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Abstract—The emergence of large data centers and virtualization 

needs better and smarter solutions for traffic scheduling and load 

balancing. Data centers benefit from SDN regarding centralized 

monitoring and management for traffic routing. In general, the 

traffic in the data center environment can be classified as elephant 

and mice flow. Researchers showed that there is a significant amount 

of data carried over elephant flows; therefore, it should be conserved 

and maintained thoroughly. In this work, we introduce a stochastic 

performance evaluation model for estimating blocked rate 

prediction and risk analysis of the elephant flows for a load 

balancing data center with fat-tree topology using the SDN 

paradigm. The general procedure of the evaluation includes the 

estimation of the distribution of the path available bandwidth, 

including bandwidth error tolerance. The proposed model relies on 

Monte Carlo simulation to generate future prediction behavior of the 

load balancing technique. The achieved results examined with Value 

at Risk (VaR) along with statistics to percept the complete picture of 

the load balancing behavior. 

Keywords— Load balancing, SDN, Risk analysis, Value-at-Risk, 

Simulation, Measurements techniques 

I.  INTRODUCTION 

Nowadays, many companies tend to adopt data center 
solutions since they offer bandwidth preservation and flexibility to 
serve a large number of hosts and applications. However, the types 
of data center applications are diverse from ordinary web activities 
to scientific computing and MapReduce operations, that demand 
high available bandwidth and scalability [1]. Because of these 
substantial requirements, many data center topologies evolved like 
hyperx [2], flattened butterfly [3], and fat-tree [4]. For better 
traffic management, other techniques have emerged, like 
throughput forwarding and load balancing [5]. Ordinarily, the uses 
of the data center produce two types of flows classified as mice 
and elephant flows [6]. Mice flows, which are the smallest and 
shortest-lived TCP flows on the network and more conservative to 
delay. 

On the other hand, the large and long-lived TCP flows 
(elephant flows) are more affected by the available throughput [5]. 
Regularly, the occurrence of the elephant flows found at the data 
centers is smaller than what mice flows have, but they occupy most 
transferred data due to the nature of the used applications 

especially in data mining, machine learning, and data analysis [6]. 
As long as the elephant flows continue to grow in size, they will 
be hard to be processed, managed, and scheduled, and will worsen 
the flow completion time of mice flows. 

SDN (Software Defined Networking) appears as a new 
orientation in managing and controlling the data centers networks. 
The centralized paradigm, along with the characteristic of 
decoupling the control layer from the data layer enables effective 
resource management compared with the traditional networks 
through the OpenFlow protocol [7]. Hence, the SDN paradigm 
used to collect parameters from the entire network including 
information about any traffic in the data layer and use them for 
monitoring and prediction purposes in the control layer. 
Consequently, SDN is significantly employed by the research 
community in traffic load balancing and forwarding [8]. 
Therefore, several load balancing and traffic scheduling 
algorithms proposed to handle this issue, but there are many 
performance evaluation issues in term of preserving the elephant 
flows [1] [5]. The applying of deterministic and statistical 
evaluation approaches is inefficient, particularly in fully stochastic 
environments. 

 In SDN networks, OpenFlow protocol provides many 
statistical and numerical information about the monitored network 
regarding the flows and packets passed through any monitored 
port in a flow table [9]. Sokolov et al. in [10] suggested using this 
information to identify weak points of the network architecture and 
predicting the potential risks of problems that may occur primarily 
in the fail-safety task in the network.  However, the information in 
the SDN flow table considered trivial and not adequate for the 
applications above the SDN architecture [11]. Therefore, Luo et 
al. in [11] proposed a context-aware traffic forwarding service for 
SDN applications assuming a constrained optimization path 
problem for decision making. The authors suggested two factors 
including capacity and cost of a service that would impact the 
service composition, and they found that cost context can be 
quantified from other context factors.  So, the authors collected the 
cost and the factors data online to derive their relations by multiple 
linear regression analysis. As for the elephant flow management, 
several studies have emerged dealing with load balancing and 
scheduling issues like [5] and [12]. Al-Fares et al. in [1] proposed 



Hedera, which is a dynamic and central flow scheduling to utilize 
data center bisection bandwidth. The authors found the 
performance of Hedera primarily based on the rate and duration of 
the flows in the network, but they did not show the future 
prediction for the blocked elephant flows. Zakia et al. proposed 
another technique in [8] relies on flow priority to find the shortest 
paths. The authors evaluated it regarding throughput consumption, 
RTT delay, and packets loss in a fat-tree data center. Long et al.  
proposed LABERIO [13], which is a fat-tree dynamic load 
balancing technique based on the real-time bandwidth utilization 
rate by considering max-min remainder capacity strategy 
(MMRCS) for path selection. To generate the required traffic 
flows, the authors examined three different traffic patterns, 
including uniform, semi-uniform, and center-based, to distribute 
the flows among the nodes of the network [13]. As for the 
evaluation purposes, the authors did not examine the stochastic 
behavior of the traffic. Alternatively, they assumed a fixed flow 
size and an upper-bound bandwidth on each link for the tested 
topology. 

Accordingly, in this paper, we present the following 
contributions: 

 A new performance evaluation model for SDN load 
balancing of network elephant flows. The model includes 
estimation of the probability distribution of path 
throughput, i.e., available bandwidth and error tolerance 
with specific measurements scenarios and Anderson-
Darling test. 

 Prediction of the risks of the used load balancing 

technique by Value at Risk (VaR) analysis for the 

blocked elephant flows produced by implementing the 

load balancing technique. 

The rest of the paper organized as follows. In section II, we 

describe the proposed model. In section III, we describe the 

simulation processes, results, and discussion. We finally 

conclude in section IV. 

II. MODEL DESCRIPTION 

The proposed model consists of selecting the appropriate SDN 
load balancing technique to investigate and evaluate the 
uncertainty behaviors of the fat-tree data center network in 
balancing elephant flow. Anderson-Darling (A-D) hypothesis 
testing applied upon the obtained uncertainty behaviors samples to 
get the appropriate probability distribution function for each of 
them. Monte Carlo simulation utilized as a Value at Risk (VaR) 
analysis model to predict the amount of the blocked elephant flows 
resulting from the used load balancing technique in a fat-tree 
topology. 

A. Selecting a Load Balancing technique in Fat-tree topology 

In general, the load balancing techniques used in SDN 
classified into static and dynamic strategies or sort of a 
combination of both [8]. The adopted technique to evaluate the 
proposed model is the dynamic one [9], since the static methods 
are incompetent and cannot predict the network changes over time. 

The selected technique begins by collecting the information about 
the topology to build a directed graph data structure by sending 
LLDP (Link Layer Discovery Protocol) packets. Then, it 
determines the shortest available path(s) between the source 
switch and destination switch in the directed graph. The residual 
bandwidth of the links is determined based on the current traffic 
periodically (every 10 seconds) and stored in a network data 
structure. Finally, the best forwarding path is decided based on the 
existing network traffic for load balancing and traffic scheduling. 
The preferred technique has been written as a Ryu controller 
application [9]. 

 In this paper, fat-tree topology used in constructing the primary 
network environment; since it considered one of the essential 
topologies in building efficient, scalable, and cost-effective data 
centers. Fat-tree topology has constructed from three main layers 
of connected switches, including core, aggregate, and edge. 
However, a K-4 fat-tree data center interconnects topology tested 
in mininet environment with fixed links capacity from host to 
switch and switch to switch links with 10 Mbit each (Figure 1). 

B. Collecting and normalizing the data 

 We conducted several measurement scenarios to collect the 
desired uncertainty data to perform Monte Carlo simulations 
analysis. These scenarios included estimating the available 
bandwidth with some error tolerance for the determined path(s) 
between arbitrary source and destination. In fat-tree topology, 
there are (k/2)2 equal cost shortest paths available between any two 
hosts from different pods [10].  

 

Fig. 1. K-4 fat-tree data center. 

Since all of the links in the tested topology have the same 
configurations concerning links bandwidth. Therefore, only a 
sample of the network selected for the testbed. For this reason, the 
longest path considered between a server and a client found in 
different pods. The sample involves two parts, the first one 
arranged for generating the traffic noise (mice flow), as depicted 
in Figure 1 with the red line between (H5) and (H14). To achieve 
network flow contention, the first part is intersected with the 
second part in all available paths between pod 2 and pod 4 as 
shown in the green dotted line in Figure 1. The second path is 
designated for generating and testing the elephant flow between 
(H7) and (H15) as represented in the blue line in Figure 1. Note 
that the balancer should choose among the four shortest paths 
between the sources and the destinations in both parts. 



 The process of measurement the testing sample depends on 
injecting high-density traffic to immerse the network. Therefore, 
multiple arbitrary small files i.e., TCP mice flow generated 
between (H5) and (H14) varying between 100 and 400 Kbyte in 
size for 2000 files, including 654 files in sizes within 100 to 200 
Kbyte, plus 659 files within a range of size 200- 300 Kbyte, and 
687 files in sizes of 300-400 Kbyte. However, it has been proven 
in [14] that the traffic in the typical data center can be so bursty; 
hence, it cannot be predicted in any link. However, the main focus 
of this measurement is to saturate the testing part of the network 
as stated in Hedera testbed [1], to evaluate the maximum amount 
of data the network can handle with this kind of flow contention. 
Taking into consideration that the possible places of collisions are 
inside pod 2, pod 4 besides the zone of the core switches. 
Therefore, the chosen sample network measured using iperf 
(between H7 and H15) for 100 seconds to check the maximum 
amount of data the network can handle. This testing period decided 
because the load balancing technique initially configured to 
monitor the data center links every 10 seconds. However, the 
sample mean of the measured throughput was 1.05 MB/sec, i.e., 
105 Mbyte could be delivered from the server to the client without 
any loss. 

 As for measuring the available bandwidth for different 
elephant flow sizes along with other flows, a file of 105 Mbyte was 
divided by weights of 10, 9, 8, 7, 6, 5, 4, 3, 2 and 1, respectively. 
The yielded files transferred as a TCP flow from H7 to H15, as 
shown in the blue line in Figure 1. The transformation of the 
generated data will be in the same duration of the former 100 
seconds to check how the load balancer process will affect the 
throughput, taking into consideration the uncertainty of the applied 
mice flow in terms of size and chosen path between the source and 
destination. The measurement process repeated six times for each 
weight to estimate the available bandwidth by taking the arithmetic 
sample mean of the measurements. Figure 2 below shows the 
proposed scenarios with measurements values. 

 

Fig. 2. The sample mean values of the available bandwidth 
measurements. 

To have some residual variation, the tolerance of error in 
bandwidth measurement was estimated using the arithmetic 
sample standard deviation for the available bandwidth 
measurements. The maximum value of the calculated standard 
deviation considered since it indicates a more significant value 

than the estimated sample mean in the worst-case evaluation 
concerning the high-density traffic environment (Figure 3). 

C. Goodness of fit 

The Goodness of Fit (GOF) test applied to assess the 
compatibility of the collected data with some of the well-known 
distribution functions. For this purpose, EasyFit professional [15] 
adopted, which is a specialized program in deciding the best fitting 
for the trained sample of data. Accordingly, the Anderson-Darling 
(A-D) test chosen as a hypothesis testing to evaluate the 
distribution of the collected data. Anderson-Darling defined as 
(A2). 

                           A2 = — N — S             (1) 

Where S: 

𝑆 =  ∑
(2𝑖—1)

𝑁

𝑁
𝑖=1 [ln 𝐹(𝑌𝑖) + ln(1— 𝐹(𝑌𝑁 + 1 − 𝑖))]              (2) 

 Where 𝐹 is the cumulative distribution function of the 
compared distributions and 𝑌𝑖 are the ordered data. 

 

Fig. 3. The available bandwidth error tolerance measurement. 

 To accomplish this kind of testing, a null hypothesis testing 
performed, where H0 identified when the tested data specify the 
distribution, and H1 recognized when the data do not follow the 
distribution. To come up with the desired distribution, A-D 
assumes a significance level α like (0.01 and 0.05) and compares 
the tested statistics (A2) with some of the critical values of the most 
widely used distribution. The hypothesis of the measured 
distribution will be discarded if the value of (A2) exceeds the 
critical value at a significant level. Note that the significant level 
of 0.05 is typically used for most applications [16]. As a 
consequence of conducting the null hypothesis testing on the 
samples of the available bandwidth measurements, the Negative 
Binomial distribution (N-B) determines as the nearest distribution 
for the evaluated data. Generally, N-B distribution recognized as a 
discrete probability distribution to represent the number of 
successes in a sequence of independent Bernoulli trials until 
reaching the specified number of non-random failures occurs. 
Studies like [17] and [18] proved that the N-B distribution is 
reliable to simulate real data.  However, the N-B probability mass 
function has been applied to produce the required random samples 
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of the available bandwidth data in the proposed evaluation model 
used in Monte Carlo simulation (equation 3). 

                    𝑃𝑟(𝐴) = (
𝑟 + 𝑐 − 1

𝑐
) 𝑝𝑐(1 − 𝑝)𝑟               (3) 

 Where 𝐴 is the random variables of the available bandwidth, 𝑟 
is the number of failures with 1 − 𝑝 probability, 𝑐 is the number 
of success or failure and, 𝑝 is the probability of success. 

 We evaluated the error in bandwidth measurement samples 
(tolerance data) for fitting to obtain the probability distribution 
function of the error tolerance. The measured data found suited the 
Binomial Distribution (B-D) at a significant level of 0.05. 
Generally, B-D is a discrete probability distribution used to find 
the probability of a successful event in the case of two possible 
outcomes. The probability mass function of the B-D (equation 4) 
used to generate the random variables of the error in bandwidth 
measurements. 

                    𝑃𝑟(𝐸) = (
𝑛
𝑔) 𝑝𝑔(1 − 𝑝)𝑛−𝑔                       (4) 

 Where 𝐸 is the random variable of the error measurement, 𝑛 is 
the number of trials,  𝑔 is the number of successes with the 
probability of 𝑝𝑔, while 𝑛 − 𝑔 is the number of failures occur what 
the probability 1 − 𝑝. 

D. Monte Carlo Simulation 

 Monte Carlo method is a technique used to simulate the 
stochastic behavior of a system or to evaluate a set of uncertainty 
input of a deterministic model. Mathematically, it is not possible 
to predict and determine all possible outcomes of a system [19]. 
Therefore, Monte Carlo simulation process applies to create 
multiple predicted scenarios by considering the probability 
distribution of the stochastic input parameters of the system. 
Accordingly, this process repeated hundreds or thousands of times 
to produce potential scenarios or solutions with a range of 
probabilities. However, the affecting of stochastic parameters of 
the link available bandwidth studied with some of the error 
tolerance to determine the value at risk of the elephant flow during 
traffic load balancing. Accordingly, after obtaining the required 
samples from equations 3 and 4, along with the estimated elephant 
flow in size and volume (Table 1), the proposed evaluation 
equation is to be formed as follows.   

     𝑃𝑟ⅇ (𝑉, 𝑆, 𝐴, 𝐸) = 𝐵𝑚 = 𝑉𝑖 × (𝑆𝑗 − (𝐴𝑘 + 𝐸𝑙))                   (5) 

 Where 𝐵𝑚 is the predicted blocked rate, 𝑉𝑖 is the different 
volumes of the evaluated elephant flows, 𝑆𝑗 is the sizes of the 

elephant flows (Table 1), 𝐴𝑘 is the available bandwidth 
measurements and 𝐸𝑙  is for the error tolerance variables. The 
assumed values for the size S represent the maximum bandwidth 
the physical link can handle (10 Mbps) to the minimum elephant 
flow size (10% of link capacity) determined by Al-Fares et al. in 
Hedera [1]. 

 

 

TABLE I. ELEPHANT FLOW PARAMETERS. 

Elephant flow Size S Volume V 

Large 1 Mbyte 100 

Normal 0.5 Mbyte 75 

Small 0.1 MByte 50 

 

 The volume parameter V describes the amount of the flow 
within a particular path, and it measured by the unit of second. 

III. RESULTS AND DISCUSSIONS 

To produce the final probability distribution of the blocked 
traffic prediction, the proposed model (equation 5) was repeated 
one million times (Figure 4). In general, Monte Carlo simulation 
produces the total number of iterations that represent the prediction 
of loss and profit. In network environments and particularly in 
available bandwidth (throughput) consumption aspect, the 
network is not forming any beneficial outcome. Therefore, these 
values (positive values) recognized as an incompatible with the 
proposed model of loss prediction (blocked traffic). However, the 
false values achieved 64.24% of the total iterations for the 
evaluated values, and it means that most of the elephant flow 
including small and regular sizes have passed without affecting by 
the stochastic parameters. 

 

Fig. 4. Histogram of Monte Carlo simulation for the blocked rate. 

 However, the rest of the values (35.76%) separated and 
formed the blocked rate prediction, as depicted in Figure 4.  

Several kinds of information can be discovered from the 
histogram plot. First of all, the distribution starts with high 
frequency for the value of traffic blocking with a minimum of 0.75 
Mbyte, then dramatically decreases. 

A. Distribution shape analysis 

Common distribution shape measurements were calculated, 
like Skewness and Kurtosis, to analyze the bias of the blocked 
traffic rate histogram. Primarily, Skewness used for measuring the 
symmetry of the distribution, and it has two values; positive and 
negative. The positive value (right skew) indicates that the mean 
value is higher than the median value, while the negative value 
(left skew), suggests the opposite. Equation 6 below describes the 
skewness degree calculation for the observed distribution. 



              𝑠𝑘ⅇ𝑤 =  
1

𝑛
∑ (𝑥𝑖−�̅�)3𝑛

𝑖=1

(
1

𝑛
𝛴𝑖=1

𝑛 (𝑥𝑖−�̅�)2)
3
2

                    (6) 

Where xi holds n observations and �̅� is the mean values of the 
observations. 

Kurtosis is another important shape measurement utilized for 
describing the distribution tail thickness compared to the Normal 
distribution. There are three types of Kurtosis; including 
mesokurtic, leptokurtic, and platykurtic distributions. Mesokurtic 
distribution has the same characteristics of the Normal distribution 
concerning the extreme tail values, while leptokurtic has higher 
tail values due to the long tail, as for the platykurtic type, it has a 
precise tail with fewer outliers [20].  

       𝐾𝑢𝑟𝑡𝑜𝑠𝑖𝑠 =  
1

𝑛
∑ (𝐵𝑚−𝐵𝑚̅̅ ̅̅ ̅)4𝑛

𝑚=1

(
1

𝑛
∑ (𝐵𝑚−𝐵𝑚̅̅ ̅̅ ̅)2𝑛

𝑚=1 )
2 − 3                               (7) 

Where 𝐵𝑚 holds n observations of the predicted blocked rate 

and 𝐵𝑚
̅̅ ̅̅   is the mean values of the observations. 

Based on the sample distribution and the calculated Kurtosis (-
0.43) and Skewness (-0.31), the distribution of the prediction is not 
formed like a complete Normal distribution. Alternatively, it is 
left-skewed since the median value (33 MB/s depicted by the blue 
line in Figure 4) precedes the mean value (31.45 MB/s represented 
by the red line). Therefore, the concentration of the produced 
distribution leans slightly to the right, and this what makes the 
blocking rate increases in the future. Likewise, the prediction 
distribution considered as a platykurtic distribution since it has a 
value (- 0.43) comparing with the Normal distribution. Hence the 
model distribution produces fewer extreme values for the outliers 
at the tail (80 MB/s) as presented in the green line in Figure 4. 

B. Value at Risk (VaR) analysis 

Even though, the histogram and the statistics provide 
comparative information about the behavior of the model and the 
blocked rate prediction, Value at Risk (VaR) analysis could 
provide more deep analysis based on some confidence [21]. 
Mainly, the Monte Carlo simulation model considered one of the 
three common types of VaR, with Normal Linear model and 
Historical Simulation model. To calculate VaR based on Monte 
Carlo simulation, the proposed model should produce independent 
and random future simulations with kind of normality assumed 
based on standard deviation  [21].  In this research and for better 
generalizability, the chosen confidence level was 95%, since 
outlier results would appear clearly with the more significant 
percentage. The probability of the confidence level calculated by 
taking the quantile function (equation 8) [21]. 

                    𝑉𝑎𝑅 = −𝜇𝑛 + ∅−1(1 − 𝑢)𝜎𝑛                      (8) 

Where 𝜇𝑛 is the mean of the returns of the prediction, ∅ is the 
function of the standard Normal distribution, 𝜎𝑛 is the standard 
deviation of the returns and (1 − 𝑢) used for the chosen 
confidence level.  

The chosen confidence level showed that the worst loss 
prediction would not exceed 53 MB/s, while in the case of 75%, 

the value would be 42 MB/s. This amount of the blocked rate 
represented the future prediction amount of the affected elephant 
flow produced by implementing the load balancing technique. The 
blocked TCP data would be retransmitted and causes extra 
network bottlenecks and would affect the mice flows. Therefore, 
this kind of investigations provides a dynamic analysis of how the 
elephant flows will be treated while using such a load balancing 
technique and how it will continue to perform in the future. 

As a conclusion for the research findings, we suggest that the 
performance evaluation of the new developing algorithms that 
handling the elephant flows should consider the uncertainty 
behaviors of the tested network and predict the amount of the 
blocked data resulting from the use of the algorithm. To the best 
of our knowledge, most of the developed heuristic algorithms are 
evaluated using the average values for the obtained data without 
naming the probability distribution function. Note that the 
expected value (average value) for random variables does not exist 
for some distributions that have long tails such as Cauchy 
distribution [22].  Therefore, taking the average for any sample of 
the data does not actually represent the expected value of the 
predicted data. We summarize some load balancing works that rely 
on considering the average values when evaluating the 
performance of the algorithm (Table 2). 

TABLE II. SELECTED PAPERS WITH THEIR PROPERTIES. 

Paper Main idea 
Performance 

evaluation 

Lei et al. 

[23] 

Proposing an adaptive 
algorithm to determine 

multipath routing for the flows 
based on the flows demand and 

available network resources 

such as available bandwidth and 
shortest path. 

Consider end to 
end delay and 

throughput. 

Fizi et al.  

[24] 

Rerouting algorithm based on 

bandwidth utilization and loss 

rate of the paths. 

Considering the 

average yielded 

throughput on 
the hosts. 

Long et 

al. [13] 

Routing algorithm-based 

bandwidth utilization rate by 
considering a max-min 

remainder capacity strategy for 

path selection. 

Overall average 
bandwidth 

utilization. 

Tu et al.  

[25] 

Programmable middleboxes to 
collect information from the 

switches and the servers to 

perform the load balancing. 

To describe the 

delay of the 

flows by using 
the algorithm, 

they took the 

average delay of 
the original data 

center. 

 

However, the quality of the prediction produced by 
independent and random variables relies on current observations 
to predict future performance. Therefore, the model and 
assumptions need to be accurate enough.  

There are some further improvements to the methodology by 
studying other stochastic parameters such as link transmission 



delay and queuing delay to evaluate their extent impact on the 
elephant flows. Nevertheless, in this study, some outliers appeared 
at the end of the predicted distribution tail. Generally speaking, 
such an outcome is undesirable. Therefore, the simulation will be 
more efficient if it ends until arriving at the desired precision [26]. 

IV. CONCLUSIONS 

 In this work, we have designed, implemented, and analyzed a 
new load balancing performance evaluation model based on a 
high-density stochastic data center network to estimate the value 
at risk for the blocked elephant flows. Although some existing 
algorithms deal with the elephant flow traffic scheduling or load 
balancing, they did not predict the future uncertainty impacts of 
the network environment on the elephant flows. It can be observed 
from our results that 35.76% of the evaluated TCP elephant flows 
is exposed to be blocked, and it is expected to be higher in the 
future since the probability distribution of the blocked rate 
prediction is left-skewed. On the other hand, the current risk 
analysis indicates that the worst case of the blocked rate will not 
exceed 53 MB/s from transmitted flows with a confidence interval 
of 95%. However, the evolution process of the load balancing 
needs to have proper awareness in term of predicting future 
behavior regarding elephant flows preservation.  Note that our 
research relies on applying a standard load balancing technique 
with certain assumptions and observations on the stochastic 
behaviors of the data center topology to predict the future of the 
balancing impact of the elephant flows.  Finally, further research 
hence is needed to evaluate more complicated load balancing 
techniques with other factors for the network uncertainty. 
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