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Abstract

Careful statistical analyses indicate that the measured traffic traces from live packet networks often
contain non-stationary effects like level shifts or polynomial trends. In these cases several popular
tests for long-range dependence can result in wrong conclusions and unreliable estimate of the Hurst
parameter. In this paper both analytical and simulation investigations of the implications of these
effects on several tests are presented. The results are also demonstrated with examples based on
measured ATM traces. The use of these results can be utilized to avoid pitfalls in LRD traffic
modeling.
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1. Introduction

It has been widely recognized on the basis of a series of comprehensive analyses of
real-time traffic measurements from working packet switched networks that packet
traffic fluctuates over a number of time scales [26]. This behaviour is called bursti-
ness. However, the unique definition and characterization of burstiness have not
been established yet in the teletraffic literature [11, 18].

A very promising approach to capture this burstiness phenomenon in a par-
simonious manner is to use fractal traffic models [16, 26]. These models have
dynamics governed by power law distribution functions and hyperbolically de-
caying autocorrelation [26]. The important characteristics of these models are
self-similarity and long-range dependence [11, 16].

Self-similar stochastic processes have been defined in a number of ways in
the literature [11, 16, 26]. From a practical point of view the long-range dependent
(LRD) processes constitute one of the most important classes of these processes
[11, 16]. In this paper we consider this class of fractal processes which is defined
in the next section.

The important practical issues are the identification of LRD phenomena and
the estimation of LRD parameters, especially the estimation of the Hurst parameter.
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Unfortunately, testing for LRD of measured data is not possible by simply checking
the definitions. Instead, we can use some methods for testing the presence of some
characteristics of the data which can or cannot support the LRD property and also
can or cannot give a reliable estimate of the Hurst parameter. Moreover, if all
methods support the assumption of the presence of LRD with a parameter H it
is still possible that this observation is caused by non-stationarities present in the
data and not due to the LRD (since LRD is only defined for the set of stationary
processes). In this case it is possible to end up with wrong conclusions and build
wrong models. In order to avoid such pitfalls we address this problem in this paper
and give both analytical and simulation investigations of these effects with different
non-stationarities in the data.

The issue is not new and was also addressed in the hydrology literature (e.g.
[13]) after the application of LRD processes in the modeling of natural storage
systems by HURST [10], MANDELBROT and others [15, 25]. However, after the
discovery and first application of LRD processes in the teletraffic research a number
of papers have been published just by blind application of some LRD tests assuming
the stationarity for hours of the traffic and taking no care of this important question.
We note that the problem was also addressed in the recent teletraffic literature, e.g.
in [6, 9, 8, 18, 16] and also see the related references in [26], but stationarity tests
and the validation techniques of fractal models have not widely been applied in
today’s teletraffic practice.

There are some approaches to deal with this problem. One practical solution
is based on the notion of local stationarity. Here we assume stationarity only
over some short periods of time. Therefore our model parameters are valid only
for such a period and should be updated in the next period. A measurement-
based approach with periodic real-time parameter estimation is a possible solution.
Local stationarity with traditional models can also be used to capture the observed
characteristics [24, 23].

An alternative but rather difficult solution is to use non-stationary models,
e.g. [7].

Some authors argue that this topic is somewhat philosophical from the applied
point of view [8, 13]. Indeed, if the modeling alternative can provide useful practical
tools to dimension our networks, then this can be a non-questionable proof for a
proposed model. However, if more alternatives can work, then we may prefer the
parsimonious one which is a nice feature of fractal models. We believe that besides
these factors the final choice of the proposed model and understanding about the
nature of network traffic should be made not only by the analysis of the measured
data but our a priori knowledge about the traffic generation process.

The contribution of this paper is to reveal the implications of the most im-
portant non-stationary effects which occur in practice on the most frequently used
LRD tests in order to have a good understanding of these phenomena and inves-
tigate the robustness of these tests against non-stationarities. The practical use of
our findings is to support teletraffic engineers with guidelines not to mistake actual
non-stationarities for stationary fractal behaviour.

In Sections 2 and 3 the methods and the non-stationary effects under inves-
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tigation are described, respectively. Our analytical investigations for the tests of
variance-time plot and R/S plot with level shifts and linear trends are given in Sec-
tion 4. Our simulation study with several examples is presented in Section 5, and
Section 6 concludes our paper.

2. Long-Range Dependence Tests

In this section we give a short overview of LRD processes with the most frequently
used test methods which are analyzed in the paper.

Let X = (Xk : k ≥ 0) be a covariance-stationarity process with auto-
correlation function r(k). X is said to exhibit long-range dependence (LRD) if
r(k) ∼ k2H−2 L(k) as k → ∞, 1/2 < H < 1,where L is slowly varying at infinity,
i.e., limk→∞ [L(tk)/L(k)] = 1, t > 0 and a(x) ∼ b(x) means a(x)/b(x) → 1
as x → ∞. The class of LRD processes is equivalent to the class of asymptoti-
cally second-order self-similar processes [22] defined as follows. For all integer
m ≥ 1 let X

(m)
k = 1

m

∑km
i=(k−1)m+1 X i be the aggregated process with autocor-

relation function r (m)(k). X is called asymptotically second-order self-similar if
limm→∞ rm(k) = 1/2(|k + 1|2H − 2 |k|2H + |k − 1|2H ) for all k ≥ 0. The most
important property of these processes is that the aggregated process has a non-
degenerate autocorrelation structure as m → ∞. In contrast, in the case of short-
range dependent processes (e.g. Markov processes) this aggregate process tends to
second-order pure noise.

As discussed in the previous section, the task for testing of LRD and the
estimation of the Hurst parameter are not simple in practice. The main problem
is that it is rather difficult to distinguish between non-stationary processes and
stationary LRD processes due to the fact that LRD processes appear to have local
trends, cycles, etc., many of the characteristics of non-stationary processes. These
properties disappear after some time but if we have a finite and sometimes also
short data set, this identification is almost impossible. Having a longer data set this
identification becomes easier but we know for sure that in a larger measured data set
non-stationary effects are present due to the daily cycles of traffic characteristics.
The assumption about stationarity with high reliability may only be supported in
the busy periods of the traffic. However, in some cases (e.g. IP traffic in a LAN)
the notion of busy period cannot be applied [3].

There are methods developed to test stationarity (e.g. [23, 19, 17]) and to
distinguish between LRD and non-stationarities (e.g. [21, 14, 2, 20]) but application
of these tests is not easy in practice. Moreover, such tests can seldom support their
results with high reliability. We review here four widely used LRD tests: the
variance-time plot, the R/S analysis, the periodogram and the wavelet based H -
estimator. More detailed description of these methods can be found e.g. in [2]
and [1].
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2.1. Variance-Time Plot

The variance-time plot is constructed based on the following asymptotic property
of LRD processes [2],

Var(X (m)) = m2H−2 Var(X) as m → ∞, (1)

where H is the Hurst parameter of X , X (m) denotes the m-aggregated process of X ,
m is the aggregation level, m = 1, 2, . . .

In practice, for a given time series X of size n, one chooses the maximum
value of m so that ⌊n/m⌋ is still large enough and then logarithmically increases
m from 1 to that value. For those successive values of m, the logarithm of the
sample variance of X (m) is plotted versus the logarithm of m. If X is LRD, this
variance-time plot should be a straight line with a slope of 2H − 2. An estimation
of the Hurst parameter can be calculated by fitting a least-squares line to points of
the plot over the large values of m.

Since 0.5 < H < 1, the asymptotic slope of the variance-time has a value
between −1 and 0. The variance-time plot with slope −1 suggests that the series
has no LRD and it has finite variance. The Poissonian and Markovian processes
are typical examples of such short-range dependent processes.

2.2. R/S Analysis

Consider a time series X of size d with sample mean X̄d and sample variance
S2(d) = (1/d)

∑d
i=1(X i − X̄d)

2. The rescaled adjusted range [2] R/S statistics of
X is given by the ratio:

R(d)

S(d)
=

max{Wi : i = 1, 2, . . . , d} − min{Wi : i = 1, 2, . . . , d}

S(d)
, (2)

where Wi =
∑i

k=1(Xk − X̄d). It can be proven for any stationary process with LRD
of parameter H that the R/S ratio has the following characteristics for large n:

E

[

R(d)

S(d)

]

∼

(

d

2

)H

, (3)

which is known as Hurst effect [2].
Given an empirical time series of length n (X j : j = 1, 2, . . . , n), subdivide

the series into K blocks of size ⌊n/K⌋. Then for each lag d := ⌊n/K⌋, compute the
R(ti , d)/S(ti , d) ratios, where ti denotes the starting point of the data block d, i.e.,
ti = ⌊n/K⌋(i − 1)+ 1, i = 1, 2, . . . , d. Thus one has K estimates of R/S(d) for
each value of d. Choosing logarithmically spaced values of d (d < n) and plotting
log [R/S(ti , d)] versus log d results in the R/S plot, also known as pox diagram.
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Next, a least squares regression line should be fitted to points of the R/S plot.
The slope of the regression line gives an estimate of the Hurst parameter of LRD.
The smallest values of d should be disregarded because these points are dominated
by short-range dependence in the series. We do not use the high end of the plot
either because only a few points in this region may make the estimate unreliable.
In practice, values of d in the middle region of the R/S plot are used to estimate H .

2.3. Periodogram

A typical property of LRD exhibited in the frequency domain is called 1/ f noise.
The 1/ f noise expresses the behaviour of the power spectral density of an LRD
process at small frequencies, i.e.,

log f (ν) ∼ −γ log ν, as ν → 0, (4)

where f (.) denotes the power spectral density and γ = 2H − 1.
An estimate of the spectral density can be obtained by the Fourier transform

of the estimate of the autocorrelation function. This estimator is referred to as a
periodogram [2], and is defined as

I (ν) =
1

2πn

∣

∣

∣

∣

∣

n
∑

k=1

(Xk − X̄)eikν

∣

∣

∣

∣

∣

2

, (5)

for a discrete time series X = {X1, X2, . . . , Xn}.
The main idea of periodogram analysis is simply to plot the periodogram

in a log-log grid and to estimate H from the slope of the regression line fitted
to the plot at low frequencies. Practically, the periodogram plot is the graph of
{

log ν j , log I (ν j )}, j = 1, 2, . . . , M , where ν j = 2π j/n and M is always chosen
to be n/4, n/8, n/16 or n/32 and so on depending on how large n is. According to
Eq. (4), the plot should be a straight line with slope −γ = 1 − 2H in the case of
LRD processes .

2.4. Wavelet-Based Estimator

Wavelet analysis of LRD traffic is introduced by P. ABRY and D. VEITCH in [1].
The estimator is found to be very unbiased and highly robust against the presence
of deterministic trends. The description of the wavelet estimator is briefly reviewed
here.

The discrete wavelet transform (DWT) represents a discrete series
{X1, X2, . . . , Xn} by a combination of the scaled and delayed versions of the mother
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wavelet function ψ(.). At scale level j the wavelet coefficients dx( j, k) are defined
as follows:

dx( j, k) = 2 j/2
n
∑

i=1

X iψ(2
− j n −k) j = 1, 2, . . . ; k = 1, 2, . . . , 2− j n. (6)

Let X be a second-order stationary process. Then its wavelet coefficients dx( j, k)
satisfy:

E
[

dx( j, k)2
]

=

∫

f (ν)2 j |9(2 jν)|2dν, (7)

where f (ν) and 9(ν) are the power spectrum of X and the Fourier transform of
the wavelet function ψ(.), respectively. Based on Eq. (4) we have

E
[

dx( j, k)2
]

∼ 2 j (2H−1)c f C(H, ψ), (8)

where C(H, ψ) =
∫

|ν|−(2H−1)|9(ν)|2dν is a constant which depends on H andψ .
If the length of X is n, then the available number of wavelet coefficients at

octave j is n j , n j = 2− j n. Then,

µ j = E
[

dx( j, k)2
]

≈
1

n j

n j
∑

k=1

|dx( j, k)|2. (9)

Eq. (8) provides a possible way to estimate the Hurst parameter of the LRD pro-
cesses:

log2 µ j ≈ log2

(

1

n j

n j
∑

k=1

|dx( j, k)|2

)

∼ (2H − 1) j + c, (10)

where c = log2(c f C(H, ψ)) is a constant. This means that if X is LRD with Hurst
parameter H , then the graph of log2(µ j ) versus j , called the Logscale Diagram
(LD), should be linear with slope 2H − 1. (In practice, the raw data can be pre-
processed to make the result of the LD more reliable and logµ j is replaced by a
corrected version denoted by y j in the implementation of the authors of [1].)

As discussed in detail in [1], the effects of polynomial trends with the degree
P on this estimator can be avoided by increasing the vanishing moment N of the
wavelet function so that N ≥ P +1. This observation is justified by our simulations
presented later.

3. Types of Non-Stationarities

The analysis of measured packet traffic can reveal various deterministic changes
in the data on different time scales. These traffic variations are not stochastic by
nature but rather caused by deterministic mechanisms like protocols [12]. These
mechanisms can, for example, introduce quasi-periodic patterns in the traffic data
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which can be, if not detected and removed, the reasons for several statistical pitfalls,
e.g. the conclusion of slowly decaying correlations.

On longer time scales we can observe also a regular character of the traffic
due to daily or weekly variations. These traffic trends should also be identified and
removed prior to any statistical analysis. These are not easy but important parts of
a comprehensive statistical analysis [5, 4].

Different trend models are candidates for investigations, e.g. linear trend,
parabolic trend, exponential trend, logistical trend or Gompertz trend, etc. We
have chosen the non-stationary effects and trends which are frequently observed in
practice. These are the level shift, which can be observed when during our traffic
measurements suddenly a new source starts to emit traffic to the aggregation and the
linear and parabolic trends, which can be observed in daily traffic variations. For
example, when people start to work in their office between 8 and 10 am a monotonic
increase of the total load of the aggregated traffic can be observed.

4. Analytical Investigations

In this section we present our analytical study which shows how some non-statio-
narities can change the results of some widely used LRD tests. We concern here
three cases: variance-time plot of LRD data with level shift, with linear trend, and
R/S analysis of LRD data with level shift.

Consider an {X1, X2, ...Xn} series which is LRD with Hurst parameter H . To
make the later calculations simple we use two assumptions: (1) n is large enough
so that aggregated series of {X} used in computation of the variance-time plot still
contains a large amount of data; (2) the mean of {X} is zero, i.e., X̄n = 0. The
second assumption can be taken into account because the non-zero mean of LRD
data does not change the result of LRD tests (see their definitions in Section 2).

4.1. Variance-Time Plot of LRD Data with Level Shift

The variance-time plot is the log-log plot of the variance of data versus the aggre-
gation level. The corrected sample variance of {X} series:

Var(X) =
1

n − 1

n
∑

i=1

X2
i , (11)

since the mean of {X} is zero. Similarly, the corrected sample variance of the
m-aggregated series of {X} is:

Var(X (m)) =
1

⌊n/m⌋ − 1

⌊n/m⌋
∑

j=1

(

X
(m)
j

)2
, (12)
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where ⌊z⌋ denotes the greatest integer smaller than or equal to z. Eq. (12) holds
because we have assumed that ⌊n/m⌋ is still large enough so X̄

(m)
⌊n/m⌋ ≈ X̄n = 01.

The following relation holds for LRD series:

Var
(

X (m)
)

=
Var(X)

m2−2H
. (13)

After adding a level shift to the series X , the i-th element of the new series, denoted
by X L S

i has the value:

X L S
i =

{

X i if i ≤ ⌊n/2⌋
X i + tm if i > ⌊n/2⌋

,

where tm denotes the value of the level shift occurred in the middle of the investigated
time period2. It is easy to observe that the mean of the X L S series is tm/2. Thus its
variance is of the form:

Var
(

X L S
)

=
1

n − 1

n
∑

i=1

(

X L S
i − tm/2

)2

=
1

n − 1

[

⌊n/2⌋
∑

i=1

(X i − tm/2)
2 +

n
∑

i=⌊n/2⌋+1

(X i + tm − tm/2)
2

]

=
1

n − 1

n
∑

i=1

X2
i +

n

n − 1

t2
m

4
+

tm

n − 1

[

n
∑

i=⌊n/2⌋+1

X i −

⌊n/2⌋
∑

i=1

X i

]

≈ Var(X)+
t2
m

4
, if n is large enough. (14)

The j -th element of the m-aggregated series X (m) is given by X
(m)
j =

∑ jm

k=( j−1)m+1 Xk , therefore

X
L S (m)
j =

{

X
(m)
j if j ≤ ⌊n/2m⌋

X
(m)
j + tm if j > ⌊n/2m⌋

,

with the only exception when the element contains the location of the shift. Since
⌊n/m⌋ is large enough this exception does not change the result. Thus doing the
same calculations as in Eq. (14) we have

Var
(

X L S (m)
)

≈ Var
(

X (m)
)

+
t2
m

4
. (15)

1This equality only holds when dealing with stationary data series.
2The location of the level shift jump has no effect on analytical and simulation results.
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By inserting Eq. (14) and Eq. (15) into Eq. (13) we get the final result:

Var
(

X L S (m)
)

=
Var

(

X L S
)

− t2
m/4

m2−2H
+

t2
m

4
. (16)

By plotting log
[

Var
(

X L S (m)
)]

against log m we get a convex curve bounded by two
lines: the line with slope 2H − 2 and ordinate log

[

Var
(

X L S
)

− t2
m/4

]

as m → 0
and a horizontal line with ordinate t2

m/4 as m → ∞. The estimation of H for LRD
processes should be performed at large m (in theory as m → ∞). Therefore we
can conclude that the estimation is highly destroyed in the presence of level shifts.
More details about this distortion demonstrated by examples are given in Section 5.

4.2. Variance-Time Plot of LRD Data with Linear Trend

In this case we also denote the maximum value of the linear trend by tm . The LRD
series with linear trend X L can be given as:

X L
i = X i +

(i − 1) tm

n − 1
. (17)

Because the mean of X is zero, i.e., X̄n = 0, the mean of the new series is X̄ L =

tm/2 ≈ X̄
L (m)
⌊n/m⌋, where X̄

L (m)
⌊n/m⌋ denotes the mean of m-aggregated series of X L . The

variance of X L can be calculated as follows:

Var
(

X L
)

=
1

n − 1

n
∑

i=1

(

X L
i −

tm

2

)2

=
1

n − 1

n
∑

i=1

[

X i +
(i − 1) tm

n − 1
−

tm

2

]2

= Var(X)+
2tm

(n − 1)2

n
∑

i=1

i X i +
t2
m

4(n − 1)3

n
∑

i=1

(2i − n − 1)2

≈ Var(X)+
2tm

(n − 1)2

n
∑

i=1

i X i +
t2
m

12
= Var(X)+ C1 , (18)

where C1 is a constant independent of m for a given data.
Similarly, for m-aggregated series we have:

X
L (m)
j = X

(m)
j +

tm

2(n − 1)
(2 jm − m − 1) j = 1, 2, . . . , ⌊n/m⌋ (19)
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and

Var
(

X L (m)
)

=
1

⌊n/m⌋ − 1

⌊n/m⌋
∑

j=1

[

X
L (m)
j −

tm

2

]2

=
1

⌊n/m⌋ − 1

⌊n/m⌋
∑

j=1

[

X
(m)
j +

tm

2(n − 1)
(2 jm − m − 1)−

tm

2

]2

≈ Var
(

X (m)
)

+
2tm m

(n − 1) (⌊n/m⌋ − 1)

⌊n/m⌋
∑

j=1

j X
(m)
j +

+
t2
m

4(n − 1)2 (⌊n/m⌋ − 1)

⌊n/m⌋
∑

j=1

(2 jm − m − n)2. (20)

Using the condition that ⌊n/m⌋ is large enough, i.e., m ≪ n or n/m → 0 and the
approximation ⌊n/m⌋ ≈ n/m, Eq. (20) can be simplified:

Var
(

X L (m)
)

≈ Var
(

X (m)
)

+
2tm m2

(n − 1)(n − m)

⌊n/m⌋
∑

j=1

j X
(m)
j +

t2
m

12

(7m − 6)

m
. (21)

Finally, by inserting Eq. (18) and Eq. (21) into Eq. (13) we get the following:

Var
(

X L (m)
)

≈
Var(X L)− C1

m2−2H
+

2tm m2

(n − 1)(n − m)

⌊n/m⌋
∑

j=1

j X
(m)
j +

t2
m

12

(7m − 6)

m

=
Var(X L)− C1

m fL (m)
, (22)

where

fL(m) =

log















Var(X L)− C1

Var(X L)− C1

m2−2H +
2tm m2

(n − 1)(n − m)

⌊n/m⌋
∑

j=1

j X
(m)
j +

t2
m

12

(7m − 6)

m















log m
.

(23)
Eq. (22) shows that the presence of a linear trend in LRD data turns the re-
sult of variance-time plot to be quite different from its original form. Plotting
log

[

Var(X L (m))
]

versus log m instead of a straight line with slope (2H − 2) we
should observe a curve described by fL(m), which is a complicated function of m.
The estimation of the Hurst parameter of LRD from the variance-time plot should
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be done by fitting a regression line to the plot at large values of m, so from Eq. (22)
and using the fact that X

(m)
j is close to the sample mean X̄ we get:

2tm m2

(n − 1)(n − m)

⌊n/m⌋
∑

j=1

j X
(m)
j +

t2
m

12

(7m − 6)

m

≈
2tm m2

(n − 1)(n − m)
C2

n/m(n/m + 1)

2
+

t2
m

12

(7m − 6)

m

≈ C2 tm +
7 t2

m

12
, as m → ∞, (24)

where C2 denotes a constant close to 0. Thus Eq. (22) can be rewritten as

Var
(

X L (m)
)

≈
Var(X L)− C1

m2−2H
+ C2 tm +

7 t2
m

12
, as m → ∞. (25)

Eq. (25) concludes that the variance-time plot of a LRD process with linear trend
asymptotically approaches a horizontal line with ordinate C2tm + 7 t2

m/12, where
the constant C2 is independent of m. The variance-time plots of the LRD process
and a process with no LRD are no longer distinguishable in the presence of a linear
trend. For more details see our examples in Section 5.

4.3. R/S Plot of LRD Data with Level Shift

The R/S analysis of an {X1, X2, . . . , Xn} data series is defined by the log-log plot
of the rescaled adjusted range R/S ratio versus the actual data window size d. For
a certain window size d of data the R/S value is given by:

R

S
=

max {Wi; i = 1, 2, . . . , d} − min {Wi ; i = 1, 2, . . . , d}
√

Var(Xoff ,d)
, (26)

where Xoff ,d denotes the considered sub-series {Xoff +1,, Xoff +2, . . . , Xoff +d} and
Wi =

∑i
k=1(Xoff +k − X̄off ,d). With a given value of d we calculate several R/S

ratios by sliding the window size d throughout the X series. The R/S ratios of LRD
data have the following characteristics R/S ∼ CH d H as n → ∞, where CH is an
infinite positive constant independent of d.

By adding a level shift to the series X , we get the new series denoted by
X L S, X L S = {X1, X2, . . . , X⌊n/2⌋−1, X⌊n/2⌋, X⌊n/2⌋+1 + tm , . . . , Xn + tm}, where tm
denotes the value of the level shift. According to the definition of the R/S ratio we can
observe that this ratio does not change if the data window d does not cover the level
shift point. It is simply due to the fact that the k-th element of Xoff ,d is Xoff +k + C3
where C3 is a constant. More precisely, C3 = 0 if the data window is placed entirely
at the first level and C3 = tm if it stays entirely at the region of the second level.
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Thus we see that L = max {Wi} − min {Wi} = max {Wi + C3} − min {Wi + C3},
where i = 1, 2, . . . , d, and S =

√

Var(Xoff ,d) =
√

Var(Xoff ,d + C3). Therefore
the R/S ratio holds its original value.

The situation is different when the data window d contains the jump of the
level shift. We concern here the simple case when the location of the shift is placed
at the centre of the window:

X∗ L S
off +k =

{

Xoff +k if k ≤ ⌊n/2⌋
Xoff +k + tm if k > ⌊n/2⌋

,

where k = 1, 2, . . . , d and (*) means that it only relates to those d-windows men-
tioned above. As proven in subsection 4.1,

Var
(

X∗ L S
off ,d

)

≈ Var
(

Xoff ,d

)

+
t2
m

4
. (27)

Moreover, for the new series

W ∗ L S
i =

i
∑

k=1

[

X∗ L S
off +k −

(

X̄off ,d +
tm

2

)]

=

{

Wi − i tm/2 if i = 1, 2, . . . , ⌊d/2⌋
Wi − (d − i) tm/2 if i = ⌊d/2⌋ + 1, . . . , d

.

We compute different R/S values by increasing the window size d and moving this
window along the data. There is one window d that contains the shift location at
most when d has a small value. However, the change of only one value of the R/S
ratio at a fixed d can be counted as a noise and it does not change the look of the plot.
In contrast, when, d assumes a large enough value, the following can be justified:

R∗ L S = max {W ∗ L S
i } − min {W ∗ L S

i } = W ∗ L S
d − W ∗ L S

⌊d/2⌋

= Wd − W⌊d/2⌋ + ⌊d/2⌋
tm

2
≈ d

tm

4
. (28)

Moreover, as d is large,

S∗ L S =

√

Var
(

X∗ L S
off ,d

)

≈

√

Var
(

Xoff ,d

)

+
t2
m

4
≈

√

Var(Xn)+
t2
m

4
. (29)

Therefore,
(

R

S

)∗ L S

≈
d

tm

4
√

Var(Xn)+
t2
m

4

= d C4, (30)

where C4 is a constant independent of d. These points create a separate part on the
log-log plot which should be placed closely around a straight line with slope 1. The
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other large cluster of points remains at the same place as before adding the level
shift and this part of the R/S plot of LRD data with level shift looks similar to the
R/S plot of the original LRD data.

This result shows that the R/S plot can also be used for detection of level shifts
in the data. Moreover, the linear part with slope 1 in the plot should be disregarded
in the estimation of Hurst parameter of LRD processes. In this way, in the cases
when this separation is feasible, we can make a reliable estimate of H even in the
presence of level shifts.

5. Simulations

5.1. Setup

Reference data sets. A sample series of Fractional Gaussian Noise (FGN) [2] was
used as a reference for data exhibiting LRD. In this generated set the Hurst parameter
was set to be 0.7. The other reference set is generated by Poisson process. In order
to make a good comparison, these data sets were set to have the same mean and
variance of the value 10. Both data sets have the same size of 32,768 data.

Measured SUNET ATM cell-traffic. A series of ATM cell arrivals obtained from a
real-time traffic measurement on the Swedish University NETwork (SUNET) [16]
was also analyzed. Data traces were collected in 1996 based on a custom-built
measurement tool which is able to record more than 8 million consecutive cell
arrivals. In our tests the traces of the number of cell arrivals in a 1 ms time window
were considered. The analysis of these data traces can illustrate the non-stationary
effects in LRD estimation of real traffic.

Types of non-stationarities. There are two typical classes of non-stationarities
observed in real traffic data: the level shift and the polynomial trends. In our
simulation study we only concerned three simple cases: level shift with two states,
linear trend, and parabolic trend. These effects were added to both data sets (see
Fig. 4 for the detailed information of these non-stationarities). We denote by 0.7-
FGN the original FGN set, by 0.7-FGN_L the FGN set with linear trend, by 0.7-
FGN_P the one with parabolic trend and by 0.7-FGN_LS the one with level shift.
The Poisson sets are marked with the same notations: POISS, POISS_L, POISS_P,
POISS_LS. Table 1 gives more information about these data sets.

The datagram of these data sets can be seen in Fig. 1.

5.2. Empirical Results

Variance-time plot. Results of variance-time analysis can be seen in Fig. 2. The
variance-time plot estimated on the original data sets, 0.7-FGN and POISS, gives us
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Fig. 1. The datagrams of the investigated data sets. The 0.7-FGN means m + FGN(σ 2,
H ), where m = 10, σ 2 = 10, H = 0.7; the POISS means Poissonian samples with
λ = 10 (σ 2 = 10).
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Fig. 2. The variance-time plots. Left: variance-time plots of 0.7-FGN, 0.7-FGN_L,
0.7-FGN_LS, and 0.7-FGN_P. Right: variance-time plots of POISS, POISS_L,
POISS_LS, and POISS_P.

the exact values of Hurst parameter we expected: H = 0.7 for 0.7-FGN data set and
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Fig. 3. The R/S plots. Left: R/S plots of 0.7-FGN, 0.7-FGN_L, 0.7-FGN_LS, and 0.7-
FGN_P. Right: R/S plots of POISS, POISS_L, POISS_LS, and POISS_P.

H = 0.5 for POISS one (see Figs. 2.a and 2.b). However, variance-time plot is very
sensitive to the investigated non-stationarities. As seen in Figs. 2.c, 2.d, 2.e, 2.f,
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Table 1. The detailed information of investigated data sets (µ̂ and σ̂ 2 denote the sample
mean and the sample variance, respectively).

Data sets tm µ̂ σ̂ 2 Data sets tm µ̂ σ̂ 2

0.7-FGN - 10 10 POISS - 10 10
0.7-FGN_L 5 12.5 11.81 POISS_L 5 12.5 12.19
0.7-FGN_LS 5 12.5 16.02 POISS_LS 5 12.5 16.35
0.7-FGN_P 5 11.66 11.89 POISS_P 5 11.71 12.33

2.g, and 2.h, the variance-time plots are all convex curves and a careful observation
reveals that no linear parts are found in these plots. Moreover, comparing 2.c with
2.d, 2.e with 2.f, and 2.g with 2.h, there are no significant differences between the
variance-time plots of the data sets of the FGN with trends and level shift and the
Poisson with trends and level shift, respectively.

Data samples Data samples Data samples

1                                              n 1                                              n1                     n/2                    n

t
m

t
m

t
m

Iinear trend parabolic trendIevel-shift

Fig. 4. Types of non-stationarities: linear trend (left), level shift (middle), and parabolic
trend (right). The value of tm is set to be 5 in each case.
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Fig. 6. The variance-time plot of the
SUNET ATM data

We also made the variance-time plots for the 0.7-FGN data set with a smaller
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linear trend (the value of tm of this linear trend is 2.5, see Fig. 5). In this case the
plot of the new series 0.7-FGN_L2 seems to be linear which is tempting to make
an estimate but the estimated value of H is 0.76, which is far from the real value.
It means that getting an estimate from the linear part (at large time-scales) of the
variance-time plot (as usually done in practical analysis) can produce misleading
results.

As an example, we show the result of variance-time analysis of the SUNET
ATM data presented in Fig. 6. The measured ATM traffic is bursty in nature and
although several pre-processing procedures were done in this trace it is difficult to
detect a certain trend. However, the curve is very similar to those obtained with
level shift or trends in Figs. 2.e and 2.f. As discussed above to avoid misleading
results estimation of H cannot be applied in this case.

These simulation results confirm our analytical results and also show that
short-range dependent (SRD) processes with non-stationarities can produce the
same variance-time plot as LRD processes. Moreover, in the case of LRD processes
trends can significantly destroy the accuracy of the estimation of the H parameter.

R/S plot. Fig. 3 shows the results of the R/S tests. The effects of the linear and the
parabolic trend are revealed in the rise of the upper tail of the R/S plots (see Figs.
3.c, 3.d, 3.e, and 3.f). However, if we extract this part from the plot, the linear rest
of the plot shows the exact slope which is seen in the R/S plot of the original data
sets, Figs 3.a and 3.b.

The interesting results are found in the plots of data sets with level shift, see
Figs. 3.e and 3.f. On the one hand, these plots seem to be constructed from two
parts which are independent of each other. The lower parts look almost like the R/S
plot of the original sets as comparing 3.e with 3.a and 3.f with 3.b. On the other
hand, the upper parts are nearly the same in both plots. So we assumed that the
lower parts belong to the original data sets and the upper parts are due to the level
shift. We applied the R/S plot for the level shift only and our assumption seems to
be justified. Fig. 7, which is the R/S plot of the level shift contains the upper part
only. Our results are in good agreement with our analytical investigation presented
in Section 4. We can see that the presence of level shifts can be revealed by R/S
plot and the reliable estimation of H parameter for LRD processes with level shifts
is possible if the cluster produced by the level shift is separable.

An illustrative example from practice of such an effect can be seen in the R/S
plot of the SUNET ATM series (Fig. 8). The plot contains a breakpoint where the
slope of the curve changes approximately in the middle of the figure. If one tries
to estimate H from the upper part of the plot it will result in a wrong value as we
demonstrate it in the following. Fig. 9 shows the R/S plot of a subset of the SUNET
ATM set. The subset is gained from the original set after erasing some suspected
non-stationary parts of the data selected by our stationarity analysis [19]. In Fig. 9
the part of the curve with the higher slope disappeared and the lower part continues
growing nearly as a straight line. An explanation of this phenomenon is the possible
presence of several local level shifts in the original SUNET ATM data. The result
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also demonstrates that the important part for LRD parameter estimation is distorted
by level shifts.
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set of the SUNET ATM data set

Periodogram plot. In the frequency domain, adding trend to data produces the
increase of low frequency components. Thus we were not surprised when observing
the rise of the lower tail of the periodograms under the influence of different trends
(see Figs. 10.c, 10.d, 10.e, 10.f, 10.g, and 10.h). This affects the periodogram in
both cases (the 0.7-FGN sets and the POISS sets) and the estimation of the Hurst
parameter. Besides, the periodogram plot of the FGN with trend can be easily
confused with the Poisson case.

Since the periodogram at low frequencies should be counted for estimation
of the Hurst parameter, the presence of trends in LRD data destroys the testing and
estimating capability of the periodogram plot.

Wavelet based estimator. We investigated the LRD test based on the wavelet trans-
formation (which is also called the Logscale diagram). As shown in [1], the influ-
ence of polynomial trends on this kind of LRD test can be avoided by an adequate
choice of the vanishing moment N of the wavelet function. Our empirical work has
justified this observation. In Fig. 11 we see that the Logscale Diagrams give the
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robust estimate of the Hurst parameter around 0.72 for the 0.7-FGN sets and 0.5
for POISS sets independently of the presence and of the type of trends. Moreover,
our simulation also shows that the LD is still robust in the presence of level shifts.
As seen in Figs. 11.e and 11.f the level shift added to the 0.7-FGN and the POISS
sets slightly changes the result: the estimation of H is 0.72 with confidence interval
(0.71, 0.73) for the 0.7-FGN_LS set and 0.5 with confidence interval (0.49, 0.51)
for POISS_LS set.

6. Conclusions

Based on both analytical and simulation studies and examples from measured traffic
we have shown that the presence of different non-stationarities (level shifts, linear
and polynomial trends) in the data can deceive several detecting and estimating
methods of LRD.

These effects result in poor estimates of the Hurst parameter in the case of
the variance-time plot and periodogram. Moreover, the estimated results can be
confused with processes having short-range dependence with non-stationary effects.
We suggest that the variance-time plot and the periodogram methods should not be
used without a stationarity analysis.

We have found that the wavelet based method (the Logscale diagram) provides
a very robust estimation of H . Its estimation results are almost independent of the
presence of the investigated trends and level shifts. The R/S analysis was also found
to be a robust estimator of the Hurst parameter of LRD processes. In addition, we
have also demonstrated that the level shift can be detected by the R/S analysis
therefore this method can also be well utilized in stationarity analysis.

We recommend the use of the R/S plot and the Logscale diagram for the
estimation of Hurst parameter of LRD processes in the possible presence of the
investigated non-stationarities.

Acknowledgement

Authors would like to thank István Maricza for his comments on the paper and Darryl
Veitch for the code of the wavelet-based method.



LONG-RANGE DEPENDENCE TESTS 247

est. H= 0.69

-10

-5

0

5

10

-10 -8 -6 -4 -2 0

log(f)

lo
g(

pe
ri

od
og

ra
m

)

0.7-FGN

(a)

-10

-5

0

5

10

-10 -8 -6 -4 -2 0

log(f)

lo
g(

pe
ri

od
og

ra
m

)

0.7-FGN_L

(c)

-10

-5

0

5

10

-10 -8 -6 -4 -2 0

log(f)

lo
g(

pe
ri

od
og

ra
m

)

0.7-FGN_LS

(e)

-10

-5

0

5

10

-10 -8 -6 -4 -2 0

log(f)

lo
g(

pe
ri

od
og

ra
m

)

0.7-FGN_P

(g)

est. H=0.5

-10

-5

0

5

10

-10 -8 -6 -4 -2 0

log(f)

lo
g(

pe
ri

od
og

ra
m

)

POISS

(b)

-10

-5

0

5

10

-10 -8 -6 -4 -2 0

log(f)

lo
g(

pe
ri

od
og

ra
m

)

POISS_L

(d)

-10

-5

0

5

10

-10 -8 -6 -4 -2 0

log(f)

lo
g(

pe
ri

od
og

ra
m

)

POISS_LS

(f)

-10

-5

0

5

10

-10 -8 -6 -4 -2 0

log(f)

lo
g(

pe
ri

od
og

ra
m

)

POISS_P

(h)

Fig. 10. The periodogram plots. Left: periodogram plots of 0.7-FGN, 0.7-FGN_L,
0.7-FGN_LS, and 0.7-FGN_P. Right: periodogram plots of POISS, POISS_L,
POISS_LS, and POISS_P.
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Fig. 11. The Logscale diagrams. Left: Logscale diagrams of 0.7-FGN, 0.7-FGN_L,
0.7-FGN_LS, and 0.7-FGN_P. Right: Logscale diagrams of POISS, POISS_L,
POISS_LS, and POISS_P.
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