
TCP Limit:
A Streaming Friendly Transport Protocol

Felicián Németh, Sándor Molnár, Péter Tarján and Róbert Szabó
Department of Telecommunications and Media Informatics,

Budapest University of Technology and Economics,
H-1117, Budapest, Magyar Tudósok krt. 2

Fax: +36-1-463-1763
Email: nemethf@tmit.bme.hu

Abstract—In this paper we propose a simple enhancement to
TCP (called TCP Limit) which significantly improves the utiliza-
tion, delay, and jitter characteristics of standard TCP versions.
TCP Limit requires only a small sender-side modification and
can be applied on top of any TCP versions. Its main advantage
is that it can be multiplexed with non-elastic streaming traffic
without any router or protocol support. TCP Limit avoids the
undesired effect of oscillation and keeps the delay and jitter as
low as possible; so it does not ruin the performance of streaming
applications. In the paper we present the initial performance
evaluation of the proposed TCP Limit carried out by simulation
and measurement. Analytical calculations are also included.

Index Terms—Computer networks, Protocols, Congestion con-
trol, TCP

I. INTRODUCTION

The Transmission Control Protocol (TCP) is the well known
reliable data transfer protocol [1]; it is one of the key com-
ponents of the current Internet architecture. However, the
networking environment has gone through significant changes
since the initial proposal of the first TCP version. The research
community has already proposed modifications to the TCP
congestion-control algorithm to achieve higher throughput in
networks with large bandwidth-delay product, and/or wireless
links or to adapt quickly to load fluctuations (e.g., HighSpeed
TCP [2], Bic-TCP [3], TCP Westwood [4], [5], TCP Eifel [6],
just to mention a few). Instead of incremental modifications,
some authors redesigned the transport protocol from scratch
(e.g., RCP [7], UDT [8], [9]).

Despite the numerous new algorithms, there is no consensus
on the new ultimate transport protocol that would replace
the traditional TCP. The lack of consensus is partially a
result of lack of common performance evaluation metrics
and evaluation models. To accelerate the process Sally Floyd
collected and organized the possible evaluation metrics and
the main open research issues in [10]. One of the aims of
the current research clearly emphasized in [10] is to achieve
stability in terms of minimizing oscillations of queuing delay
or throughput.

The main problem is that rate fluctuations can result in
router queue-size fluctuations, which may in turn cause fre-

The work is supported by the 2/032/2004 ELTE-BME-Ericsson NKFP
project on Research and Developments of Tools Supporting Optimal Usage
of Heterogeneous Communication Networks

quent queue overflows as a key reason beyond loss synchro-
nization. This phenomenon indicates major instability of the
network. Our goal was to develop a stable TCP variant called
TCP Limit which minimizes the oscillations in queueing delay
and throughput.

TCP Limit achieves low delay jitter while remaining a
sender-side only modification. The proposed TCP Limit works
with small rate oscillations therefore can achieve high stability.
Moreover, the mechanism reduces packet losses, which are
widely used as an indicator of congestion; as a result we have
a loss-based TCP with delay-based advantages.

The small delay and jitter of TCP Limit has a great advan-
tage in the Internet where versatile streams are multiplexed: it
is friendly to streaming traffic. The major problem identified
in the current Internet is that elastic and non-elastic traffic
cannot be efficiently managed without AQM (Active Queue
Management) or other mechanisms, but these require router
and/or protocol support. Since TCP Limit produce small delay
and jitter, it cannot ruin the characteristics of non-elastic
streams and can be multiplexed with streaming traffic without
any router and/or protocol support. Subsequently we will
clearly demonstrate this streaming-friendly property of TCP
Limit.

TCP Limit can also work with 100% link utilization even
in case of small buffers. As opposed to earlier TCP versions,
TCP Limit can achieve this highly desirable operating point. It
avoids buffer overflow hence multiple losses for steady states
and also maintains full utilization of the bottleneck link. In
addition, the limited congestion-window algorithm as part of
the TCP Limit prevents the periodic oscillation of the sender’s
windows size. Therefore, flows experience stable round-trip
time hence exhibit reduced jitter.

Another advantage of TCP Limit is that it requires minor
sender-side modifications and can be applied to any TCP
variants (e.g., NewReno TCP or any NewReno descendant like
TCP Westwood). As a result, the advantages of any other TCP
variant can be exploited in the TCP Limit. As an example, we
show how TCP Limit can be applied to TCP Westwood.

The rest of the paper is organised as follows. Sec. II
presents an overview of the related works pointing out an
important design principle that our proposal is based upon
as well. In Sec. III, we describe TCP Limit. We evaluate the

proposed method via laboratory measurements and simulations
in Sec. V. Finally, Sec. VI draws the conclusion.

II. PRIOR ART

The congestion control algorithm of TCP NewReno consists
of two main phases: slow-start and congestion-avoidance. In
slow-start phase, the sender increases the congestion window
(cwnd) exponentially until it reaches the slow-start threshold
(sstresh). Afterwards, TCP switches to the congestion-
avoidance phase where cwnd grows linearly until packet loss
is detected. If the loss is discovered by duplicated acknowl-
edgments, the lost packet gets retransmitted and the cwnd is
halved (fast-recovery) and the flow returns to the congestion-
avoidance phase. One of TCP’s problems is related to the
linear increase in the congestion-avoidance phase, which pre-
vents fast utilization of the link bandwidth for high bandwidth-
delay product (BDP) scenarios. Another problem relates to the
setting of the initial sstresh value.

Dynamic bandwidth presents another challenge to TCP per-
formance: if a large amount of bandwidth becomes available
for reasons such as wide bandwidth-consuming flows leaving
the network, then TCP may be slow in catching up. The
congestion-avoidance phase is in additive-increase mechanism:
cwnd is incremented only by one packet per round-trip time
(RTT). As a result, lack of link utilization can be experienced.

The above problems have been addressed by successive
refinements of TCP Westwood. Westwood [4], [5], [11] has
the next important underlying design principle: it differs from
the normal TCP behaviour only when other TCP connections
do not notice the difference. TCP NewReno achieves low
throughput in networks with high bandwidth-delay product
mainly because its congestion-avoidance algorithm increases
too conservatively. Instead of merely changing the congestion-
avoidance algorithm into a more aggressive one like High-
Speed TCP does, Westwood runs a Persistent Non-Congestion
Detection (PNCD) method, which detects continuously avail-
able free bandwidth. Persistent non-congested situation is
interpreted as being harmless to invoke Agile Probing. Agile
Probing increases the sending rate more aggressively because
no one else takes advantages of the available bandwidth. Both
Agile Probing and PNCD are based on bandwidth estimations.

There is another extension in the Westwood proposals
originally called Faster Recovery [12]. After having detected a
packet loss, Faster Recovery uses bandwidth estimation instead
of dumbly halving its cwnd to reset its cwnd and sstresh.
They are reset to the congestion window equivalent (CWE) of
the estimated bandwidth (BWE). CWE is calculated as:

CWE(BWE) =
BWE ∗ RTTmin
seg size

, (1)

or if cwnd is measured in bytes instead of packets then

CWE(BWE) = BWE ∗ RTTmin, (2)

where RTTmin denotes the minimal measured RTT and
seg size is the segment size.

When the packet loss is a result of buffer overflow1,
equation (1) leads to cwnd halving, i.e., there is no noticeable
difference from the standard TCP behaviour. On the other
hand, if the packet loss is due to channel error, then traditional
TCP treats this, once again, as a sign of congestion and halves
its cwnd. Now halving cwnd is considered too drastic since
the queue is not full. In this case, CWE results in a more
moderate backoff.

Compound TCP [13] improves NewReno performance in
high speed networks in a TCP-friendly manner. It extends the
loss-based congestion control with a delay-based component.
The delay-based part is responsible for the fast speed-increase
and is only in use when it detects the path to be under utilized.
This is the same principle that Westwood modifications and
TCP Limit are based on. However Compound TCP aims to
increase throughput in case of free bandwidth and not to
minimize rate oscillation.

Leith et al. proposes a delay-based TCP variant in [14]
with the main goal of achieving small buffer occupancy while
the congestion window is updated in an additive-increase
multiplicative-decrease manner. The backoff strategy of the
protocol is essentially based on ideas similar to those of Faster
Recovery and therefore shows similarities to the backoff of
TCP Limit. As opposed to our proposal, it sacrifices full link
utilization for intra-protocol friendliness.

III. LIMITED CONGESTION WINDOW ALGORITHM

The main contribution of this paper is an algorithm that
dynamically controls the size of the cwnd and limits its
fluctuation by using time-tested bandwidth estimators. TCP
Limit is a relatively small, sender-side-only modification of
TCP NewReno, but can be applied, for example, on the top
of TCP Westwood as well. Since its behaviour is indistin-
guishable from that of NewReno when the modification is
inactive, it follows the design principle outlined previously.
The modification is activated when the estimation of the
achieved rate does not grow simultaneously with cwnd. In
this case the algorithm inhibits cwnd from growing further.
Although any other achieved rate estimation technique would
do, we use the so-called Rate Estimation (RE) method of
Westwood [11] as a demonstration. TCP Limit only modifies
the congestion-control algorithm, when an acknowledgment is
received in the congestion avoidance phase. First, we present a
simplified version of the algorithm. The modified rather simple
pseudo code of the method is given by

1 if cwnd > CWE(RE) ∗ α then
2 do nothing
3 else
4 cwnd ← cwnd + NRI(cwnd)
5 end if.

RE: achieved rate estimation
CWE: cong.window equivalent,

eq. (1)
NRI: NewReno increment

If the congestion window is much larger than the congestion
window equivalent of the estimated achieved rate (line 1, α
should be larger than 1), then the cwnd is kept constant
(line 2), otherwise we increase the cwnd just like the normal

1and the bottleneck queue is sized to the bandwidth-delay product.

NewReno would do (line 4). NRI(x) and x denote the increase
used by NewReno when it is in the congestion-avoidance
phase and the size of its congestion window, respectively2.

Basically, cwnd is not allowed to substantially exceed the
achieved rate. The basic idea of TCP Limit is the following:
(i) if the cwnd is larger than the CWE of the achieved
rate, then increasing the cwnd only fills up the bottleneck
queue; meanwhile (ii) keeping the cwnd constant avoids the
oscillation of the flow.

The reason of using the constant α is twofold. First, the rate
estimation might not be always accurate. Second, by limiting
cwnd above CWE, the flow can instantly increase its achieved
rate when free bandwidth appears in the bottleneck link as
demonstrated in Fig. 1. Parameter α is set to 1.1, the maximal
transfer unit is 1500 bytes, and bottleneck queue is sized to
BDP throughout the paper. The figure shows the start of a
TCP Limit flow. It enters into congestion-avoidance phase
slightly before 1s. After that, its cwnd linearly increases until
about 4s when the achieved rate stops growing because the
path has become saturated. Then the Limit algorithm prohibits
the cwnd from growing further. At 8s the background traffic
leaves the system and the RE of the TCP flow starts to
increase implying cwnd growth. 1.5 seconds later the RE stops
increasing, now because the TCP flow alone fully utilizes the
link; the cwnd continues growing until about 9.5s when cwnd
reaches α times the achieved rate. So the transmission speed
becomes constant for the second time.

As shown in Fig. 1, the simple algorithm outlined above
avoids the well known “saw-tooth” oscillation pattern of
NewReno. However, it decreases its cwnd only when it detects
a packet loss. As a consequence, this method leaves no room
for a newcomer TCP Limit flow. In order to achieve fair
bandwidth utilization between TCP Limit flows, we extended
the simple algorithm by forcing it to decrease the cwnd
recurrently. One key component of approaching fair utilization
is the frequency of the forced decreases. The pseudo code of
the extended algorithm is as follows:

1 v_cwnd ← v_cwnd + NRI(cwnd)
2 v_target ← min(v_target, 2 ∗ CWE(NL)− CWE(RE))
3 if cwnd > CWE(RE) ∗ α then
4 if v_cwnd > v_target then
5 cwnd ← CWE(RE)
6 v_cwnd ← CWE(RE)
7 v_target ← CWE(RE)
8 end if
9 else

10 cwnd ← cwnd + NRI(cwnd)
11 end if.

v_cwnd: virtual congestion window
v_target: virtual target

NL: narrow link capacity

We always maintain a virtual congestion window variable
(v_cwnd, line 1), which initially equals to cwnd, but it
is increased even if cwnd is kept constant. When v_cwnd
reaches a certain level, v_target (line 4), then cwnd (and
v_cwnd) are decreased to the achieved rate in order to give
opportunity to the competing flows to grow (line 5–7). The

2NRI(x)=seg size∗seg size/x when the congestion window is measured
in bytes [15]

 0

 10

 20

 30

 40

 50

 60

 0 2 4 6 8 10 12 14

[p
ac

ke
ts

]

simulation time [s]

cwnd
CWE(RE)

Fig. 1. Simulation result of a simple TCP Limit flow traversing a link of
5Mbps bandwidth and 60ms latency. The TCP flow competes a constant bit
rate traffic (CBR) of 1Mbps until 8s. Initial slow start threshold is 25 packets.

NL in line 2 denotes the estimate of the narrow link3 capacity.
Line 2 and line 4 help the throughput of the TCP Limit flows
converge: the faster a flow transmits, the smaller v_target
is. This latter results in a more frequent decrease of its cwnd.
(On the other hand, in line 5, cwnd is reduced to RE, therefore
the achieved rate of the flow will not be decreased when there
is no other flow competing with it.) After the forced decrease,
equation in line 3 does not hold anymore; so the flow starts
increasing its cwnd linearly.

In our simulations and measurements a maximum filter on
Bandwidth Estimation (BE) [4] has been used to estimate
the narrow link. BE is known to be inaccurate under some
circumstances [16]. As a solution, BE can be replaced with
any other narrow-link-estimation algorithm such as the much
more robust TCPProbe [17]. Note that, however, the accuracy
of the narrow link estimation has only indirect influence on
the occurrence of forced cwnd decreases.

Fig. 2 illustrates the behavior of the forced decrease. At
the beginning, the TCP Limit flow alone fully utilizes the
link, hence RE equals to NL, so cwnd is reduced right after
the equation in line 2 becomes true. At 15s a bandwidth-
consuming flow enters the system and therefore RE falls. The
smaller RE is, the larger v_target grows, and therefore
the less frequent the forced decreases occur. After each of
the two backoffs in (20s, 35s) the cwnd regains its previous
level, since the CBR flow does not take advantage of the
free resources. Note that v_cwnd reaches v_target at
approximately 37s, however forced decrease happens only
when the equation in line 3 first holds shortly before 40s.
v_target can only decrease between backoffs (line 2): if
RE increases, then backoffs should be more frequent; on the
other hand, cwnd and queue occupancy do not decrease with
decreasing RE.

IV. QUEUE LENGTH ANALYSIS

We assume that packets are sent over a single bottleneck
link with a speed of µ packets per second. Let T denote the
base RTT, then the pipe capacity is C = µT and the maximal
buffer size Q = Wmax − C, where the maximal cwnd size

3Narrow link of a path is the link with the smallest capacity.

 40

 50

 60

 70

 80

 90

 100

 110

 120

 130

 10 15 20 25 30 35 40 45

[p
ac

ke
ts

]

time [s]

cwnd
CWE(RE)

v_cwnd
v_target

Fig. 2. Measurement result of a TCP Limit flow traversing a bottleneck
link of 10Mbps bandwidth and 50ms latency. 4Mbps CBR background traffic
appears in [15s, 35s]. Note that, v_cwnd and cwnd coincide and v_target
and CWE(RE) also coincide during several intervals.)

that can be achieved by the algorithm is Wmax = α CWE(RE).
Using (2) gives CWE(RE) = CWE(µ) = µT . From the last three
equations the maximal buffer size will be Q = C(α − 1).

Similarly, if we have a set of connections on a bottleneck
link, then the buffer size clearly becomes

Q =
N∑

i=1

qi, (3)

where qi is the backlog belonging to flow i and N is the
number of competing flows. However, qi can be expressed in
TCP Limit as

qi = Wmax
i − ci, (4)

where ci is the pipe’s capacity share of flow i. In the simplest
case when αi = α and the RTTs are the same for each flow
(Ti = T), then

Wmax
i = αi CWE(REi) = αiµiTi, (5)

which yields

Q =
N∑

i=1

(Wmax
i − ci) = αT

N∑

i=1

µi −
N∑

i=1

ci. (6)

In case of a single bottleneck topology
∑

ci is at most C.
Moreover, the sum of flow transmission rates is the bottleneck
bandwidth (

∑
µi = µ) in the worst-case; hence the overall

maximal backlog in the bottleneck link becomes

Q = C(α − 1). (7)

As seen, the backlog in the bottleneck link will be con-
strained as if a single flow was in the system independently of
the number of competing connections. As a result, the backlog
will be only a portion of the bandwidth-delay product. More
precisely (7) shows that the queue cannot grow beyond (α−1)
times the bandwidth-delay product.

V. NUMERICAL RESULTS

All the simulation results in this paper were obtained using
ns-2 [18]. The measurements were carried out in a testbed. The
PCs in the testbed ran Linux 2.6.16 and had CPUs of 3 GHz
Pentium 4, 2 GB RAM and Intel e1000 PCI-Express network

cards. The router at the bottleneck link emulated different
link delays, bandwidth, and queue sizes through the tc (traffic
control) interface using the netem (network emulator) and tbf
(token bucket filter) modules. TCP flows were started by netcat
(nc). Since the available RE implementation in Westwood+
[19] calculates bandwidth samples only once per RTT, we
implemented the RE bandwidth estimator and the TCP Limit.

A. TCP Limit on the top of TCP Westwood

Since TCP Limit modifies NewReno in a well-defined and
isolated part, it can applied to not only NewReno but other
TCP versions as well. As an example, we show how it can
be combined with one of the extensions of the Westwood
proposals.

Faster Recovery does not halve the cwnd, hence it main-
tains full utilization even when (i) a loss happens due to
congestion and the bottleneck queue size is smaller that BDP,
or (ii) channel error causes packet loss. TCP Limit operates
with full utilization even when queues are not sized to BDP.
However, random loss degrades its performance (Fig. 3(a)).
Fig. 3(b) illustrates the benefit of combining the Faster Recov-
ery modification of Westwood with TCP Limit. The advantage
can be clearly seen: the unified TCP can keep full utilization
even if we expose it to artificial packet loss. Therefore, we
recommend extending the TCP protocol stack with the TCP
Limit algorithm if it contains Westwood.

 20

 30

 40

 50

 60

 70

 80

 90

 100

 110

 8 10 12 14 16 18 20 22

time [s]

cwnd [pkts]
v_cwnd [pkts]

CWE(RE) [pkts]
utilization [%]

(a) TCP Limit without Faster Recovery

 20

 30

 40

 50

 60

 70

 80

 90

 100

 110

 8 10 12 14 16 18 20 22

time [s]

cwnd [pkts]
v_cwnd [pkts]

CWE(RE) [pkts]
utilization [%]

(b) TCP Limit With Faster Recovery

Fig. 3. Simulation result: artificial packet drop at 15s.

B. Fairness

Fairness is measured by the relative performance of com-
peting flows of the same TCP variant. Fig. 4 shows the result
of an experiment with 2 connections competing. The slow-
start threshold is set practically to infinity in the NewReno
implementation. Therefore, when the second flow starts it
causes and suffers from multiple losses. TCP Limit extends
NewReno, hence both flows lose packets at about 16s. (The
losses at the beginning of the connection’s lifetime are the
result of the overly aggressive slow-start phase. These losses
can be avoided by using the Agile Probing method of West-
wood. Although, it has not yet been incorporated into the
Linux code base.) As shown in Fig. 4, the backoff frequency
of flow 2 remains larger than that of flow 1 until the two
congestion windows converge to each other, and therefore the
fair utilization is gradually approached.

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 20 40 60 80 100 120

[p
kt

s]

time [s]

cwnd (flow 1)
cwnd (flow 2)

Fig. 4. Measured result: two TCP Limit flows compete in a link of 10 Mbps
and 100ms.

To numerically evaluate the fairness, we carried out 20
experiments and calculated Jain’s fairness indices4 in the equi-
librium state. Average fairness index of 20 experiment is 0.957
with standard deviation of 0.044. In a similar experiments
with NewReno, the average fairness index was 0.994 with
standard deviation of 0.005. We can conclude that there is a
minor degradation of the faireness performance of TCP Limit
compared to NewReno. This is the price to be payed for the
smaller delay, smaller delay jitter, and for the other benefits.

C. Friendliness to streaming traffic

Due to TCP’s oscillating nature, it can harm the quality of
delay- or jitter-sensitive traffic when their paths have common
links. A general solution is to treat the connections differently
at routers, e.g., to give higher priority to streaming traffic.
However, special treatment is not always feasible.

We conducted a test lab measurement where three connec-
tions are treated equally in their common bottleneck router
(Fig. 5). One of the connections is a large CBR traffic repre-
senting many voice over IP (VoIP) traffic sources multiplexed.
The other one is a real VoIP stream generated by WinRTP [21].
The third connection is an infinite download using traditional
TCP NewReno at the first run. The experiment was repeated
secondly with the TCP protocol exchanged with TCP Limit.
The propagation delay of the bottleneck link was adjustable.

4Jain’s fairness index f is defined in [20]. In case of two flows f =
0.5(µ1 + µ2)2/(µ2

1 + µ2
2), where µi is the throughput of flow i.

R1
10 Mbps

S1

S2

S3

T1

T2

T3

VoIP source

(generated by

WinRTP)

TCP Newreno

or TCP Limited

source

CBR UDP

source,

4 Mbps Changeable

propagation delay

Linux router

with network

emulator

VoIP sink with

a headphone

CBR sink

TCP sink

Fig. 5. Topology of the friendliness experiment.

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 100 120 140 160 180 200

time [s]

one-way delay of the VoIP flow [ms]
TCP throughput [kBps]

link utilization [%]

(a) TCP NewReno

 50

 100

 150

 200

 250

 300

 350

 400

 100 120 140 160 180 200

time [s]

one-way delay of the VoIP flow [ms]
TCP throughput [kBps]

link utilization [%]

(b) TCP Limit

Fig. 6. Measured result: a TCP flow competes with a VoIP stream in a link
of 10 Mbps and 100ms.

Fig. 6 shows the delays the VoIP stream undergoes in the
two cases. The results clearly show that both the maximal
delay and the delay jitter are significantly lower in case of
our proposed TCP Limit resulting in better voice quality for
the VoIP application. We could observe crackling sound right
after the backoffs of NewReno. On the other hand, TCP
Limit produce small delay and jitter and it cannot ruin the
characteristics of the non-elastic stream.

The NewReno flow increases its cwnd until it detects a
packet loss. Loss happens when the awaiting packets fully
fill up the bottleneck queue. However, the router puts the
VoIP packets and the TCP packets in the same queue, hence
the VoIP queuing delay follows the delay of the TCP flow.
Therefore, the VoIP delay resembles the saw-tooth pattern of
NewReno achieving delay as much as 300ms (Fig. 6(a)) but
it remains below 150ms in the case of TCP Limit (Fig. 6(b)).

We repeated the above experiment with different link delays

(Fig. 7). TCP Limit has remarkably less influence on the VoIP
flow in terms of delay jitter, mean delay, and maximal delay.
The importance of the figure comes from the fact that the
tolerable delay in human conversation is about 200ms: the
VoIP flow performs much worse in this regard when competing
with NewReno.

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0.1 0.12 0.14 0.16 0.18 0.2

O
ne

-w
ay

 d
el

ay
 [s

]

One-way propagation delay [s]

TCP Limit
TCP NewReno

Fig. 7. Simulation result: one-way delays of a VoIP flow when competing
a TCP flow: maximum, mean with relative variance, and minimal delays.

D. Performace comparison with other TCP variants

Recently the research community has started to identify per-
formance metrics which properly characterize the performance
of transport protocols [10]. In addition, automatic evaluation
tools are being developed that calculate these metrics and
profoundly compare the protocols. This section presents results
obtained by the tool of Wang et al. [22].

The experiment is based on a dumb-bell topology. There
are five FTP connections using the analyzed protocol both in
the forward and in the reverse paths. The background traffic
consists of streaming video, interactive voice, and short-lived
web traffic using normal TCP. The reader is referred to [22]
for details. We excluded those protocols that depend on extra
functionality in network routers (VCP, XCP). We repeated
each random simulation 15 times and averaged the results.

Fig. 8 shows link utilization, queue occupancy, and packet
drop rate when the bottleneck capacity varies from 1 Mbps to
1000 Mbps. As shown, the link utilization of TCP Limit and
the other variants5 have similar characteristics. However, the
mean queue length and therefore the average queuing delay
are the smallest among the TCP versions when the bottleneck
capacity is larger than 10 Mbps. The mean queue length of
TCP Limit is considerably smaller at every link speed than
that of the rest of the investigated protocols. Furthermore, it is
the TCP Limit for which the loss rate diminishes to 0 at the
lowest link speed.

5CUBIC, HighSpeed TCP, Hamilton TCP, TCP NewReno, TCP SACK,
Scalable TCP, TCP Westwood

 50

 60

 70

 80

 90

 100

 1 10 100 1000

Li
nk

 U
til

iz
at

io
n

(%
)

Bandwidth (Mbps) Log Scale

Link Utilization with BW Changes

CUBIC
HSTCP

HTCP
TCP-Limit
Newreno

SACK
STCP

Westwood

 0

 20

 40

 60

 80

 100

 1 10 100 1000

M
ea

n
Q

ue
ue

 L
en

gt
h

(%
)

Bandwidth (Mbps) Log Scale

Percent of Mean Queue Length with BW Changes

CUBIC
HSTCP

HTCP
TCP-Limit
Newreno

SACK
STCP

Westwood

 0

 2

 4

 6

 8

 1 10 100 1000

P
ac

ke
t D

ro
p

R
at

e
(%

)

Bandwidth (Mbps) Log Scale

Packet Drop Rate with BW Changes

CUBIC
HSTCP

HTCP
TCP-Limit
Newreno

SACK
STCP

Westwood

Fig. 8. Utilization, queue length and drop rate with changing bandwidth
(obtained with the help of [22])

VI. CONCLUSION

In this paper we presented a novel enhancement to the TCP
congestion control algorithm. Our modification (TCP Limit)
dynamically limits the size of the congestion window when
it is considerably larger than the achieved rate and keeps the
bottleneck queue from increasing. On the other hand, TCP
Limit keeps the congestion window constant to avoid the
undesired effect of TCP oscillation.

To summarize the advantages, the proposed TCP-Limit
algorithm

• works with full utilization even in case of small buffers,
• reduce packet loss,
• drastically alleviate the oscillation effect without AQM

mechanisms,
• achieves low delay characteristics,
• achieves low jitter characteristics,
• has a streaming friendly property,
• requires minor sender-side modification of TCP versions,
• can be applied to any TCP variants.

The advantages of TCP Limit were confirmed in part the-
oretically and in part by simulation- and measurement-based
performance evaluations. We illustrated how TCP Westwood
can benefit from implementing TCP Limit on the top of it. The
streaming friendly property of TCP Limit was demonstrated
in a testbed environment and we have shown that a VoIP
application can work together with TCP Limit due to its
improved delay and jitter characteristics.

The performances of TCP Limit and other TCP variants
have been compared. We have found that TCP Limit exhibits
substantially improved performance in terms of queue length
and packet drop rate characteristics.

Future work includes parameter fine-tuning, experimenta-
tion with different bandwidth estimators, evaluation of com-
plex topologies and traffic mixes. In addition, the effect
of active AQM mechanisms on TCP Limit should also be
addressed.

REFERENCES

[1] V. Jacobson, “Congestion avoidance and control,” in ACM SIGCOMM
’88, Stanford, CA, Aug. 1988, pp. 314–329.

[2] S. Floyd, “HighSpeed TCP for large congestion window,” RFC 3649,
Dec. 2003.

[3] L. Xu, K. Harfoush, and I. Rhee, “Binary increase congestion control
for fast long-distance networks,” in Proc. of IEEE Infocom, 2004.

[4] S. Mascolo, C. Casetti, M. Gerla, M. Y. Sanadidi, and R. Wang, “Tcp
Westwood: Bandwidth estimation for enhanced transport over wireless
links,” in Proc. of ACM MOBICOM’01, Jul. 2001.

[5] R. Wang, K. Yamada, M. Y. Sanadidi, and M. Gerla, “Tcp with sender-
side intelligence to handle dynamic, large, leaky pipes,” IEEE Journal
on Selected Areas in Communications, vol. 23, no. 2, pp. 235–248, Feb.
2005.

[6] R. Ludwig, “The Eifel algorithm for TCP,” Internet
draft, draft-ietf-tsvwg-tcp-eifel-alg-00.txt, Feb. 2001. [Online].
Available: http://iceberg.cs.berkeley.edu/downloads/tcp-eifel/draft-ietf-
tsvwg-tcp-eifel-alg-00.txt

[7] N. Dukkipati and N. McKeown, “Why flow-completion time is the
right metric for congestion control,” ACM SIGCOMM Communication
Review, vol. 36, no. 1, pp. 59–62, Jan. 2006.

[8] Y. Gu and R. L. Grossman, “Optimizing UDP-based protocol imple-
mentation,” in Proc. of PFLDNet 2005, Lyon, France, Feb. 2005.

[9] ——, “UDT: A transport protocol for data intensive applications,”
Internet draft, draft-gg-udt-01.txt, Aug. 2004. [Online]. Available:
http://udt.sourceforge.net/doc/draft-gg-udt-01.txt

[10] S. Floyd, “Metrics for the evaluation of congestion control mechanisms,”
Internet draft, Mar. 2007, draft-irtf-tmrg-metrics-09. [Online]. Available:
http://www.icir.org/tmrg/draft-irtf-tmrg-metrics-09.txt

[11] R. Wang, M. Valla, M. Sanadidi, B. Ng, and M. Gerla, “Effi-
ciency/friendliness tradeoffs in TCP Westwood,” in Proceedings of
IEEE/ISCC 2002, Taormina, Italy, Jul. 2002.

[12] C. Casetti, M. Gerla, S. Lee, S. Mascolo, and M. Sanadidi, “TCP with
faster recovery,” in Proceedings of the IEEE Military Communications
Conference (MILCOM 2000), Los Angeles, CA, USA, Oct. 2000.

[13] K. Tan, J. Song, Q. Zhang, and M. Sridharan, “Compound tcp: A
scalable and tcp-friendly congestion control for high-speed networks,”
in 4th International Workshop on Protocols for Fast Long-Distance
Networks (PFLDNet), Nara, Japan, 2006.

[14] D. Leith, R. Shorten, G. McCullagh, J. Heffner, L. Dunn, and F. Baker,
“Delay-based AIMD congestion control,” in Proc. of PFLDnet, Feb.
2007.

[15] W. Stevens, “TCP slow start, congestion avoidance, fast retransmit, and
fast recovery algorithms,” Internet Engineering Task Force, RFC 2001,
Jan. 1997.

[16] A. Glowacz and R. Chodorek, “Behavior of tcp westwood in wireless
network,” in Proc. Advanced Technologies, Applications and Market
Strategies for 3G and Beyond ATAMS’2002 International Conference,
Cracow, Poland, Dec. 2002.

[17] C. Marcondes, A. Persson, L.-J. Chen, M. Y. Sanadidi, and M. Gerla,
“TCP Probe: A TCP with built-in path capacity estimation,” in The
8th IEEE Global Internet Symposium (in conjunction with IEEE Info-
com.05), Miami, USA, 2005.

[18] “The network simulator ns-2,” http://www.isi.edu/nsnam/ns/.
[19] R. Ferorelli, L. Grieco, S. Mascolo, G. Piscitelli, and P. Camarda, “Live

internet measurements using Westwood+ TCP congestion control,” in
Proc. of Globecom’02, vol. 3, Nov. 2002, pp. 2583–2587.

[20] R. Jain, The Art of Computer Systems Performance Analysis: Techniques
for Experimental Design, Measurement, Simulation and Modeling. New
York: Wiley, 1991.

[21] Vovida Networks, “WinRTP: Audio RTP library for windows,” available
from http://www.vovida.org/applications/downloads/winRTP.

[22] G. Wang, Y. Xia, and D. Harrison, “An NS2 TCP evaluation tool,”
Internet Engineering Task Force, Internet Draft, draft-irtf-tmrg-ns2-tcp-
tool-00.txt, Apr. 2007.

