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Abstract—The short-term dynamics of competing high speed
TCP flows can have strong impacts on their long-term fairness.
This leads to severe problems for both the co-existence and
the deployment feasibility of different proposals for the next
generation networks. However, to our best knowledge, no root-
cause analysis of the observation is available. In this paper, we try
to fill this gap by providing an in-depth root-cause analysis of this
phenomenon. We demonstrate that the widely used Jain’s index
as a fairness metric can not provide sufficient characterization
of the phenomena. More precisely, Jain’s index does not reflect
the dynamic flow behaviors, e.g., starting time of the flows.
We provide an analytical and simulation study to show the
importance of the flow dynamics on fairness. We also propose a
new metric called saturation time for fairness characterization.
Both AIMD-based (HighSpeed TCP, BIC TCP) and MIMD-
based (Scalable TCP) TCP versions are investigated in different
topologies, namely dumb-bell and parking-lot topologies. In
extreme cases, we also analyze and explain the “starving” effect
of competing high speed TCP flows, when a flow forces other
flows to deviate from their proper operation.

I. INTRODUCTION

The advance in technologies, newer and newer forms of
applications ensure improved and diversified services the end-
users but they also bring new challenges for the network
designers. In terms of bandwidth, with the emergence of fiber
optical technologies, advance in multiplexing and modulation
techniques such as OFDM and WDM, the networks can serve
with the rate up to multiple gigabits/sec. In addition to band-
width, network delay and delay variation are also important
characteristics of a network. For example, transatlantic or
satellite communication networks could have extremely high
delay. The performance of these networks can be significantly
different than network with average and low delay. A network
that possesses both high bandwidth and large delay is usually
called high bandwidth-delay product (BDP) network. Besides,
bandwidth hungry and distributed applications such as peer-to-
peer and multimedia applications often operate on these high
BDP networks. As a result, there is a genuine need for next
generation transport protocols that can efficiently utilize the re-
sources and that can operate in these new and diverse network
environments. This question has recently received considerable
attention from the research community and a number of

solutions have been proposed. Roughly, these protocols can
be divided into two classes: loss-based and delay-based. Loss-
based versions (e.g., HighSpeed TCP [1], Scalable TCP [2],
BIC TCP [3], CUBIC [4], etc.) share similar features with
traditional TCP (TCP Reno) whereas the delay-based ideas
has resulted in FAST TCP [5] which is an extension of TCP
Vegas. In most recent proposals such as Compound TCP [7],
the combination of the delay-based and loss-based approaches
has also been appeared. Other versions control the sending rate
based on bandwidth estimation methods (e.g., TCP Westwood
[8]). In this paper, we focus on loss-based versions of TCP
that are designed as transport protocols for next generation
networks characterized by high bandwidth-delay product. Both
AIMD-based (HighSpeed TCP, BIC TCP) and MIMD-based
(Scalable TCP) TCP versions are investigated in a wide range
of network scenarios. One of the main reasons why we decide
to revisit loss-based versions is because they share the same
congestion control principles with the current TCP in use.
Delay-based versions of TCP, such as TCP Vegas and FAST
TCP, are promising when operating in homogeneous networks.
However, there are serious concerns of their inter-operability
with loss-based TCP proposals (such as TCP (New)Reno).

In order to understand the performance of the proposed
protocols, benchmarking is needed. Benchmarking analysis of
these new protocols is hard. Why? It is because there is no
clear or general agreement on the set of the requirements for
these protocols. It is however a status quo that one of the
most important issues is operability and deployability. This
directly leads to the question of fairness. In fact, this question
is tackled by research community for quite a long time and
a number of fairness metrics have been proposed, such as
Jain’s index, max-min fairness, proportional fairness, utility-
based fairness, etc. These metrics are different, but they share
a common aspect. They all concern with the long term average
of the flows and their stable/equilibrium performance. The
main weakness of these metrics is the lack of attention to the
dynamic of the flows. It is argued and analyzed in this paper
why and how starting time of the flows can have a great impact
on the fairness of competing high speed TCP flows. We also
analyze and explain the “starving” effect when a flow forces



other flows to deviate from their normal operation, in extreme
cases, falling back to TCP Reno operation mode. This paper, as
a part of our comprehensive fairness analysis [9], summarizes
the main results on interaction of loss-based protocols.

The performance analysis of recently proposed mechanisms
and TCP modifications is included in many papers. These
works mainly deal with the performance of a new proposal
or the interaction of standard TCP (Reno) and the new
mechanism. In [10], [11], a simulation-based performance
analysis of HighSpeed TCP is presented and the fairness to
regular TCP is analyzed. In [2], the author deals with the
performance of Scalable TCP and analyzes the aggregate
throughput of the standard TCP and Scalable TCP based
on an experimental comparison. In [5], the performance of
different TCP versions, such as HighSpeed TCP, Scalable TCP,
Linux TCP and FAST TCP, are compared in an experimental
testbed environment. In all cases, the performance among
connections of the same protocol sharing a bottleneck link
is analyzed and different metrics are presented (throughput,
fairness, responsiveness, stability). In [3], the authors compare
the performance of BIC TCP using simulation with that of
HighSpeed TCP, Scalable TCP and an AIMD mechanism.
Bandwidth utilization, TCP friendliness, RTT unfairness, and
convergence to fairness metrics are evaluated.

The analysis of competing flows using different TCP ver-
sions has received less attention. In [12], the fairness of
MIMD algorithms is evaluated and the interaction of AIMD
mechanisms with static parameters (e.g., TCP NewReno) are
analyzed. In [13], an experimental evaluation of different high
speed protocols, such as HighSpeed TCP, Scalable TCP, BIC
TCP, FAST TCP and H-TCP, is presented. In a series of
benchmark tests, the intra-protocol behavior of these TCP
variants are analyzed considering the effect of starting time of
the flows, as well. In [14], experimental evaluation of different
high speed TCP proposals is carried out mainly focusing on the
relevant impacts of background traffic. In [15], the intra-, and
inter-protocol fairness of HighSpeed TCP, Scalable TCP, FAST
TCP, H-TCP, BIC TCP and CUBIC is analyzed focusing on the
impacts of starting time of the flows. The evaluation is based
on simulations conducting in a simple dumb-bell topology
with two competing flows. However, to our best knowledge,
no root-cause analysis of the observation is available.

The need for creating a common performance evaluation
framework for TCP versions has been identified and addressed
by the IETF and IRTF working groups. In the internet draft
[16] the metrics to be considered in an evaluation of new or
modified congestion control mechanisms for the Internet has
been collected. A benchmark tool has been presented in [17].
This benchmark consists of a set of network configurations
(i.e., topologies, routing matrix, etc.), a set of workloads (i.e.,
traffic generation rules), and a set of metrics. The authors
propose that the benchmark should be implemented in both
Ns-2 simulation mode and hardware experiment mode, and
they present some results from their on-going research. An-
other TCP evaluation suite has been suggested in the internet
draft [18]. This consists an extendable tool that automates

the Ns-2 TCP simulation process as much as possible. One
can also define a set of commonly used network topologies,
traffic models and performance evaluation metrics in the tool.
A similar tool [19] has been developed based on an experiment
scenario generator, consisting of a topology generator, a flows
generator, and a workload generator, which are implemented
in a set of tcl scripts for Ns-2 simulator.

The rest of the paper is organized as follows. In Sec-
tion II, the motivation of our work is presented through
simple examples. In Section III, the simulation environment
and the important parameters are presented. In Section IV the
transient and equilibrium behaviors of different TCP versions
are analyzed and analytical results are derived. A novel metric
(saturation time) is also introduced and derived for different
TCP variants. Section V and VI present the main results of
our comprehensive fairness analysis of competing high speed
TCP flows according to our methodology. The impacts of
starting delay are also examined and the explanations of the
experienced phenomena are given, as well. Conclusions are
drawn in Section VII.

II. WHY IS JAIN’S INDEX INSUFFICIENT?

One of the most popular and widely accepted fairness
indices is Jain’s index [20]. It is used widespread because of
its main benefits [21]. Jain’s index has a very important role
in measuring fairness among large number of flows. It is a
normalized metric being bounded between 0 and 1, and can
be defined as follows: JI = (

∑

xi)
2
/

(

n
∑

x2
i

)

, where xi

is the normalized (e.g., average) throughput of the i-th flow
and n is the number of flows. In contrast to other metrics,
such as variance or standard deviation of throughput, it is
independent of scale. Furthermore, it can be applied to any
number of flows. Contrary to min-max ratio, it is continuous.
And finally, this index has an intuitive relationship with user
perception. Jain’s index is particularly capable to describe the
long term behavior of large number of flows. In other words,
the static characteristics of the flow competition is captured
especially.

Emerging networks bring new challenges. First, the new
architectures, heterogeneous networks, mobile and wireless
environments exhibit different network characteristics requir-
ing more attention on the dynamical aspects of the operation.
For example, in mobile environment, during an inter-system
handover, the delay and the bandwidth can suddenly change.
As for a TCP connection, these sudden changes in delay or
the high value of jitter can cause multiple back-offs and, in
extreme case, disconnection. Second, the network traffic is
mainly determined by the popular applications. For example,
web applications – generating a lot of short-time connections
(dragonflies, mice traffic) – have a great importance today [22].
This type of traffic can not be treated considering only the long
term properties.

As a consequence of the new network environments and
properties, the dynamic behavior of the TCP flows must be
taken into consideration. On the one hand, it is obvious that
the dynamic effects have significant impact on the performance
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Figure 1. Performance of two competing Scalable TCP flows

and throughput of the TCP flows (see e.g., [23]). On the other
hand, we argue that the fairness also needs to be reconsidered
from the aspects of dynamic behavior. Jain’s fairness metric
is proposed assuming a simple control system model of n
sources sharing the same bottleneck link and receiving the
same feedback signal [20]. It can well describe the static
properties of competing flows. However, the characteristics
of the new network architectures and environments with new
routing algorithms can not be well captured in all aspects by
that model.

We show two simple examples – competition of two flows
in the dumb-bell topology – to illustrate the deficiency of long
term analysis and available fairness metrics. In case of two
competing flows, we expect that the equilibrium properties and
thus, the fairness in the sense of Jain’s index, do not depend
on the starting time of the flows. For example, a few seconds
of starting difference between the flows can be omitted when
the experiment lasts for a very long time (e.g., more than one
hour). In Figure 1, the performance of two competing Scalable
TCP flows is presented for three different starting delays. In
the first case, the delay is less than 5 sec and the bandwidth
shares are close to each other. This fact is also confirmed
by Jain’s index (0.960) approximating 1. The second scenario
corresponds to a starting delay of 15 sec, and the bandwidth is
shared less fairly which is reflected by a smaller Jain’s index
(0.698). The most surprising result can be observed in the last
scenario. Here, the delay is increased to 50 sec and the second
flow only achieves very low throughput. This unfairness is
confirmed by Jain’s index near to 1/2. The importance of
dynamic or transient analysis is illustrated by another example
when the interaction of Scalable TCP and HSTCP can be
observed. The long term average behavior of both flows can
be approximated analytically and the average throughput can
be expressed in terms of packet drop probability [6]:

xstcp = 1

T

αstcp

p
and xhstcp = 1

T

αhstcp

p0.84 ,

where xstcp, xhstcp denotes the average throughput of a
single Scalable TCP and HSTCP flow, respectively. T is an
approximation of round-trip time at the equilibrium state and
αstcp, αhstcp are constant parameters of the protocols. Thus,
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the equilibrium bandwidth share – assuming that the flows
meet the same drop probability – can be expressed as follows:

xstcp

xhstcp

=
αstcp

αstcp

1

p0.16
≈ 0.625

1

p0.16
. (1)

For small values of p, it can be expected that the Scalable TCP
flow gets a slightly more bandwidth than HSTCP. However, the
experiences show significantly different behavior and HSTCP
is starved. Dynamic analysis is needed in order to understand
the interaction. In Figure 2, the congestion window processes
and the bottleneck queue are shown. (The simulation corre-
sponds to the dumb-bell topology.) To our best knowledge,
this is the first time to explain the poor performance of HSTCP
when it co-exists with Scalable TCP. We have noticed that at
the equilibrium, HSTCP source operates in Reno mode with
very low values of congestion window and this is the root-
cause of its poor performance. But why? We can answer this
question by invoking one of the best tools for analysis in the
frequency-domain: Fourier transform and FFT (Fast Fourier
Transform). In Figure 2, beside the time-domain plots, the
spectrum plots are depicted, as well. It can be observed that
the dynamic properties of Scalable TCP is enforced on HSTCP
– as the losses occur according to the main frequency spike
of Scalable TCP. A HSTCP flow operating at this frequency
can not leave Reno mode.

III. SIMULATION ENVIRONMENT

Our fairness analysis of competing high speed TCP pro-
tocols and the validation of the analytical results are carried
out in the Ns-2 [24] simulation environment. Our simulation
scripts regarding different network scenarios can be found in
[9]. The different high speed transport protocols are integrated
in the environment. Ns-2 version 2.27 includes the algorithm
of HighSpeed TCP, while the Scalable TCP control mechanism
can easily be implemented. The Ns-2 source code of BIC TCP
is used from [25].

The examined dumb-bell topology containing one bottle-
neck link is shown in Figure 3a. The queueing mechanism
corresponding to the bottleneck link is drop-tail. We do not
consider the impacts of the buffer size in our analysis and the
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Figure 3. Network topologies

Table I
PARAMETERS

Network parameters
capacity 1 Gbps

delay 50 ms
packet size 1, 500 bytes

Buffer size
dumb-bell 8, 333 pkts
parking-lot 25, 000 pkts

HSTCP
Low_W 38

High_W 83, 000

High_P 10
−7

High_Dec 0.1

STCP
a 0.01

b 0.125

BIC TCP
β 0.8

Smax 32

Smin 0.01

B 4

buffers are set according to the bandwidth-delay product. We
found that the quantitative properties of competing flows are
affected by the size of the buffers in the network; however,
the basic phenomena and the qualitative characteristics do
not depend on this parameter. We also investigate a simple
parking-lot topology (Figure 3b), where the impacts of dif-
ferent round-trip times (RTT) can be revealed. Here, only
the second link is congested. In case of these scenarios, a
simulation contains two competing flows starting at different
time instances and performing an infinite FTP download. In-
vestigating the impacts of the starting time, different values are
chosen. More exactly, on the one hand, we analyze scenarios
when the second flow enters later than the saturation time
of the first flow (e.g., 50 sec delay), and on the other hand,
scenarios with smaller delay (e.g., with 15 sec delay) are also
examined. In the dumb-bell topology, the competition of a
later entering flow against a traffic aggregate containing 10
flows using the same protocol is also analyzed.

During the evaluation, the default parameter set of the
protocols is used (see [1] and [2]). HSTCP and Scalable TCP
apply the Limited Slow-Start (LSS) mechanism [26], as well.
The parameters of the simulations are summarized in Table I.

IV. TRANSIENT AND EQUILIBRIUM ANALYSIS OF TCP
VERSIONS

In this section, our recent analysis [9] on the behavior
of individual flows is summarized in order to gain a basic
knowledge of the behavior of different congestion control
principles. Here, the investigation is carried out considering the
simple dumb-bell topology. The performance of a single flow
can be analyzed in two separate operating regimes. The first
phase is a transient phase while the second one corresponds to
an equilibrium behavior. We present our methodology through

the example of Scalable TCP protocol. By this approach,
other TCP variants can easily be treated and the important
parameters can be derived analytically.

A. Initial dynamics – saturation time

In this section, we focus on the initial phase which plays
a significant role of the performance of an entering flow. We
introduce a new performance metric, namely, the saturation
time, as the length of this transient phase. This metric can be
defined for a loss-based protocol as the time from the starting
till the first packet drop. In Figure 4a, the saturation time
and different phases of an individual Scalable TCP flow are
presented as an illustration. Increasing the congestion window
(and sending rate) of the source, the bottleneck link will be
saturated after a while (link saturation). After this event, the
buffer is filled by the new arriving packets. The time instance
when the buffer is full at the first time is the saturation time.

Various TCP versions apply different mechanisms during
the initial phase. A source generally starts sending according
to a Slow-Start-like manner using a multiplicative increase
algorithm with a protocol-dependent parameter. This means
that the congestion window is increased by a constant value
for each acknowledgement received. As an illustration, the sat-
uration time of a Scalable TCP flow is derived. Our simulation
results corresponding to this scenario are shown in Figure 4a
with the main parameters. During the consecutive phases of
initial operation, the Slow-Start, Limited Slow-Start (LSS) and
the multiplicative increase mechanism of Scalable TCP are
applied. In [9], we summarize the main characteristics of these
analytically tractable control algorithms and we derive the
relevant parameters, as well. In our scenarios, the Slow-Start
phase is left when the initial threshold (ssthresh = 100
pkts) is exceeded. This time instance can easily be expressed
as tSS = R0 log2 ssthresh ≈ 0.664 sec, where R0 is the
round-trip propagation delay. After tSS , the source operates
according to the LSS mechanism using the default parameter
(max_ssth = 100 pkts). LSS operates in congestion avoid-
ance mode in the Ns-2 implementation till the first packet
drop. It affects the increase mechanism of cwnd comparing the
increment of the congestion control mechanism (e.g., Scalable
TCP, HSTCP) with its own increment and the maximum of
these values are used. With this algorithm, a faster convergence
can be achieved when the source sending rate is far from
the equilibrium value. In Limited Slow-Start phase, cwnd is
increased by at most max_ssth/2 per round-trip time. The
end of the LSS phase, actually, can be caused by a packet drop
or the fact that the protocol’s increase mechanism “suggests”
more aggressive increment than the LSS algorithm. In our
simulations, the end of this phase depends on the protocols
and other network parameters, as well. In case of Scalable
TCP, the end of LSS phase can be expressed as follows (see
[9] for details):

tLSS = R0

lg max_ssth

lg 2
+ R0

WLSS − max_ssth

max_ssth/2
≈ 10.46 sec, (2)
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where WLSS is the value of congestion window triggering the
end of LSS. (For Scalable TCP, WLSS = 5, 000 pkts.) After
Limited Slow-Start, the multiplicative increase mechanism
of the protocol operates. During this period, the congestion
window is increased from WLSS to the BDP (R0C). Thus,
the link saturation time can easily be determined:

t0 = tLSS + t′ = tLSS + R0

lg R0C
WLSS

lg(1 + a)
≈ 15.6 sec. (3)

The time till the first packet drop can also be determined
by solving differential equations describing the dynamics of
congestion window and the behavior of the queue. Instead
of solving complicated differential equations (with varying
delays and recursive arguments), a simple approximation can
be applied. In this phase, the congestion window is increased
from W0 = R0C to R0C + B according to the multiplica-
tive increase mechanism. Approximating the increase of the
queueing delay by a linear function, the round-trip time can
be treated as a constant with a mean value: R̃ = R0 + B/2C.
Thus, the saturation time can be expressed as follows:

t̂saturation = t0 + t∗ = t0 + R̃
lg R0C+B

R0C

lg(1 + a)
≈ 26.05 sec. (4)

The analytically derived parameters and the approximation
of saturation time meet well the simulation results presented
in Figure 4a. In Table II, we summarize our results on the
transient behavior of different protocols (for details, see [9]).

B. Equilibrium behavior

After the saturation time, an individual flow using a loss-
based protocol shows periodic equilibrium behavior with pe-
riodic packet losses. The relevant parameters characterizing
this state can also be derived analytically for the protocols,
respectively. To understand the long term behavior of individ-
ual flows is crucial in order to understand the interaction of

Table II
APPROXIMATION OF SATURATION TIME OF DIFFERENT PROTOCOLS

STCP: tLSS + R0

lg
R0C

WLSS

lg(1+a)
+ R̃

lg
R0C+B

R0C

lg(1+a)
≈ 26 sec

HSTCP: tSS + R0
R0C−max_ssth
max_ssth/2

+ R̃
B

max_ssth/2
≈ 42 sec

BIC TCP: R0
lg max_ssth

lg 2
+ R0

lg
R0C

max_ssth
lg(1+a)

+ R̃
lg

R0C+B

R0C

lg 1+a
≈ 12 sec

different flows later. In this section, we summarize the long
term characteristics of the examined protocols. Further details
and the analytical derivations can be found in [9].

As a simple illustration, we present the long term behavior
of an individual Scalable TCP flow. The MIMD mechanism of
the protocol – operating during the equilibrium state – yields
a time period k = − log(1 − b)/ log(1 + a) (expressed in
RTT). After the first packet drop, the Scalable TCP source
operates around an operating point when the bottleneck queue
is approximately full. Thus, the round-trip time (R(t)) can
be approximated at that operating point by R(t) ≈ R̃ =
R0 + B/C, where R0 is the round-trip propagation delay, C
is the bottleneck capacity, and B is the buffer length. In our
example R̃ ≈ 0.2 sec. According to these results, the time of
a period (tperiod) can be approximated by kR̃ ≈ 2.6 . . .2.8
sec. The analytical result well captures the periodic behavior
experienced in the simulations. In Figure 4a, the length of a
period tperiod ≈ 2.9 sec. This period also contains the time
which is needed for retransmit and recovery. The spectrum
of the congestion window process can also de derived. The
relevant part of the spectrum is shown in Figure 4b (top). The
main spike corresponding to the dominant frequency can be
seen at approximately ω = 0.34 1/s which meets well the
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Figure 5. Intra-protocol behavior: Scalable TCP

equilibrium time period derived analytically.
For the other loss-based protocols, the periodic character-

istics can be determined in a similar way. The details of
analytical derivations can be found in [9]. In Figure 4b, we
show the spectrum plots of the congestion window processes
of individual flows. The main frequency spike of HSTCP can
be seen at approximately ω = 0.065 1/s which is significantly
smaller than the frequency of Scalable TCP. The control
mechanism of BIC TCP yields two main spikes at 0.04 1/s
and 0.06 1/s, respectively.

V. INTRA-PROTOCOL BEHAVIOR

As an essential requirement, a TCP protocol should guar-
antee fair behavior among flows using that protocol. The next
step of our investigation involves the analysis of the interaction
of the same TCP flows in order to get a basic knowledge of the
network behavior when all the sources use the same transport
protocol. This topic has received more attention recently, and
a lot of results can be found in the literature (see e.g., [5],
[13]). Therefore, the aim of this section is rather to get a
basic knowledge and to confirm and explain certain results
than to provide a comprehensive study. The details of our
analysis can be found in [9]. Here, we summarize only our
main findings and the main properties of the intra-protocol
behavior for different types of loss-based congestion control
principles.

A. MIMD mechanism

Our first statement is the following: the MIMD mechanism
can not guarantee the fair behavior among flows using the
same MIMD algorithm assuming synchronized losses even
in very simple network environment. More exactly, the per-
formance of the competing Scalable TCP flows are mainly
affected by the starting time of the flows.

As an illustration, the competition of two Scalable TCP
flows in a very simple dumb-bell topology is presented.
The congestion window processes and the dynamics of the
bottleneck queue are shown in Figure 5a and Figure 5b for

two different starting delays. In the first scenario, the second
flow enters the network after the saturation time of the first
one (50 sec), while the second scenario corresponds to a delay
(15 sec) smaller than the saturation time. As a consequence of
the properties of the MIMD algorithm, during the equilibrium
phase, the two sources operate at the same frequency. The
performance of the second flow and the fairness are mainly
determined by the state of the first flow at the time instance
of entering. Thus, the synchronized losses and synchronized
periods of the two Scalable TCP flows can cause an unfair
equilibrium state and unfair bandwidth share when the second
flow is starved. Moreover, a later entering Scalable TCP
flow shows very poor performance competing with a traffic
aggregate of Scalable TCP flows. The queue process and the
congestion window process of the traffic aggregate (as the
sum of the individual processes) and the late entering flow
are shown in Figure 5c. Here, the competition of a single
flow against a traffic aggregate of 10 flows are presented.
Starting times of the traffic aggregate flows are uniformly
distributed within the first 5 sec while the last flow enters
50 sec later. Because of the basic properties of the MIMD
algorithm, the dominant frequency of the traffic aggregate
equals the one derived for a single Scalable TCP flow (see
Figure 4b). The main frequency spike can be observed at
approximately 0.34 1/s in both cases. The later entering flow
shows very poor performance operating in Reno mode which is
a serious disadvantage of the protocol from practical aspects.

B. AIMD-like mechanisms

The less aggressive congestion control schemes using addi-
tive or slower (logarithmic) increase mechanisms are able to
realize fair equilibrium states for similar flows; however, the
transient phases can last unacceptable long time. In case of
HSTCP and BIC TCP, the starting time has an impact on this
transient phase but the long term behavior is not affected.

As an illustration, we present some results on the intra-
protocol behavior of HSTCP. The adaptive nature of the
protocol originates from considering the current value of the
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Figure 6. Intra-protocol behavior: HSTCP

congestion window during the “rate” adjustment. In Figure 6,
the dynamics of congestion windows and the bottleneck queue
are shown for three different scenarios using the dumb-
bell topology. These scenarios are similar to the previously
presented ones for Scalable TCP (two flows – 50 sec delay,
two flows – 15 sec delay, traffic aggregate – individual flow).
Our results show that in case of HSTCP flows operating
in simple dumb-bell network environment, the starting delay
has an impact on the convergence time; however, the long
term fairness is not affected and a fair equilibrium state is
realized. In Figure 6c, the vertical axes of the congestion
window plot corresponding to the traffic aggregate (left axis)
and the individual flow (right axis) are scaled differently. A
fair equilibrium state is realized after a quite long transient
period. (The ratio of the congestion window of the individual
flow and the sum of the congestion windows of the aggregate
is approximately 1 : 10.)

VI. INTERACTION OF TCP VERSIONS

Today, it is an important question that how the recently
proposed transport protocols can live beside each other in
a shared network environment. An essential part of a loss-
based high speed transport protocol is the adequate increase
mechanism. On the one hand, the multiplicative increase
algorithm increases the congestion window by a constant value
for each acknowledgement independently the current value of
the window. On the other hand, adaptive additive increase
mechanisms can change the increment according to the current
value of the congestion window. (The exact parameters and the
dynamic nature are different for these AIMD-like protocols.)
In this section, the interaction of the two different congestion
control principles (AIMD-like and MIMD mechanisms) are
investigated based on the analysis of a diverse set of scenarios.

1) Dumb-bell topology: single flows: To reveal the basic
properties of the interaction, first we investigate the competi-
tion of two single flows in a simple dumb-bell topology.

A surprising phenomenon can be observed when a HSTCP
source enters the network after a Scalable TCP flow has
achieved its maximal sending rate. Our first example is shown

in Figure 7a. Here, the congestion window processes and
the dynamics of the bottleneck queue are presented. In this
scenario, the HSTCP source starts sending after the saturation
time of the Scalable TCP flow (the delay is 50 sec exactly).
HSTCP starts sending according to the Slow-Start algorithm
and the first packet drop occurs synchronized with the other
flow and triggers the congestion avoidance phase. Losses
(caused by buffer saturations) occur synchronized between the
two flows during the connection. The periodic behavior of
HSTCP is exactly determined by Scalable TCP and a common
time period is exhibited. (The spectrum plots confirming that
are shown in Figure 2.) In our simulation example, the time
period of Scalable TCP is approximately 13−14 RTT. During
this time interval, HSTCP can achieve a maximum increment
of 13 a(W ) of cwnd, while the decrement (b(W )) is greater
yielding a decreasing trend. In the equilibrium state, cwnd will
be smaller than Low_Window parameter of HSTCP which
results in TCP Reno operating mode (a(W ) = 1, b(W ) = 0.5)
and poor performance. During the equilibrium state, Scalable
TCP forces the HSTCP flow to deviate from its normal
operation. The starting time of HSTCP affects only the length
of the transient phase. Moreover, when HSTCP starts before
the saturation time of Scalable TCP or the sources start at the
same time, the equilibrium states are the same, only the length
of the transient time differs.

The interaction between Scalable TCP and BIC TCP shows
similar characteristics when the Scalable TCP flow starts first.
The later entering BIC TCP flow can not achieve significant
rate; however, the performance is not as poor as in the
previous case (“non-Reno mode”). As an illustration, the
cwnd processes and the queue dynamics are shown for 15
sec starting delay in Figure 7b. The equilibrium state does not
depend on the starting time of the BIC TCP flow.

A better performance is expected when the Scalable TCP
enters later the network. Surprisingly, the results do not meet
the expectations and the starvation of AIMD-like flows can
be observed in these cases, too. As an example, we examine
the interaction of a HSTCP flow and a 50 sec later entering
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Figure 8. HSTCP – Scalable TCP, delay: 50s

Scalable TCP flow. The simulation results are shown in
Figure 8. At the time of starting Scalable TCP, HSTCP has
achieved its equilibrium state with a time period of thstcp.
Scalable TCP starts with Slow-Start/Limited Slow-Start and
the bottleneck queue is fed by the traffic aggregate of the two
flows. The extra traffic of Scalable TCP in the queue results in
a decreasing time period, i.e., the synchronized losses occur
more frequently. During shorter time periods, cwnd of HSTCP
can not achieve the value that was just before the reduction.
In contrast with HSTCP, cwnd of Scalable TCP – adjusted
according to the multiplicative increase algorithm – exceeds
the value that has been reached before the reduction at the end
of a period. Thus, the length of a period converges to the time
period of Scalable TCP (tscalable) and cwnd of HSTCP shows
a decreasing trend while cwnd of Scalable TCP is increasing.
The equilibrium state is the same as it was experienced
previously. The same phenomena can also be observed in
the frequency-domain. In Figure 8, the spectrum plots are
shown beside the time-domain plots. The diagrams confirm

that the long term network behavior is mainly determined by
the Scalable TCP flow, since the bottleneck queue shows the
same dominant frequency as the MIMD mechanism.

In case of BIC TCP, the phenomena are similar. The long
term performance and the equilibrium behavior are the same
when the BIC TCP flow starts first or later. It is worth noting,
that BIC TCP achieves better utilization than HSTCP because
it can leave Reno mode.

2) Dumb-bell topology: traffic aggregate – single flow:
After the investigation of two interacting flows, this section
deals with more realistic scenarios when one single flow
competes with a traffic aggregate using the other type of
congestion control mechanism. The simulation results are
presented when the late entering flow competes with 10 other
flows operating in their equilibrium state. (The starting times
of the traffic aggregate flows are uniformly distributed within
the first 5 sec.)

Our first observation is that the later entering AIMD-like
flow can not achieve significant bandwidth share against the
Scalable TCP aggregate and HSTCP and BIC TCP operate
as TCP Reno (cwnd < 30). The bottleneck queue and
the cwnd processes corresponding to the two scenarios are
shown in Figure 9. The upper parts of the figures relate
to the queuing processes while the lower parts correspond
to the traffic aggregates and the individual flows. In case
of the aggregate, the data is the sum of the data series of
the individual congestion windows. The periodic behavior of
the individual AIMD-like flow is exactly determined by the
MIMD mechanism of Scalable TCP, since the spectrum of
HSTCP and BIC TCP shows the same dominant frequency
spikes. (Here, we only present the dominant frequencies and
the spectrum plots are omitted. Further analysis can be found
in [9].) As a consequence of the MIMD algorithm, the spectral
behavior of the Scalable TCP aggregate is similar to the
behavior of an individual flow.
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Figure 9. Performance of individual flow vs. STCP traffic aggregate
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Figure 10. Performance of individual STCP flow vs. traffic aggregate

The next disadvantage of Scalable TCP is shown in Fig-
ure 10. Surprisingly, the individual Scalable TCP flow can
starve the HSTCP and BIC TCP aggregates, as well. On the
one hand, HSTCP flows operate in Reno mode achieving
very low utilization at the equilibrium state and their periodic
behavior is determined by the single Scalable TCP flow. On
the other hand, the performance of the BIC TCP aggregate
is better (“non-Reno mode”); however, the dominance of the
Scalable TCP flow is significant.

3) Simple parking-lot topology: single flows: Finally, the
interaction of the MIMD and AIMD-like protocols is analyzed
in a simple parking-lot topology (with one congested link). In
these scenarios, the impacts of the different round-trip times
can be revealed. When the Scalable TCP flow possesses the
shorter RTT, the starving of the AIMD-like flows is expected.
As an illustration, the interaction of a single Scalable TCP

flow and a later entering BIC TCP flow with longer RTT is
shown in Figure 11a. The BIC TCP flow operates in Reno
mode achieving very low sending rate. The long term behavior
is similar for other scenarios, too, and the AIMD-like flows
are starved operating in Reno mode. The starting time has an
impact only on the transient characteristics.

An important property of Scalable TCP arises when it
traverses the longer path. An illustrative result is shown in
Figure 11b. Here, the later entering Scalable TCP flow forces
down the BIC TCP flow. As a result of the aggressive nature of
the MIMD algorithm, the AIMD-like flows are always starved
on the shorter path, too. However, the performance is slightly
better than in Reno mode.

4) Results: Our main findings are the following. The
MIMD mechanism can not guarantee the fair behavior with
AIMD-like protocols using adaptive additive increase algo-
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Figure 11. Simple parking-lot topology: interaction of Scalable TCP and BIC TCP

rithm. Because of the aggressive and static characteristics of
the multiplicative increase control of Scalable TCP, it starves
other flows with AIMD protocols in a wide range of network
environments. The aggressive nature of the MIMD mechanism
is exhibited in the parking-lot topology and in the competition
against traffic aggregates, as well. We found that the long term
interaction of these protocols is not affected by the starting
delay. Starting delay has an impact on the transient phase and
the convergence time.

VII. CONCLUSION

In this paper we have presented a root-cause analysis of the
fairness behavior of both AIMD-based (HighSpeed TCP, BIC
TCP) and MIMD-based (Scalable TCP) TCP versions in both
dumb-bell and parking-lot topologies. We have shown that the
fairness metrics proposed and used so far (e.g., Jain’s index)
cannot capture the dynamic characteristics of the TCP flows.
On the other hand, we have clearly pointed out that TCP flow
dynamics do have significant impact on the long-term fairness
performance.

We have proposed the starting time as a complementary
dynamic-sensitive metric to the list of the long-term equilib-
rium sensitive metrics to get a full fairness characterization.

We have derived both analytical and simulation results in
different scenarios including both inter-protocol and intra-
protocol settings. In addition we have used spectral analysis
to explain some unexpected co-working behavior of different
TCP versions and show how a TCP flow can force other flows
to deviate from their normal operation.

In the future we plan to continue the analysis and our aim is
to contribute with new metric-related results to the congestion
control performance evaluation framework which is presently
being developed by the IETF.
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