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Abstract—This paper deals with the queueing analysis of
IP networks carrying streaming traffic. The main focus of
the analysis is the jitter which is a widely used performance
characteristic of that type of traffic. The study is carried
out by a novel technique using Quasi-Birth-Death processes in
a matrix-geometric approach. Our method calculates network
performance descriptors such as the transient queue length and
the jitter characteristics in the case of correlated batch arrivals
and Phase-type service times. The method is demonstrated by
several numerical examples that are also compared to simulation
results. A jitter measurement-based utilisation estimation method
is also presented as an application of our results.

I. INTRODUCTION

The mass distribution of multimedia content began in the
first half of the 20th century with the rise of the market
of gramophone records. Later, the content broadcast became
real-time thanks to the radio and television stations. At the
beginning, the primary medium of the broadcast was the air.
This situation changed when the cable tv became also popular
particularly in cities where the high density of the potential
audience made it commercially viable to deploy a wireline
distribution network.

At the end of the 20th century changes in the society and
also a new medium, the Internet, generated new demands
in the multimedia industry. One of them was the need for
interactivity. Also, the technology development has made the
operation and maintenance of IP-based networks cheaper and
more amenable for multimedia content distribution. These and
many other factors has been playing important roles in the
current trends, that is, the multimedia content tends to be
distributed using IP networks.

One advantage of IP-based multimedia content distribution
by various streaming applications might be the possibility of
the more efficient reuse of legacy networks, e.g. larger set of
TV channels, invention of new services like video on demand,
etc. However, the IP networks are packet-switched as opposed
to the earlier circuit-switched media, therefore new network
planning and design methods should be developed in order to
maintain the accustomed level of QoS for the end-users.

In packet switched networks, queues are used for traffic
multiplexing. The packets arriving at the same time to a
multiplexing centre are queued and have to wait until they
can be transmitted. This waiting time, the queueing delay, is
an important matter of interest in the design of IP networks

carrying multimedia traffic, because timing can be essential for
the user perceived QoS. The one way or round-trip delay on
a path is very important but the variation of the delay is even
more important for the multimedia traffic. The reason is that
the receiver should get the packets more-or-less continuously
in order to be able to properly decode them and play the
content without stops and distortions.

A popular descriptor of the variation in the packet delay
is the jitter. The matter of our interest in this paper is the
analysis of the transient queueing behaviour of multimedia
traffic focusing on the estimation of the jitter as it is defined
in [1] using numerical methods. One queue multiplexing a
number of traffic flows is considered as it is shown in Figure 1.
The multimedia traffic might have correlated arrival pattern,
which has to be considered in the studies of its queueing
behaviour. Here, a conservative approach was chosen to model
the bursty packet arrivals using packet batches.

Besides this, another motivation for considering batch
packet arrivals is, that it can be happen that the data link layer
(e.g. ATM) splits the IP packets to several cells. This results in
bursty cell arrival that we model as batch cell arrival process.
Of course, in this case, the batch size distribution is strongly
related to the IP packet sizes as it is shown in [2].

The batches are assumed to arrive according to the Poisson
process in our paper. Though this assumption seems to be too
restrictive, we note that we take it for the sake of simplicity.
In fact, more general arrival processes (e.g. renewal processes,
Markov Modulated Poisson Processes, Batch Markov Arrival
Processes) could be handled as well. That is, this assumption
is not critical.

The examples shown here consider batches of a few packets
(i.e. 1–4). We note that this is not an artifact of the proposed
approach as any batch size distribution (including distributions
with unlimited support) can be considered. A limitation of the
present analysis is that in case of general batch size distribu-
tions an approximation has to be applied. This approximation
might change the results. This can be dealt with by improving
the complexity and the quality of the approximation. The
numerical properties of our method (e.g. approximation error,
running time) heavily depends on the complexity of the applied
model. Some practical examples are compared to simulations
in order to evaluate the numerical errors of our method, but
the deep assessment of the numerical properties is outside of
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Fig. 1. Simple network model

the scope of this paper.
The paper also presents possible applications of the pro-

posed method. The estimation of the link utilisation and/or the
estimation of the available capacity is an important research
topic. Using information on the buffer saturation level, it is
possible to conclude about the link utilisation. However, mea-
suring the number of the packets in a buffer is difficult while
measuring the jitter is easier. We propose a method, which
estimates the link utilisation based on jitter measurements as
it is defined for RTP [1].

This paper is organised as follows. Section II discusses
the related results for jitter analysis, queue length estimation
(MBAC) and QBD. Section III contains the description of the
method that calculates the transient distribution of a QBD.
Generating functions and numerical integration are used calcu-
lating the distribution. Numerical examples and their practical
motivation are shown in Section IV where the calculations
and simulations are compared. In Section V, the potential
applications are showed.

II. RELATED RESULTS

We have pointed out the significance of jitter from the
viewpoint of multimedia traffic already in the Introduction.
Nevertheless, the jitter is an important performance descriptor
also for other reasons. For example, [3] investigates an ATM
network with traffic policing. The jitter in this case is used to
express the level of alteration that an initially periodic stream
suffers due to the random queueing delays. A traffic policer
should be designed so that these statistical variations do not
cause unnecessary cell drops. We note, that our jitter definition
is a bit different from the one in [3] as we defined the jitter
according to RFC 1889, [1].

An important novelty in the present jitter analysis is the
assumption of packet batches. Using Batch Markovian Arrival
Processes (BMAP) the inherent correlations in the traffic can
be better captured compared to other approaches. In [2],
two traditional arrival models (Poisson process; MMPP) and
a BMAP model were fitted to measurements and different
performance descriptors were compared to each other and
to the measurements. According to [2], the BMAP model
generally performs better than the other models even when the
queue length distributions developing in the different scenarios
are compared.

A method estimating the link utilisation using jitter mea-
surements will be proposed based on the presented numerical

technique. Such link utilisation methods are important e.g. in
the case of measurement-based admission control (MBAC)
algorithms, where measurements provide input for the admis-
sion decisions. The most straightforward method might be
to measure the number of connections as it is proposed in
[4]. The task in this case is to use this information together
with some knowledge on the statistical properties of the
traffic (e.g. mean rate, peak rate or measured rate generating
function) such that the admitted flows will experience the
prescribed QoS. However, it is sometimes impossible because
e.g. there is no entity that follows the number of connections
in the network. What can be measured in this case is the
queueing delay or the jitter. Of course, the estimations based
on performance descriptors subject to certain variance cannot
be exact. However, the uncertainty of the measurements can
be incorporated into the MBAC algorithm as it is shown in [5]
where such effects on the admission control are considered.

In this paper we present a numerical method and simulations
to estimate the jitter according to RFC 1889 in a BMAP/PH/1
queueing system, where the term PH stands for Phase-type
service times. The Phase-type distribution is a versatile class
of probability distributions presented e.g. in [6], [7] that can
efficiently be used in numerical methods. The tool used in
our jitter analysis is based on the theory of quasi-birth-death
(QBD) processes. For detailed description one can also refer
to [6], [7]. Though a BMAP/PH/1 is not QBD in general, it
is indeed a QBD assuming certain restrictions on the batch
size distribution [8]. Furthermore, it is also shown in [8] that
a BMAP/PH/1 queue can be approximated by an appropriate
QBD.

In order to be able to estimate the jitter, the transient
analysis of a BMAP/PH/1 queueing system is needed. Related
results regarding the transient BMAP/G/1 queue can be found
in [9]. Further results regarding the transient BMAP/PH/1
queue can be found in [10] and in an even more general
setting in [11]. The latter algorithms have significantly better
numerical properties compared to [9] because they heavily
utilise the otherwise not too strong restriction taken on the
service time distribution. Nevertheless, these algorithms still
consider general batch size distributions, that might lead to
numerical problems even in the computation of the stationary
queue length distribution of a BMAP/PH/1 queue as it is
shown in [8]. In order to be able to avoid these numerical
difficulties, the method used in this paper uses the transient
analysis of QBD processes.

Our proposed numerical method calculates the transient
behaviour of discrete and continuous QBD processes using
generating functions. We note, that numerical analysis of
transient QBD processes for a type of jitter estimation has
already been presented in [12]. However, there are important
differences between our numerical technique and the one in
[12]. First, a version of the folding algorithm was used in
[12] that can be used for finite systems only. The approach
used here can handle infinite systems as well. Second, BMAP
arrivals are assumed in our work unlike in [12] where MMPP
arrivals were assumed. We also note, that the jitter definition
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Fig. 2. An example for the QBD

in [12] is different from the one applied here. Our generating
function technique is the generalisation of the one appearing
in [7] for birth-death processes. According to the best of our
knowledge, the technique shown in this paper has not yet
appeared elsewhere.

The queueing system considered here has only one queue.
When the majority of the delay on a path is gathered in a
single bottleneck queue then the present results can directly
be applied. Although the single bottleneck scenario is quite
typical according to our practical experience, sometimes it
might be important to be able to consider the jitter developing
through the series of queues with significant queueing delays
in each. Regarding this, one can find results in [13], [14] where
tandem queues are analysed. These methods approximate the
single server output with Markovian Arrival Process (MAP).
Using these our jitter analysis can be extended to series of
queues, that is the subject of future research and therefore out
of scope of the present paper.

III. THE QUASI-BIRTH-DEATH PROCESS

In this section, first a short overview of the QBD processes
is presented. Next, our technique calculating the transient
distribution of a QBD is outlined. The calculations below are
presented for discrete time QBD processes.

In the following, P, B0, A0, A1, A2, R(z), S(z), R and
S denote matrices. �µ0, �µk, �µk,n, �Xn(z), �p(z), �q(z), �t(z) are
vectors and z, k, m and n are scalars.

The quasi-birth-death process is a structured Markov pro-
cess. Its state space consists of levels and every level contains
phases. State transitions occur among phases within the levels
or between two neighbouring levels only. The state transition
matrix has a block tridiagonal form. The homogeneous QBD
has the same state transition probabilities (rates) for one level
to another, so the blocks in the three diagonal lines in (1) are
the same: these blocks are A0, A1 and A2 the probability
for the transitions up; within the level; down. The transition
probabilities for the steps from the 0th level to the 0th are in
B0.

P =




B0 A0 0 0 . . .

A2 A1 A0 0 . . .

0 A2 A1 A0 . . .

0 0 A2 A1 . . .
...

...
...

...
. . .




. (1)

In Figure 2 one can see a QBD. Every level contains three
phases, e.g. they are (1, 1), (1, 2) and (1, 3) in the first level.

Transitions are allowed (e.g. from (2, 2)) only within the level
(to (2, 1) and (2, 3)) or one level up (to (3, 2)) or down (to
(1, 1)).

Let the vector �µk be the distribution of the Markov chain
after k steps. �µk can be expressed with the transition prob-
ability matrix P: �µk = �µ0Pk. Since the state space can be
divided into levels, �µk can be divided into levels similarly.
Let the vector �µk,n denote the probability vector in the nth

level after k steps. Using the special form of P we can write:

�µk+1,n = �µk,n−1A0 + �µk,nA1 + �µk,n+1A2 . (2)

Let �Xn(z) be the generating function for the nth level:

�Xn(z) =
∞∑

k=0

�µk,nzk .

According to (2) we have:

�Xn(z) = �µ0,n + �Xn−1(z)A0z + �Xn(z)A1z + �Xn+1(z)A2z .

If the process starts from the lth level then the solution has the
following form:

�Xn(z) = �p(z)R(z)n + �q(z)S(z)l−n ,

if 0 ≤ n < l, and

�Xn(z) = �p(z)R(z)n + �q(z)R(z)n−l , (3)

if n ≥ l, where R(z) and S(z) are the minimal nonnegative
solutions of

R(z) = A0z + R(z)A1z + R(z)2A2z ,

S(z) = S(z)2A0z + S(z)A1z + A2z .

These matrix equations are solved using iterative substitutions
similarly to the procedures shown in [7]. The justification of
(3) can be found in [15].

(3) assumes infinite queue length, however, there are prac-
tical scenarios where the probability of saturation of a finite
buffer is significant. In these cases the buffer length N should
also be considered:

�Xn(z) = �p(z)R(z)n + �q(z)S(z)l−n + �t(z)S(z)N−n ,

if 0 ≤ n < l, and

�Xn(z) = �p(z)R(z)n + �q(z)R(z)n−l + �t(z)S(z)N−n (4)

if l ≤ n ≤ N .
The coefficients �p(z), �q(z),�t(z) can be derived from the

boundary (level 0, N ) and from the initial (level l) conditions.
The probability of a level can be calculated from the

generating function:

�µk,n = Res
z=0

�Xn(z)
zk+1

=
1

2πi

∫
γ

�Xn(z)
zk+1

dz , (5)

where γ is a closed curve around 0. The R(z) and S(z) matrix-
valued functions are obtained by fixed point iterations and the
(5) integral is approximated by summation. The vector-valued
function �Xn(z) has singularity at z = 1 since

∑∞
k=0 �µk,n is

divergent, therefore γ must not include 1.



The number of z points where the above calculations were
evaluated depends on the parameters of the QBD and the
requirements on the error control of the numerical calculations.
The most straightforward error control is the calculation of the
sum of all probabilities in the kth step, that should be 1.

∞∑
n=0

�µk,n
−→
1I = 1,

where
−→
1I denotes the column vector of 1s. Note that, there is

no need to evaluate �µk,n for each n. Instead, one can use the
special structure of �Xn(z) shown in (3):

∞∑
n=0

�Xn(z)
−→
1I = �p(z)

∞∑
n=0

R(z)n−→1I

+ �q(z)
l∑

n=0

S(z)l−n−→1I + �q(z)
∞∑

n=l+1

R(z)n−l−→1I

= �p(z)
(
I − R(z)

)−1 −→
1I

+ �q(z)
(
I − S(z)l+1

) (
I − S(z)

)−1 −→
1I

+ �q(z)R(z)1
(
I − R(z)

)−1 −→
1I (6)

where I denotes the identity matrix and ()−1 is the matrix
inversion. There is a possible computational gain in the

∞∑
n=0

R(z)n =
(
I − R(z)

)−1
,

and

l∑
n=0

R(z)n =
(
I − R(z)l+1

) (
I − R(z)

)−1
, etc.

substitutions. Of course, these substitutions are possible only
when the inverses exist, which is true in most cases according
to our experience. If an inverse does not exist then a direct
summation should be used instead. We note, that a similar
expression can be derived for the summation of �Xn(z) for
finite queueing system in (4). Also, computational gains can
be found for other summations involving �Xn(z). For example,
calculate the jitter as the following average of the absolute
difference conditioning on the initial level (where D0,k denotes
the change of the queue length after k steps, see the definition
in (10)).

E
(|D0,k|

∣∣ queue length at 0 is l
)

=
∞∑

n=0

|n − l|�µk,n
−→
1I

Its generating function can be expressed by �Xn(z) as

∞∑
k=0

E
(|D0,k|

∣∣ queue length at 0 is l
)
zk

=
∞∑

k=0

∞∑
n=0

|n − l|�µk,n
−→
1I zk =

∞∑
n=0

∞∑
k=0

|n − l|�µk,n
−→
1I zk

=
∞∑

n=0

|n − l| �Xn(z)
−→
1I

=
l∑

n=0

(l − n) �Xn(z)
−→
1I +

∞∑
n=l+1

(n − l) �Xn(z)
−→
1I . (7)

The probability �µk,n can be calculated by applying a
numerical approximation of (5), e.g.

�µk,n ≈
M∑

m=1

�Xn(γm)
γk+1

m

(γm − γm−1), (8)

where γm is the mth sample point of curve γ and γ0 = γM .∑∞
n=0 �µk,n

−→
1I can also be approximated numerically by

substituting (6) in the place of �Xn(z) in (8). This way one can
evaluate the quality of the numerical approximation using the
deviation from 1. If the deviation from 1 is not significant then
the conditional average jitter E

(|D0,k|
∣∣ queue length at 0 is l

)
can be approximated by substituting (7) in the place of �Xn(z)
in (8).

The average jitter is obatined by deconditioning

Jk =
∞∑

l=0

E
(|D0,k|

∣∣ queue length at 0 is l
)
πl

=
∞∑

l=0

∞∑
n=0

|n − l|�µk,n
−→
1I πl, (9)

where πl, l = 0, . . . ,∞ is the stationary distribution of
the QBD that can be obtained using standard QBD solution
techniques [6], [7].

We would like to note that numerical method presented in
Section III is not sequential. The evaluation of the formulae
can be done parallel for different complex γm values.

IV. EXAMPLES

The calculations presented in Section III consider discrete
time QBD processes. Queueing systems can operate in dis-
crete time (e.g. in ATM networks) or in continuous time
(e.g. Ethernet networks). Since all examples are continuous
time systems, the appropriate application of the uniformisation
technique (also referred to as randomisation, for details see
e.g. Section 2.8 in [16]) is needed where a continuous time
Markov chain is translated to a discrete time Markov chain
and vice-verse.

The numerical accuracy of the jitter estimation method
presented in Section III depends on the complexity of the
system to be analysed and also on the actual choice of
parameters. Besides the jitter estimation itself, also an error
control method was presented. We believe, that the possibility
of such an error control is an important advantage over the
simulation based estimation techniques in the following to
situations.

1) It might happen that the parameters to be estimated (e.g.
the jitter in our case) have large variance that decreases
only slowly with time, particularly when the simulated
parameter has strong correlations in time. In such case,



it is even difficult to determine, whether the parameter
estimation converges or not.
In case of the jitter estimation of Section III these
problems do not arise. If the system or the required
parameter setup introduces numerical difficulties, then
the error control method can give information on the
accuracy. Moreover, the possibility of parallel processing
can also reduce the running time of the calculations.

2) There are situations, when a parameter is interesting in
the case of rare events. For example, we have to estimate
the jitter in case, when the queue length is above a
certain threshold. It is usually difficult to simulate rare
events and estimate parameters in these periods.
If a rare event can be characterised e.g. as a subset of
the state space in a Markovian model like ours, then the
numerical analysis can be restricted to that particular
subset regardless of the stationary probability of the
subset.

Due to space limitations, we do not give a detailed nu-
merical analysis of the jitter estimation method. Instead, we
demonstrate the method in 3 queueing systems and 9 different
parameter settings. The numerical calculations are compared
to jitter estimations based on the simulations of the queueing
models. The reason of this comparison is twofold. On one
hand, our intention was to find some practical experience on
the uncertainty of the parameter estimation from simulations.
Therefore, not only the simulated averages, but the 5% and
95% quantiles of the simulated jitter values are plotted. On
the other hand, a limitation of our approach is that there are
cases where the queueing model is just an approximation
of the “real system”. In such cases, the numerical results
are approximations only and the simulation results made it
possible to evaluate the quality of the approximations.

The jitter definition in 6.3.1 of [1] is the following. Si is the
RTP timestamp from packet i, and Ri is the time of arrival in
RTP timestamp units for packet i, then for two packets i and
j, D may be expressed as

Di,j = (Rj −Ri)− (Sj −Si) = (Rj −Sj)− (Ri−Si). (10)

The interarrival jitter is calculated continuously as each data
packet i is received from source SSRCn, using this difference
D for that packet and the previous packet i − 1 in order of
arrival (not necessarily in sequence), according to the formula

J = J +
|Di−1,i| − J

16
.

From the above one can see, that the jitter depends on the
timestamp unit. If the packet service time is fixed, for example
1 sec and the timestamp unit is also chosen to be the service
time of a packet, then the jitter can be easily calculated using
the queue length. Let Ln denote the queue length at the time
Tn = n∆T , and Dn = Ln −Ln−1 is the change of the queue
length. Then, the jitter is calculated at each monitoring as:

Jn+1 = Jn +
(|Dn| − Jn)

16
.

Input: Output:πl Input: Output:
queueing
parame-
ters

(stationary
distribution)

queueing
parame-
ters

E
(|D0,k|

∣∣...l)
or �µk,n

(transient de-
scriptors)

stationary solution Jitter calculation
(conditioned on the
initial state)

�
��


�

Input: πl Output:
E

(|D0,k|
∣∣...l) Jitter mean

or �µk,n

Jitter calculation
(unconditional) Jk by (9)

Fig. 3. Jitter calculation
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Fig. 4. State diagram of the M/Erl2/1/K system

This definition is used in the simulations. Of course, if the
packet service time is not constant, but varies around one
timestamp unit, then the above calculation becomes only an
estimation of the jitter. We also note, that if the service time
is a constant times one timestamp unit, then Jn should be
multiplied by the same constant in order to get the jitter J
according to [1].

The main steps of the average jitter estimation are shown in
Figure 3. First, the stationary queue length distribution (πl) is
calculated using numerical techniques detailed e.g. in [6], [7].
The input parameters are the QBD parameters and the output
is the stationary distribution.

Second, the conditional average of the absolute difference
in the queue length after k steps in a discrete QBD process is
calculated using (7) and (8). Alternatively, the whole transient
distribution in the kth step (�µk,n) can be calculated and the
average of the absolute difference is calculated using the
transient distribution.

Third, the average jitter is estimated using (9), that is,
the average absolute level (queue length) differences after
k step starting from level l are weighted according to the
stationary distribution. Alternatively, one can use the transient
distribution (�µk,n) here as it is indicated in Figure 3.

Three different queueing systems were analysed in order
to show how our proposed jitter estimation method performs
under various conditions.

A. The M/Erl2/1/K queue

The first system was the M/Erl2/1/K queue, that is,
here the packets arrived according to a Poisson process. The
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Fig. 5. State diagram of the M [3]/M/1/K system with RED-like packet discard

service time was a two-stage Erlang distribution. There was
one server and finite queue length (40 packets) was assumed.
This queueing system is intended to model the queueing in
a bottleneck link for VoIP traffic. Though the pattern of the
packets in a VoIP stream is usually regular (i.e. periodic),
the Poisson arrival model here can be justified when there
are many streams running parallel through the link. The fixed
packet size is also quite typical in case of VoIP traffic. Since
our jitter estimation method assumes Markovian service time,
the Erlang distribution was used as an approximation because
it has smaller coefficient of variation than the exponential
distribution. The state transition diagram of the QBD model
for this queue is shown in Figure 4.

B. The M [3]/M/1/K queue

The second system was the M [3]/M/1/K queue with a
RED-like packet discard discipline (please refer to [17] for
details about RED). Packet triples arrived according to a
Poisson process and the queue length was finite (K = 30
packets). If the queue length was smaller than K/3 at the
time of a batch arrival, then all three packets are admitted. If
the queue length was between K/3 and 2K/3 at an arrival
then one packet was dropped and above 2K/3 two packets
were dropped from the packet triple. The motivation for this
queueing system was a multiplexer where many video streams
run parallel. The idea of using packet triples came from
practical experience in a measurement of an MPEG stream,
where three frames – one I, one B and one P frames – are
sent close to each other and the next three frames arrived
after a longer silent period. We note, that our investigations
later revealed that this behaviour might not be typical since
MPEG streams in different environments had different frame
arrival pattern. Nevertheless, the arrival patterns were generally
found to be correlated, therefore the batch arrival model of
packet triples were chosen as a conservative approach. The
packet discard discipline is based on the observation, that
the MPEG frames are not equally important. The loss of B
frames causes less damage than the loss of P frames and
the most important ones are the I frames. Therefore, if a
RED-like packet discard discipline is used then frames are
dropped according to their importance: nothing; only one B
frame; one B and one P frame. The state transition diagram
corresponding to this queueing model is shown in Figure 5.
The queueing system subject to numerical analysis was a QBD
approximation of the M [3]/M/1/K according to [8].
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Fig. 6. State diagram of the M [4]/Erl2/1/K system

C. The M [4]/Erl2/1/K queue

The third queue was an M [4]/Erl2/1/K system. The queue
length was 40 packets. In this case the packets were discarded
only in case when the queue was full. The batches in this
case contained a random number of packets within 1 and
4 and the service time was a two-stage Erlang distribution.
The choice of this queueing system was motivated by the
case, when the data link layer is analysed where the segment
size is smaller than the typical IP packet size, therefore the
packets are split into several (at most 4) segments and these
segments are transmitted in batches. Of course, the number of
segments in a batch is determined by size of the IP packet
transmitted in the corresponding batch. The state transition
diagram of this model is shown in Figure 6. This queueing
subject to numerical analysis was again a QBD approximation
of M [4]/Erl2/1/K according to [8].

D. Comparison of the jitter estimations with simulation results

Note, that a detailed investigation on the numerical accuracy
of the jitter estimation method is out of scope of this paper.
Nevertheless, we demonstrate the method using the above
three queueing systems with link utilisations ranging from
0.1 to 0.9. The actual parameter choice does not have direct
practical relevance since the main intention of the paper
is merely to show that jitter measurements can be used to
capacity estimation.

The average service times for all examples were chosen to
be one 67 ms. The queue length was monitored in every 1.5
s. Both the numerical calculations and the simulations were
performed using GNU Octave.
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Fig. 9. Batch arrivals, exponential
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tem)

0.2 0.4 0.6 0.8
Utilisation

0

100

200

300

400

500
Ji

tte
r 

[m
s]

Jitter estimation
Simulation average

Fig. 10. Batch arrivals, Erlang ser-
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The numerical results of the M/Erl2/1/K example and
the simulations are shown in Figure 7. In this Figure and in
the next Figures the triangles show the 5% and 95% quantiles
of the jitter values in the simulations. One can see in Figure 7,
that the calculated and simulated jitter averages match well for
all link utilisations.

The choice of the Erlang service time in the M/Erl2/1/K
example was because this system models a queue fed by
VoIP flows, where the packet sizes are the same. Since
the Erlang service time is not constant, the system is only
an approximation of the real system. Figure 8 compares
the jitter calculations to simulations where the service time
was constant. As it might be expected, the constant service
time has decreasing effect on the jitter that is confirmed by
Figure 8. Our conclusion here is, that the two-stage Erlang
distribution does not approximate a constant service time well
in the present case. One solution is to apply higher order
Erlang distributions, which would improve the quality of the
estimations. The increased complexity of the QBD lead to
increased calculation time and a tradeoff is needed between the
model complexity and the expected quality of the estimations.
However, the detailed analysis of the numerical properties of
our proposed method is outside the scope of this paper.

The next queueing system is the M [3]/M/1/K queue with
RED-like packet discard. The comparison results are shown in
Figure 9. Again, the triangles show the 5% and 95% quantiles
in the simulations.

One can see that the estimations of the jitter averages have
the same behaviour as the simulated averages. That is, the jitter
increases up to utilisation 0.4–0.5 and then it starts decreasing.
It can also be seen in Figure 9 that for small link utilisations,
the numerical method does not agree with the simulation
mean, though the values remain in the 5%–95% interval. For
utilisation levels above 0.7 the jitter estimations are much

closer to the simulated averages. The observed differences for
small link utilisations is due to numerical reasons that was also
confirmed by the error control. According to the error control
results, a better choice for the numerical parameters of the
jitter estimation method improves its accuracy, therefore it is
the subject of further research.

The last, and most complex example is the M [4]/Erl2/1/K
queue. The comparison results are shown in Figure 10. A
single packet arrival occurred with 50% probability; the prob-
ability of a two packet batch was 30%; there were no three
packet batches; the four packet batches occurred with 20%
probability. As the error control had previously predicted
during the calculations, the jitter estimations are quite accurate,
the simulation averages well follow the calculations.

V. APPLICATION OF THE RESULTS

The estimation of the utilisation of a bottleneck link is an
important task. If there are means to access byte counters in the
interface e.g. via SNMP queries or even if a monitoring system
like MRTG is installed then the situation is quite simple.
The network providers, however, are not generally willing to
allow the users or content providers such access, therefore it
is necessary to find alternative methods. There are bandwidth
estimation methodologies using active probing between end
hosts. Most of these methods are designed so that the probing
has negligible disturbing effects on the network traffic and the
traffic volume of several links can be measured at the same
time.

One important aspect of the active probing techniques is
that they use high precision hardware equipment and certain
level of cooperation between two or more end hosts. This is
not a significant issue from O&M perspective, but as it was
pointed out in the Introduction, the main interest of this paper
is related to the IP-based multimedia content distribution. In
this case, neither high precision hardware at the clients nor
significant cooperation between them can be expected as this
latter might involve difficult system design task and even legal
issues.

Therefore, simple passive monitoring methods are preferred
in such systems like delay or jitter measurements as it is
proposed in the RTP protocol in RFC 1889 in [1]. Based on
the jitter estimation method presented in this paper we propose
a simple two step link utilisation estimation procedure shown
in Figure 11. The procedure assumes that the relation between
the measured jitter and the link utilisation like Figure 7–
10 is already known1. The first step of the procedure is the
measurement of the jitter and the packet loss using RFC 1889
during a period of time (e.g. 10 sec). Second, the average
jitter is compared to the table. It might be, that the link is
overloaded, that is, the utilisation is above 100%, in which
case the jitter can be small again because the buffer is full

1In the case of the M [3]/M/1/K system, the relation between the jitter and
the utilisation is not monotone. This difficulty can be handled by estimating
e.g. the variance of the jitter besides the average. This can also be done with
a simple extension of the numerical method. The jitter average and variance
together completely characterise the utilisation for the M [3]/M/1/K system.
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Fig. 11. Determination of the utilisation

most of the time. However, in this case, there is significant
packet loss, so the clients can conclude about the heavy traffic
conditions. Finally, given that there is no significant packet
loss, the link utilisation is estimated.

The link utilisation estimation procedure can be used by
the clients to inform the content provider about the network
conditions. In this method we assume that the jitter estimation
calculated by clients is based on time average values. This
way, the content provider has information about the increasing
network traffic before the QoS of the multimedia streams start
to degrade. Furthermore, the above procedure can be used for
measurement-based admission control.

As long as the call admission decision is made by a
server which is aware of the used and available resources the
CAC method is straightforward: if there is enough available
bandwidth for a new connection then it is admitted. An
important disadvantage here is related to the configuration of
the CAC, since it should be aware of the available capacities
in its domain. In a measurement-based admission control,
the available link capacity is measured and the system can
more easily accommodate itself to the changes in the network.
Indeed, in [18] a distributed call admission control is proposed
where the decisions are done by the clients using capacity
estimation based on the measurement of “control transmis-
sions”. A similar distributed CAC can be developed using
our proposed capacity estimation procedure for multimedia
traffic in IP networks. For example, when a client wishes to
establish a new streaming flow, a short measurement period
provides estimation on the link utilisation using the jitter. If
the estimation is within a prescribed bound then the flow can
be started.

VI. CONCLUSIONS

A numerical method estimating the jitter in a bottleneck
queue assuming batch arrivals and Erlang service time is
presented in this paper. The numerical method is based on
transient QBD analysis. The method was illustrated using
three queueing systems motivated by practical scenarios. The
service time was fixed in the examples and the arrival rates
were changed in order to estimate the jitter developing under
different link utilisations. The results are also compared to
simulations.

A link utilisation estimation procedure as a possible appli-
cation of the numerical method was also presented. A system
using measurement-based admission control based on existing
ideas was also outlined.

Though the jitter estimation method currently considers a
single queue, the extension of the method to tandem queues
is possible using existing results. The proposed application
of the jitter estimation method might make id possible to
establish various MBAC systems for the load control of IP-
based multimedia content distribution. Further research in this
direction is also planned.
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