legfontosabbmin}os�egi param�eter, a cellak�esleltet�es ingadoz�as�anak le��r�as�aval foglalkozik. N�eh�anyelj�ar�ast mutat be a cellak�esleltet�es ingadoz�as�anak anal��zis�ere, mind egyetlen, mindt�obb ATM multiplexer ut�an. Az egymultiplexeres esetre k�et �uj modellez�esi m�odszerker�ul bemutat�asra. Mindk�et elj�ar�as �gyelembeveszi a h�att�erforgalom csom�osod�asijellemz}oj�et, mely az eddigi modellekn�el sokkal pontosabb jellemz�est eredm�enyez. Abemutatott Markovi m�odszer egzakt le��r�ast tesz lehet}ov�e, m��g a di��uzi�os modell egyhat�ekony approxim�aci�os elj�ar�as. A cellafolyam jellemz}oinek v�altoz�asa ker�ul elemz�esre at�obbmultiplexeres esetn�el, amint az �athalad a multiplex�al�asi fokozatokon. Ebben a r�eszbenaz nTri=D=1 sorban�all�asi modell egy �uj megold�asi m�odszere is megtal�alhat�o. A dzsitterescellafolyamok �osszemultiplex�alas�anak szimul�aci�os eredm�enyekkel t�amogatott anal��zise isbemutat�asra ker�ul. A dolgozat v�eg�ul n�eh�any ATM forgalomszab�alyoz�asi elj�ar�as �es h�al�ozatielem tervez�es�ere ad ir�anyelveket.
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AbstractThe progress of developing a cost-e�ective telecommunication network which support awide variety of services yielded the standardization of B-ISDN (Broadband IntegratedServices Digital Network). The ATM (Asynchronous Transfer Mode) has been chosen thetarget transfer mode for B-ISDN which calls for resolving several challenging performanceissues.This thesis is dedicated to the performance evaluation of telecommunication networks,particularly ATM networks, and covers several di�erent �elds of the subject includingboth user-oriented Quality of Service and network provider-oriented Network Performanceparameters.The �rst part of the thesis presents a performance evaluation study on the spectral ob-jective measures of speech quality. In this study the Equivalent Noise Paired ComparisonTest is applied for the evaluation of the candidate objective measures which is a successfulstandardized method of subjective speech quality assessment. The results of this researchshows the applicability limitations of these measures, which are widely used for designingspeech coding and communication systems, and indicates a direction of developing moreaccurate objective speech quality measures.The second part of the thesis studies several issues of call scale performance evaluationof ATM networks. It introduces a robustness and sensitivity analysis of link occupancyinvestigating the e�ect of various arrival and service processes for showing the unreliabilityof the classical Poisson/exponential description of B-ISDN tra�c. This part presents twomethods to approximate the link occupancy distributions based on matching the meanand the variance. The �rst approximation based on the BPP distribution while the secondapproach using an entropy maximization method. It is also shown that the concept ofgeneralized peakedness provides an e�cient tool for �nding the variance of the occupancydistribution and a new closed form expression of the generalized peakedness is derived.Several link blocking measures are proposed based on the approximations and their ap-plicability are demonstrated in a new ATM network dimensioning algorithm.In the part on cell scale performance evaluation one of the most important performanceparameter the Cell Delay Variation in both single and cascaded ATM multiplexers areanalyzed. Two methods are suggested to evaluate the CDV in a single ATM multiplexer.The �rst approach is an exact Markovian method taking into account the burstiness ofthe interfering background tra�c. The second one is a di�usion approximation providinga very e�cient way for computing point process characteristics of the perturbated cellstream. In the analysis of cascaded ATM multiplexers the characterization of a CBRcell stream going through several queues is investigated. A new solution method fornTri=D=1 queue is also derived. Evaluation studies of the superposition of CDV a�ectedCBR cell streams after both single or cascaded multiplexers are presented. Finally, thethesis introduces some guidelines for designing Tra�c Control functions and dimensioningnetwork elements in ATM networks.
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Chapter 1Performance Issues inTelecommunications NetworksA rapid evolution can be observed in the telecommunication world. The enormous progressto make a service-independent and cost e�ective telecommunication network which cancope with the needs of the growing new service demands yielded the standardization of B-ISDN (Broadband Integrated Services Digital Network) and its switching and multiplexingtechnique the ATM (Asynchronous Transfer Mode) [22, 96, 21, 93].ATM is a fast packet switching technique based on virtual channel connections using�xed-size packets called cells. The size of an ATM cell is 53 bytes, �ve of which arereserved for the cell header followed by 48 bytes user information. Each cell header hasvirtual channel and virtual path identi�ers (VCI/VPI), denoting the routing address whichare used in multiplexing. The cell header includes minimal functionality to reduce theintermediate node processing and contains, among others, payload and priority indicatorsand one octet for a one-bit header error forward correction and for the self-delineation ofcell boundaries.ATM is a connection oriented technique but connectionless services can also be sup-ported. This technique provides a great exibility in terms of the bit rate assigned toconnections. Moreover, ATM provides inherent statistical multiplexing which may resultin signi�cant multiplexing gain. The concept of ATM is a promising technique with sev-eral appealing characteristics and as the basic technique of B-ISDN intended to supporttelecommunication services of both present and future.However, there are disadvantages with ATM, the most signi�cant two being the CellDelay Variation and cell assembly delay. The Cell Delay Variation (CDV), a phenomenawhich is not experienced in synchronous networks but one of the most important per-formance characteristics of ATM networks [3, 50, 14, 100]. A good understanding andcharacterizing of CDV is needed in order to perform a proper performance engineering inATM networks. The main part of this thesis addresses this issue.3



1.1 Critical Aspects of Performance EvaluationPerformance evaluation is an important part of tra�c engineering. Tra�c engineering,which is discussed in detail by ITU [47], is about the functional relationship betweentra�c, resources and performance. Performance evaluation methods is concerned with thesame three-way relationship with the main purpose to assess the feasibility of a particularnetwork design under di�erent tra�c conditions.Several challenging performance issues need to be resolved before ATM networks be-come a reality [48, 106, 98]. The ATM introduced various new and unsolved problems(performance analysis of switching architectures, tra�c characterization, evaluation ofstatistical multiplexing, performance analysis of tra�c and congestion control mechan-isms, etc).In spite of the fact that great and growing research activity has been put on this �eld,resulting in many new models and methods in the last decade, the performance evaluationis still a challenging and unsolved issue of ATM research. This thesis contributes someresults to the performance evaluation which could help the performance engineering inATM networks.Performance is important to end users when selecting telecommunication services andequipments and also important to network providers when designing and operating tele-communication facilities. Di�erent performance indicators have been developed to measurethe quality of services and networks. The Quality of Service (QOS) contains user orientedperformance measures which are intended to measure how the user is satis�ed with theservice. In contrast, Network Performance (NP) contains network provider oriented per-formance measures which are expressed measurable characteristics of network elements.The following two sections give a short overview about the QOS and NP measures ofB-ISDN [86].1.2 The Concept of Quality of ServiceA typical user is not interested in how a particular service is provided but rather incomparing one service with another in terms of user oriented measures. The objectivemeasures of the B-ISDN systems accurately reects the user-perceived quality in termsof de�ned Quality of Service (QOS) parameters. The QOS is intended to determine thedegree of satisfaction of a user of the service. These user oriented parameters are de�nedbetween service access points and take into account all aspects of the service from user'spoint of view focusing on user-perceivable e�ects. The QOS parameters can objectivelybe measured and should be assured by the service provider [48].The ATM technology introduced many new impairments not experienced in synchron-ous networks, such as Cell Delay Variation (CDV) and cell loss [93]. The origins ande�ects of these new types of distortions must be understood to control the network andassure QOS parameters. New distortions can be observed in the transmission of com-pressed voice and video through ATM networks due to these new impairments. Thesedistortions are mostly not easily quanti�ed by traditional methods. Examples of these4



new distortions for voice include gaps in speech, long echo-free delays, bursts of erroredbits, speech clipping and phonemic distortions. For example, bursty, short interruptionsdue to the discarding of cells during congested periods or the misdelivery of cells. Thesystem dependent delays due to cell assembly or queueing, are typical in ATM networks,but do not occur in synchronous networks. Examples of impairments for video includeblocking, image persistence and jerky motion. All impairments due to the nature of ATMinuence also the codec design, for example CDV complicates the decoder synchronization.Real QOS measures of users' satisfaction are subjective in nature i.e. depend on useractions and subjective opinions and rather di�cult to specify. However, QOS measuresrestricted to directly observable and measurable characteristics of the service can be de�ned[48]. Examples of these bearer service QOS parameters are access delay, incorrect accessprobability, access denial probability, user information error probability, user informationmisdelivery probability, service availability, etc..In the research of speech quality assessment, discussed independently from ATM con-text in the thesis, several measures have been developed [95]. In contrast to the abovedescribed bearer service QOS parameters they are intended to cope with the subject-ive nature of users' quality judgements. The thesis deals with these QOS speech qualitymeasures.1.3 The Concept of Network PerformanceA network provider is concerned with the e�ectiveness of the network, therefore from anetwork provider's point of view di�erent parameters, Network Performance (NP) para-meters, are used for purposes of system design, con�guration, operation and maintenance.These provider oriented parameters are de�ned and measurable between network connec-tion elements. NP parameters determine the QOS parameters but they do not necessarilydescribe the quality in a way that is meaningful to users. For example the link blocking,which is an investigated NP parameter of the thesis, is an important performance measureof a link but it does not give much quality information to the user. On the other handthis measure is essential for a network provider to con�gurate the network.The ITU-T speci�ed the following NP parameters of the ATM Layer [49]:� Cell error ratio� Cell loss ratio� Cell misinsertion rate� Severely errored cell block ratio� Cell transfer delay{ Mean cell transfer delay{ Cell delay variation 5



For CDV measure two parameters have been de�ned [49], namely the 1-point CDV anda 2-point CDV. The 1-point CDV is de�ned on the basis of a sequence of consecutive cellarrivals at a single Measuring Point (MP). The 1-point CDV is the di�erence between thetheoretical and the actual cell arrival time at a MP. The 2-point CDV uses the observationsof two MPs. The 2-point CDV value is de�ned as the di�erence between the absolute celltransfer delay between two MPs and a reference cell transfer delay. The details of theseCDV parameters can be found in Chapter 7.2.This thesis is focusing on the evaluation of Cell Delay Variation mainly related to the1-point CDV measure of the ATM layer.
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Chapter 2Overview of the ThesisThis thesis consists several studies on the performance evaluation of telecommunicationnetworks. It covers various di�erent types of performance measures including both user-oriented QOS and network provider-oriented NP parameters.The �rst part of thesis concerns the objective speech quality measures which are QOSparameters. This research has been performed independently from ATM context and hasbeen focused on the performance evaluation of spectral objective speech quality measures.In the second part of the thesis ATM call scale NP evaluation results are presented. Finally,several studies of cell scale NP evaluations of ATM networks are discussed in the thirdpart. The results of the thesis can be categorized as follows:� QUALITY OF SERVICE:1. Speech quality� NETWORK PERFORMANCE:1. Call scale: Link blocking2. Cell scale: Cell delay variationThe main goal of the thesis is to get a good insight into the behaviour of the networkand its elements and analyze what parameters of the tra�c and network are signi�cant andhow they inuence the QOS and NP parameters under investigation. The �nal aim of thestudy, through getting appropriate models, to perform a proper performance engineeringin ATM networks.More speci�cally, the goals of the thesis are the following:� To evaluate spectral objective speech quality measures.� To evaluate the link occupancy distribution with various arrival and service pro-cesses. 7



� To evaluate the occupancy peakedness for arrival and service processes with di�erentvariability.� To derive simple approximations for the link occupancy distribution and link block-ing measure.� To provide further developments of the concept of the generalized peakedness (ap-plications in blocking measures, computation in case of Coxian holding time, com-putation in case of load sharing).� To give re�ned ATM network dimensioning algorithms using two-parameter descrip-tion of the tra�c.� To evaluate the CDV due to a single ATM multiplexer.� To evaluate the CDV due to cascaded ATM multiplexers.� To evaluate the CDV in an ATM multiplexer receiving a superposition of CDVa�ected CBR cell streams.� To give designing guidelines for ATM Tra�c Control and Network Element dimen-sioning
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Part IIQOS Performance Evaluation
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Chapter 3Performance Evaluation of ObjectiveSpeech Quality Assessment Methods3.1 IntroductionThe telecommunication networks have broadened their scope to embrace several new anddi�erent types of communication services, but the transmission of voice remains the centralissue of the telecommunication world due to the fact that the speech is the most e�ectiveway of human communication. The speech communication services represent a wide andsteadily growing �eld of applications for digital communication systems [88, 54]. Theseapplications include: public commercial telephone networks, mobile communications, satel-lite communications, private communication lines, switched networks, cellular telephones,voice storage services, etc.From an economical point of view a communication channel should transmit as muchinformation as possible, therefore e�cient speech digitization and compression methodsare needed. These are particularly important in the case of radio communication systemsand voice storage applications where the bandwidth and information capacity are severelylimited therefore low bit-rate speech coding methods are needed. In the following lowbit-rate means transmission speed below the standard 64 kbit/s.All speech coding methods, however, have an undesirable side-e�ect, namely the de-gradation of speech quality. The �delity of speech and the reduction of its bit-rate contra-dict each other. The e�ciency of speech digitization and compression can be measureddirectly by the resulting transmission bit-rate, but the �delity of speech can not be inter-preted easily because of its subjective nature. Some interpretations will be introduced inthe dissertation.In order to evaluate speech coding and transmission systems, speech quality assessmentmethods are needed [35, 95, 61, 63, 40]. These are very important not only for optimiz-ing coding algorithms but also for planning e�ective communication systems. There aretwo categories of such methods: subjective and objective speech quality assessments. Thesubjective methods are based on standardized procedures which use humans to judge thequality of speech. In contrast, the objective methods eliminate human judgments from the11



assessment procedure and give computable results based on measurable physical quant-ities. The main problem of �nding a good objective speech quality assessment method,however, is that its results should highly correlate with users' opinion, so once again onehas to resort to subjective tests in order to "calibrate" objective measures.The research results presented in this Chapter concerns the evaluation of the mostpopular and widely used spectral envelope objective speech quality measures. This studyhas been performed as a part of the research of the Department of Telecommunicationand Telematics, Technical University of Budapest in the project of the speech coding andquality evaluation. The goal of this research was to �nd objective measures which canbe used for accurate quality assessment of speech coders. The group of spectral envelopeobjective measures has been chosen for evaluation because previously published researchresults have shown that these measures found to be the most successful objective predictorsof subjective speech quality ratings [33, 95]. During the research the performance of a widerange of spectral envelope measures has been evaluated based on comparing their resultswith subjective test results. It will be shown that none of the known spectral objectivemeasures can provide accurate characterization of the speech quality and a two-parameterquality characterization is a more promising way.The Chapter organized as follows. Section 3.2 reviews on subjective speech qualitymethods and presents experimental results on CELP coders obtained by the EquivalentNoise Comparison Test. A review of the objective speech quality measures can be found inSection 3.3 and evaluation results of a broad class of spectral envelope objective measuresare presented. Finally, Section 3.4 concludes the results of this Chapter.3.2 Subjective Speech Quality AssessmentThe speech quality depends primarily on human perception, so subjective quality assess-ment methods implies humans as referees. There are two categories of subjectivemeasures:utilitarian and analytic. Utilitarian methods measure speech quality on a unidimensionalscale, therefore results can be summarized by a single number, which is capable of com-paring communication systems directly. Analytic methods generate their results on amultidimensional scale reecting various speech quality components.A category of utilitarian methods focused on speech intelligibility called IntelligibilityTests consists of articulation tests, rhyme tests and speech interference tests [95]. Articu-lation Tests [61] and its modi�ed version the Equivalent Loss Method [61] are the widelyused methods of this category.Another category of utilitarian methods is Quality Tests. The intelligibility tests areunable to measure the speech quality when speech is highly intelligible, and this is exactlywhat we expect from most speech services. So methods are needed which can measureother attributes such as pleasantness or naturalness. For these purpose new methods havebeen developed and the most widely used methods are the Mean Opinion Score (MOS)[61] and the Paired-Comparison Methods [95].The analytic methods attempt to obtain di�erent attributes of quality of perceived12



speech by exploiting the phenomenon that listeners usually agree on the degree to whichspeech impairment is present, but vary in their preference of that degradation. There-fore analytic methods generate a multidimensional characterization of the speech quality.Some methods have been developed which produce this kind of parametric description ofspeech such as Paired Acceptability Rating Method (PARM), Quality Acceptance RatingTest (QUART) and Diagnostic Acceptability Measure (DAM) [104]. Although the analyticmethods provide a fairly good description of speech quality, such investigations are di�-cult and time consuming.From the wide range of subjective methods the Equivalent Noise Paired ComparisonTest [63] has been chosen for the performance evaluation of the spectral objectivemeasures.This method is a utilitarian method from the group of the Paired-Comparison Methods[95]. I have chosen this method because of the following reasons:� It is a standardized subjective quality assessment method (ITU RecommendationsP.81 [52]).� It can provide very quick tests (e.g. 20 listeners are su�cient for a quick test ascompared to the MOS which needs several hundred or thousand listeners).� It is sensitive to slight di�erences between speech samples (e.g. the MOS cannotdistinguish �ne di�erences between speech samples assessed by E-grade votes incase of high quality speech).� It has a good modeling ability to distortions produced by logarithmic quantizerswhich is important because the purpose of this research was to �nd objective qualityassessment methods intended to characterize the quality of codecs which producesimilar distortions.3.2.1 The Equivalent Noise Paired Comparison TestIn case of this method two signals are presented to listeners, who are asked to choosethe better one. It is a forced comparison, "Equal" quality answer is not allowed. Thepercentage of the signal under test chosen as the preferred one is the preference score. Themethod uses a reference signal with varied signal-to-noise (SN) ratio. In the test the qualityis de�ned as the SN ratio of reference signal corresponding to 50% preference level. ITUrecommends a reference signal generator device called Modulated Noise Reference Unit(MNRU) for such tests in ITU Recommendations P.81 [52]. MNRU contains a white noisesource modulated by the speech signal and the generated multiplicative noise is added tothe speech signal at varied level to produce the reference signal (see Figure 3.1).Such a reference signal has a speech component and a speech-amplitude correlatednoise component with at frequency spectrum. The signal-to-noise ratio (denoted by Q[dB]) can be set in MNRU and it is constant over a wide dynamic range. Therefore itssubjective e�ect is very similar to that of the distortion produced by logarithmic quantizers13
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in Figure 3.1: Equivalent Noise Comparison Test(standard PCM systems). Modifying MNRUwith a noise-shaping �lter, Q becomes almostindependent from frequency.Although it is sometimes di�cult to compare signals with di�erent types of impair-ments, the great advantage of the Paired Comparison Tests is that they provide highlyprecise assessment on an absolute scale of speech quality even with about 20 listeners.Therefore they are ideal for quick tests. The computer assisted speech quality assessmentsystem Qualiphon developed at DTT, TUB [35] is also based on the Equivalent NoisePaired Comparison Test. In contrary to this, quality tests based on MOS require hun-dreds or thousands of listeners to provide reliable results and the scale is relative, varieswith time, country etc., like marks in schools. Nevertheless, thorough international invest-igations usually include MOS test because it can take into account the various kinds ofdeterioration on a single scale.3.2.2 Experimental ResultsOne of the promising algorithms at low bit-rate, 8 kbit/s and below, is the CELP (CodeExcited Linear Prediction) coding. A real time CELP codec at a rate of 4800 and 3200bit/s has been chosen for evaluation as presented in the following.The CELP codec used for subjective testing is realized by a DSP in real time [43]. Itconforms to the Proposed US Federal Standard 1016 jointly developed by the US DoDand AT&T Bell Laboratories for 4800 bit/s voice coders.In the CELP coder a Linear Prediction (LP) analysis is applied to estimate a 10thorder LP �lter by means of the autocorrelation method, using a 30 ms Hamming window.The results of the LP analysis, the linear prediction coe�cients are transformed to Line14



Spectrum Pairs (LSP) coe�cients. The optimum excitation sequences for the LP synthesis�lter are obtained from an adaptive and a stochastic codebook, thus the CELP algorithmcan be considered as a two-stage vector quantizer for the speech signal. The algorithmincludes a joint optimization process for code vector index and the quantized gain factor.For subjective speech quality assessment of the CELP coder the Equivalent NoisePaired Comparison Test is applied with MNRU using the Qualiphon system [35]. Thespeech material for the test consisted of two sets of sentences. Each set contained 5pairs of sentences. In each sentence-pair there was a distorted (CELP) sentence, and areference sentence with a predetermined level of multiplied noise. The order of distortedand reference sentence and the changing of distortion level are randomized. In order toeliminate sentence dependency, in the second set of sentence-pairs the role of reference andtest sentences was exchanged. The number of listeners was 25. The test procedure wascarried out with both 4800 and 3200 bit/s CELP codecs.The 50% preference point gives the Q value relating to the tested codec. After averagingall tests, the Q value is 11.7 dB at 3200 bit/s and 17.1 dB at 4800 bit/s rate [87].The acceptable limit for commercial telephone service is about Q=20 dB. Accordingto ITU Recommendations G.113 [51] this is about equivalent to the performance of 14asynchronously tandemed 8-bit PCM codecs, i.e. 14 qdu (quantizing distortion units)based on a 15log10n summation law, where n is the number of qdu's [52].As can be seen neither the 3200 nor the 4800 bit/s CELP codecs meet the requirements.Based on preliminary tests, however, it is expected that the 7200 bit/s CELP codec (notavailable in hardware form yet) can provide an acceptable speech quality. It can alsobe concluded from the results that there is a signi�cant quality di�erence between theperformance of the two codecs (5.4 dB).3.3 Objective Speech Quality AssessmentHowever good assessment of speech quality can be provided by subjective tests, theyhave several disadvantages. Namely, they are expensive, slow, di�cult to handle, non-repeatable due to the fact that human listeners' decisions depend on the test conditionsand on their personal disposition. Especially the time consuming nature of subjectivemeasures excludes their use in the design and optimization of speech coding systems andcommunication systems.Computable objective measures of speech quality based on measured physical para-meters are much more desirable [36, 33, 18, 62, 95]. They are cheap, simple, repeatableand fast in comparison with subjective measures, but they can be applied only if they pre-dict subjective speech quality su�ciently well. So the task is to �nd an objective measurewhich can be e�ciently computed from the original and distorted speech data set, andwhich highly correlates with subjective tests.This task is not easy to solve because the human speech perception process is very com-plex and poorly understood. It involves also the grammar and other diverse factors suchas the speakers' attitude and emotional state. People use a lot of redundant information in15



speech and, as a result, certain slight distortion e�ects could cause complete intelligibilityloss, while other more extensive distortion products may be almost unperceivable. To per-form a quality assessment, the objective measures should take into consideration semantic,prosodic, syntactic, phonetic, etc. information of speech. Of course, no objective meas-ures provide all these, and speech coding systems generally do not produce e.g. semanticdistortions but only a fraction of all possible distortions. Accordingly, it is possible to�nd objective measures showing high correlation with subjective results.Waveform distortion measures are de�ned in time domain and based on some kind ofdiscrepancy between the original and the distorted speech waveform. These type of meas-ures are known as variants of Signal-to-Noise Ratio (SNR) where noise is usually de�nedas the di�erence between the original and distorted signal. Owing to an inevitable codingand transmission delay, precise synchronization is necessary between the two waveforms.The conventional SNR de�ned by Eq. 3.1, which has been used for a long time:SNR = 10log10 NXj=1x2(j)NXj=1[x(j)� y(j)]2 (3.1)where x(j) and y(j) denote the samples of the original input and the distorted outputspeech signals, respectively, and N is the number of speech samples considered. Thecorrelation (R) of this measure with subjective measures ranges from 0.24 and somewhathigher values may be obtained using a multiple regression procedure [70].As the conventional SNR is inadequate to predict subjective quality, the so-calledsegmental SNR has been proposed:SEGSNR = 1pM MXi=1 SNRi (3.2)where SNRi is de�ned as in Eq. 3.1 in the signal frame i, and M is the number of frames.Here one frame is a segment of speech, usually 10...30 ms long.The SEGSNR is based on the experimental fact that the inherently nonstationaryspeech can be considered approximately stationary for such a short interval as a frame(10�30ms). Since distortion e�ects depend on speech statistics, a measure which is theaverage of objectivemeasures calculated separately for each frame provides a better qualityindicator than overall measures.The heuristic method using arithmetic mean of logarithmic quantities in Eq. 3.2 cor-responds to equal weighting of high and low level sounds of an utterance. This is justi�edby the investigations resulting in high R values which are above 0.77 [95].Further developments in SNR have resulted in the Frequency Variant Segmental SNR(R = 0:93) [95] which takes account of the distribution of distortion products in frequency.There are other variants, too, as the Granular Segmental SNR, Articulation Index and itsimproved method the Speech Transmission Index [95].16



These methods, however, can be applied only to waveform coders, which attempt toreproduce the signal shape. More e�cient coding algorithms exploit also the insensitivityof human perception to phase information and they reproduce waveforms that show littleresemblance to the original speech. In this case the distortion products can no longer beseparated by a simple subtraction in the time domain.Spectral Distortion Measures are de�ned as discrepancy between the original and dis-torted speech spectra in frequency domain. The Spectral Distortion (SD) de�ned byEq. 3.3 provides a logarithmic spectral distortion measure which can be computed byFFT: SD = 241� Z �0 "lnSx(!)Sy(!)#2 d!35 12 (3.3)Sx(!) and Sy(!) denote the original and distorted speech spectrum, respectively. Experi-ments have yielded R = 0:6 for SD [95].A popular and successful type of the spectral measures, which are comparing thedi�erences in the spectral envelope, is outlined in detail in the following section.Another successful direction of the research is the Auditory Distortion Measures. Thismeasures try to model the human perception mechanism [42, 4]. One of the successfulmeasure from this type is the Bark Distance Measure [105] based on the Bark spectrum,which reects the ear's nonlinear scale of frequency and amplitude. R = 0:85 � 0:98 isobtained for BSD [105].Another approach to construct good objective measures is to combine di�erent object-ive measures using multiple regression analysis to maximize the correlation with subjectiveresults. Although some improvements have been yielded in this way and the correlationcoe�cients have varied from 0.8 to 0.996 (the upper limit was found only for a restrictiveclass of waveform coders), the multidimensional scaling of objective measures has shownthat the various objective measures are not independent. This means that even thoughthese measures are arithmetically quite dissimilar, they all measure practically the samefeatures of speech quality, hence no signi�cant improvement can be achieved by combiningthem into one composite measure.A more promising approach is to design objective measures which predict individualqualities of speech and to combine them into a new measure called Parametric ObjectiveMeasure [95]. Parameters like those used for DAM seem suitable because they indicate per-ceptually di�erent aspects of speech quality. Recently such a measure has been developedwith good correlation coe�cient (R = 0:82) over broad classes of distortions [95].The short overview above illustrates that the design of an appropriate objectivemeasureis not a trivial task. Since the speech production and perception mechanisms are verycomplex, no simple objective measure can ever be expected. In fact, objective measurescan be designed only for a limited and well de�ned class of distortions. The fast progress inspeech coding, processing and transmission systems, however, necessitates a continuousresearch to cope with the ever increasing variety of degradations. In the next sectionvarious spectral measures are presented, which are all evaluated in the dissertation.17



3.3.1 Spectral Envelope Distortion MeasuresThe spectral measures presented in this section are all based on the spectrum envelopedistortion computed by Linear Predictive Coding (LPC) [34]. This group of measuresfound to be one of the best candidate distortion measures of speech quality [33, 95] andthis was the reason to chose this group of objective measures for evaluation. They attemptto provide macroscopic (smoothed) spectral information, which is believed to be the mostimportant speech signal characteristic.The LPC measures compare the all-pole spectral models of the original and distortedspeech (Figure 3.2).
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Figure 3.2: Measuring Coder Performance with LPC MeasuresThe speech model de�ned in Figure 3.2 consists of the all-pole �lter Gx=Ax(z) whichis exited by the normalized excitation source u(n). This excitation source is de�ned to bethe normalized residual error in the LPC model of the original speech x(n) and thereforethe output of the speech model is exactly x(n). The coder model is composed of a time-varying �lter H(z), to model the linear distortions (i.e., attenuation, delay, band limiting),and an additive noise e(n), to account for nonlinear distortions like quantizing noise inthe coder. The coder output y(n) is �ltered by the inverse �lter Ay(z)=Gy to produce thenormalized residual v(n). The Ax(n) and Ay(n) �lters are de�ned by the LPC coe�cientsax(k) and ay(k) for k = 0; :::; p in case of a p-order LPC prediction obtained by LPCanalysis [34]: Ax(z) = pXk=0 ax(k)z�k and Ay(z) = pXk=0 ay(k)z�k (3.4)with ax(0) = ay(0) = 1. 18



The LPC measures are based on the LPC analysis of both the original x(n) anddistorted y(n) speech and de�ned as shown in the following.The Log Likelihood Ratio (LR) measure expresses the dissimilarity between all-polemodels of the original and distorted speech waveforms. It is de�ned by Eq. 3.5.LR = ln241� Z �0 �����Ay(ej!)Ax(ej!) �����2 d!35 = ln "�ayRx�aTy�axRx�aTx # (3.5)where Ax(z) and Ay(z) are the analysis �lters given by LPC coe�cient vectors �ax and �ayof the original and distorted speech, respectively, and Rx is the autocorrelation matrix ofthe original speech. The elements of Rx are de�ned as follows:rx(ji� jj) = N�ji�jjXn=1 x(n)x(n+ ji� jj) for ji� jj = 0; 1; 2; :::; p: (3.6)where N is the length of the frame and p is the prediction order used in LPC. A simpleinterpretation of LR can be given in Figure 3.2: LR is the log ratio of the LPC residualenergies of the distorted and original speech: LR = ln(Ey=Ex) [103]. The correlation ofLR with subjective measures is around R = 0:59 according to [95]. Other popular variantsof LR are the Itakura-Saito Measure, the COSH Measure and the Weighted Log Itakura-Saito Measure [95], which provide similar performance but originate from a somewhatdi�erent mathematical reasoning.The Cepstrum Distance Measure (CD) is based on cepstral coe�cients c(k) [95, 40]which can be obtained from the roots zx(i) and zy(i) of the polynomial Ax(z) and Ay(z),respectively. cx(k) = �1k pXi=1 zkx(i) and cy(k) = �1k pXi=1 zky (i) (3.7)Based on these coe�cients the CD is de�ned byCD = "[cx(0) � cy(0)]2 + 2 pXk=1(cx(k)� cy(k))2# 12 (3.8)Using Parseval's relation it can be seen that CD is equivalent to a log spectral distanceof cepstrally smoothed spectra. For CD the correlation with subjective results has rangedfrom 0.8 to 0.9 [61, 63].To overcome the asymmetric property of the LR measure the COSH measure (COSH)has been developed [46]. It measures (Eq. 3.9) the spectral distance between the originaland distorted speech samples weighted by the cosh function:COSH = �2� Z �0 (cosh[V (ej!)]� 1)d!� 12 = minhGxGy i2COSH =19



= 2666666422666664 pXi=�pLy(i)rx(i) pXi=�pLx(i)ry(i)ExEy 3777775 12 � 237777775 12 (3.9)where V (ej!) = ln " G2xjAx(ej!)j2#� ln " G2yjAy(ej!)j2# (3.10)and Lx(i), Ly(i) are the maximum likelihood coe�cients de�ned byLx(i) = p�jijXj=0 ax(j)ax(j + jij) Ly(i) = p�jijXj=0 ay(j)ay(j + jij): (3.11)Ex and Ey are the LPC residual energies of the segment of the original and distortedspeech, respectively. Gx and Gy are the gain factors of the original and distorted all-polemodels, respectively.The Energy Ratio (ER) [95] is also a frequently used measure, which has close rela-tionship with the LR measure. ER is de�ned by Eq. 3.12:ER = "�ayRx�aTy�axRx�aTx #0:125 (3.12)The Linear LPC Measure (LILPM) and the Log LPC Measure (LOLPM) compute thelinear and logarithmic distance between the LPC coe�cients of the original and distortedspeech, as de�ned by Eq. 3.13 and Eq. 3.14 [95], respectively.LILPM = "1p pXi=1[ax(i)� ay(i)]2# 12 (3.13)LOLPM = 1p pXi=1 20log10 �����ay(i)ax(i) ����� (3.14)Similarly to LILPM and LOLPM, measures can be de�ned by computing the linear orlogarithmic distance between the Partial Correlation (PARCOR) coe�cients of the originaland distorted speech (kx(i); ky(i)) [34, 95]. These PARCOR measures are called LinearPARCOR Measure (Eq. 3.15) and Log PARCOR Measure (Eq. 3.16), respectively [95].LIRCM = 1p pXi=1 jkx(i)� ky(i)j (3.15)LORCM = 1p pXi=1 20log10 �����ky(i)kx(i) ����� (3.16)20



Another type of very successful measures are the Linear Area Ratio (LIAR) and the LogArea Ratio (LOAR) measures [95]. They use the same de�nition as LIRCM and LORCM(Eq. 3.15 and Eq. 3.16) but with the so called Area Ratio coe�cients de�ned byarx = 1 + kx(i)1� kx(i) ary = 1 + ky(i)1 � ky(i) (3.17)All measures above give results for one segment of the speech. For the full speechsample a global measure can be computed by averaging these results.3.3.2 Evaluation of Spectral Envelope Distortion MeasuresThe spectral envelope distortion measures introduced above have been evaluated on thesame real time CELP codec [43] at a rate of 4800 and 3200 bit/s that were applied forthe subjective test described in Section 3.2.2 because the purpose of the research was toevaluate the performance of these measures by comparing their results with subjective testresults. (Details about the CELP codec can be found in that Section.) The characteristicsof the LPC measures and investigated speech samples can be found in Table 3.1.Number of Recordings 10Length of Recordings 4 secLength of Segments 32 msSampling Frequency 8 kHzWindowing Technique HammingLPC Technique AutocorrelationDegree of Prediction 30Table 3.1: Characteristics of Investigated Speech Material and LPC MeasuresThe digital recordings of the same 10 sentences were processed by each rate of thecoders that were used for the subjective quality evaluation of the coders in Section 3.2.2.The results of the applied LPC measures and the relative di�erence of their results betweenthe 3200 bit/s and 4800 bit/s CELP coders can be seen in Table 3.2 [85].Codec LR CD COSH ER LILPMCELP 3k2 0.707 1.741 1.445 1.097 0.336CELP 4k8 0.727 1.688 1.463 1.097 0.349Relative Di�erence 2.8% 3.1% 1.2% 0.0% 3.8%Codec LOLPM LIRCM LORCM LIAR LOARCELP 3k2 9.114 0.102 8.325 0.342 1.967CELP 4k8 9.485 0.105 8.596 0.346 2.020Relative Di�erence 4.0% 2.9% 3.2% 1.2% 2.7%Table 3.2: Results of Spectral Objective Speech Quality Measures21



It can be seen from the results that all investigated spectral measures have indicatedalmost the same quality degradation. All the results are the same within a range of 4%relative error, which also includes measuring and numerical computation errors.In contrast, the results of the subjective test have clearly indicated a signi�cant qualitydi�erence of 5.4 dB between the 3200 bit/s and 4800 bit/s CELP coders in the MNRUsignal-to-noise ratio.According to our opinion the explanation of this is the following: Both CELP codersintroduce approximately the same amount of linear distortions but a di�erent value ofquantizing noise. These objective measures are mostly sensitive to the linear distortion ofthe speech and they are not able to capture the e�ect of the nonlinear distortion i.e. thequantizing noise.However, some of the spectral measures can also indicate the presence of nonlineardistortion. For example, the Log Likelihood Ratio weights linear and nonlinear distortionequally [19], and many investigations have shown that this measure has very high correl-ation with subjective quality [95], but the ability of indicating the noise di�erence in thedescribed investigations has been found not adequate.It can also surprisingly be noted that even the widely accepted Cepstral Distortionmeasure, which is believed to be the best [40, 62, 61, 46, 63], is not able to perform properspeech quality characterization.This broad range of spectral envelope objective measures have been developed andused for the evaluation of speech coding systems all over the world [95]. Many of themhave found to be successful in predicting the quality of a wide range of speech coders.Thereby they are strongly suggested for general usage. The above presented investigationclearly shows the limitations of these objective measures. Although they measure di�erentcharacteristics of the deviation of spectral envelopes and to some extent they can also takeinto account the nonlinear distortions of coders, they are not appropriate to characterizethe very popular and widely used CELP and similar type of coders. Roughly speakingwe can conclude that all these LPC measures are properly indicating the linear distortionsonly and they are not very sensitive to the quantizing noise.The �nal conclusion is that these known spectral envelope objective measures are notalways appropriate alone to characterize the speech quality and one has to be carefulwhen applying them for quality assessment of speech coders and should be aware of theirlimitations.3.4 Summary and Further ResearchVarious known and widely applied spectral objective quality measures have been invest-igated (Log Likelihood Ratio, LPC Cepstrum Distance Measure, COSH Measure, EnergyRatio, Linear LPC Measure, Log LPC Measure, Linear PARCOR Measure, Log PAR-COR Measure, Linear Area Ratio, Log Area Ratio) in the case of a 4800 bit/s and 3200bit/s CELP (Code Exited Linear Prediction) coder [43] and the results are compared tosubjective quality tests [87, 85]. 22



The subjective test has been performed by Paired Comparison [63] based on the MNRU(Modulated Noise Reference Unit) standardized by ITU [52]. These tests showed a signi-�cant quality di�erence of 5.4 dB between the 3200 bit/s and 4800 bit/s CELP coders inthe MNRU signal-to-noise ratio.In contrast, the results of all investigated spectral envelope objective measures are al-most the same (within a range of relative di�erence smaller than 4%) for both transmissionspeeds. The inadequate performance of these measures can be explained by identifyingthat they are not su�ciently sensitive to the nonlinear distortions of coders like the quant-izing noise.Based on the above results it can be concluded that these known spectral measures arenot appropriate alone to characterize the speech quality.There is no promising way to get a spectral objective speech quality measure which isable to capture correctly both the linear and nonlinear distortions of speech. A proposalfor a two-parameter objective speech quality measure, which could provide a better char-acterization of speech quality, is the following: one parameter should be a correct measureof the linear distortion in terms of the smoothed (envelope) spectral di�erence. It could bee.g. the Cepstral Distortion measure. The other parameter should focus on the nonlineardistortion. This measure could be a comparing of the residual energies of the originaland distorted speech �ltered by their own analysis �lters. The comparison in the residualsignals could be done e.g. on the basis of segmental signal-to-noise ratio.
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Chapter 4Performance Evaluation of LinkOccupancy4.1 IntroductionIn the beginning of this century Erlang published his famous formula [12] for the lossprobability of a telephone system and now we have a historical view on the great successof his formula and the good applicability of the Poisson process in traditional telephonenetworks.With the introduction of B-ISDN now we have the questions: can we use the Poissonprocess for characterizing the call arrival process or not? Can we use the exponentialdistribution for modeling call holding time or not? So far we have only a few measurementsfrom real B-ISDN environments to give a de�nite answer. Furthermore, it is di�cult topredict good tra�c models of future services. On the other hand, we can expect that inmany cases of B-ISDN supporting a large variety of services, the arrival process of newconnection request will di�er from service to service and will often be quite di�erent froma Poisson process [99, 15, 60]. It is also expected that the holding time in most caseswill di�er signi�cantly from the exponential distribution. However, an analysis is neededto investigate the robustness of the classical Poisson/exponential assumption which is themain purpose of this Chapter.More general processes and queueing models are needed to achieve appropriate callscale models in ATM. It also means that in many cases the mathematical models withseveral nice properties (e.g. insensitivity properties) thanks to the Poisson process, whichwe successfully use in telephone networks, cannot be applied. These expectations actualizethe investigation of networks with G=G=c queues both as loss and delay systems. Formathematical reason the G=G=1 queue is also of interest.The objective of this Chapter is to provide an insight into the behaviour of link occu-pancy. The analysis is carried out through the analysis of the G=G=c queue and the focusis on the occupancy distribution and the generalized peakedness which is a quite successfulvariability measure and probably the best candidate for a B-ISDN tra�c characterization.27



This study provides a tool for robustness and sensitivity analysis of link occupancy invest-igating its deviation e�ects from the classical Poisson/exponential description of B-ISDNtra�c.The Chapter is organized as follows. In the next two sections the concepts of theperformed analysis of the occupancy distribution and occupancy peakedness are given,respectively. In Section 4.3.2 a new result for the generalized peakedness in case of Coxianholding time is shown. Finally the analysis results and concluding remarks can be foundin the last two sections of this Chapter.4.2 The Occupancy DistributionAn appropriate model for the investigation of the call scale tra�c in B-ISDN is the G=G=closs system. The link occupancy analysis based on this model of a single link. So far oneof the few approaches to obtain the exact steady state distribution of a G=G=c system isby restricting the arrival process to be of the type Markovian Arrival Process, [90] and toassume the holding time distribution to be of phase type [39, 91, 84]. Then the system canbe analyzed through the usual Markovian approach [89, 39, 84]. However, the size of thestate space very quickly exceeds any in practice manageable size even when the sparsenessof the transition matrix is taken into account, thereby limiting the feasible models to thosewith a rather limited number of phases in the arrival process, a very limited number ofphases of the holding time distribution and only a small number of servers. Furthermoreany exact solution approach is far to complicated to be used for dimensioning purposes.The analysis is signi�cantly simpli�ed when the holding time distribution is exponen-tial, and the solution for the GI=M=1 and GI=M=c has also been known for about �ftyyears [94]. However, deriving the occupancy distribution is numerically challenging andin practice impossible when the o�ered tra�c and number of servers grow. It has beencommon practice to approximate the occupancy distribution of theGI=M=1 and GI=M=csystems by using the state dependent Poisson process of the type BPP [23, 53]. Whenthe o�ered tra�c increases the BPP distribution converges towards a normal distribution[30], and for high capacity systems it has been suggested to use the normal distribution[23].In the occupancy distribution study homogeneous tra�c situation is considered whereeach call requires a unit of capacity but in the investigations for the generalized peakedness(Section 4.3), approximate occupancy distributions, blocking measures (Chapter 5) andATM network dimensioning algorithm (Chapter 6) can be extended for heterogeneoustra�c as shown in Section 6.2. In the model under study an in�nite server group is o�eredtra�c from a stationary process S with arrival intensity m. All servers act independentlyof each other and have the same holding time distribution H which is assumed general butwith �nite mean 1=�.In order to obtain the stationary occupancy distribution the arrival process is restrictedto be renewal and the interarrival time to be of phase-type [39, 91, 84]. Two approacheshave been considered for �nding the distribution. In the �rst approach the results and28



procedure of Ramaswami and Neuts [97] has been applied which allows the holding timeto be general. In the second approach the holding time is exponential which ensures aMarkovian system [102].4.2.1 The Occupancy Distribution in Case of General HoldingTimeA phase type (PH) distribution is de�ned as a distribution function for the time untilabsorption in an (n + 1) state Markov chain with n transient state and one absorbingstate. The in�nitesimal generator is of the formQ = " T T �0 0 # (4.1)where T = (Tij) is a non-singular n � n matrix such that Tii < 0 and Tij � 0 for i 6= j,and T � � 0 is an n-vector satisfying Te+ T � = 0, where e0 = (1; :::; 1). A phase typerenewal process can be obtained by resetting the Markov chain Q according to an initialprobability vector (�; �n+1) after each transition to the absorbing state. We consider as amodel of an arrival process this PH renewal process, which has the in�nitesimal generatorQ� = T + T �A�, where A� = diag(�1; :::; �n) and T � = (T �; :::; T �).The investigated model is the PH=G=1 queueing system, where the holding timedistribution is arbitrary. Ramaswami and Neuts [97] derives the basic system of di�erentialequations and obtains@@tG(z; t) = [(T + T �A�) + (z � 1)f1 �H(t)gT �A�]G(z; t) (4.2)with the initial condition G(z; 0) = I, where G(z; t) is the generating function of the n�nmatrix Gk(t) with elementsGijk (t) = P [X(t) = k; J(t) = jjX(0) = 0; J(0) = i]; t � 0 (4.3)for k � 0, i; j = 1; :::; n, where the number of occupied servers and the phase of the arrivalprocess at time t+ are denoted by X(t) and J(t), respectively.Based on the basic system of di�erential equations we get an in�nite system of di�er-ential equations for the time dependent occupancy distribution. Truncated at a su�cientlarge value of the index k they can be solved numerically. De�ning gk(t) = Gk(t)e, k � 0where the ith entry of gk(t) is given bygki(t) = P [X(t) = kjX(0) = 0; J(0) = i]; t � 0that is, ddtg0(t) = [T +H(t)T �A�]g0(t); g0(0) = e (4.4)29



and for k � 1ddtgk(t) = [T +H(t)T �A�]gk(t) + f1�H(t)gT �A�gk�1(t); gk(0) = 0 (4.5)The main advantages of this approach that it produces both the transient and the steadystate occupancy distributions, moreover, the complexity of the solution is independent onthe holding time distribution. However, for steady state analysis, this solution approachis rather complex, and we have experienced di�culties in the numerical calculations forcases in which the steady state probability of an empty system is very small [76].4.2.2 The Occupancy Distribution in Case of Exponential Hold-ing TimeFor the special case when the holding time is exponential Tak�acs [102] provides a simplemethod to get the occupancy distribution just before an arrival. However, it should benoted, that even though this analytical solution exists, obtaining numerical values fromthis solution is challenging and in practice limited to small o�ered tra�c and small numberof servers.The occupancy distribution just before an arrival of theGI=M=c queue can be obtainedby pak = cXr=k(�1)r�k  rk !Br (4.6)where Br is the rth binomial moment of fpakg and is given byBr = Cr cXj=r  mj ! 1CjcXj=0 mj ! 1Cj (4.7)where C0 = 1 and Cr = rYi=1 �(i�)1� �(i�)! ; r = 1; 2; ::: (4.8)with c number of servers and the Laplace-Stieltjes transform of the distribution functionof the interarrival time is denoted by �.There is a relation between the occupancy distribution just prior to an arrival pak andthe occupancy distribution at an arbitrary time pk (see Theorem 4 of Chapter 4 in [102]):pk = mpak�1k� ; k 2 f1; :::; cg and p0 = 1 � m� cXk=1 pk�1k (4.9)Thereby the stationary occupancy distribution of the GI=M=c queue at an arbitrary time30



can be computed by Eq. 4.9.4.3 The Generalized PeakednessIn the traditional telephone tra�c theory, the issue of variability in the arrival processof connection requests has been investigated mostly for overow tra�c in systems withalternative routing [26].Two measures has been intensively used. The most straightforward is the squared coef-�cient of variation of the interarrival time between two consecutive connection requests[16]. In the case where the arrival process is well described by a renewal process thisgives a complete second order characterization [16]. However in the general case, it onlygives one component in the characterization [17]. Another important disadvantage comesfrom the fact that the blocking probability and the occupancy distribution also dependson the distribution and not only the mean of the holding time in the case without Poissonarrivals. A more accurate variability measure is therefore needed. The generalized peaked-ness measure as de�ned by Eckberg [27] has the advantage that it is a complete secondorder characterization of the arrival process and furthermore also takes the holding timeprocess into account.The de�nition is as follows: Assume that the arrival of connection requests are o�eredto a link with in�nite capacity. Let L(t) be the amount of bandwidth occupied at time t.Then the generalized peakedness Z(t) is de�ned as:Z(t) = V arfL(t)gEfL(t)g (4.10)On a route in a real network it is possible only to measure the actual occupied band-width and here only accepted connections contributes. However, since also the amountof blocked connections needs to be monitored, it is possible by combining the occupancydistribution of carried call and the process of connection requests which are blocked toobtain an estimate of the occupancy distribution in the in�nite capacity case and therebyget a measured estimate of the peakedness of the connection request on the route.4.3.1 Computation of Generalized PeakednessEckberg has provided formulas for the generalized peakedness [27] assuming only that thearrival process is stationary. Let U(x) denote the renewal function of the process S thatis: U(x) = E[N(a; b)] with N(a; b) denoting the number of arrivals in the interval ]a; b],when an arrival occurred at time a. Furthermore, de�neHc2(x) = Z 1�1(1�H(u))(1�H(u� x))du (4.11)31



According to formula (3) in [27] then the peakedness Z of the complementary holding timedistribution 1�H is Z(H) = 1 + 2� Z 10� Hc2(x)dU(x)� m� (4.12)By Eq. 4.12 the arrival stream is characterized in terms of a peakedness functional whichtakes complementary holding time distributions as arguments and maps them into peaked-ness values. The intuitive concept of the peakedness functional is that if a given comple-mentary distribution characterizes the "reaction time" of the arrival stream with a system,then the resulting peakedness value is a potentially useful measure of stream variabilitywith respect to that system.If the holding time is exponentially distributed with mean 1=�, the peakedness formulareduces to: Zexp(�) = 1 + U�(�) � m� (4.13)in which U� denotes the Laplace-Stieltjes transform of U . Restricting the holding timedistributions to be of the class which,1�H(x) = Z 1�1 e�xta(t)dt; x > 0 (4.14)and a is a generalized function [67], Eckberg [27] obtains the following relation betweenthe peakedness of H and the peakedness of an exponential holding time distribution withmean 1=�: Z(H) = 1 + 2� Z 10� �(y)(Zexp(y)� 1)dy (4.15)where �(y) = a(y) Z 1�1 a(x)x+ ydx (4.16)4.3.2 Generalized Peakedness in Case of Coxian Holding TimeDistributionsIn this section a new closed form expression for the generalized peakedness in case ofCoxian holding time is derived [80, 83, 77].Consider a Coxian distribution represented by a weighted sum of generalized Erlangdistributions as shown in Figure 4.1. For simplicity reasons it is assumed that �i 6= �j fori 6= j but the general case can be included with only minor changes in the expressions.For the Coxian distributions a(t) in Eq. 4.14 can be written as a series of delta functions1:a(t) = nXi=10@i�1Yj=1 �j�j � �i1A0@ nXj=i pj jYk=i+1 �k�k � �i1A ��i (4.17)1When �i = �j for some i and j, derivatives of delta functions appear in the expression for a(t).32
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4.4 Analysis Results4.4.1 Occupancy DistributionIn this section analysis results based on the method of section 4.2.1 can be found. Theseresults give an overview on how the arrival processes and service processes inuence theoccupancy distribution [76].The numerical study have concentrated on the occupancy distribution of a PH=PH=1system with a mean occupancy of 10 servers by setting the arrival intensity m = 10 andmean holding time 1=� = 1. In the method of section 4.2.1 a mean of 10 servers wasclose to the upper limit of where the numerical approach was stable. In the Figures c2aand c2h denote the squared coe�cient of variation of the interarrival time and holding time,respectively.In the �rst scenario the arrival process is �xed and the occupancy distribution is invest-igated as the holding time distribution changes. Fig. 4.2 and Fig. 4.3 show the occupancydistributions when the arrival process is smooth (Erlang-4 arrival process) and bursty(Hyperexponential arrival process with c2a = 20), respectively. For this smooth arrivalprocess the distribution is bell shaped in the considered range while for the peaky hyper-exponential arrival process the shape of the occupancy distribution changes dramaticallyfrom a bell shaped form when the holding time is very variable towards a curve withvery large probabilities of an almost empty systems and a slowly decreasing tail at highoccupancy levels when the holding time distribution is Erlang-4.In the second scenario the holding time distribution is �xed and the occupancy dis-tribution is investigated as the arrival process changes. Fig. 4.4 and Fig. 4.5 give plotscorresponding to Erlang-4 and Hyperexponential (c2h = 20) holding time distributions,respectively. In cases when the holding time has small variability (Erlang-4 case) theprobability mass is moving away from the mean to smaller occupancy levels with increas-ing burstiness of the arrival process and �nally it loses the bell shape type. For highholding time variability (Hyperexponential with c2h = 20) the distributions are bell shapedfor all investigated arrival processes.From the results it can be seen that the behaviour of the system is rather complex andthe sensitivity of occupancy distribution from the holding time distribution and arrivalprocess depend highly on each other. In such investigations the inputs are two distribu-tions (arrival process and holding time) and the output is also a distribution (occupancydistribution) which makes �nding simple behaving rules quite di�cult. In the followingsection the output of the analysis is the generalized peakedness which allows us to take adeeper look into the system behaviour and conclude important practically useful systemproperties. 34
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4.4.2 Occupancy PeakednessThe results in this section are based on the method of Section 4.3 and the parameters ofthe numerical examples (mean holding time, etc.) are the same as in the previous section[76].In Fig. 4.6 the peakedness as a function of the squared coe�cient of variation of theholding time distribution is shown for eight di�erent phase type renewal arrival processesranging from an Erlang-4 to a hyperexponential with squared coe�cient of variation equalto 20. For smooth arrival processes the peakedness increases with increasing holding timevariability, which is expected. For peaky arrival processes the peakedness decreases withincreasing holding time variability. The reason is that when the holding time is regularthe number of occupied servers follows the peaky nature of the arrival process, and whenthe variability of the holding time increases it randomizes the number of occupied serversand a decrease in peakedness follows.It can also be seen that the peakedness is very holding time dependent for arrival pro-cesses with very high variability, and the sensitivity is largest for holding time distributionswith small variability.The peakedness as a function of the squared coe�cient of variation of the interarrivaltime distribution is shown for eight di�erent holding time distributions in Fig. 4.7. Fig. 4.7shows that the peakedness increases almost linear with the squared coe�cient of variationof the interarrival time. The relative di�erence from a �rst order Taylor approximations isalways below 6% in the investigated range. The slope of the lines increases with decreasingholding time variability. In cases with a highly variable holding time distributions (c2h > 15)the peakedness is almost independent of the variability of the arrival process.The results show a quite unexpected and interesting property: even for very burstyarrival processes (c2a = 20) the occupancy distribution has small variability (the peakednessis Z < 2) in case of bursty service processes (c2h = 20). This smoothing e�ect of the holdingtime also indicates that the variability of the holding time is a signi�cant characteristics ofthe system.
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4.5 Summary of ResultsIn this Chapter a robustness and sensitivity analysis of link occupancy with respect tothe arrival and the service processes is presented. Based on the results I have concludedsome basic and interesting properties of both link occupancy distribution and occupancypeakedness.An important practical conclusion can be established from these results: the traditionalPoisson/Exponential description of B-ISDN is quite vulnerable to deviations from theseclassical assumptions, thereby if these assumptions are not ful�lled the Poisson process andthe exponential distribution, which are widely applied in traditional telephone networks,cannot be accepted in B-ISDN environment for modeling the arrival process and theholding time, respectively.It means that an accurate characterization of both processes are necessary. It canalso be noted that the holding time distribution should be correctly taken into account fordeveloping blocking probability measures etc. because if the arrival process di�er fromPoisson the nice property that the occupancy distribution depends only on the mean ofthe holding time does not hold.A tra�c variability measure based on the concept of the generalized peakedness witha new formula is also presented.
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Chapter 5Approximations for Link OccupancyDistributions and Link BlockingMeasures5.1 IntroductionOne of the most important NP characteristics of the call level is the end-to-end blocking[15]. It is de�ned as the probability of a call being blocked from all the routes that it canuse to travel from its origination node to its destination node. In general the calculationof blocking probabilities in such networks is very di�cult and in practice it is often basedon decomposition into series of �xed routing problems with link-by-link decompositions[25]. Therefore the key element of any end-to-end blocking computation procedure is theproper link blocking computation.Even considering only a single link the calculation of blocking probability is not trivialand di�ers signi�cantly from the traditional circuit-switching networks [15]. In the tra-ditional telephone networks the estimation of blocking probabilities has a long traditioninitiated with the pioneering work of Erlang [12]. Many years of experience has shownthat the Poisson process is a reasonable model of the process of telephone call requests,and its nice mathematical properties have to a great extend simpli�ed the analysis of suchnetworks resulting in properties such as product form solutions and insensitivity of holdingtime distributions [56].In order to analyze overow tra�c in e.g alternative routing, it has been necessaryto include less tractable arrival processes like renewal, or Markov Modulated PoissonProcesses. For these cases it has normally been assumed that the holding time distributionis exponential [101, 23]. Alternatively, the class of state dependent Poisson processes hasbeen used for the arrival process. In B-ISDN the characterization of arrival process andholding timewill likely be di�erent from the classical description (see the previous Chapter)but in this case the computation of the link occupancy distribution and thereby the linkblocking measures are rather complicated.The fact that it is relatively easy to obtain the mean and variance of the distribution,40



but di�cult to obtain the distribution itself, calls for approximations. In this Chaptertwo approximations for the occupancy distributions are presented based on matching themean and variance. The issue of how the third and higher moments a�ects the occupancydistribution is not investigated in this Chapter but I refer to the work by Holtzman [45] inwhich some bounds have been derived based on the Laplace transform of the occupancydistribution.The �rst approximation is a BPP approximation while the second one is the distributionwhich is obtained by maximizing the entropy subject to matching of the mean and variance.It is shown how the maximum entropy method enforces a distribution which is a discreteversion of a normal density function restricted to the positive line. Finally, approximationsfor the blocking probability of the �nite capacity system is suggested based on the derivedoccupancy distribution of the in�nite system.5.2 The BPP ApproximationThe BPP (Bernoulli-Poisson-Pascal) arrival process [23] is a state dependent Poissonprocess characterized by two parameters � and � such that the Poissonian arrival intensitywhen k servers are occupied is � + k� (see Figure 5.1). In the case � = 0 it reduces to
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The mean and variance of the occupancy distribution turns out to be:M = ��� � V = ��(�� �)2 (5.1)where 1=� is the mean holding time. I suggest to approximate the occupancy distributionwith the BPP distribution with the mean M and variance V obtained by the concept of thegeneralized peakedness presented in Chapter 4.3 [76, 80, 79, 83, 77]. This approximationhas the advantage that it takes into account both the arrival and service processes and inthe approximation the exact mean and variance of occupancy distribution is used. Therebythis approximation produces more accurate results (see numerical examples) compared toother usually applied methods which uses only the characterization of the arrival process(e.g. the BPP approximation in [23]). With the mean and the variance the parameters �and � should be chosen as: � = 1� 1Z � =M(1 � �) (5.2)assuming a mean holding time of 1. The BPP distribution can now be obtained bypi = 8<: pi�1�+ (i� 1)�i if i > 00 if � < 0 and i > N (5.3)and p0 = ( (1 � �)�� if � 6= 0e�� if � = 0 (5.4)where in the case of � < 0 the � is modi�ed to the closest value such that N = ��� mustbe an integer.Finally I suggest to truncate and renormalize the in�nite BPP distribution in order toobtain the link occupancy distribution.ptri = 8>>><>>>: pi if � < 0 and c > NpicXj=0 pj otherwise (5.5)where c is the capacity of the link.5.3 The Maximum Entropy ApproximationThe concept of entropy appears in the mathematical theory of interconnecting networksand in the queueing theory [6, 65]. In queueing theory its existence is known only in the1-server case and usually it has been applied in a way where only average quantities likemean queue length and utilization has been matched. In this Section an application of this42



technique on a many server loss system is shown where also the variance is matched.The basic idea of the method is based on Bernoulli's principle of insu�cient reason[41], which states that all events over a sample space should have the same probabilityunless there is evidence to the contrary. The entropy plays as a measure of the certainnessof the outcome of an event. The more uncertain the value of a random variable is, thebigger the entropy is. In order to ful�ll the Bernoulli's principle the entropy has to bemaximized under the constrains of the mean and the variance which we would like to bematched.Consider a stationary stochastic process X(t) in a discrete state space and let pi bethe probability of being in state i. The entropy of X(t) with stationary distribution fpigis de�ned as: H(p) = �Xi pilnpi (5.6)The idea here is, as an approximation for the occupancy distribution, to take the onewhich maximizes the entropy under the constrains that� it should be a proper probability distribution i.e. 1Xi=0 pi = 1� the mean should be correct i.e. 1Xi=0 ipi = E(X)� the second moment should be correct i.e. 1Xi=0 i2pi = E(X2)and I suggest to use the concept of generalized peakedness to get the variance of the oc-cupancy distribution [76, 80, 79, 83, 77]. Similarly to the proposed approximation inSection 5.2 this method also uses both the arrival and service process characteristics.Moreover, it utilizes the information of the two-parameter matching but also ensures thatthe approximate distribution will be maximum uniform. In Chapter 8.4.1 of [41] the fol-lowing theorem is presented and proved:THEOREM: The probability mass function fpig which maximizesH(p) = �Xi pilnpi (5.7)subject to 1Xi pi = 1 and Xi fj(i)pi = �fj for 1 � j � k (5.8)(where f �fjj(1 � j � k)g are prescribed mean values of functions ffjg) is:pi = g mYj=1 xfj(i)j (5.9)43



where g is the normalization constant.If this result is applied to a single server queue and the mean queue length is matched,the queue length distribution which maximizes entropy is geometrical thus yielding theexact distribution for the queue length in the M=M=1 case.When matching the �rst and second moment in the in�nite server case, a straightfor-ward application of the theorem shows that the occupancy distribution which maximizesentropy is: pi = PfX = ig = gxi1xi22 = geilnx1ei2lnx2 (5.10)Thus the maximum entropy approach enforces a distribution which comes from samplingthe normal density function at non-negative integer values. The three equations neededto match the mean, variance and obtain a proper distribution is:1Xi=0 gxi1xi22 = 1 1Xi=0 gixi1xi22 = EfXg 1Xi=0 gi2xi1xi22 = EfX2g (5.11)The equations has been solved by heuristic methods. However, applying the correspondingcontinuous approach �tting a normal density function restricted to the positive line yieldsa system of equation which can be solved in an exact way as demonstrated in [83]. The nu-merical results indicates that the di�erence between the continuous and the discrete resultsare very small. Here I also suggest to truncate and renormalize the in�nite distribution inorder to get the link occupancy distribution.5.4 Link Blocking MeasuresIn this Section some practically applicable and accurate link blocking measures are presen-ted based on di�erent approximate link occupancy distributions [76, 80, 79, 83, 77]. It ispossible to construct di�erent types of blocking measures like time congestion, call con-gestion or tra�c congestion and the usage of them can be chosen from the applicationpoint of view. In this Section the emphasis is on the tra�c congestion measures, whichare applied in ATM network dimensioning in Chapter 6, but call and time congestionmeasures are also possible to de�ne. I use the classical de�nition of tra�c congestion inthe proposed link blocking probabilities:TC = OT �CTOT (5.12)where OT and CT denote the o�ered tra�c and carried tra�c, respectively. I suggest to�nd the carried tra�c from the approximate occupancy distributions obtained by trun-cating a renormalizing the in�nite capacity distribution. It should be noted that thetruncation and renormalization procedure yields the correct distribution in cases when thesystem under consideration is a time reversible Markov process (see e.g. corollary 1.10 in[55]), which is the case for e.g. the BPP arrival process.44



5.4.1 Tra�c Congestion Based on the Exact In�nite CapacityOccupancy DistributionThe exact in�nite capacity occupancy distribution can be obtained in case of phase typearrivals by the method presented in Chapter 4. Based on this distribution a tra�c con-gestion measure can be de�ned after truncation and renormalization of the distribution.I suggest the following tra�c congestion measure:� Compute the exact occupancy distribution by the method of Section 4.2.1.� Compute the �nite capacity distribution by truncating and renormalizing the in�nitecapacity exact distribution.� Compute a Tra�c Congestion (TC) by Eq 5.12 where the carried tra�c is computedby �nding the mean of the approximate �nite capacity distribution.5.4.2 Tra�c Congestion Based on the BPP ApproximationBy applying the BPP approximation procedure a simple but accurate (see numerical ex-amples) tra�c congestion measure can be de�ned.I suggest to obtain the BPP tra�c congestion by the following procedure:� Compute the approximate occupancy distribution by the BPP method presented inSection 5.2.� Compute the �nite capacity distribution by truncating and renormalizing the in�nitecapacity distribution.� Compute a Tra�c Congestion (TC) by Eq 5.12 where the carried tra�c is computedby �nding the mean of the approximate BPP distribution.5.4.3 Tra�c Congestion Based on the ME ApproximationBased on the ME method I de�ne the following tra�c congestion measure:� Compute the approximate occupancy distribution by the ME method presented inSection 5.3.� Compute the �nite capacity distribution by truncating and renormalizing the in�nitecapacity distribution.� Compute a Tra�c Congestion (TC) by Eq 5.12 where the carried tra�c is computedby �nding the mean of the approximate ME distribution.45



5.4.4 Tra�c Congestion in Case of Renewal Input and Exponen-tial Holding TimeThe solution to the GI=M=c and GI=M=1 systems has been known [94]. Both the oc-cupancy distribution at an arbitrary point in time and the occupancy distribution at anarbitrary arrival can be found (see Section 4.2.2). Even though an analytical solutionexists, obtaining numerical values from the solution is challenging and in practice limitedto small o�ered tra�c and small value of the capacity.In the following we show that the call congestion equals to the tra�c congestion inthe GI=M=c system therefore through the method of Section 4.2.2 we can get the exacttra�c congestion measure. For the GI=M=c system the following relation between theoccupancy distribution pi at an arbitrary time and the occupancy distribution pai justprior to an arrival exists (see Section 4.2.2):pi = EfLgpai�1i ; for i 2 f1; :::; cg and p0 = 1� EfLg cXi=1 pai�1i (5.13)EfLg is the mean of the number of occupied servers in the corresponding in�nite serversystem. Using Eq. 5.13 the call congestion can be written asCC = 1 � c�1Xk=0 pak = 1� c�1Xk=0 pk�1(k + 1)EfLg = 1� cXk=1 kpkEfLg == EfLg � EfLtrgEfLg = OT �CTOT = TC (5.14)Here EfLtrg is the mean of the number of occupied servers in the �nite server system.This calculation shows that the call congestion equals to the tra�c congestion thereby themethod of Section 4.2.2 is appropriate to compute TC.5.4.5 Call Congestion Based on the Delbrouck MethodDelbrouck presented an approximate call congestion formula in [23]:CC = TIC(1 + cOT (Z � 1)) (5.15)where CC and TIC are the call and time congestions, respectively. c denotes the capacityof the link and Z is the peakedness.I suggest to use the concept of the generalized peakedness to �nd Z in Eq. 5.15 forcomputing call congestion. 46



5.5 Numerical ResultsIn this section the evaluation results of both link occupancy approximations and link block-ing measures are shown. In the evaluation study the methods are investigated di�erentarrival and service processes. For evaluating the results of the BPP approximation theresults of the classical BPP method is also given for comparison. In the evaluation of theblocking measures arrival processes with not only di�erent burstiness but with the sameburstiness and di�erent distributions are also investigated.5.5.1 The Occupancy DistributionsIn the numerical study the same examples have been chosen as in Section 4.4 wherethe mean occupancy is 10 by setting the arrival intensity m = 10 and mean holdingtime 1=� = 1. Since the maximum entropy essentially gives a normal distribution, theapproximations was of interest to evaluate at systems with a higher occupancy. Thereforewe have considered the case with exponential holding time and a mean occupancy of50 servers also, and solved the traditional steady state equations of this system. Theoccupancy distributions are evaluated for both smooth and bursty arrival and serviceprocesses to identify the most important characteristics.In Figure 5.2-Figure 5.4 the BPP and ME approximations are evaluated for the casewith an Erlang-4 arrival process and three di�erent holding time distributions. In orderto investigate the e�ect of taking into account only the arrival process the classical BPPapproximation is also plotted (denoted by BPPI) where the holding time distribution isassumed to be exponential. The BPP approximation presented in Section 5.2 denoted byBPPII. As expected then the BPPI approximation which does not take into account theholding time distribution is unacceptable. However, the BPPII which matches the meanand variance of the occupancy distribution is very accurate while the maximum entropydistribution is a little inaccurate mainly because the maximum of the distribution is forcedto be very close to the mean since the restriction to the positive line changes almost nothingcompared to an ordinary normal distribution.In Figure 5.5-Figure 5.7 the approximations are evaluated for the case with a peakynon balanced hyperexponential arrival process. In Figure 5.5 with an Erlang-4 holdingtime distribution none of the approximations are able to capture the "knee" of the exactdistribution. When the holding time distribution is exponential the maximum entropycomes out as the most accurate while for a hyperexponential holding time distributionagain the BPPII is very accurate.Figure 5.8-Figure 5.9 show how the accuracy of the ME approximation increases whenthe mean occupancy of the system increases.Finally, in Figure 5.10-Figure 5.12 the BPP and ME approximations are evaluated onthe system with a mean occupancy of 50 exponential servers. For the case with Erlang-4arrivals the accuracy is very good while in the hyperexponential case the fact that themaximum of occupancy distribution is shifted away from the mean is not captured by thetruncated normal distribution dictated from the maximum entropy method.47
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5.5.2 The Link Blocking MeasuresWe have found the exact blocking probabilities of the GI=M=c case for 8 di�erent interar-rival time distributions. Varying the squared coe�cient of variation of the interarrival time(c2a) from 1/3 to 9 and also varying the type of the distributions we have investigated abroad range of the arrival distributions to evaluate the approximate blocking probabilities.For smooth arrival processes the c2a of 1/3 with Erlang-3 distribution and the convolu-tion of the exponential and the deterministic distributions (M and D) are considered. Inthe c2a = 1 case not only the Poisson arrival process (M), but also a Coxian distribution(Cox) of two branches with Erlang-2 and Erlang-3 distributions are investigated. Forpeaky arrival processes the c2a of 3 and 9 cases with Hyperexponential balanced (Hyp-bal)and unbalanced (Hyp-unbal) distributions are evaluated. In all cases the o�ered tra�c iskept equal to 10 and the number of servers is 15. Then we have evaluated four di�erentapproximative blocking probabilities.Column 2, 3, 4, 5 and 6 are the blocking probabilities described in the Section 5.4. Toget exact results the method of Section 5.4.4 has been applied. "Truncated" denotes themeasure of Section 5.4.1. In the column "BPP" the tra�c congestions of the BPP method(Section 5.4.2) is shown which in these cases equals to the call congestions. The tra�ccongestions based on the truncated normal distribution (Section 5.4.3) are shown in thecolumn "Tr. normal".c2a Type Exact Truncated BPP Tr. normal1/3 Erlang-3 1.54% 1.49% 1.30% 1.67%1/3 M and D 1.45% 1.39% 1.29% 1.65%1 M 3.65% 3.65% 3.65% 3.88 %1 Cox 3.72% 3.73% 3.65% 3.88%3 Hyp-bal 7.99% 9.27% 9.86% 10.36%3 Hyp-unbal 10.53% 10.90% 10.86% 11.51%9 Hyp-bal 15.38% 21.86% 20.71% 23.48%9 Hyp-unbal 25.52% 26.64% 26.18% 29.91%Table 5.1: Approximate and Exact Blocking Probabilities (o�ered tra�c=10, capa-city=15)The BPP approximation underestimates in the cases with regular arrival processeswhile the truncated normal distribution overestimates for peaky arrival processes. Wecan conclude from the Table 5.1 that all the approximations performs reasonable well andprovide satisfactory measures of link blocking taking into account the simplicity of themethods and no better similarly simple approximation is known.54



5.6 Summary of ResultsThis Chapter has introduced two new approximate methods for computing the link occu-pancy in case of general arrival and service processes with their performance evaluation.The �rst method is a BPP approximation while the second one is an entropy maximizationprocedure. The methods are based on matching the mean and the variance of the exactdistribution and for the variance computation the concept of generalized peakedness issuggested. From the evaluation results it can be seen that these approximations show abetter performance than e.g. the classical BPP approximation which does not take intoaccount the holding time. Thereby we can conclude that the exponential assumption ofholding time can lead to misleading results and the usage of generalized peakedness isjusti�ed.Based on the approximations some link blocking measures have been developed andevaluated. These measures are simple to compute, therefore good candidates for practicalapplications, but on the other hand they can cope with other types of tra�c than Poisson.An application of the proposed measures in network dimensioning procedures is shown inthe following Chapter.
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Chapter 6ATM Network Dimensioning6.1 IntroductionOne of the important issues of the con�guration and management of large ATM networks ishow to partition the network into a number of logical (virtual) subnetworks that share thecapacity of the same physical network [29]. In the the network design and dimensioning oftraditional telephone networks several methods have been developed [32, 57] but there aremore reasons (e.g. the di�erent nature of B-ISDN tra�c, more complex routing functions,more exible recon�guration facilities, etc.) that make the applicability of traditionalmethods very restricted in ATM networks.Such partitioning is required because of various service classes in a B-ISDN envir-onment have very di�erent characteristics and they also demand very di�erent controlmechanisms (e.g. delay sensitive tra�c like voice communication and loss sensitive tra�clike data communication) and their management is much easier if tra�c classes havingsimilar nature are grouped into logical subnetworks. Moreover, large business users mayrequire virtual leased networks with a guaranteed grade of service which can be safelyrealized by logical resource separation. Furthermore, the logical subnetworks makes dif-ferent call level management possible for di�erent tra�c classes which is combined withcell level management like priority queueing provide us with an e�ective framework ofB-ISDN con�guration and management.In ATM network dimensioning we have some given logical subnetworks and tra�cdemand for each route, where we want to �nd partition of the physical capacities relatedto subnetworks that maximizes the total carried tra�c or revenue. The characterizationof tra�c at call level should be accurate enough to provide the designer with reliable toolsfor dimensioning the transmission and switching capacities.The experience with telephone tra�c is that the Poisson process which is describedby a single parameter constitutes a natural and accurate model for the arrival of callattempts, and its memoryless property ensures that the so-called insensitivity property i.e.most quantities of interest depends on the distribution of the holding time only throughthe mean. It is highly unlikely that the Poisson property carries over to many otherservices in a B-ISDN context. The connection request process for some services may56



have a rather regular pattern while for other services it may come out very bursty. The�rst way to think of to solve this problem is to include in the tra�c demand matrix a twoparameter description, one parameter for the usual demand and a parameter characterizingthe variability of the arrival of connection requests.This Chapter describes a two-parameter description of tra�c and illustrates its ap-plicability for both ATM link and network partitioning. These results clearly indicate thepowerful applicability and relevance of the theoretical results of Chapter 4-5. Also a newATM network dimensioning algorithm is suggested using the two-parameter descriptionof tra�c. Finally, a new formula for peakedness calculation in case of load sharing ispresented.6.2 Two-parameter Description of Tra�cIn the suggested two-parameter description of tra�c one parameter describes the usualmean of the tra�c demand and the other parameter characterizes the variability of thetra�c demand.As described in Section 4.3 two measures has been widely used for characterizing thevariability of tra�c. One of them is the squared coe�cient of variation of the interarrivaltime between two consecutive connection requests [16], which provides a full second ordercharacterization in case of arrival processes well modeled by renewal processes [16], butin the general case this description is not adequate [17].The generalized peakedness measure (see Section 4.3 for details) provides a completesecond order characterization of the arrival process and furthermore also takes the serviceprocess into account. I suggest the generalized peakedness for the variability measure ofB-ISDN tra�c [73, 83].Based on the above two-parameter description of tra�c streams the following modelof the aggregated multirate tra�c is considered: we have N number of independent tra�cclasses. Let �i and zi denote the o�ered arrival rate and the generalized peakedness of callsfrom tra�c class i, respectively. So each tra�c stream is characterized by (�i; zi). Let Aidenote the bandwidth demand of calls from class i. The variance of o�ered tra�c (!2i )can be computed by !2i = zi�i. The mean bandwidth occupancy �, variance of occupancy!2 and the peakedness of the aggregated tra�c z in case of in�nite capacity link will be� = NXi=1 �iAi (6.1)!2 = NXi=1 !2iA2i (6.2)z = !2� (6.3)57



6.3 Link PartitioningIn this section we consider a link partitioning task using two approximations based onmatching the mean (�) and the variance (!2) of the occupancy distribution in the in�nitecapacity case and computing blocking probabilities derived from the truncated occupancydistributions. The theoretical details of the approximations (BPP and ME) and appliedblocking measures are described in Chapter 5 [83].6.3.1 The Model and the Solution of Link PartitioningWe consider a single broadband transmission link with C capacity which is used by Nnumber of tra�c classes. Each tra�c stream is characterized by the average arrivalrate and peakedness of calls (�i; zi) requiring Ai bandwidth of capacity. As link blockingmeasureBM I suggest the BPP or ME type measures instead of Erlang formula describedin Section 5.4. The task is to �nd the optimal partition of the link related to tra�c classes(C1; C2; :::; CN) that maximizes the approximated total carried tra�c [83]:Maximize NXi=1 �iAi(1 �BMi)Ai (6.4)with BMi = BM(�iAi; �iziA2i ; Ci) subject to NXi=1Ci = C and Ci � 0 which is a simplelinear programming problem.6.3.2 Numerical ExampleHere we consider a simple numerical example which demonstrates the e�ect of using thevariability measure and illustrates the link partitioning task.Consider a 150 Mbit/s link which is loaded to 140 Mbit/s and carries two di�erenttra�c types: Tra�c type 1 is 2 Mbit/s circuit emulation with peakedness of 0.25, and theTra�c type 2 is 2 Mbit/s frame relay with peakedness of 15. Consider a situation where60 Mbit/s tra�c o�ered to the link from both tra�c types and we would like to sharethe capacity of the link to the two tra�c streams such that the total carried tra�c will bemaximum.If we do not use any variability measure we are restricted to share the capacity onlybased on the o�ered tra�c and using e.g. Erlang formula to compute the blocking prob-abilities. This way we get the equally partition solution: 70-70 Mbit/s. By using thepeakedness as a variability measure and computing the blocking probabilities based onthe above described methods by the BPP and the Maximum Entropy approximations andpartition the capacity such that the total carried tra�c is maximized we get the followingresults (Figure 6.1):From the result we can see that the bursty tra�c (Tra�c type 2) requires a biggercapacity and the smooth tra�c (Tra�c type 1) requires smaller capacity compared to the58
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Figure 6.1: Link Partitioningequally partitioning case. Also we can conclude that the BPP and Maximum Entropymethods give practically the same results.The results clearly illustrates that in order to achieve the optimum capacity sharingrelated to the maximum total carried tra�c we need to take into account the variabilitymeasure.6.4 Network PartitioningIn this section the e�ect of the variability measure in an ATM network con�gurationproblem is demonstrated and a new ATM dimensioning algorithm is proposed [73, 83].6.4.1 The ModelWe consider a loss network with J logical links, labeled j = 1; 2; :::; J operating under�xed routing. Let R be the set of routes in the network and let r 2 R be a speci�c route.Let Cphys be the vector of given physical capacities and let C = (C1; C2; :::; CJ) be thevector of logical link capacities. Let S be a matrix in which the jth entry in the ith row is1 if logical link j needs capacity on the ith physical link, otherwise 0. Then the conditionthat the sum of logical link capacities on the same physical link cannot exceed the physicalcapacity can be expressed by SC � Cphys. A call on route r has �r arrival rate and !2rvariance with Ajr units of capacity requirements on logical link j. The variance can beobtained by using the peakedness zr of the tra�c on route r: !2r = zr�r.59



6.4.2 The AlgorithmConsider an ATM network, as described by the model in the previous section, with somegiven logical subnetworks and tra�c demand for each route, where we want to �nd thepartition of the physical capacities related to the subnetworks that maximizes the totalcarried tra�c. For this problem a solution can be found in [29] which is based on theErlang �xpoint method [57].Now we consider an extension of this network dimensioning algorithm with using thevariability measure. The main purpose of this extension is to improve the network dimen-sioning algorithm to ful�ll the expected nature of the future ATM, where the call arrivalprocess will di�er signi�cantly from the Poisson process and the holding time distributionwill be deviate from the exponential distribution.For dimensioning purposes the tra�c o�ered to route r is characterized by the mean�r and the peakedness zr. Based on these two parameters we are using the proposedblocking measures (BPP and ME measures, see Section 5.4) instead of the Erlang formulato compute link blocking probabilities on link j in the dimensioning algorithm : Bj =BM(�j ; �2j ; Cj), where BM denotes a BPP or ME type blocking measure.For the computation of the aggregated o�ered tra�c to logical link j we use the samereduced load and link independence assumption as in [29] and so:�j := (1�Bj)�1Xr Ajr�rYi (1�Bi)AirFor the calculation of the variance of the aggregated o�ered tra�c to logical link j wesimple assume that the variance of the o�ered tra�c is thinned by the same factor as themean. It means that we keep the peakedness at the same value. However, it should benoted that the changing of the peakedness of the tra�c stream going through the networkis a�ected by the congestions on each link and very dependent on the burstiness of theo�ered tra�c. This e�ect is rather complex and we use this simple approach as a �rstapproximation for the changing of the peakedness. Therefore the variance of the aggregatedo�ered tra�c to logical link j can be computed by�2j := (1 �Bj)�1Xr A2jr!2r Yi (1 �Bi)AirNow based on the Erlang �xed point method [29, 57] and the above described consid-erations I propose the following new network dimensioning algorithm:1. Set Bj := 0; aj := 1 for each j:2. Solve the linear programming problemMaximize Xj ajCjSubject to SC � Cphys and C � 0:60



3. Compute new values for the mean and the variance of the aggregated o�ered tra�cto logical link j by �j := (1�Bj)�1Xr Ajr�rYi (1�Bi)Airand �2j := (1 �Bj)�1Xr A2jr!2r Yi (1 �Bi)Air4. Compute new values for the blocking probabilities byBj := BM ��j; �2j ; ~Cj�where ~C1; : : : ; ~CJ come from Step 2 as a solution of the linear programming problem.5. Set aj := � log(1�Bj); j = 1; : : : ; J:6. If all variables di�er from their previous value by less then a given error threshold,then stop, else repeat from Step 2.The algorithm has the following main characteristics:� The input of the algorithm are the physical capacities of the network and the tra�cdemand characterized by the mean and the peakedness on each route.� The output of the algorithm are the logical link capacities on each physical linkwhich de�nes the logical subnetworks.� The applied link blocking probabilities are the BPP or ME type measures de�nedin Section 5.4.� The basis of the algorithm is the Erlang �xpoint method using the reduced load andlink independence assumptions.� The objective function of the algorithm is the total carried tra�c which is maximizedby the algorithm.So far there is no proof for the unique solution of this heuristic algorithm but numericalexperiences show that the algorithm �nds the solution with quite fast convergence. (Itshould be noted that even for the original Erlang �xpoint method the unique solution isproved only for the special case if the tra�c is homogeneous [56].)61
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Figure 6.2: A Network Example with Two Logical Networks6.4.3 Numerical ExampleThe algorithm is demonstrated in a small network example. In this 4 nodes networkarranged in a ring carries two fully connected logical subnetworks with 3 nodes as shownin Figure 6.2.The matrix S corresponding to the network with routesR = (f1; 2g; f1; 4g; f2; 3; 4g; f2; 3g; f3; 4g; f2; 1; 4g)is S = 26664 1 0 0 0 0 10 0 1 1 0 00 0 1 0 1 00 1 0 0 0 1 37775Each physical link of the network has 45 Mbit/s capacity i.e. Cphys = (45; 45; 45; 45)and each logical subnetwork carries two types of tra�cs:� Frame relay with e�ective bandwidth: 0.75 Mbit/s, mean holding time: 60 s� DS-1 circuit emulation with e�ective bandwidth: 1.5 Mbit/s, mean holding time:480 sThe arriving rate of calls from di�erent tra�c types are set such that the load beequally shared among the tra�c types on a link. The matrix of arriving rate (1/sec) ofcalls on routes R corresponding to the two tra�c types is� = " 0:256 0:256 0:256 0:256 0:256 0:2560:016 0:016 0:016 0:016 0:016 0:016 #The partitioning results from the original �xpoint method (which does not take intoaccount any variability measure) and from the extended method (which uses the peaked-ness of the tra�c as described in the previous section, and we used peakedness of 1 to62



the logical subnetwork 1 and peakedness of 15 to the logical subnetwork 2) are shown inTable 6.1. Link Fixpoint Fixpoint-BPP1-2 22.5-22.5 15.8-29.22-3 22.5-22.5 13.8-31.23-4 22.5-22.5 13.8-31.24-1 22.5-22.5 15.8-29.2Table 6.1: Capacity Partitioning (capacity to logical subnetwork 1 (Mbit/s) - capacity tological subnetwork 2 (Mbit/s))The results show that the logical subnetwork 2, which carries rather bursty tra�c,requires more capacities (and the logical subnetwork 1, which carries smooth tra�c, re-quires smaller capacities) on the links compared to results of the original �xpoint methodwhich equally partitioned the links between the two logical subnetworks. The optimalpartitioning corresponding to the maximum of the carried tra�c can be obtained by theabove link partitioning and indicates that the tra�c variability has inuence on the optimaldimensioning which shows the importance of the variability measure.6.5 Peakedness Calculation in Case of Load SharingIn network dimensioning it is frequently requested to share the load among several routesbetween the origin-destination (O-D) pair. The optimization task of the network dimen-sioning in this case is given jointly with load sharing. The term load sharing refers to thefact that the tra�c load o�ered to an O-D pair is shared among a set of allowed routes.In order to provide the proposed dimensioning algorithm or other algorithms whichare using the peakedness for characterizing tra�c variability with the load sharing facilitythe peakedness of the shared tra�c on each route must be computed. In this Section asimple formula of the generalized peakedness can be derived for this purpose.Consider a network where the call process at the origin node is characterized by the av-erage rate � and the peakedness z. The call holding time is assumed exponential with mean1=�. Furthermore the call process is described by a renewal process with probability dens-ity function (pdf) f and let U denote the renewal function de�ned by U(x) = E[N(a; a+x)]where N(a; b) denoting the number of arrivals in the interval ]a; b].The tra�c is allowed to be shared among K number of routes between an O-D pairand the rule of the sharing is random splitting with parameter pk on route k. The sharedtra�c can be characterized by the average rate �pk and the peakedness zk (Figure 6.3).Of course the load sharing parameter should satisfy the following constraints for each O-Dpair: KXk=1 pk = 1 (6.5)63
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Figure 6.3: The Load Sharing ProblemFor an ordinary renewal process the Laplace transform of f can be written as (see e.g.Chapter 4 in [16]) f̂ = Û1 + Û (6.6)where Û denote the Laplace-Stieltjes transform of the renewal function U . The Laplace-Stieltjes transform of the renewal function of the call process can be expressed (see Sec-tion 4.3) by Û = z � 1 + �� (6.7)The pdf of the interarrival time of the call process shared on route k can be written asfk = 1Xn=1 pk(1� pk)n�1f�n (6.8)where f�n denotes the n-fold convolution of f . From Eq. 6.8 the Laplace transform of fkwill be f̂k = pk f̂1� (1 � pk)f̂ (6.9)Substituting Eq. 6.6 into Eq. 6.9 we will get:f̂k = pkÛ1 + pkÛ (6.10)64



Now substituting Eq. 6.10 into the same equation as Eq. 6.6 on the shared tra�c:Ûk = f̂k1� f̂k (6.11)we get Ûk = pkÛ (6.12)The peakedness of the tra�c on route k can now be expressed byzk = 1 + pkÛ � pk�� (6.13)Finally substituting Eq. 6.7 into Eq. 6.13 we getzk = 1 + pkz � pk (6.14)Based on Eq. 6.14 we can compute the peakedness of the tra�c on route k and wehave the needed characterization of the tra�c on each route k by the average rate pk� andthe peakedness zk.6.6 Summary of ResultsIn this Chapter a new approach that characterizes the tra�c demand at the call level in are�ned way, namely, by using a two-parameter description with the generalized peakednessinstead of the traditional one-parameter characterization is presented. This approachcontributes to the more accurate description of tra�c demands at call level in order toprovide the network designer and manager with precision tools to handle tra�c demandsand their consequences in dimensioning and related issues, while retaining simplicity,algorithmic feasibility and practical applicability.A link and a network dimensioning problem with a new algorithm are also presen-ted demonstrating the applicability of the two-parameter description of tra�c. Resultscompared to the results based on one-parameter description are given illustrating the im-portance of the variability measure. Moreover, a new simple formula for the generalizedpeakedness in case of load sharing is derived which can be applied for upgrading networkdimensioning algorithms with load sharing facility.
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Chapter 7Performance Evaluation of a SingleATM Multiplexer7.1 IntroductionCells may encounter di�erent tra�c conditions in bu�ers of ATM multiplexers, therebythe transfer delay of any cell of a given connection is a random variable. This phenomenonis covered by the term Cell Delay Variation (CDV) (for details of CDV parameter de�n-itions see Section 7.2), which is an important NP parameter of ATM networks [14, 100]investigated by the standardization bodies [49, 50] and ATM Forum [2, 3].A thorough understanding of how CDV arises, how it is a�ected by tra�c from othersources, by its own bitrate, by the number switch bu�ers and multiplexing stages passedetc., is of great importance concerning Tra�c Control (e.g. setting of the Usage ParameterControl (UPC) parameters, designing Call Admission Control (CAC) mechanisms etc.)and Network Element Dimensioning (e.g. dimensioning of bu�ers of ATM multiplexersand playout bu�ers at the receiving end of the connection, etc.), see Chapter 9.In the past few years many investigations have helped towards an understanding ofCDV. In [13] a thorough investigation of the D +GI [X]=D=1 queue, based on generatingfunctions and the theory of holomor�c function, was performed with the main objectiveof �nding the steady state waiting time at any time including the waiting time seen bythe CBR arrivals. In [38] another more direct Markovian approach was applied and theemphasis was on the study of the point process properties of the departure process ofthe CBR stream. The results made an accurate setting of the UPC parameters possible.By modeling the queueing behaviour between CBR arrivals by a Brownian motion acomputationally much simpler model was derived in [10].The purpose of this Chapter to present new models and results of the performanceevaluation of CDV due to a single ATM multiplexer. The application of the results fordimensioning appropriate tra�c control functions and network elements are also demon-strated in Chapter 9.The Chapter is organized as follows. First the de�nition of CDV parameters are out-lined in Section 7.2. An exact Markovian and a di�usion method for modeling the CDV in69



a single ATM multiplexer are shown in Section 7.3 and 7.4, respectively. The performanceevaluation of both methods is given in Section 7.5. The issue of the superposition of CDVa�ected CBR cell streams are investigated in Section 7.6 and Section 7.7 summarizes theresults of this Chapter.7.2 De�nition of CDV ParametersCells experience di�erent delays mainly due to the statistical uctuations in the queuelengths in ATM networks. This variation in cell delays referred to as Cell Delay Variation.In the Recommendation I.356 [49] the cell transfer performance parameters are speci�edby ITU-T and these CDV parameter de�nitions are outlined in this section. (It shouldbe noted that beside these ITU-T de�nitions of CDV several other de�nitions are alsoused, e.g. in the RACE Atmospheric project CDV is the variance of the transfer delayof a particular connection.) The results of the thesis mostly related to the 1-point CDVparameter.The 1-point CDV yk for a given cell is de�ned as the di�erence between the theoreticaltime ck and the actual cell arrival time ak at the single measuring point, i.e. yk = ck�ak. IfT denotes the negotiated Peak Emission Interval, the set of theoretical times is recursivelyde�ned by ck+1 = ck + T if yk � 0= ak + T if yk < 0 (7.1)with c0 = a0 = 0. The 1-point CDV parameter (yk) is positive when the cell arrives "early"and this cell is considered to belong to a "clump". On the other hand, the 1-point CDVparameter is negative when the cell arrives "late" and in this case a "gap" is observedbetween the preceding cell and the present cell.The modi�ed 1-point CDV y0k is de�ned in the same way as the previous, taking intoconsideration the CDV tolerance � . This CDV de�nition mirrors the Peak Cell RateReference Algorithm, that is given in Annex 1 to Recommendation I.371 [50], and can beused for the conformance test of cells. The value of the modi�ed 1-point CDV parameteris y0k := c0k � ak. The set of theoretical times is recursively obtained as follows:c0k+1 = c0k + T if � � y0k � 0= ak + T if y0k < 0= c0k if y0k > � (7.2)A cell is "conforming" to the pair (T; � ) if and only if its modi�ed 1-point CDV value (y0k)is smaller than the CDV tolerance � .The 2-point CDV vk is de�ned on the basis of observation of corresponding cell arrivalsat two measuring points. For cell no. k it is de�ned as the di�erence between the absolutecell transfer delay xk between the two measurement points and a reference cell transferdelay d1;2, i.e. vk = xk � d1;2. The 2-point CDV parameters can be used for the proper70



allocation of the equipments or network sections that are responsible for CDV on an end-to-end connection.7.3 A Markovian Solution MethodIn this section an exact Markovian solution method for the evaluation of CDV in a singleATM multiplexing stage and the characterization of the CDV a�ected CBR cell streamare presented [81, 74, 75]. This solution method is the generalization of the approach of[38]. In contrast to [38] where the background tra�c is modeled by Poisson process inthis method the background tra�c modeled by a batch Bernoulli process with generalbatch size distribution thereby allowing to model the burstiness of the background tra�c.This provides us with a more powerful tool for ATM multiplexer modeling and yields toa realistic model.7.3.1 The ModelConsider a single server in�nite capacity discrete time FIFO queue receiving the super-position of a CBR stream with interarrival time T and an interfering background streamwhich arrives to the queue in the form of independent and identically distributed batcheswith a general batch size distribution denoted by b(k) (Figure 7.1).
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Figure 7.1: The FIFO ModelThe cells arriving from the background cell stream in the same timeslot are served inrandom order, but when there is also a cell arriving from the CBR stream it is served71



�rst. This serving rule will give a tight lower bound on the amount of CDV which thebackground stream puts on the CBR cell stream [68]. With the assumption that all actionsin the queue occur at the timeslot boundaries, the queue length seen by an arriving CBRcell is a Markov process and it equals the waiting time of the CBR cell.7.3.2 The Computation of the Transition MatrixIn this section a new solution method for the computation of the transition matrix of themodel is derived.Let Wn denote the waiting time of cell no. n. The element (j; k) of the transitionmatrix Q is de�ned as follows:qj;k = PfWi = k j Wi�1 = jg j; k � 0 (7.3)The transition matrix Q = fqj;kg can be computed byqj;k = Q(j; k � 1) �Q(j; k) (7.4)where Q(j; k) = PfWi > k j Wi�1 = jg = Xn�0Pn(j; k) (7.5)with Pn(j; k) = PfWi > k j Wi�1 = j and n arrivals in ]T i� T; T i] gbT�(n), where bT�(n)is the T -fold convolution of the batch size distribution, and evaluated in n it representsthe probability of n arrivals in ]T i� T; T i]. It can be shown (see Appendix A) thatPn(j; k) =8>>>>>>>>><>>>>>>>>>: 0 j + 1 � T and n � T + k � j � 1 orj + 1 < T and k � nbT�(n) n > T + k � j � 1n�kXs=1 bs�(k + s)��b(T�s)�(n� k � s)T�n+kT�s j + 1 < T and k < n � T + k � j � 1 (7.6)The stationary waiting time distribution can be found from solving the equilibriumsystem w = wQ where w = (w0; w1; :::; wi; :::) and Q = fqj;kg. In numerical applications,a truncation of the state space is in general necessary.For the steady state queue length distribution, [8] provide a closed form expression forthe generating function. [8] also provide the generating function of the waiting time for cellno. n+ 1 conditioning on the event that waiting time for cell n is i. From this the entriesin the transition matrix can in principles be found. However, this requires not only aninversion but also the determination of T � 1 boundary probabilities, and we have foundthe direct approach more appealing. 72



7.3.3 Characterization of CDV A�ected CBR Cell StreamIn this section the characterization of the CDV a�ected CBR cell stream is outlined [38].This approach can be used for characterizing the departure process of the CBR cell streamfrom any networks or network elements (see Figure 7.2) where the dependence betweenthe waiting times of successive cells is Markovian. In our case this characterization is used
CBR source

CBR cell streamCBR cell stream

network element
Network or

CDV affectedFigure 7.2: The CDV A�ected CBR Cell Streamfor the speci�c case when the CBR cell stream is multiplexed with a background streamin a FIFO queue as described in Section 7.3.1. In the previous section the computationof the transition matrix and the stationary waiting time distribution have been derivedwhich are the input data for the CDV characterization presented below.Consider a CBR cell stream with interarrival time T . Choose the time such that cellno. n is transmitted at time nT from the source. Let Wn denote the waiting time of cellno. n.Two assumption are made in the model:� The sequence Wn is assumed stationary with distribution wk = PfWi = kg.� The dependence between waiting times of successive cells is assumed �rst orderMarkovian, and characterized by the transition matrix Q in which entry (j; k) is:qj;k = PfWi = k j Wi�1 = jg j; k � 0 (7.7)De�ne �n = nT +Wn + 1. Thus �n denotes the departure time of cell no n. (Strictlyspeaking, �n is the time at which cell n starts the service i.e. one time unit before it leavesthe queue.) De�ne the shifted interdeparture time of cell no. n as: Un = �n�nT � �0 (seeFigure 7.3). It is a fundamental random variable from which all CDV characteristics ofinterest can be derived. Let fn(k) = PfUn = kg be the probability distribution of Un forcell no. n. It can be seen [38] thatfn(k) = 8><>: 1Xi=0wiq(n)i;i+k if k � �nT + 10 otherwise (7.8)73



where q(n)i;i+k denotes entry (j; k) in the n'th power of the transition matrix Q = fqj;kg.
cell no. 0 1 2 n

T T
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arrival at
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being exposed
to CDV

. . .
W1+1 Wn+1W0+1Figure 7.3: The shifted interdeparture time is to be seen as the di�erence between theactual departure of cell n (�n) and the expected departure time (�0 + nT ).Next it is shown that how the usual point process characteristics can be derived fromUn. We �rst investigate the interval representation.7.3.4 Interdeparture Time DistributionsThe interdeparture time distribution between cell no. 0 and n is simply obtained by thetranslation nT of the shifted interdeparture time distribution Un i.e.Pf�n � �0 = kg = PfUn = k � nTg = fn(k � nT ) (7.9)7.3.5 Index of Dispersions for IntervalsThe index of dispersion can be obtained from the de�nition as:c2n = nV ar(�n � �0)E(�n � �0)2 = V ar(Un)nT 2 = 1Xk=�nT+1 k2fn(k)nT 2 (7.10)since E(Un) = 0.For the counting representation the number of counts is fundamental and is measuredin two ways:
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7.3.6 Number of Departures in a Window Starting Just After aDepartureLet N(�j ; �j + t) denote the number of departures in a window of length t starting justafter an arbitrary CBR cell departure �j. The probability distribution isPfN(�j; �j + t) = ng = PfUn + nT � tg � PfUn+1 + (n+ 1)T � tg= Xj��nT+t fn(j)� Xj��(n+1)T+t fn+1(j): (7.11)7.3.7 Number of Departures in an Arbitrary WindowBased on a basic result in point process theory (see e.g. section 4.2 in [17]) a simplerformula for the distribution of the number of departures in an arbitrary window thanthe one presented in [38] can be obtained. Let t0 denote an arbitrary point in time andN(t0; t0 + t) denote the number of departures in ]t0; t0 + t]. ThenPfN(t0; t0 + t) � ng = PfY +X2 + : : :+Xn � tg =1T tXu=1 uXk=1(fn�1(k � [n� 1]T )� fn(k � nT )) (7.12)in which Y denote the forward recurrence time,Xi denote the interdeparture time betweencell no. i� 1 and i. From (7.12) we obtainPfN(t0; t0 + t) = ng = 1T tXu=1 uXk=1 fn�1(k � (n� 1)T )� 2fn(k � nT ) + fn+1(k � (n+ 1)T )(7.13)7.3.8 Limit DistributionsThe Markovian assumption implies that in the limit n!1, qj;k ! wk independent of jyielding the limit distribution f1(k) = 1Xi=0wiwi+k (7.14)and PfN(�j ; �j + t) = ng = �nT+tXj=�(n+1)T+t+1 f1(j) (7.15)7.4 A Di�usion MethodThe approach presented in the previous sections is attractive because it is exact andthe fundamental solution of the transition matrix is given in closed form. However, thecomputational burden is high and the numerical complexity increases without bounds75



when the load of the multiplex approaches one. Therefore an accurate approximation isneeded which maintain the important qualities of the model but for which the fundamentalpoint process quantities can be easily computed. As a candidate a di�usion approximationwhich ful�lls these requirements is suggested in this section [81, 74, 75]. This method isa generalization of the di�usion method of [10] where the background tra�c is Poisson.In this new method, similarly as in the Markovian exact method, the background tra�cmodeled by a batch Bernoulli process with general batch size distribution. Therefore thismethod also has the ability to model the burstiness of the background tra�c.7.4.1 The ModelThe di�usion model is based on the idea that the evolution of the queue length (or virtualwaiting time) between CBR arrivals is approximated by a reected Brownian motion.Markovian dependencies are assumed between successive CBR cell waiting times in thequeue as in the former section.Let ~Wt denote the waiting time a �ctitious observer would experience if he joined thedi�usion queue at time t (the virtual waiting time at time t). The probability of ~Wt � xconditioned on ~W0 = y is, for a Brownian motion with drift m (m assumed smaller thanzero in order to ensure a stable queue), variance �2 and a reection in zero, in Section 2.8of [64] derived to be:Pf ~Wt � x j ~W0 = yg = ( �(x�y�mt�pt )� e2mx�2 �(�x�y�mt�pt ); for x � 00; for x < 0 (7.16)where � denotes the standard Gaussian probability distribution. The right hand side offormula (7.16) is a distribution function in x for all y � 0 and all t > 0, and it convergestowards the exponential distribution with mean ��22m , independent of initial condition y,when t tends to in�nity.The di�usion approximation is used for modeling the arrivals of cells belonging to boththe CBR stream and the background stream, i.e. the queue length is not increased by oneat each CBR cell arrival. These arrivals as well as the batch arrivals and the departuresare taken into account by a proper choice of drift and variance in the di�usion process asshown in the next subsection.The waiting time of CBR cell no. n, is approximated by:Wn = ~WnT (7.17)that is the waiting time that CBR cell no. n experience in the queue is approximated bythe virtual waiting time in the di�usion queue at time nT.A disadvantage with formula (7.16) is that there is a positive probability that thewaiting time between time t and time t+ u decreases more than u which of course in theoriginal GI [x] + D=D=1 queue is impossible. If t is the time of CBR arrival no. n andu = T then this would imply that CBR cell no. n+ 1 departs the queue before cell no. n.This weakness is inherent to the model and the model should only be used for values of76



T for which this probability is low, implying that T cannot be chosen too small.7.4.2 Drift and Variance ComputationAs in the di�usion model for theM/G/1 queue (see section 2.8 in [64]) the drift ism = ��1.The key idea of choosing the most appropriate variance is that we match the decay rates ofthe stationary waiting time distribution in the di�usion approximation with the asymptoticdecay rate of the D +GI [x]=D=1 queue.It is known from [13] that the queue length seen by an arriving CBR cell is asymp-totically geometric i.e. P (Q > r) � (1=z1)r, where z1 is the dominant root of thecorresponding z-transform which is found by solving the equationB(z)T � zT�1 = 0: (7.18)The root z1 is the root with smallest module outside the unit disk, and it is unique andreal (see [13] In Appendix A3).Since the di�usion decay rate is �2m�2 we get:�2 = � 2mln(z1): (7.19)7.4.3 The Distribution of the Interdeparture TimeThe shifted interdeparture time in the di�usion context is: ~Ut = ~Wt� ~W0 (think of t = nT ),and Pf ~Ut � xg = Z 10 Pf�t � �0 � t � x j �0 = ygdPf�0 � yg= Z 10 Pf ~Wt � x+ y j ~W0 = ygdPf ~W0 � yg (7.20)The computation carried out in [10] shows that the time dependent shifted interdeparturetime distribution function is given as:~Ft(x) = Pf ~Ut � xg = 8<: 12 + 12�(x�mt�pt )� 12e 2mx�2 �(�x+mt�pt ); for x � 012e� 2mx�2 �(x�mt�pt ) + 12�(x+mt�pt ); for x < 0 (7.21)From this expression it is seen that the probability distribution function ~Ft for ~Ut ful�lls therelation: ~Ft(x) + ~Ft(�x) = 1, thus implying that the density function for ~Ut is symmetric.As in the exact case a limit distribution emerges as t ! 1 From (7.21) it is easilyseen that ~F1(x) = Pf ~U1 � xg = 8<: 1� 12e 2mx�2 ; for x � 012e� 2mx�2 ; for x < 0 (7.22)77



that is in the limit t ! 1 the shifted interdeparture time is a two sided exponentialdistribution with rate �2m�2 and 2m�2 respectively.The interdeparture time distribution between cell no. k and k+n is obtained from theshifted interdeparture time distribution asFn(x) = Pf�k+n� �k � xg = Pf�n� �0 � xg = Pf ~UnT � x�nTg = ~FnT (x�nT ) (7.23)7.4.4 Index of Dispersions for IntervalsFor IDI computation the variance of ~Ut is needed, and in [10] it is found to be:V ar( ~Ut) = �42m2 (2�(�m� pt) � 1) + (2�2t+m2t2)�(m� pt)+ (�3mt1=2 +m�t3=2)'(m� pt) (7.24)where ' is the standard normal density function. By applying the expansion �(�x) ='(x)x (1� 1x2 +O(x�4)), for x!1, see e.g. problem 7.7.1 in [30] and evaluating V ar( ~Ut)at t = nT we arrive at:c2n = �42m2T 2 1n +O(n�3=2e�m2�2 nT ); n large (7.25)which clearly shows that the relative variance of the departure process decreases withincreasing time scales, i.e. the process is less bursty than a renewal process.7.4.5 Number of Departures in a Window Starting Just After aDepartureConsider an interval of the form ]�j; �j + t] starting just after the departure of cell no. j.ThenPfN(�j ; �j + t) � ng = Pf ~UnT + nT � tg = ~FnT (t� nT ) =8<: 12 + 12�( t�pnT � (1+m)� pnT )� 12e 2m�2 (t�nT )�(� t�pnT + (1�m)� pnT ); for t � nT12e� 2m�2 (t�nT )�( t�pnT � (1+m)� pnT ) + 12�(( t�pnT � (1�m)� pnT ); for t < nT (7.26)7.4.6 The Number of Departures in an Arbitrary WindowLet t0 denote an arbitrary point in time and consider the interval ]t0; t0 + t]. Similarly asin (7.12) we can writePfN(t0; t0 + t) � ng = PfY +X2 + ::+Xn � tg = 1T Z t0 (Fn�1(u)� Fn(u))du (7.27)78



in which Y denote the forward recurrence time,Xi denote the interdeparture time betweencell no. i � 1 and i, and Fi(u) denotes the distribution function of Pij=1Xj. SinceFn(u) = Pf ~UnT � u�nTg = ~FnT (u�nT ) is given in closed form in formula (7.26) we mayobtain the probability distribution of the number of departures in an arbitrary window byintegrating (7.26) with respect to t. A complication arises due to the non-zero probability ofcell no. n+k departing the queue before cell no. n. If cell no. n is the �rst departure in thewindow it may happen that cell no. n+k is left of the window. However, if cell no. n+p isthe �rst departure after the end of the window it may happen that cell no. n+p+k is insidethe window. The easiest way to approximately capture this is by extending the integrationin (7.27) from 0 down to �1 i.e. PfN(t0; t0+ t) � ng � 1T R t�1(Fn�1(u)�Fn(u))du. Theresult of the integration then is:PfN(t0; t0 + t � ng = Gn�1(t)�Gn(t) (7.28)in which Gn(t) for t < nT is given as:Gn(t) = �2(�4m) 1T fe� 2m�2 (t�nT )�( t�pnT � (1 +m)� pnT )� �( t�pnT � (1 �m)� pnT )g+ 12T f(t� (1�m)nT )�( t�pnT � (1 �m)� pnT )+ �pnT'( t�pnT � (1 �m)� pnT )g (7.29)and for t > nT , Gn(t) is given as:Gn(t) = �2(�4m) 1T fe 2m�2 (t�nT )�( �t�pnT + (1 �m)� pnT )� �( �t�pnT + (1 +m)� pnT )g+ 12T f((1 +m)nT � t)�( �t�pnT + (1 +m)� pnT )+ �pnT'( �t�pnT + (1 +m)� pnT )g+ t� nTT (7.30)where we have utilized the symmetry relation ~Ft(x) + ~Ft(�x) = 1 to obtain (7.30).79



7.5 Numerical Evaluation of the Markovian and Di�u-sion ModelsIn this Section a series of numerical results are presented to illustrate the behavior of boththe exact model as well as the di�usion approximation.In order to keep the Section short we have �xed the interarrival time of the CBR tra�cto T = 20, as well as the load on the multiplex, which is �xed to � = 0:8.The inuence of the burstiness of the background tra�c is investigated by using thefollowing 3 batch size distributions:� Smooth background tra�c: Binomial distribution with parameters n and p whereb(k) =  nk ! pk(1 � p)n�k (7.31)In the examples n = 2 and p = 0:375. For this case the peakedness (the ratio of thevariance and mean of the number of arriving cells) is Z = 0:625. A binomial batchsize distribution is appropriate when the background tra�c consists of only a fewsources or it may be used to model a background tra�c with negative correlations.� Bursty background tra�c: Generalized negative binomial (Pascal) distribution withparameters n and p whereb(k) =  n + k � 1k ! pk(1� p)n (7.32)In the examples n = 0:75 and p = 0:5 with peakedness Z = 2. Since a batchof arrivals in a slot in practice always consist of arrivals from di�erent sources anegative binomial distribution is, seen in isolation, not an appropriate batch sizedistribution. However, applying it anyway provides a simple way to model positivecorrelations in the background tra�c with a model that does not include correlations.This technique cannot be expected to work when the burstiness of the backgroundtra�c is very large. However in this case the CBR tra�c would possible need somekind of delay priority and a completely di�erent model would be needed.� Poisson background tra�c is also used, since it is the classical case. Furthermore, itis an appropriate model for the case where the background tra�c consists of a largenumber of sources.Figure 7.4 and Figure 7.5 depict the e�ect of the burstiness of the background tra�con the shifted interdeparture time distribution. In Figure 7.4 it is the distribution betweencell no. 0 and 1 (n = 1) while in Figure 7.5 it is the distribution between cell no. 0 and 5(n = 5).In Figure 7.6 the e�ect of the load on the shifted interdeparture time distribution canbe seen. The background tra�c is Poisson (Z = 1) and n = 1.80



By comparing Figure 7.4 and Figure 7.6 it can be observed that the burstiness of thebackground tra�c has a stronger inuence on the shifted interdeparture time distributionthan the load. Since it is the load which can be controlled or estimated, while the burstinessis highly unknown, this gives rise to practical di�culties in the dimensioning of the UPCparameters.The di�usion approximation performs reasonable well, but for the smooth backgroundtra�c case the inaccuracy is slightly larger than for the other cases. The somewhat disap-pointing result for the Binomial case when n = 5 is due to the fact that the steady statewaiting time distribution of theD+GI[Binomial]=D=1 deviates more from an exponentialdistribution than the others.Figure 7.7 and Figure 7.8 depict the distributions of the number of cell departuresin a window for the three di�erent burstiness of the background tra�c and the load,respectively. Also here we observe the strong e�ect a variation of the burstiness of thebackground tra�c has on the distribution. The performance of the di�usion approximationis very good, in the �gures the distribution curves almost coincide.Finally, Figure 7.9 depicts the index of dispersions for intervals for di�erent burstinessof the background tra�c. While some slight inaccuracies are present in the Binomial andPascal case, it is clearly demonstrated that the actual shape of the IDI curve is very wellapproximated over the entire range of n.
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7.6 The Superposition of CDV A�ected CBR CellStreamsIn this section the performance evaluation of an ATM multiplexer receiving a number ofCDV a�ected CBR cell streams is investigated [78, 82]7.6.1 The ModelWe consider a multiplexer o�ered tra�c from a number of CBR cell streams which priorto the arrival to the multiplexer have been exposed to CDV in a single multiplexing stage(see Figure 7.10).
CBR

...

CBR

CBRFigure 7.10: Superposition of CDV A�ected CBR Cell Streams7.6.2 The Analysis MethodFor queues with constant service times it has turned out that the so-called Bene�s Result, see[99] Section 5.3, is a very powerful tool to obtain either the exact queue length distributionor at least a tight approximation. The Bene�s Result valid for stable queues (� < 1) o�ereda general stationary arrival process is:PfWt > rg = 1Xn=1PfN(t� n; t) = n+ rgPfWt�n = 0jN(t� n; t) = n+ rg (7.33)where Wt is the virtual waiting time at time t. The di�cult term in the above expressionis PfWt�n = 0jN(t � n; t) = n + rg. Applying the so-called "local load approximation",see section 5.3.2 in [99] for details, we end up with:PfWt > rg = 1Xn=1PfN(t�n; t) = n+rg�� 1Xn=1PfN(t�n; t) = n+rjone arrival at (t-n)g(7.34)i.e. an expression containing only terms related to the arrival process.85



In Section 7.4, expressions for the number of departures in a window from a singleCDV a�ected CBR cell stream were derived. Now a �nite number of independent CDVa�ected CBR cell streams are multiplexed in the bu�er. Therefore the distribution of thenumber of departures from the superposition before it enters the multiplexing queue canbe found from a convolution of the individual distributions. The number of departuresfrom a single stream is given in Eq. 7.26 and Eq. 7.28. An approximation for the virtualwaiting time distribution can now be obtained from Eq. 7.34.7.6.3 Numerical ResultsTo illustrate the approach two examples are presented. In the �rst example 8 CBR sourcesare exposed to CDV in a single multiplexing stage (see Figure 7.10) and after that the 8streams are o�ered to a FIFO with a load of 0.8 implying that the peak rate of the CBRsources are 0.1 corresponding to T = 10. The amount of CDV is controlled by the loadof the interfering tra�c on the CDV creating queues as described in Section 7.4.
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unreasonable small. Also the peakedness of the background tra�c should be kept not toofar from 1. It can also be shown that the di�usion method is second moment exact in theimportant heavy tra�c limit case for all values of T [81, 74]. The largest advantage ofthe di�usion model is that it provides a very e�cient way to compute the point processcharacteristics of a CBR streamwhich have been perturbated by an interfering backgroundstream in an ATM multiplexer.In the second part of this Chapter an ATM multiplexer receiving CBR cell streamswhich prior to the arrival to the multiplexer have been exposed to CDV in a single multi-plexing stage is investigated. The analysis results, which is based on the di�usion methodand the Bene�s result, show that except for the case with multiplexing a very few highspeed CBR cell streams, the e�ect of CDV in a single multiplexing queue is negligible.
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Chapter 8Performance Evaluation of CascadedATM Multiplexers8.1 IntroductionAll results and models of the previous Chapter concern CDV due to a single ATM mul-tiplexer. However, cells progressing along a virtual connection experience random delaysin several multiplexing stages. It may happen not only within the public ATM networksbut also in the Customer Premises Networks. Therefore the study of CDV due to tandemqueues is also of great importance concerning the dimensioning of tra�c control and net-work elements. It should be noted that it is a rather complicated and more di�cult issuethan the single queue case.First results concerning the behaviour of CDV in a networking environment can befound in [7] and [69], where the results in [69] are based on the same authors results [68]for the single multiplexer case and now the issue is in the focus of CDV research [14].The aim of this Chapter to model and analyze the CDV originated from the CBR cellstream have been passed through several multiplexing stages. The conclusions and resultsof this Chapter are used in Chapter 9 in the design of tra�c control functions and networkelements.In Section 8.2 a characterization of CBR cell streams going through cascaded ATMmultiplexers is given. The performance evaluation of the simple and widely applied renewalmodel of CDV a�ected CBR cell streams is shown in Section 8.3. The analysis of thesuperposition of CBR cell streams exposed to CDV after several multiplexing stages anda new solution of the nTri=D=1 queue are presented in Section 8.4-8.5. Finally, theChapter is concluded in Section 8.6. 89



8.2 Characterization of CBR Cell Streams GoingThrough Cascaded ATM Multiplexers8.2.1 Model OverviewConsider a discrete time queueing model consisting of M ATM queues in series. Thereare two types of arrivals to the system. First we have a reference connection entering the�rst queue and passing successively through all M queues. Secondly, for each queue k wehave an interfering tra�c entering queue k and immediately after service completion inqueue k leaves the system (see Figure 8.1).
...reference traffic

interfering traffic

"interfering traffic"Figure 8.1: Queues in Series with Interfering Tra�cLet fXk�1n gn for k = 1; :::;M be the sequence of interarrival times of the referencetra�c to queue k. Xk�1n is the interarrival time between reference cell no. n and n+ 1 toqueue k.The interfering tra�c is modeled as a batch Bernoulli process, that is the numberof arrivals in successive times slots are independent identically distributed with commondistribution f and generating function F . For simplicity it is assumed that the interferingtra�c statistically is the same at each queue. Y ki denotes the number of interfering arrivalsin timeslot i at queue k. The output process of the reference connection from queue k isa function of the input processes fXk�1n gn and fY kn gn.8.2.2 AnalysisThe basis for the analysis is the approach developed by Berg and Resing [7]. Observingthe empty slots between successive departures from queue k of cells of the reference cellstream, it is due to either departures of cells from the interfering stream or idleness ofserver in queue k. The last case is di�cult to handle but if all queues are in overload,empty slots between two successive departures of the reference cell stream are all causedby departures from interfering cells. So, in the analysis a heavy tra�c assumption is usedwhich implies that at each point in time the kth queue is non-empty.Under this assumption all slots between two adjacent reference cell arrivals consists ofinterfering cells, implying that 90



Xkn = 1 + Xk�1nXi=1 Y ki (8.1)where for i = 1; :::;Xk�1n the Y ki is the number of interfering arrivals in slot i. To arrive atEq. 8.1 we have also assumed that the reference connection has priority over the interferingcells. A similar expression would be valid if the interfering cells had priority over thereference connection [7].Eq. 8.1 shows that the process is a branching process with immigration. Furthermorewe get Pk(s) = sPk�1(F (s)) (8.2)where Pk(s) denotes the generating function of Xkn . From the general theory of branchingprocesses it is possible to arrive at the following results [7]:1. Limit interdeparture time distributionAssume that E(Y ki ) < 1. When k ! 1, then Xkn ! X1n in distribution where thegenerating function of X1n satisfy P (s) = 1Yj=1Fj(s) in which Fj(s) is recursively de�nedby F1(s) = s and Fj(s) = F (Fj�1(s)).2. Asymptotically a renewal processLetX0n andX0n+p be two possibly dependent interarrival times. De�ne: (Xk+1n ;Xk+1n+p) =0B@1 + XknXi=1 Y ki ; 1 + Xkn+pXi=1 Y k;pi 1CA where Y ki and Y k;pi are independent of each other and satisfyingthe assumptions of the previous result. Then (Xkn;Xkn+p) ! (X1n ;X1n+p) in distribution,where X1n , X1n+p are independent.From these two results two important conclusions can be drawn:1. When the reference cell stream has passed a su�cient number of queues the inter-departure time distribution has converged towards a limit distribution which onlydepends on the interfering tra�c and not on the original characteristics of the refer-ence stream except the rate.2. When the reference stream has passed a su�cient amount of queues it becomes arenewal stream.Section 6 in [7] argues by an interpolation argument between the light tra�c case (nointerfering tra�c) and the heavy tra�c case that the two results should also hold inmoderate tra�c with only the speed of the convergence decreased.In the analysis we focus on how the squared coe�cient of variation of the interdeparturetime changes as the cell stream passes through the network and we will derive formulasfor the important case when the reference cell stream is a CBR cell stream. From Eq. 8.291



we get E(Xk+1n ) = E(Yi)(1 + E(Xkn)) (8.3)V ar(Xk+1n ) = (1 + E(Xkn))V ar(Yi) + E2(Yi)V ar(Xkn) (8.4)Consider the case where the reference connection is a CBR connection with rate 1=T = 1�pand V ar(X0n) = 0. Assume that the load on each of the queues are 1, and assume thatthe variance of the interfering stream V ar(Yi) = p corresponding to Poisson tra�c. FromEq. 8.4 it can be seen thatV ar(Xkn) = p1 � p k�1Xj=0 p2j = p(1 � p2k)(1� p)(1 � p2) = T 2(T � 1)2T � 1  1 � �T � 1T �2k! (8.5)and from Eq. 8.5 we obtained the squared coe�cients of variation of the CBR stream afterqueue k: c2k = T � 12T � 1  1� �T � 1T �2k! (8.6)For the limit case in which the number of queues to be passed is in�nite and in thecase with Poissonian interference, the CDV a�ected CBR cell stream will have a squaredcoe�cient of variation c21 = T � 12T � 1 (8.7)An important implication of Eq. 8.7 is that the squared coe�cient of variation in thePoisson interfering case never exceeds 1/2 [78, 82].8.2.3 Numerical ExamplesConsider the case in which the reference stream has interarrival timeT = 10, correspondingto p = 0:9. Then Table 8.1 shows how the squared coe�cient of variation of the referencestream varies as it passes through the queues of the network.c2k (T = 10) M = 0 M = 1 M = 2 M = 4 M = 6 M = 10 M = 25Computed 0 0.090 0.163 0.270 0.340 0.416 0.471Simulation 0 0.088 0.159 0.264 0.333 0.412 0.470Table 8.1: The Squared Coe�cient of Variation as a Function of the Number of QueuesFor the case T = 20, corresponding to p = 0:95 the values of the squared coe�cientof variation of the reference stream have also been computed (Table 8.2) and the resultshave been veri�ed by simulation as shown in both Tables. The con�dence intervals of thesimulation ranges from �0:001 to �0:005 for all M .92



c2k (T = 20) M = 0 M = 1 M = 2 M = 4 M = 6 M = 10 M = 25Computed 0 0.048 0.090 0.164 0.224 0.313 0.450Simulation 0 0.047 0.089 0.162 0.220 0.308 0.444Table 8.2: The Squared Coe�cient of Variation as a Function of the Number of QueuesAs the Tables show then the analytical approach is in accordance with the simulationresults for the investigated cases with load of 1. When the load is less than one, theincrease in squared coe�cient of variation as a function of the number of queues is slower.8.3 Evaluation of the Renewal ApproximationTaking into account the dependencies between successive waiting times of the CBR cellsleads rather complicated solution methods. This is one of the the reason that the CDVa�ected CBR cell stream are often be modeled as a renewal process [9, 37, 44, 58]. Therenewal approximation has the nice property that in the special case when the CBR cellstream is going through a single queue, and the interfering tra�c is Poisson, the renewalapproximation becomes exact in the limit where the overall load on the multiplexer ap-proaches 1 [82]. Moreover, one may argue that a cell stream becomes a renewal streamafter passing through an in�nite number of queues in the heavy limit case (see the resultsof the previous Section), therefore it could be a good approximation for characterizing acell stream which has been passed through several queues.In order to investigate the relevance of the renewal approximation a simulation wascarried out [82]. In Figure 8.2 the index of dispersions for intervals (IDI) are shown forthe case of T = 10. The IDI was measured after passing through M = 1, 2, 4, 6, 10 and25 queues.
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curves are simply shifted upwards whenM increases. Therefore we may conclude that theCDV a�ected cell stream has not approached a renewal process even after 25 queues. Forthe case with a load of 0.95 the picture is the same. However, here the curves are muchcloser to a renewal even for M = 1. For modeling purposes it is therefore only justi�ed touse a renewal approximation when the load is close to 1.An important practical conclusion of the result is that for UPC dimensioning withsmall overallocation factor and receiving a single CDV a�ected CBR cell stream the useof a renewal approximation it is justi�ed only when the load is very close to 1.8.4 The Superposition of CDV A�ected CBR CellStreamsWithin a network if we consider an ATM multiplexer than we often have a superpositionof cell streams where even the input streams have CDV because they have been passedthrough several queues before entering the multiplexer. What will be the e�ect of themultiplexing in these cases? How much will be the CDV in the output cell stream? Theseproblems are addressed and investigated in this section [78, 82].8.4.1 The ModelConsider the superposition of N number of CBR cell streams which prior to the arrival tothe multiplexer have been exposed to CDV in M number of multiplexing stages as shownin Figure 8.3. This queueing system is denoted by NCDVM/D/1.
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8.4.2 The Analysis MethodFor queueing analysis the Bene�s Result is used as in Section 7.6, but now the CDVa�ected CBR cell streams are modeled as renewal processes with Erlang interdeparturedistributions chosen with the appropriate squared coe�cient of variation which is obtainedby the method presented in Section 8.2. The distributions of number of departures froma single stream are computed by Eq. 8.8 and Eq. 8.9{Eq. 8.10 (see e.g. Chapter 3 in [16]for details).The distribution of number of departures in a window of size t starting just after thedeparture of cell no. j at �j in case of Erlang interdeparture distribution with n stages isobtained by PfN(�j ; �j + t) = rg = rn+n�1Xm=rn �ntT �m e�ntTm! (8.8)where T denotes the period of the CBR cell stream. In case of a window of size t startingat an arbitrary time t0 the distribution of number of departures for r � 1PfN(t0; t0+t) = rg = 1n rn+n�1Xl=rn (rn+n�l)�ntT �l e�ntTl! + 1n rn�1Xl=rn�n(l�rn+n)�ntT �l e�ntTl! (8.9)and for r = 0 PfN(t0; t0 + t) = 0g = 1n n�1Xl=0(n� l)�ntT �l e�ntTl! (8.10)By the convolution of the individual distributions we can get the distribution of thenumber of departures from N multiplexed cell streams. Finally, an approximation for thevirtual waiting time distribution can be obtained by Eq. 7.34.8.4.3 Numerical ExamplesAs in Section 7.6.3 we consider a scenario where 8 or 16 CBR cell streams, which havebeen exposed to CDV due to many multiplexing stages (all of them with load of 1), aremultiplexed in a queue with a load of 0.8, see Figure 8.3.From the values given in the Table 8.1 and 8.2 each CDV a�ected stream is approx-imated by a renewal stream with an Erlang-n interarrival time distribution.The values for n have been taken in case of T = 10 for n = 11 (corresponding topassage of a single queue), n = 4 (corresponding to passage of 4 queues), and n = 2(corresponding to an in�nite number of queues).In case of T = 20 the values of n = 21 (corresponding to passage of a single queue),n = 6 (corresponding to passage of 4 queues), and n = 2 (corresponding to an in�nitenumber of queues) have been chosen.As in Section 7.6.3, the local load approximation of the Bene�s Result have been usedfor �nding the virtual waiting time distribution.95
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For the superposition of 8 and 16 cell streams the cases where each CBR cell streamhas passed through 1 queue and 4 queues respectively with interfering tra�c have beensimulated. The simulation results of the virtual waiting time are given with 95% con�denceintervals. The analytical results are in agreement with the simulations.As the result shows then the e�ect of CDV becomes more and more apparent as thenumber of queues which the CBR streams has passed increases. It should also be notedthat when T is large the e�ect of CDV becomes apparent only after passing through aconsiderable number of queues. However, an important result of the model described inSection 8.2 is that as long as we have Poissonian interference then the delay performanceof the multiplexing of a number of CDV a�ected CBR cell streams will not be worse thanthe superposition of the same number of renewal processes with squared coe�cients ofvariation 1/2.
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8.5 A Method Based on the nTri=D=1 QueueTo evaluate an ATM multiplexer a G=D=1 queueing model is considered (General cellinterarrival distribution, Deterministic service time, single server system), where the basicproblem is to �nd the best approximation of the arrival processes. Due to the cascadedqueueing in ATM networks to �nd an accurate model for the cell arrival process is a quitedi�cult and challenging task. Various models have been developed to describe the cellscale queueing problem [99].A frequently used simplemodel is theGeo(N)=D=1 queueing model. TheGeo(N)=D=1queue has Bernoulli arrival process (the short-hand notation "Geo" stands for the geomet-rically distributed interarrival time). The time is slotted and it is assumed that an arrivalat any input port in any timeslot has the same constant probability. The arrivals areindependent of each other. The probability of a speci�c number of arrivals to a given �xedoutput is given by the binomial distribution. This can be an appropriate model of anATM switch because the number of cells arriving to the switch during cell transmissiontime is bounded by the number of inlets to the switch and this model takes it into account.Increasing the number of inlets (N) this queue becomes an M=D=1 queue as N goes toin�nity. The calculation of the Geo(N)=D=1 queueing model is simple [99].The M=D=1 queueing model assumes a Poisson arrival process. This approximationcould be acceptable when the arrival process is a superposition of a large number of sparserenewal processes. Also we can choose this model in the case when the arrival processis unknown, only the arrival rate is known. In contrast to the previous model, in thismodel the number of arrivals during a service time could exceed any �nite bound, whichis not a realistic assumption, but many investigations have shown [99], that this model isacceptable if the system load is low. The calculation of the queue length distribution inthis model is simple and well known [99].To model the superposition of CBR tra�c the nD=D=1 queue is considered as basicmodel. The input process is a superposition of n independent periodic sources with periodD. The phases of di�erent sources are random. Compared to the M=D=1 queueingmodel this is an improvement, because it takes into account the periodic nature of thecell emissions, the exact periodicity, however, is an idealistic assumption. The regularlybehavior of this arrival process compared to the previous models yields shorter queueswith the same mean arrival rate. The calculation of the queue length distribution in thismodel is not trivial, but applying the Bene�s formula a tractable solution can be obtained[99].A generalization of the nD=D=1 queue is thePDi=D=1, where the arrival process is aheterogeneous mix of N periodic sources with di�erent arrival rates. The model is general,but there is no exact solution for it. Exact solution is known only for a restricted case[99]. However, some accurate approximations have been developed for this general model[99].To overcome the inconveniences of the M=D=1 and nD=D=1 queues but also retaintheir advantages the nTri=D=1 queue has been developed [28], which is the object of thenext Section. 98



8.5.1 The nTri=D=1 Queueing ModelObserving the real ATM tra�c it can be concluded that the M=D=1 queueing modelyields results, which are too pessimistic, because this model does not take into accountthe negative correlations between cells. In contrast, the results obtained by the nD=D=1queueing model is too optimistic because of the idealistic periodicity assumption. In areal ATM network Cell Delay Variation (CDV) can be observed, which is a result of anumber of queues. Therefore a CBR tra�c becomes a jittered tra�c after going throughthe network (the periodic cell stream becomes a spread cell stream). In order to overcomesuch drawbacks of these models the nTri=D=1 queueing model has been developed [28] forthe �nite bu�er case. In this model the arrival process is a superposition of n independentstreams, in which each stream has exactly one arrival in each frame. The arrival times haveuniform distribution within a frame and are independent from the next frame (the "Tri"denotes the triangular interarrival time distribution). This model takes into account boththe negative correlation between cells and the CDV phenomenon. The assumption that theCDV has uniform distribution is certainly not true, but acceptable as an approximationfor cases when we know nothing about the CDV. This model is the object of the nextSection with the same restrictions as in [28], that is, all streams are synchronized.8.5.2 The Solution of the nTri=D=1 QueueDi�erent solutions have been developed [99, 92, 1] to solve the call scale queueing models,most of them are based on Markov-chains. Recently a new solution method have beeninvestigated, which is originally invented by Bene�s [5]. This approach provides a verypowerful tool to solve both cell and burst scale queueing problems [99]. In this Section anew solution is presented for the nTri=D=1 queue based on the Bene�s approach [71, 72].The main motivation to perform this task was to get a simpler solution than the solutionbased on the Markov-chain approach [28], which is rather complex and the calculationsare very time-consuming.The Bene�s formula gives the overow probability for G=D=1 queueing systems in thefollowing form: PfQt > rg = 1Xs=1PfNs = s+ rgPfQt�s = 0jNs = s+ rg (8.11)where� Qt: queue length at time t� Ns: number of cell arrivals in (t� s; t)� s: the investigated time-window (cell service time is chosen as time unit)If this formula is interpreted it can be seen that the probability of exceeding a certain bu�erlevel depends on two probabilities in the summation. The �rst one is the probability that99



exactly s+ r cells arrive in a window of size s. The second one is a conditional probabilityof that the queue is empty at time t, given that exactly s+ r cell arrivals occurred in thewindow. The derivation of this formula can be found in [99, 92, 72]First a new exact solution is presented for the �rst probability and three di�erentapproximations will be used for the second one. Before presenting the results some moremodel-description notations are introduced: (see Figure 8.6.)� D: frame size (the period of CBR cell streams)� A: distance from the start of the window to the �rst boundary of the next frame(aspeci�c value of A denoted by a)� k: number of cell arrivals in a frame = number of sources (n)� �: load (the number of arrivals divided by the frame size)
D

a
D D D frame of size

window of size

D

sFigure 8.6: The Window on the Frame FlowThe probability of a speci�c number of arrivals in the window is the following:PfNs = ig = 8>>>>>><>>>>>>: Z s0 P�fNs = ijA = agPfA 2 (a; a+ da)g+Z Ds P�fNs = ijA = agPfA 2 (a; a+ da)g if s � DZ D0 PfNs = ijA = agPfA 2 (a; a+ da)g if s > D (8.12)
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where PfA 2 (a; a+ da)g = daD andP�fNs = ijA = ag = 8>>>>>>><>>>>>>>: iXl=0  kl !P k�l1 P l2  ki� l !P i�l3 P k�i+l4 if i � kkXl=i�k  kl !P k�l1 P l2  ki� l !P i�l3 P k�i+l4 if k < i � 2k0 if i > 2k (8.13)with P1 = D�aD , P2 = 1� P1, P3 = s�aD and P4 = 1� P3,P�fNs = ijA = ag = 8><>:  ki !P i1P k�i2 if i � k0 if i > k (8.14)with P1 = sD and P2 = 1� P1,PfNs = �s� aD � k + ijA = ag =8>>>>>>><>>>>>>>: iXl=0  kl !P k�l1 P l2  ki� l !P i�l3 P k�i+l4 if i � kkXl=i�k  kl !P k�l1 P l2  ki� l !P i�l3 P k�i+l4 if k < i � 2k0 if i > 2k (8.15)with P1 = D�aD , P2 = 1�P1, P3 = s�(a+b s�aD cD)D and P4 = 1�P3. The derivation of resultscan be found in Appendix B.For the second probability of Eq. 8.11 three approximations will be shown. Applyingthese approximations an upper bound, a lower bound and an acceptable accurate formulacan be obtained for Eq. 8.11. An upper boundA very simple upper bound of Eq. 8.11 is obtained if the following obvious approxim-ation is used PfQt�s = 0jNs = s+ rg � 1 (8.16)yielding the upper bound:PfQt > rg < 1Xs=1PfNs = s + rg (8.17)101



A lower boundIt is known that in any stationary single server queueing system the probability of�nding the system empty equals 1 � � where � is the load. Using this an approximationthe following can be obtained for the second probability of Eq. 8.11:PfQt�s = 0jNs = s+ rg � 1 � � (8.18)I conjecture that this approximation yields a lower bound of Eq. 8.11 because thesystem is overloaded in the window and the number of arrivals is �xed in the frame. Thelower bound: PfQt > rg > (1 � �) 1Xs=1PfNs = s+ rg (8.19)An approximation based on local loadUsing local load instead of load a better approximation can be obtained:PfQt > rg �= 1Xs=1[PfNs = s+ rg � �PfNs = s+ rjone arrival at (t-s)g] (8.20)where PfNs = s+ rg is given by Eq 8.12 and PfNs = s+ rjone arrival at (t-s)g == 8>>>>>><>>>>>>: Z s0 P�fNs = ijA = agPfA 2 (a; a+ da)g+Z Ds P�fNs = ijA = agPfA 2 (a; a+ da)g if s � DZ D0 P�fNs = ijA = agPfA 2 (a; a+ da)g if s > D (8.21)where PfA 2 (a; a+ da)g = daD andP�fNs = ijA = ag =8>>>>>>><>>>>>>>: iXl=0  k � 1l !P k�l�11 P l2  ki� l !P i�l3 P k�i+l4 if i � k � 1k�1Xl=i�k  k � 1l !P k�l�11 P l2  ki� l !P i�l3 P k�i+l4 if k � 1 < i � 2k � 10 if i > 2k � 1 (8.22)with P1 = D�aD , P2 = 1� P1, P3 = s�aD and P4 = 1� P3,P�fNs = ijA = ag = 8><>:  k � 1i !P i1P k�i�12 if i � k � 10 if i > k � 1 (8.23)102



with P1 = sD and P2 = 1� P1,P�fNs = �s� aD � k + ijA = ag =8>>>>>>><>>>>>>>: iXl=0  k � 1l !P k�l�11 P l2  ki� l !P i�l3 P k�i+l4 if i � k � 1k�1Xl=i�k  k � 1l !P k�l�11 P l2  ki� l !P i�l3 P k�i+l4 if k � 1 < i � 2k � 10 if i > 2k � 1 (8.24)with P1 = D�aD , P2 = 1 � P1, P3 = s�(a+b s�aD cD)D and P4 = 1� P3. The derivation of theseresults can be found in Appendix C.The main advantage of the new solution is that the computation time is e�cientlydecreased. Moreover the approach can be generalized to the model, where the relativephases of input streams are random. Furthermore the approach can be used for the casewhere there are more than one arrivals in an input stream, leading to a realistic extensionof the model.8.5.3 Numerical ExamplesThe numerical results given below have been calculated for the nTri=D=1 queue by thesolution methods of the previous Section. Numerical tests have also justi�ed the correctnessof the solution by comparing the results to the outcome of the solution based on Markov-chains [28]. Results for the lower bound, upper bound, the local load approximation andrelated results of the nD=D=1 and M=D=1 queues have been obtained and shown in thisSection.The number of sources is 100, the frame size is 120 (consequently the load is 0.833) inthe considered example. In Figure 8.7, the probability of exceeding a certain bu�er levelis shown as a function of the bu�er occupancy level for the upper bound, the lower boundand the approximation.For comparison, the results of the M=D=1 and the nD=D=1 queueing models are alsoshown in Figure 8.8. For the nTri=D=1 queue the local load approximation is plotted.It can be observed that the M=D=1 queueing model di�ers signi�cantly from thenD=D=1 queueing model. It is because the arrival process of the nD=D=1 queue is moreregular. The performance of the nTri=D=1 queue is somewhere between that of theM=D=1and the nD=D=1 queues. This shows that the nTri=D=1 queue is not as regular as thenD=D=1 queue (because the arrival time of the cell is uniformly distributed within theframe and independent from the next frame), but it also takes into account the periodicnature of the cell stream (because there is only one arrival in a frame from a speci�csource) and that is why it is not as random as the M=D=1 queue.103
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8.6 Summary of ResultsIn this Chapter the CDV phenomenon due to cascaded multiplexing stages is examined.First, we have investigated how the characteristics of the CBR cell stream changes asit has been passed through several multiplexing stages. A formula and an upper boundfor the squared coe�cient of variation of the interdeparture time are derived. Numericalexamples showing the main properties of the alteration of the cell stream pro�le are given.Second, the suitability of the widely applied renewal model is investigated. It has beenshown that the renewal approximation is not acceptable characterization of CDV a�ectedCBR cell stream except for the case when the load approaches 1 in the multiplexing stages.Third, an analysis of an ATM multiplexer receiving CBR cell streams which prior tothe arrival to the multiplexer have been exposed to CDV in several multiplexing stage ispresented. Numerical results illustrate how the delay performance changing as the cellstream has been passed through di�erent number of multiplexing stages.Finally, a new solution of the nTri=D=1 queue is derived which is a a possible can-didate model for describing the multiplexed CDV a�ected CBR cell streams if we haveno knowledge about the CDV. Lower bound, upper bound and an approximation for thebu�er occupancy are derived and an evaluation of the model is also given.
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Chapter 9Designing Guidelines for ATM Tra�cControl and Network ElementDimensioning9.1 IntroductionThe CDV phenomenon has several undesired e�ects on the successful actions of Tra�cControl and appropriate design of Network Elements. In order to design them properlya CDV analysis is required to make a decision whether the CDV has to be taken intoaccount or not. Moreover, if the CDV cannot be neglected the question is how to usethe CDV information in the design of tra�c control functions or dimensioning of networkelements. This Chapter addresses this issue providing some proposals. The inuence ofthe CDV used in the proposals are derived from the results of the analysis in Chapter 7- 8.Section 9.2- 9.3 and Section 9.4- 9.5 describe the Tra�c Control functions under invest-igation with the CDV impact on these functions and some network element dimensioningproblems with their CDV sensitivity, respectively. Finally, the proposals can be found inSection 9.6 and Section 9.7.9.2 Tra�c ControlThe primary role of Tra�c Control and Congestion Control is to protect the network andthe user in order to achieve network performance objectives. An additional role is tooptimize the use of network resources [50, 2]. Tra�c Control refers to the set of actionstaken by the network to avoid congested conditions. ITU-T and ATM Forum have de�nedTra�c Control functions, see [50, 2]. In this section the functions which are the objectivesof this Chapter are briey outlined:� Usage Parameter Control (UPC)� Call Admission Control (CAC) 106



� Cell Spacing.The locations of these Tra�c Control functions in the B-ISDN access con�guration canbe seen in Figure 9.1.
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Figure 9.1: Location of Tra�c Control FunctionsThe Usage/Network Parameter Control (UPC/NPC) is de�ned as the set of actionstaken by the network to monitor and control tra�c, in terms of tra�c o�ered and validityof the ATM connection. The main purpose of UPC/NPC is to protect network resourcesfrom malicious as well as unintentional misbehaviour by detecting violations of negotiatedparameters and taking appropriate actions [50, 2].The Call Admission Control is de�ned as the set of actions taken by the network duringthe call set up phase in order to establish whether a Virtual Channel (VC) or Path (VP)request can be accepted or rejected [50, 2].The Cell Spacing is a function which allows to reduce CDV by bu�ering the incomingcells of a connection and re-scheduling them on the basis of the connection peak cell rate.9.3 The Impact of CDV on Tra�c ControlThe setting of UPC parameters and the CAC decision are complicated due to CDV oc-curing between a terminal and a UPC point (see Figure 9.1). This CDV prevents thenetwork from correctly estimating the actual tra�c characteristics o�ered to the networkeven though the characteristics of the cell stream at the terminal is honestly declared. Themain reason for this CDV is that the cell stream is disturbed in NT-2 (e.g. PBX or LAN)as going through from the terminal to the network.107



Moreover, the CDV within the network also complicates the CAC decision and thesetting of NPC parameters because the internetwork tra�c is altered in the network mainlydue to the bu�ering of cells in ATM nodes.CDV introduces uctuations on the cell interarrival times resulting in much higherinstantaneous cell rates then the negotiated peak cell rate. In the case if the CDV isnot bounded at the User Network Interface (UNI) [2] and at the Network Node Interface(NNI) [2] the design of a suitable UPC/NPC mechanism and a proper resource allocationis impossible. Furthermore, even though the CDV is bounded its e�ect shall be takeninto account by the UPC/NPC procedure. This is the primary purpose of introducing theCDV Tolerance parameter in the Tra�c Contract and the Generic Cell Rate Algorithmis de�ned for testing cell conformance [50, 2]. This algorithm uses the peak emissioninterval and the CDV tolerance parameters thereby CDV analysis is required to set theseparameters. Examples of applications of thesis results presented in Chapter 7 for settingthese UPC parameters can be found in [11].The di�erence between the expected tra�c and the actual one also inuences theutilization of transmission resources so the proper design of the CAC function also dependson the CDV. A CDV analysis is needed to estimate the actual tra�c characteristics to betaken into account.Concerning the dimension of Cell Spacer the amount of bu�er space required to performthis function without cell losses depends on the input CDV. Therefore the maximumadmissible CDV shall be speci�ed which also requires a CDV analysis.9.4 Network Element DimensioningIn this section the following Network Element Dimensioning problems are addressed:� Bu�er dimensioning� Play out bu�er dimensioningIn the issue of bu�er dimensioning we consider an ATM multiplexer with outgoing linkbu�ers using FIFO queueing disciplines. The generic task is to determine the bu�errequirements for a given input stream of the bu�er [31, 66]. The main problem of thebu�er dimensioning is to accurately characterize the cell stream o�ered to the bu�er.Moreover, depending on the philosophy of handling burst scale congestion (burst scaledelay or loss) [99] and also bu�er sizes (e.g. short bu�ers for delay sensitive applicationsor large bu�ers for data communications) di�erent dimensioning approaches should beused [31].The problem of play out bu�er dimensioning arises in the design of circuit emulationfacilities [14, 59]. The B-ISDN uses the ATM network as a backbone network to provideseveral broadband services with di�erent ATM Adaptation Layers (AALs) that enhancethe basic facilities o�ered by the backbone network. Some real time services may usecircuit emulation facilities which requires a bu�er at the receiving end of the connection toplay the variable end-to-end cell delays out. This play out bu�er sends cells to the receiver108



at a constant rate that matches the emission rate by compensating the experienced variablecell transfer delays. The AAL1 has been designed to provide this facility [14].9.5 The Impact of CDV on Network Element Dimen-sioningThe CDV has a signi�cant impact on the dimensioning of both bu�ers in ATMmultiplexersand play out bu�ers at the receiving end of the connections in case of circuit emulation.These bu�ers are dimensioned based on some kind of input tra�c models. These tra�cpro�le is altered in the network due to CDV. In order to make a proper dimensioning ofthese bu�ers an accurate characterization of cell stream as going through the network isnecessary.9.6 Designing Proposals for ATM Tra�c Control Func-tionsThe proposals are grouped according to the proper model of the Customer Premises Net-work (CPN):9.6.1 Customer Premises Network Modeled by a Single FIFOMultiplexerBased on the results of Chapter 7 I have the following proposals and conclusions concern-ing the design of tra�c control functions:A. When the Customer Premises Network (CPN) can be modeled as a single FIFOmultiplexing stage and peak rate allocation is applied:1. The CAC function does not have to take into account the CDV e�ect.As I have shown in Chapter 7 the CDV e�ect after a single FIFO queue is negligible.Therefore no need to make any e�ort to design a CAC function using any CDV informa-tion.2. No cell spacing is needed.Because of the small amount of CDV no reason to perform any spacing function. TheCAC dimensioning without CDV can be performed even without any spacer.3. UPC dimensioning based on modeling the CPN with the M +D=D=1 queue yieldsoverestimation of CDV Tolerance. 109



The results of Chapter 7 clearly indicates that if the CPN is modeled by theM+D=D=1queueing model it will result in overestimation of the CDV Tolerance.4. An accurate model of CPN can be used for UPC dimensioning with modeling thebackground tra�c by batch Bernoulli process (GI [x] +D=D=1 queue) thereby taking intoaccount the burstiness of the background tra�c.(a) The Poisson background tra�c is not su�cient for proper modeling if we have asmall number of multiplexed connections.(b) For choosing a proper model for background tra�c an attempt to match the peaked-ness should be made.(c) In case of a small number of sources the background tra�c is smooth and shouldbe modeled by batch size distributions (e.g. Binomial) where the peakedness of thebackground tra�c is smaller than 1.This proposal is based on the results of the Chapter 7 where it has been shown thatthe burstiness of the background tra�c has a signi�cant impact on the CDV.B. When the Customer Premises Network (CPN) can be modeled as a single FIFOmultiplexing stage and statistical multiplexing is applied:1. An accurate model of CPN can be used for UPC dimensioning with modeling thebackground tra�c by batch Bernoulli process (GI [x] +D=D=1 queue) thereby taking intoaccount the burstiness of the background tra�c.(a) For choosing a proper model for background tra�c an attempt to match the peaked-ness should be made.(b) In cases when the background tra�c has positive correlations the background tra�cis bursty and could be modeled by distributions (e.g. Pascal) where the peakednessis bigger than 1.These proposals are also based on the results of the Chapter 7.9.6.2 Customer Premises Network Modeled by Cascaded FIFOMultiplexersWhen the CPN can be modeled as cascaded FIFO multiplexing stages and peak rate al-location is applied I give the following proposals:1. If no cell spacing applied the CAC function has to take into account the CDV e�ect.Because of the tandemed FIFO queues may result in signi�cant CDV (see Chapter 8)its e�ect should be taken into account in the design of the CAC function. However, if we110



do so the CAC design may become rather complicated thereby in some cases where theextra delay introduced by the cell spacer can be allowed it is better to apply a cell spacerwhich reduces the CDV drastically and in this case the CAC function can be designedwithout any CDV information.In cases where no spacing function applied the CAC design shall be based on the socalled Worst Case Tra�c (WCT), i.e., the most demanding tra�c pattern among the onescompliant with the Tra�c Contract. Therefore the identi�cation of the WCT is needed.Some recent studies show that in some cases di�erent tra�c patterns can be worst thanthe full-rate on-o� pattern which is believed the WCT so far [24].2. The application of cell spacing is recommended.As described above if the extra delay due to the cell spacer is allowed the applicationof the spacer is recommended at the network ingress resulting in more simpler CAC pro-cedures.3. UPC dimensioning based on modeling the CPN with a number of M + D=D=1queues yields overestimation of CDV Tolerance.Similarly as in the previous section we can conclude the overestimation property of theM +D=D=1 queueing model (see Chapter 8).4. An appropriate approximation (upper bound) for UPC dimensioning can be ob-tained by modeling the output cell stream of the CPN with a renewal process with squaredcoe�cient of variation c2k = T � 12T � 1  1� �T � 1T �2k!where 1/T is the rate of the CBR cell stream and k is the number of queues that have beenpassed. The formula is valid in cases where the cell stream has been altered by backgroundtra�c which can be modeled by Poisson processes at each stage through the network.Here also the results of Chapter 8 are applied for characterizing the cell stream afterseveral multiplexing stages.9.7 Designing Proposals for Network Element Dimen-sioningFrom the CDV analysis results I have the following conclusion and proposal concerningbu�er and play out bu�er dimensioning:1. Bu�er dimensioning in ATM networks: When the background tra�c can be wellmodeled by Poisson processes at each stage through the network the bu�er dimension-ing based on modeling the single or tandemed ATM multiplexers with the M=D=1 queueprovides overestimation of needed bu�ers. 111



This conclusion based on the results of Chapter 8 and point out that the dimension-ing of bu�ers based on the widely applied and suggested M=D=1 queueing model yieldsoverestimation of bu�er sizes.2. Play out bu�er dimensioning in case of circuit emulation: An appropriate modelof the cell process at the receiving end of an ATM connection for dimensioning a play outbu�er is a renewal process with squared coe�cient of variations of 0.5 in cases where thebackground processes can be modeled by Poisson processes through the multiplexing stages.From the results of Chapter 8 we can see that in the heavy load case and with Poissonianinterference the squared coe�cient of variations of the CBR cell stream going throughATM multiplexers will never exceed 0.5. Therefore using a renewal stream with squaredcoe�cient of variations of 0.5 for modeling the cell stream at the receiving end of theconnection is a worst case approximation for the tra�c but it is more close to the realitythan the Poisson assumption which is too conservative.9.8 SummaryThe alteration of the cell stream characteristics due to CDV complicates both the design oftra�c control procedures and network element dimensioning. This Chapter has introducedsome practically applicable proposals concerning in which cases the CDV has to be takeninto account in the issues of dimensioning of tra�c control functions and network elementsand provided some suggestions how it can be done.
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Part VConcluding Remarks
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Chapter 10Summary of the DissertationThis dissertation covers various �elds of performance evaluation of telecommunication net-works. It is particularly devoted to several unsolved and challenging performance problemsthat arise in ATM networks varying from the call level description of B-ISDN tra�c to thecharacterization of Cell Delay Variation. There is a growing interest in the telecommu-nication world in solving these performance issues and the dissertation is a contributionwhich could help the development of a proper performance engineering in ATM networks.Part I introduces the di�erent concepts of quality of telecommunication networks andreviews the main performance evaluation issues of the dissertation.It is impossible to design speech coding systems and communication networks basedon only subjective speech quality assessment and it is desirable that speech quality beassessed by objective methods based on measured physical parameters. Several candid-ates of speech quality objective measures have been developed to ful�ll this requirement.However, the problem of �nding a good objective measure is that it should correspondwell with the subjective assessment values which depend on several phenomenons of thepoorly understood human speech perception. Therefore careful attention should be takento use these measures and identi�cation of the applicability limitations of any objectivespeech quality measure is necessary.This issue is addressed in Part II and a widely accepted and successful group of ob-jective speech quality measures is chosen for evaluation. The results clearly indicates thatnone of the investigated spectral envelope objective speech quality measures are appro-priate alone to characterize the speech quality. The limitations of these measures are alsopointed out, namely, their sensitivity to nonlinear distortions is not satisfactory.Part III presents di�erent results of ATM call scale performance evaluation. Theproblem of a proper call scale tra�c characterization is addressed and a robustness andsensitivity analysis of link occupancy investigating the impact of deviations of arrivalprocess and holding time from the classical Poisson/exponential description is analyzed.It has been shown that the traditional Poisson/exponential description of B-ISDN is quite115



vulnerable to deviations from these classical assumptions resulting in the conclusion that incases when these assumptions are not ful�lled this classical description cannot be acceptedand a more accurate characterization of call scale tra�c is necessary.The need for developing general tra�c models related to several issues like developinglink blocking formulas which can take into account also the variability of the tra�c butstill applicable in practice. Two approximation methods for computing the link occupancydistribution are presented based on matching the mean and the variance. A proposal fora variability measure based on the concept of generalized peakedness with a new closedform expression is given and this concept is suggested for the variance computation of theapproximations. Based on the approximations several new link blocking measures withtheir evaluation are shown. These simple measures can be seen as candidate measures ofB-ISDN link blocking which are intended to cope with more general call scale tra�c thanPoisson but also easily applicable in practice.The applicability of the developed link blocking measures and the new concept of B-ISDN tra�c characterization using a two-parameter description of tra�c (the mean andthe generalized peakedness) is demonstrated in an ATM network dimensioning problem.The dimensioning of large ATM networks into a number of logical subnetworks is alsoa hot topic of ATM research. So far only a few solutions have been published to solvethis problem and all of them assume Poisson input. A new algorithm based on the gen-eralization of the �xpoint method presented where the Poisson assumption is relaxed andthe tra�c can be general described by the mean and generalized peakedness. Evaluationresults with the comparison of the original �xpoint method showing the e�ect of the vari-ability measure are also given.Part IV studying various ATM cell level performance evaluation issues with focusingon the modeling and evaluation of Cell Delay Variation. Two new methods are describedto evaluate the CDV in a single ATM multiplexer. Both methods take into account theburstiness of the background tra�c which provide a more realistic model. The �rst ap-proach is an exact Markovian solution while the second one a di�usion approximationwhich is a candidate in several �elds of ATM design considering the good practical ap-plicability. The evaluation results show that there is a signi�cant e�ect of backgroundburstiness on CDV which is therefore cannot be neglected.The issue of how the characteristics of a CBR cell stream alters as it is going throughseveral ATMmultiplexing stages is also addressed and a formula for computing the squaredcoe�cient of variations of the interdeparture time is derived. It is shown that an upperbound can be given for the burstiness of the cell stream.The relevance of the renewal description of the CDV a�ected CBR cell stream isinvestigated and simulation results show that it is only acceptable in cases if the load isvery close to 1 in the multiplexing stages.Studies on the impact of multiplexing CDV a�ected CBR cell streams which prior tothe arrival to the multiplexer have been passes through single or cascaded multiplexingstages are presented. It can be concluded that the CDV due to a single multiplexing stagecan be neglected, but after several stages it may become signi�cant as shown by numerical116



examples with simulation veri�cation.A new solution method derived for the nTri=D=1 queue, which can be used for model-ing the superposition of CDV a�ected CBR sources in cases when we know nothing aboutthe CDV. Upper bound, lower bound and an accurate approximation is demonstrated forthe bu�er occupancy distribution.Finally the dissertation provides some guidelines for designing tra�c control functionsand network elements, which also illustrates the practical applicability of the results ofPart IV. Namely, the issue of CAC, UPC/NPC, cell spacer, bu�er and play out bu�erdimensioning are addressed.
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Chapter 11Areas for Further ResearchThe inadequate performance of all investigated spectral envelope objective speech qualitymeasures and their identi�ed disadvantage calls for more research of objective measures.An idea of a two-parameter objective measure with sensitivity to the linear and nonlineardistortions of speech is presented and the evaluation of this new measure one of the possibleresearch topic of the future.Concerning call level tra�c characterization of B-ISDN an important area of the futureto analyze the tra�c based on collected measurements from real B-ISDN environments.However, it should be noted, that since, for the time being, there is no tra�c produced byreal B-ISDN and we are restricted only to measurements from a few experimental ATMnetworks providing only a limited number of services. As soon as we have some datafrom real B-ISDN the performance of the proposed tra�c description and link blockingmeasures should be evaluated.A related and important future research topic is the problem of estimating the variab-ility measure. This problem and a possible solution is briey outlined in the dissertationbut to perform it in practice requires a signi�cant research.The further developing of the proposed ATM dimensioning algorithm for consideringe.g. revenue maximization and load sharing or using the concept of two-parameter descrip-tion and the developed link blocking measures in other algorithms are possible directionsof future work.The practical applications of the new CDV models (e.g. for setting the parameters ofUPC) is one of the most important research area of future work related to the results ofPart IV. This area is also considered in the dissertation (see Chapter 9) and in my relatedpublications (e.g. [11]) but still there are several unsolved issues of applying these modelsin practical designing problems of ATM networks.
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Appendix AThe Derivation of the TransitionMatrixIn this Appendix the derivation of the transition matrix computation of the exactMarkovian model is given.The elements of the transition matrix can be obtained byqj;k = Q(j; k � 1) �Q(j; k) (A.1)where Q(j; k) = PfWi > k j Wi�1 = jg =1Xn=0(PfWi > k j Wi�1 = j;N(iT � T; iT ) = ngPfN(iT � T; iT ) = n j Wi�1 = jg) (A.2)where N(t1; t2) = n denotes the event of n arrivals in ]t1; t2].The second term of the sum in (A.2) can be obtained by the T -fold convolution of thebatch size distribution, i. e.PfN(iT � T; iT ) = n j Wi�1 = jg = PfN(iT � T; iT ) = ng = bT�(n) (A.3)The �rst factor of each term in the sum of (A.2) can be derived as follows:If j + 1 � T and n � T + k � j � 1 or j + 1 < T and k � n thenPfWi > k j Wi�1 = j;N(iT � T; iT ) = ng = 0 (A.4)If n > T + k � j � 1 thenPfWi > k j Wi�1 = j;N(iT � T; iT ) = ng = 1 (A.5)126



These formulas are seen by investigating the queue length behaviour, and it is easy to seethat the queue length cannot be or must be exceed k, respectively.For the remaining case when j + 1 < T and k < n � T + k� j � 1 the Bene�s formula,see section 5.3.2. in [99], can be applied:PfWi > k jWi�1 = j;N(iT � T; iT ) = ng == n�kXs=1 PfN(iT � s; iT ) = k + s jWi�1 = j;N(iT � T; iT ) = ng ��PfW (iT � s) = 0 j Wi�1 = j;N(iT � s; iT ) = k + s;N(iT � T; iT ) = ng(A.6)where W (t) denotes the queue length at time t.The �rst probability in (A.6) can be derived as follows:PfN(iT � s; iT ) = k + s jWi�1 = j;N(iT � T; iT ) = ng == PfN(iT � s; iT ) = k + s;N(iT � T; iT ) = ngPfN(iT � T; iT ) = ng == PfN(iT � s; iT ) = k + s;N(iT � T; iT � s) = n� k � sgPfN(iT � T; iT ) = ng =In the numerator the number of arrivals in the two adjacent windows are independent ofeach other, therefore= PfN(iT � s; iT ) = k + sgPfN(iT � T; iT � s) = n� k � sgPfN(iT � T; iT ) = ng == bs�(k + s)b(T�s)�(n� k � s)bT�(n) (A.7)The second probability in (A.6) can be obtained by using the equivalence with theBene�s analysis of the nD=D=1 queue, see Chapter 6.2.1 in [99] for details, so we havePfW (iT � s) = 0 j Wi�1 = j;N(iT � s; iT ) = k + s;N(iT � T; iT ) = ng = T � n + kT � s(A.8)Putting (A.7) and (A.8) into (A.6) we get the �rst term of (A.2):8>>>>>>>>><>>>>>>>>>: 0 j + 1 � T and n � T + k � j � 1 orj + 1 < T and k � n1 n > T + k � j � 1n�kXs=1 T � n+ kT � s �� bs�(k+s)b(T�s)�(n�k�s)bT�(n) j + 1 < T and k < n � T + k � j � 1 (A.9)127



Finally, introducing Pn(j; k) as the product of the two terms in (A.2) we haveQ(j; k) = Xn�0Pn(j; k) (A.10)withPn(j; k) = 8>>>>>>>>><>>>>>>>>>: 0 j + 1 � T and n � T + k � j � 1 orj + 1 < T and k � nbT�(n) n > T + k � j � 1n�kXs=1 bs�(k + s)��b(T�s)�(n� k � s)T�n+kT�s j + 1 < T and k < n � T + k � j � 1(A.11)
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Appendix BThe Distribution of Number of Arrivalsin a WindowIn this Appendix the derivation of the distribution of the number of arrivals in a windowfor the nTri=D=1 queue is given. Depending on the position of the window in relation tothe frame ow (see Figure 8.6), di�erent cases can be distinguished.B.1 The Case When the Window Size is Smaller Thenthe Frame SizeB.1.1 The Subcase of A < sThis case is illustrated in Figure B.1.
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P1 = D � aD ; P2 = 1 � P1; P3 = s� aD ; and P4 = 1� P3 (B.1)where Pj = Pfany one arrival in interval j from a specific sourceg. In order tocalculate the conditional probability of a speci�c number of arrivals in the window givenA = a we can collect all possible events which are di�erent from each other in the sharingof arrivals in interval 2 and 3. Collecting these events we obtainP�fNs = ijA = ag = 8>>>>>>><>>>>>>>: iXl=0  kl !P k�l1 P l2  ki� l !P i�l3 P k�i+l4 if i � kkXl=i�k  kl !P k�l1 P l2  ki� l !P i�l3 P k�i+l4 if k < i � 2k0 if i > 2k (B.2)where l and i � l denote the numbers of arrivals in interval 2 and 3, respectively. Thenotation � is used for denoting the case of a < s � D.B.1.2 The Subcase of A � sThis is the case when the window is within a frame. The probability of anyone arrival inthe intervals denoted by 1 and 2 are obtained from Figure B.2:P1 = sD ; and P2 = 1� P1 (B.3)
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Figure B.2: The Case of s � a � DThe conditional probability: 130



P�fNs = ijA = ag = 8><>:  ki !P i1P k�i2 if i � k0 if i > k (B.4)where � denotes the case of s � a � D. Now we have the conditional probabilities forboth subcases of s � D. From these conditional probabilities we can get the probabilityof a speci�c number of arrivals in the window for this case:PfNs = ig = Z s0 P�fNs = ijA = agPfA 2 (a; a+ da)g+ (B.5)Z Ds P�fNs = ijA = agPfA 2 (a; a+ da)g (B.6)where PfA 2 (a; a+ da)g = daD , because A has uniformly distribution over the frame.B.2 The Case When the Window Size is Larger Thenthe Frame SizeIn the present case (see Figure B.3) it is known that the frame contains minimum b s�aD cknumber of arrivals (e.g. in Figure B.3 it is 2k), where bxc denotes the integer part of x.The number of arrivals can be di�erent only in interval 2 and 3.
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3Figure B.3: The Case of s > DFrom Figure B.3 the probabilities of any one arrival in the intervals is obtained:P1 = D � aD ; P2 = 1� P1; P3 = s� �a+ b s�aD cD�D ; and P4 = 1� P3 (B.7)131



Similarly as above the conditional probabilities can be obtained:PfNs = �s� aD � k + ijA = ag =8>>>>>>><>>>>>>>: iXl=0  kl !P k�l1 P l2  ki� l !P i�l3 P k�i+l4 if i � kkXl=i�k  kl !P k�l1 P l2  ki� l !P i�l3 P k�i+l4 if k < i � 2k0 if i > 2k (B.8)From the conditional probability we obtainPfNs = ig = Z D0 PfNs = ijA = agPfA 2 (a; a+ da)g (B.9)where PfA 2 (a; a+ da)g = daD , as above.
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Appendix CThe Local Load ApproximationIn this Appendix the derivation of the overow probability of the nTri=D=1 queue usingthe local load approximation is given.Assuming local stationarity around t� s, it can be written thatPfQt�s = 0jNs = s+ rg � 1� �0 (C.1)where �0 is the local load at t�s given s+r arrivals in the window. The local load de�nedby �0 = EfN(t� s��t; t� s)jNs = s+ rg�t (C.2)Because of the probability of more then one arrival is O(�t2) Eq. C.2 can be rewritten as�0 = PfN(t� s ��t; t� s) = 1jNs = s+ rg�t (C.3)Applying P (BjA) = P (AjB)P (B)P (A) for Eq. C.3 we obtain�0 = PfN(t� s��t; t� s) = 1g�t � PfNs = s+ rjN(t� s��t; t� s) = 1gPfNs = s+ rg (C.4)where for the �rst term we can conclude that it is the load. Insertion of Eq. C.1 andEq. C.4 into Eq. 8.11 �nally we getPfQt > rg �= 1Xs=1[PfNs = s+ rg � �PfNs = s+ rjone arrival at (t-s)g] (C.5)The main advantage of Eq. C.5 is that it contains only quantities related to the arrivalprocess.The derivation of PfNs = s+ rg is shown in Appendix B. The calculation of PfNs =s+ rjone arrival at (t-s)g can be performed similarly in the following way:133



C.1 The Case When the Window Size is Smaller Thenthe Frame SizeC.1.1 The Subcase of A < sThis case is illustrated in Figure C.1.
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one arrivalFigure C.1: The Case of a < s � DThe probability of any one arrival in a speci�c interval from Figure C.1:P1 = D � aD ; P2 = 1 � P1; P3 = s� aD ; and P4 = 1� P3 (C.6)The conditional probability:P�fNs = ijA = ag =8>>>>>>><>>>>>>>: iXl=0  k � 1l !P k�l�11 P l2  ki� l !P i�l3 P k�i+l4 if i � k � 1k�1Xl=i�k  k � 1l !P k�l�11 P l2  ki� l !P i�l3 P k�i+l4 if k � 1 < i � 2k � 10 if i > 2k � 1 (C.7)where l and i � l denote the numbers of arrivals in interval 2 and 3, respectively. Thenotation � is used for denoting the case of a < s � D.C.1.2 The Subcase of A � sThe probability of any one arrival in the intervals denoted by 1 and 2 are obtained fromFigure C.2: 134



P1 = sD and P2 = 1� P1 (C.8)
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one arrival Figure C.2: The Case of s � a � DThe conditional probability:P�fNs = ijA = ag = 8><>:  k � 1i !P i1P k�i�12 if i � k � 10 if i > k � 1 (C.9)where � denotes the present case. From these conditional probabilities the probability ofa speci�c number of arrivals in the window can be obtained as:PfNs = s+ rjone arrival at (t-s)g == 8>><>>: Z s0 P�fNs = ijA = agPfA 2 (a; a+ da)g+Z Ds P�fNs = ijA = agPfA 2 (a; a+ da)g (C.10)where PfA 2 (a; a+ da)g = daD .C.2 The Case When the Window Size is Larger Thenthe Frame SizeThe probabilities of one arrival in the intervals from Figure C.3:P1 = D � aD ; P2 = 1 � P1; P3 = s� �a+ b s�aD cD�D ; and P4 = 1 � P3 (C.11)135
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