
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
60
61

Data Transfer Paradigms for Future Networks:
Fountain Coding or Congestion Control?

Sándor Molnár†∗, Zoltán Móczár†∗, András Temesváry†, Balázs Sonkoly†, Szilárd Solymos†, Tamás Csicsics†
†Dept. of Telecommunications and Media Informatics, Budapest University of Technology and Economics, Budapest, Hungary

∗Inter-University Centre for Telecommunications and Informatics, Kassai út 26., 4028 Debrecen, Hungary
E-mail: {molnar, moczar}@tmit.bme.hu

Abstract—The research history of congestion control protocols
has unveiled that it is difficult to find an optimal solution,
which meets all the challenges of the evolving Internet. As an
alternative paradigm recent studies suggest replacing congestion
control with erasure coding techniques. In this paper we present
a performance study of this approach comparing it with TCP
based solutions. In order to investigate the new paradigm in
details and also in practice, we have developed and implemented a
novel transport protocol (Digital Fountain based Communication
Protocol, DFCP) where an efficient digital fountain based erasure
coding scheme plays the role of correcting packet loss. We present
some analytical and simulation results together with our first
performance comparisons in a testbed environment.

I. INTRODUCTION

Since the first efficient reaction to the phenomenon of
congestion collapse in the early Internet, congestion control,
mostly performed by the Transmission Control Protocol (TCP),
has played an important role in communication networks [1].
Several TCP versions have been developed in order to fit the
ever-changing requirements of communication networks [2],
[3]. Although, current high speed TCP variants provide effi-
cient solutions for many network environments, they all fail to
act as a universal mechanism considering heterogeneous and
changing network conditions.

Concerning the limitations of TCP there is a significant
justification to rethink the concept of this transport protocol
and design it from scratch, omitting the main TCP-related
features, most interestingly its congestion control mechanism.
Some ideas have already been proposed and investigated where
congestion control was not employed at all. One of these ideas
was outlined by GENI (Global Environment for Network Inno-
vations), which advocates a Future Internet without congestion
control [4] by suggesting efficient erasure coding schemes to
recover lost packets.

The idea to use coding in general for efficient networking
is not new, and many approaches have already been proposed.
There is no doubt, coding has a very high potential in many
areas of data communication. For example, a mechanism called
TCP/NC that incorporates network coding into TCP with
only minor changes to the protocol stack is presented in [5].
According to this method the source transmits random linear
combinations of packets currently found in the congestion
window. Coding essentially masks losses from the congestion
control algorithm and allows TCP/NC to react smoothly to
them providing an effective solution for congestion control
in lossy environments such as wireless networks. However,
the idea of replacing congestion control with erasure coding

schemes is a different approach and investigated only in a few
papers as we briefly overview in the followings.

A decongestion controller was proposed by Raghavan and
Snoeren who studied its benefits [6]. Bonald et al. analyzed
the network behavior in the absence of congestion control [7].
Their surprising result is the confutation of the common belief
that operating a network without congestion control necessarily
leads to congestion collapse. López et al. investigated a foun-
tain based protocol using game theory [8]. They showed that
a Nash equilibrium can be achieved, and at this equilibrium,
the performance of the network is similar to the performance
obtained when all hosts comply with TCP. Botos et al. pre-
sented a transport protocol based on the modification of TCP
for high loss rate environment using rateless erasure codes [9].
In their proposal the well-known slow-start and congestion
avoidance algorithms of TCP are used, but some modifications
are suggested to avoid the dramatic decrease of the sending rate
in case of high packet loss. Kumar et al. proposed a transport
protocol based on fountain codes for wireless networks and
pointed out that regarding performance this approach can be
beneficial in such environments [10]. As for now it seems
that these studies have shown realistic potential of omitting
congestion control functionality and applying erasure coding
schemes in future networks. However, no detailed analysis has
already been performed to make reliable conclusions yet and
this is the motivation of our study.

In this paper we take the first practical steps towards a
network architecture based on erasure codes instead of con-
gestion control. To the best of our knowledge, this is the first
time to implement this new concept while revealing feasibility
issues and answering practical questions. We present both
analytical and simulation results focusing on the performance
of such a system. However, to deeply understand whether
Future Internet can operate without congestion control and rely
on rateless codes, a comprehensive analysis is needed not only
in theory but also in practice, hence we have developed and
implemented a novel transport protocol called Digital Fountain
based Communication Protocol (DFCP) for this purpose. We
also present our first performance comparison study of DFCP
and TCP versions carried out in a testbed environment.

The paper is organized as follows. First, we give a brief
overview of a possible Future Internet concept, which is
built on DFCP in Section II. After that two loss models are
investigated in Section III with emphasis on keeping QoS
requirements assuming that network entities operate according
to the mechanism of DFCP. Section IV provides interesting an-
alytical results for modeling interrupted data transfer scenarios

Networking 2013 1569701621

1

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
60
61

2

using realistic ON-OFF generated sources. Section V gives a
summary about the design and implementation of DFCP. Our
initial testbed measurement results including comparisons to
the performance of two TCP versions for different network
scenarios are presented and discussed in Section VI. Finally,
Section VII concludes the paper.

II. DIGITAL FOUNTAIN BASED ARCHITECTURE FOR
FUTURE INTERNET

Omitting congestion control from the transport protocol
together with enabling maximal rate sending for all network
entities may easily result in enormous packet loss due to
the constant overload of finite network resources. We note,
however, that if no congestion is experienced during a maximal
rate sending scenario, then this concept yields the optimal
solution as no other method could utilize the network better as
it can. To cope with packet loss in case of potentially heavy
congestion, we propose to employ efficient digital fountain
based (rateless) codes [11] in end-to-end communication. As
opposed to traditional erasure coding, rateless codes do not
have a fixed coding rate. Instead, they can produce a potentially
infinite stream of codeword, as long as it is necessary for
the actual transmission. The decoder can recover the sent
information from any subset of the encoded stream, which
is only slightly larger than the original message. Accordingly,
when the loss experienced in the network is inconsequential,
receiver hosts only have to collect any fragments of the
encoded stream until they obtain the proper amount of it. The
first practical realization of universal rateless codes were the
Luby Transform (LT) codes [11], but they failed to provide
low complexity encoding and decoding operations. That is
why we propose the use of Raptor codes [12] for the forward
error correction mechanism. Being an extension of LT codes,
they offer linear time encoding and decoding complexity.
Specifically, for a message consisting of k symbols and any
real ε > 0 redundancy parameter, a Raptor code can generate
a potentially infinite encoded stream, from which any subset
of size ⌈(1 + ε)k⌉ is sufficient to provide high probability
decoding of the original message.

�
������������	
������	
���� �����������������������������	
������	
������	
���� �������

�
�

�����
������ �� ������

Fig. 1. The network architecture with N sender-receiver pairs

Figure 1 depicts the network architecture exploiting dig-
ital fountain based error correction in a simple dumbbell
topology. The bottleneck link with capacity cB is fed by
flows connecting through the access links having capacities
c1, c2, . . . , cN . According to our concept congestion control
is omitted from the network, and end hosts send their data
at maximal rates, which may easily result in high extent of
loss during data transmission. However, this solution relying
on Raptor codes is senseless to arbitrary extent of loss even
in case of dynamically changing and/or burst loss character-
istics. Sender processes produce a potentially infinite stream

of encoded symbols from the original message of size k.
Once any subset of size ⌈(1 + ε)k⌉ encoded symbols arrive
to the receiver, successful decoding can be performed with
high probability. If decoding fails, the receiver only has to
wait to receive a bit more encoded symbols and try decoding
again. Furthermore, additional encoded symbols increase the
probability of successful decoding.

The use of the maximal rate sending mechanism arises
the question of fairness. Competing flows could have different
access rates to a shared bottleneck link, which asks for
preventing eager hosts to starve less active ones. To solve
the share allocation problem among flows sending at maximal
rates we suggest to use fair schedulers. The implementation of
an ideal fair scheduler can be a really difficult task, but we do
not want to achieve ideal fairness. Instead, we advocate to use
efficient approximate fair schedulers such as Deficit Round
Robin (DRR), which are appropriate for this job, see [13].
The approximate fair sharing can be practically realized by
such schedulers, because per-flow fair queueing is scalable and
feasible [14], [15].

Since a larger set of encoded symbols needs to be received
than the size of the original message, it is worth to introduce
a goodput definition to measure the performance. Goodput
is a well-known and widely used performance metric, which
gives the number of useful data bytes (without any overhead)
transferred per second. In case of employing an ideal fair
scheduling mechanism and applying redundancy parameter ε
during the transmission we can derive the following formula
for the goodput of flow i using the notations of Figure 1:

Gi =

cB
(1+εi)N

∀j : cj ≥ cB
N

ci
1+εi

ci <
cB
N

cB−

N∑
k=1

I{ck<
cB
N }ck

(1+εi)

N∑
k=1

I{ck≥
cB
N }

∃j : cj < cB
N and ci ≥ cB

N

where cB denotes the capacity of the bottleneck link and N is
the number of competing flows. In practice a digital fountain
based protocol using Raptor code can easily be implemented
with ε ≈ 0.05 [16].

III. ANALYSIS IN LOSSY ENVIRONMENT

Considering the fact that every arriving packet is useful for
the decoding process in a fountain coding scheme, we analyze
the transmission task in basic loss environments and give tight
bounds on the number of required packets to be sent, keeping
specific reliability requirements, simultaneously.

A. Independent-Loss Channels

In this section a lossy channel with independently and iden-
tically distributed random loss (Bernoulli loss) characteristics
is investigated with emphasis on keeping a predefined success
criterion during data transfer. Consider that a sender process
would like k data packets to be delivered to a receiver via an
imperfect link where each packet is dropped independently of
the others with probability p and transmitted successfully with
probability 1 − p. Let Xk,1−p denote the number of packets

2

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
60
61

3

required to be sent by the sender to fulfill this task. The random
variable Xk,1−p follows the negative binomial distribution with
mean k/(1− p) and standard deviation

√
kp/(1− p). In case

of a specific success criterion for the transmission task, the
minimal value of sent packets, n should be determined, which
satisfies the following reliability requirement:

P(Xk,1−p ≤ n∗) ≥ Psc.

The value of n∗ determines the minimal number of packets
required to be sent in order to effectively deliver k packets
to the receiver with Psc success probability. Using the central
limit theorem, for sufficiently large data transfers the success
criterion can be formulated as follows:

P

(
Xk,1−p − k

1−p
√
kp

1−p

≤
n∗ − k

1−p
√
kp

1−p

)
≥ Psc

where the transformed random variable is approximately
a standard normal random variable, and by introducing
R = Φ−1(Psc) as a reliability factor according to the inverse
of the standard normal distribution function, the minimal value
of n is

n∗ =

⌈
k

1− p
+

R
√
kp

1− p

⌉
.

In the above formula, the mean and the standard deviation of
the negative binomial random variable Xk,1−p, in conjunction
with the reliability factor R, determine a good approximation
for the minimal number of required packets to be transmitted
when k is sufficiently large.

Note that this data transmission task in the context of
Raptor codes would only scale parameter k of the random
variable Xk,1−p to k(ε) = ⌈(1 + ε)k⌉ resulting in an other
random variable following the negative binomial distribution
with parameters (k(ε), 1− p).

B. Burst-Loss Channels

Consider again the task when k number of packets should
be delivered by a sender process to a receiver via an imperfect
link, but now let the packet loss be characterized by the Gilbert
model [17]. The Gilbert model has been commonly used to
describe burst-loss channels often found in the Internet. The
aim is to give a good bound on minimal packet number (n∗)
that is required to be sent in order to fulfill a predefined success
criterion on transmitting k packets effectively.

As Figure 2 shows, the Gilbert model has two states where
residence times in each state follow geometric distributions
with parameters p and q.

Non-loss Loss

p

q

1 − p 1 − q

Fig. 2. The Gilbert model

Let X[k] denote the total amount of lost packets until k
packets successfully arrive to the receiver. In order to give a
proper bound on the number of packets required to be sent,
the probability distribution of X[k] should be determined. In

the presence of a success criterion (Psc) the aim is to find n∗

such that
P(k +X[k] ≤ n∗) ≥ Psc.

Note that X[k] can be interpreted as the sum of k in-
dependently and identically distributed random variables
L1, L2, . . . , Lk where Li denotes the random size of a loss
period between the successful delivery of the (i−1)th and ith

packets. The probability distribution of Li can be expressed in
the following form:

P(Li = l) =

{
1− p if l = 0

p(1− q)l−1q if l > 0
.

The distribution of total loss X[k] is then the convolution of
the random variables L1, L2, . . . , Lk where Li has mean p/q
and standard deviation

√
p(2− p− q)/q. To cope with the

problem of giving a good bound on n∗ avoiding the calculation
of the convolution of {Li} variables, the central limit theorem
can be used, and for sufficiently large value of k we get that

L1+L2+···+Lk

k − p
q√

p(2−p−q)√
kq

=
X[k]− kp

q√
kp(2−p−q)

q

≈ N(0, 1).

Therefore, for sufficiently large value of k, the success criterion
with success probability Psc can be written as follows:

P

 X[k]− kp
q√

kp(2−p−q)

q

≤
n∗∗ − kp

q√
kp(2−p−q)

q

 ≥ Psc.

According to the definition of X[k], n∗∗ denotes the necessary
number of packets required to be sent beyond the k packets,
which must be delivered to the receiver. Hence, n∗ = n∗∗ + k
stands, and introducing R = Φ−1(Psc) we get the following:

n∗∗ =

⌈
kp

q
+

R
√
kp(2− p− q)

q

⌉

n∗ = n∗∗ + k =

⌈
k(p+ q)

q
+

R
√
kp(2− p− q)

q

⌉
.

Considering the Gilbert model parameters in terms of bursti-
ness, in case of p < 1−q the model describes bursty loss, and
scattered loss for p > 1− q. Note that in case of p = 1− q the
Gilbert model is equivalent to the Bernoulli model. The value
of n∗ can be compared to the one obtained under Bernoulli
loss. The case p < 1−q results in higher and the case p > 1−q
results in lower values of required packets compared to the
one obtained when p = 1 − q. The difference (n∗

d), which is
determined by the bias in the expected values and standard
deviations can be given by

n∗
d =

⌈
kp

(
1

1− p
− 1

q

)
+R

(√
kp

1− p
−
√
kp(2− p− q)

q

)⌉

The results presented in this section give tight bounds on
the number of required packets to be sent in case of two
basic loss models. They also indicate that the proportion of
the uncertainty expressed by the standard deviation relating
to the expected value of the random process, becomes in-
significant for large message sizes. Specifically, with increas-
ing message size k, both (R

√
kp/(1 − p))/(k/(1 − p)) and

(R
√

kp(2− p− q)/q)/(k(p+ q)/q) tend to 0.

3

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
60
61

4

IV. TOWARDS A REALISTIC TRAFFIC MODEL

In this section we extend our goodput analysis given only
for an uninterrupted traffic in Section II by investigating a more
realistic, ON-OFF traffic model. Consider again the scenario
shown in Figure 1. If individual sources send according to
an ON-OFF process with existing expected values µON and
µOFF , and if we denote the number of transmitting flows at
time t by St, and the transmission indicator of a flow at time
t by It, then using the notations of Figure 1 we can derive the
following formula for the long-term goodput:

E
(
lim
t→∞

G(t)
)
=

cB

E
(
lim
t→∞

S(t)
)
(1 + ε)

E
(
lim
t→∞

It

)
=

=
cB

N µON

µON+µOFF
(1 + ε)

µON

µON + µOFF
=

cB
N(1 + ε)

.

This result indicates that the expected behavior of the network
in case of ON-OFF modulated sources is asymptotically equiv-
alent to the one when each end host sends uninterruptedly.

It is also interesting to investigate the goodput in com-
parison to different TCP versions (Cubic and Compound) for
both traffic types, so we carried out a simulation study for the
topology of Figure 1 using 5 flows to evaluate these scenarios.
Results for different TCP versions were obtained through ns-2
simulations [18], while results for the maximal rate sending
method were obtained through a simple simulation tool. This
tool could take into account the performance of individual
maximal rate sending transfers calculated by G = cB

(1+ε)N
according to the same ON-OFF processes, which drove the
ns-2 simulations. In case of TCP congestion window values
were retained in OFF periods for initializing their values in
the consecutive ON periods. In each scenario all link delays
were set to 10 ms, the simulation time was 2100 seconds and
we used a redundancy parameter ε = 10%.

100 200 300 400 500 600 700 800 900 1000
0

10

20

30

40

50

60

Bottleneck link capacity [Mbit/s]

T
ra

n
s
fe

rr
e

d
 d

a
ta

 [
G

B
]

ON−OFF

Uninterrupted

Cubic 1BDP

Cubic 0.1BDP

Cubic 0.01BDP

Compound 1BDP

Compound 0.1BDP

Compound 0.01BDP

Fig. 3. Transferred data in case of ON-OFF generated transmissions

Figure 3 shows our results obtained when transmissions
were generated according to exponential ON-OFF processes
consisting of 100 ON and OFF intervals. The parameter of
the exponential processes is 0.1, consequently, the expected
value for both ON and OFF intervals is 10 seconds. The curve
“ON-OFF” belongs to the case of maximal rate sending when
transmissions are generated according to ON-OFF processes,

and the curve “Uninterrupted” belongs to all-time sending
cases when flows transfer uninterruptedly. The figure reveals
that both TCP versions suffer if transmission is interrupted by
idle intervals, and even in the best case the performance of
TCP cannot approach the performance of our solution. This
result confirms that the proposal with the idea of maximal rate
sending has high potential in the cases when rate variation
would appear for TCP. Figure 3 also gives visual confirmation
to the asymptotic equivalency of the ON-OFF interrupted and
uninterrupted transfers since ON-OFF transfer tends to the all-
time transfer case. We can find out that, for the dynamic traffic
presented in this section, the proposed scheme significantly
surpasses the performance of TCP.

V. DIGITAL FOUNTAIN BASED COMMUNICATION
PROTOCOL

In this section a brief description of our new protocol called
Digital Fountain based Communication Protocol (DFCP) is
given including the main design principles, the operating
mechanism and some implementation details. For a compre-
hensive discussion of DFCP, please see [19].

A. Overview

DFCP is a connection-oriented transport protocol, which
can be found in the transport layer of the TCP/IP stack,
and similar to TCP it ensures reliable end-to-end communi-
cation between hosts. The operation of the protocol consists
of three main steps, namely connection establishment, data
transfer and connection termination. However, unlike TCP
our protocol does not use any congestion control algorithm,
but just encodes the data using Raptor codes and sends the
encoded data towards the receiver at maximal rate making
possible to carry out a very efficient operation. In this case,
efficient means that available resources in the network can be
fully and quickly utilized without experiencing performance
degradation. Although, coding needs an extra overhead, it will
be shown in the following section that this approach has many
advantages and can eliminate several drawbacks of TCP. DFCP
has been implemented in the Linux kernel version 2.6.26-2 and
it has been tested under the Debian Lenny distribution.

B. Connection Establishment and Termination

DFCP connection establishment is based on a three-way
handshake procedure as in the case of TCP [20]. The hand-
shaking mechanism is designed so that the sender can negotiate
all the parameters necessary for decoding with the receiver
before transmitting application data. When the data are suc-
cessfully received by the destination host, the connection is
released similarly to TCP.

C. Coding and Data Transfer

Once a connection is successfully established the protocol
is ready to send application layer data. First, data are divided
into blocks and each of them is stored in a kernel buffer until
free space is available. After that DFCP performs encoding for
the waiting blocks sequentially.

4

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
60
61

5

As shown in Figure 4, Raptor coding involves two phases:
precoding and LT coding [12]. In our implementation precod-
ing is realized by LDPC (Low-Density Parity-Check) cod-
ing [21], which adds some redundant bytes to the original
message symbols. LT coder uses the result of the LDPC coding
phase as input and produces a potentially infinite stream of
encoded bytes.

LDPC coding

LT coding

redundant bytes

Fig. 4. Encoding phases of message blocks

When the encoding process is finished on a block, a specific
protocol header is appended to the encoded block and it is
immediately sent. The protocol header includes all necessary
information for identifying and decoding the given message
block.

D. Flow Control

To determine if the next block can be sent, a sliding
window mechanism is applied at the sender. The window size
gives the maximum number of unacknowledged blocks in the
network. It can be set to an arbitrary value in DFCP, and
the main purpose is to control the burstiness of data transfer.
Once a block is received by the destination host, it returns
an acknowledgement to the source host. The sliding window
shifts by one unit, and the next block is sent. To ensure in-
order delivery DFCP assigns a continuously increasing unique
identifier to each block in the protocol header, hence the
receiver can recover the original order of blocks automatically.
Finally, received blocks can be decoded with high probability.

VI. TESTBED RESULTS

To investigate the behavior of our new protocol, a per-
formance analysis was carried out in a testbed environment
for different network topologies and test scenarios. The main
target was to reveal how the goodput depends on different
loss and delay parameters of the network. In order to focus
on the effects of these parameters and to avoid the impact
of the Raptor codec implementation, its delay was excluded
from the results. In the following subsections our initial testbed
measurement results are presented and discussed.

A. Testbed Environment

The measurement setup consisted of senders, receivers and
a Dummynet network emulator, which was used for simulating
various network parameters such as queue length, bandwidth,
delay and packet loss probability [22]. Each test computer was
equipped with the same hardware components according to
Table I.

B. Experiments with Individual Flows

The first experiments were performed on a simple dumbbell
topology with one sender and receiver by transferring 1 GB of

TABLE I
HARDWARE COMPONENTS OF TEST COMPUTERS

Component Type and parameters

Processor Intel R⃝ CoreTM2 Duo E8400 @ 3 GHz
Memory 2 GB DDR2 RAM
Network adapter TP-Link TG-3468 Gigabit PCI-E
Operating system Debian Lenny with modified kernel

(a) Hardware components of senders and receivers

Component Type and parameters

Processor Intel R⃝ CoreTM i3-530 @ 2.93 GHz
Memory 2 GB DDR2 RAM
Network adapter TP-Link TG-3468 Gigabit PCI-E
Operating system FreeBSD 8.2

(b) Hardware components of the network emulator

data. In this scenario, our purpose was to investigate the steady-
state goodput of the transport protocols. However, we note
that a detailed performance evaluation regarding the transfer
of different flow sizes was also carried out and can be found
in [19]. The measurement setup is shown below in Figure 5.

S DDummynet
cB cB

Fig. 5. Dumbbell topology with one source-destination pair

During these tests only the delay (round-trip time, RTT)
and the packet loss rate were varied. The buffer size was
set to a high value in order to exclude it from the limiting
factors, and the bottleneck link had a capacity cB = 1 Gbps.
In all cases we used the goodput (i.e. the number of useful
bytes transferred per second) as the performance metric. To
emphasize the beneficial properties of DFCP we compared it
to different TCP versions, namely TCP Cubic which is the
default congestion control algorithm in the Linux kernel and
TCP NewReno with SACK option.

 0.1 1 5 10 50
0

200

400

600

800

1000

Packet loss rate [%]

G
o

o
d

p
u

t
[M

b
it
/s

]

DFCP

TCP Cubic

TCP Reno

Fig. 6. Goodput for increasing packet loss rate using optimal redundancy
parameters in DFCP

In Figure 6 the measured goodput is depicted for increasing
packet loss rate. In case of DFCP an optimal redundancy
parameter εopt was determined and set for each loss rate
value. Optimal redundancy is the minimum coding overhead
assuming a given loss rate that is necessary for successful

5

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
60
61

6

data transmission and decoding at the receiver side. These
optimal values were found manually, but it is a possible
option to perform this task by an adaptive algorithm of the
protocol, so it will be part of our future research. The figure
clearly indicates that DFCP significantly outperforms both
TCP versions in terms of goodput in a lossy environment,
and for increasing loss rate the difference becomes higher. In
other words, DFCP is much less sensitive to packet loss than
TCP, which is an outstanding result since one of the most well-
known drawbacks of TCP is that its performance degrades very
quickly for increasing packet loss probability. This scenario
also demonstrates that in contrast to TCP our protocol can
function even in the case of extremely high packet loss.

A practical result can be seen in Figure 7 where the goodput
is examined only in the interval 0.1–1%. The figure illustrates
that if the coding overhead is adjusted to a certain rate of
packet loss, DFCP will become insensitive to packet loss
when its rate is less than or equal to this value. Therefore,
the protocol can guarantee a predictable performance within a
given interval of loss rate based on the redundancy parameter,
and as a result, the rate variation experienced in case of TCP
can be avoided. Moreover, the goodput performance of DFCP
is significantly better compared to both TCP versions in the
whole range.

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

200

400

600

800

1000

Packet loss rate [%]

G
o

o
d

p
u

t
[M

b
it
/s

]

DFCP

TCP Cubic

TCP Reno

Fig. 7. Goodput for increasing packet loss rate using a fixed redundancy
parameter in DFCP adjusted to packet loss of 1%

Another advantageous property of DFCP can be observed
in Figure 8. Namely, our protocol can achieve good perfor-
mance in a network with high delay as well since its goodput
drops more slowly than in case of TCP for increasing round-
trip time. It is a very important feature because of the fact that
in real networks the most significant fraction of RTT values
exceeds 10 ms [23]. We note that the goodput degradation
of DFCP for large RTTs is due to the flow control limitation
determined by the window size.

The previous figures showed the efficiency of DFCP in
environments with high loss rate and delay, respectively.
Going one step beyond, it is also interesting to investigate
how the protocol behaves in a network where both packet
loss rate and round-trip time are greater than zero. Figure 9
depicts the change of goodput for increasing round-trip time
and different packet loss rates using optimal redundancy in
each point. Although, TCP Cubic and Reno already suffer if

 0 5 10 50 100
0

200

400

600

800

1000

RTT [ms]

G
o

o
d

p
u

t
[M

b
it
/s

]

DFCP

TCP Cubic

TCP Reno

Fig. 8. Goodput for increasing round-trip time

 0 5 10 50 100
0

100

200

300

400

500

600

700

800

RTT [ms]

G
o

o
d

p
u

t
[M

b
it
/s

]

DFCP, loss = 0.1%

DFCP, loss = 1%

DFCP, loss = 10%

TCP Cubic, loss = 0.1%

TCP Cubic, loss = 1%

TCP Cubic, loss = 10%

TCP Reno, loss = 0.1%

TCP Reno, loss = 1%

TCP Reno, loss = 10%

Fig. 9. Goodput for increasing round-trip time and different packet loss rates

packet loss rate or end-to-end delay has a high value, these
conditions together have a greater impact on their performance
making them almost impossible to operate. As an example,
for packet loss rate of 0.1% and round-trip time of 5 ms,
the performance of TCP Cubic and Reno is reduced to 8%
compared to the ideal case when these parameters are equal
to zero. At the same time, DFCP can work at 94% of the
ideal goodput in such conditions indicating its robustness to
various network parameters. Subsequently, our protocol can
achieve high goodput values in many environments irrespective
of which network parameter is changed.

TABLE II
TRANSFER DURATIONS OF A TYPICAL WEB OBJECT

Protocol
Transfer duration [ms]

RTT = 10 ms RTT = 50 ms RTT = 100 ms

DFCP 10 10 10
TCP Cubic 59 300 600
TCP Reno 61 301 600

Due to practical reasons it is important to reveal the tran-
sient behavior of a transport protocol. Although, the transient
phase is relatively short in time, it has a high impact on
small data transfers. Over the last decades, many researchers
have focused on the improvement of the slow-start algorithm

6

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
60
61

7

of TCP to make it more efficient in high speed networks
(e.g. [24], [25]). They introduced various techniques to speed
up its operation for short-lived flows as well, which is essential
since recent studies showed that most flows are small carrying
only several kilobytes of data and short lasting less than a
few seconds [26]. Web traffic serves as a great example for
this flow type because of the fact that the mean web object
size is about 100–200 kB, consequently, the download time
can be very short [27]. Table II gives the transfer durations of
a typical web object (150 kB) for different round-trip times
using DFCP, TCP Cubic and Reno. The table highlights that
in this practically interesting case it matters how the transport
protocol behaves in the transient phase. Namely, DFCP can
achieve a 60 times shorter download time compared to TCP for
round-trip time of 100 ms, however, the steady-state goodput
ratio between DFCP and TCP is only about 4 in this case
according to Figure 8. It means that for a usual value of round-
trip time, DFCP can provide nearly 15 times faster download
in the transient phase than on average showing its potential in
case of web traffic. Additionally, for such a small flow size,
the download time is independent of the round-trip delay.

C. Experiments with Competing Flows

The second measurement setup can be seen in Figure 10
where all parameters were set similarly as described at
the first dumbbell topology complemented by the condition
c1 = c2 = 1 Gbps. The next scenarios present the results for
two competing flows of the same type. The measurement
duration was 60 seconds for each test, and the first 15 seconds
were excluded from the results neglecting the behavior of
the examined protocols in the transient phase. The flows
were started together and we used WFQ (Weighted Fair
Queueing) as the scheduling method with equal weights (i.e.
50-50%) [28].

S1

S2

D1

D2

Dummynet
cB cB

c1

c2

Fig. 10. Dumbbell topology with two source-destination pairs

It is widely known that, when several TCP flows with
different round-trip times share the same bottleneck link, they
will not gain access to an equal portion of the available
bandwidth [29], [30]. This property is also called as RTT
unfairness and is caused by the AIMD (Additive Increase
Multiplicative Decrease) algorithm of TCP in the congestion
avoidance phase. TCP increases the congestion window by one
for each round-trip time and decreases it by half when a drop is
detected [31]. Therefore, flows with smaller round-trip times
increase their congestion windows more rapidly, and hence
they are able to reach higher sending rates. Because of the
issue mentioned above, it is essential to reveal and analyze the
fairness properties of a new transport protocol.

Figure 11 shows the goodput for two competing DFCP
and TCP Cubic flows where the first flow has a fixed RTT of
10 ms and the delay of the second flow is varied between 10

and 100 ms. We note that the results for TCP Reno were quite
the same as in case of TCP Cubic, thus for perspicuity, only the
latter was depicted. We can see in the figure that the bottleneck
link capacity is equally shared by the two TCP flows for RTT
values less than 20 ms. However, for RTTs greater than 20 ms
the goodput of the second flow starts to decrease, and as a
result, the first flow having lower RTT can attain a greater
portion of the available bandwidth, indicating the unfairness
behavior of TCP. In contrast, DFCP flows share the bottleneck
capacity in a fair way since our protocol is much less sensitive
to high delays compared to TCP. We note that the difference
can be observed in the goodput of DFCP and TCP flows for
RTT values less than 20 ms is due to the coding overhead.

10 20 30 40 50 60 70 80 90 100
0

200

400

600

800

1000

RTT [ms]

G
o

o
d

p
u

t
[M

b
it
/s

]

DFCP flow 1

DFCP flow 2

Cubic flow 1

Cubic flow 2

Fig. 11. Two competing flows with the one having a fixed RTT of 10 ms
and the other one having an RTT varied between 10 and 100 ms

10 20 30 40 50 60 70 80 90 100
0.5

0.6

0.7

0.8

0.9

1

RTT [ms]

F
a

ir
n

e
s
s
 i
n

d
e

x

DFCP

TCP Cubic

TCP Reno

Fig. 12. Intra-protocol fairness of DFCP and TCP variants

In Figure 12 the intra-protocol fairness behavior of DFCP
and TCP variants is shown for increasing round-trip time. We
used the Jain’s index as the fairness measure, which is one of
the most popular and widely accepted fairness indices in the
literature [31]. Jain’s index can be calculated by the following
formula:

JI =
(
∑n

i=1 xi)
2

n
∑n

i=1 x
2
i

where xi denotes the normalized throughput (or goodput) of
flow i and n is the number of flows. It returns a value between

7

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
60
61

8

0 and 1 where a higher value indicates a higher degree of
fairness. The figure confirms the observations taken before
(see Figure 11), namely, while different TCP versions become
more and more unfair for increasing round-trip time, DFCP
provides perfect fairness and it prefers none of the two flows
independently of their RTT values.

 0.1 0.2 0.5 1 2 5
0

50

100

150

200

250

300

350

400

Packet loss rate [%]

G
o

o
d

p
u

t
[M

b
it
/s

]

DFCP flow 1

DFCP flow 2

Cubic flow 1

Cubic flow 2

Reno flow 1

Reno flow 2

(a) Goodput for increasing packet loss rate

 0.1 0.2 0.5 1 2 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Packet loss rate [%]

L
in

k
 u

ti
liz

a
ti
o
n

DFCP

TCP Cubic

TCP Reno

(b) Link utilization for increasing packet loss rate

Fig. 13. Goodput and link utilization for two competing flows with equal
loss rate

Figures 13 and 14 illustrate the impact of packet loss rate
on the goodput and link utilization for two competing flows.
Figure 13 shows the case when packet loss rates are equal for
both flows and changed according to the horizontal axis, and
Figure 14 shows the case when they experienced different loss
rates. In the latter case, the first flow has a fixed loss rate set to
0.1%, and the second one having loss rate varied between 0.1
and 5% as shown in Figure 14. We note that in these scenarios
the redundancy parameter of DFCP was adjusted to packet
loss of 5%. In Figure 13a it can be observed that both TCP
Cubic and Reno flows do not share the available bandwidth
equally for lower values of loss rate, but the difference reduces
for increasing packet loss rate. Unlike different TCP variants
DFCP results in a fair allocation. On the one hand, each DFCP
flow achieves nearly the same goodput value, and it is almost
independent of the packet loss rate. Furthermore, looking at
Figure 13b one can see that both TCP versions can reach
only a poor link utilization in contrast to DFCP. Figure 14

 0.1 0.2 0.5 1 2 5
0

50

100

150

200

250

300

350

400

Packet loss rate [%]

G
o

o
d

p
u

t
[M

b
it
/s

]

DFCP flow 1

DFCP flow 2

Cubic flow 1

Cubic flow 2

Reno flow 1

Reno flow 2

(a) Goodput for increasing packet loss rate

 0.1 0.2 0.5 1 2 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Packet loss rate [%]

L
in

k
 u

ti
liz

a
ti
o
n

DFCP

TCP Cubic

TCP Reno

(b) Link utilization for increasing packet loss rate

Fig. 14. Goodput and link utilization for two competing flows with different
loss rates

shows that, while DFCP behaves similarly in the cases of equal
and different loss rates for the two flows, respectively, TCP
Cubic and Reno share the bottleneck link capacity in an unfair
way. We can conclude that, if optimal redundancy is properly
chosen, it is irrelevant to DFCP that loss rates are equal or
different for the competing flows, and what values they have.

VII. CONCLUSION

In this paper we investigated a recently proposed paradigm
for Future Internet architecture where an efficient erasure
coding scheme is applied instead of congestion control. In
order to carry out a detailed and also practical analysis a
novel protocol (DFCP) has been developed and implemented.
We derived tight bounds on packets required to be sent
using our rateless coding scheme with large message sizes in
case of two loss models and predefined QoS requirements.
Analytical investigations of related scenarios with realistic
ON-OFF sources were also provided with simulation com-
parisons to TCP versions. Furthermore, we presented our
first testbed performance measurement results by comparing
DFCP to current TCP versions. We showed that the goodput
performance of our protocol is significantly better than in case
of different TCP versions in a wide range of packet loss rates

8

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
60
61

9

and round-trip delays. Moreover, it turned out that DFCP can
work even in environments with high loss rate where TCP is
unable to operate. Another important observation is that, with
appropriate settings, the performance of DFCP is independent
of the loss and delay parameters of the network. The results
demonstrate the great potential of the new paradigm and our
future research will address the upcoming challenges such as
scalability and the detailed performance evaluation of DFCP
on more complex network topologies.

ACKNOWLEDGMENT

This work was partially supported by the European
Union and the European Social Fund through project FIRST
(grant no. TÁMOP-4.2.2.C-11/1/KONV-2012-0001) organized
by ETIK Debrecen. The research also received support from
the OTKA-KTIA grant no. CNK77802 and the High Speed
Networks Laboratory (HSNLab) at Budapest University of
Technology and Economics.

REFERENCES

[1] A. Afanasyev, N. Tilley, P. Reiher, L. Kleinrock, “Host-to-Host Conges-
tion Control for TCP”, IEEE Communications Surveys and Tutorials,
vol. 12, no. 3, pp. 304–342, 2010.

[2] Y.-T. Li, D. Leith, R. N. Shorten, “Experimental Evaluation of TCP
Protocols for High-Speed Networks”, IEEE/ACM Transactions on Net-
working, vol. 15, no. 5, pp. 1109–1122, 2007.

[3] S. Molnár, B. Sonkoly, T. A. Trinh, “A Comprehensive TCP Fairness
Analysis in High Speed Networks”, Computer Communications, Else-
vier, vol. 32, no. 13–14, pp. 1460–1484, 2009.

[4] D. Clark, S. Shenker, A. Falk, “GENI Research Plan (Version 4.5)”,
April 23, 2007.

[5] J. K. Sundararajan, D. Shah, M. Médard, S. Jakubczak, M. Mitzen-
macher, J. Barros, “Network Coding Meets TCP: Theory and Imple-
mentation”, Proceedings of the IEEE, vol. 99, no. 3, pp. 490–512, 2011.

[6] B. Raghavan, A. C. Snoeren, “Decongestion Control”, Proceedings of
the 5th ACM Workshop on Hot Topics in Networks, pp. 61–66, Irvine,
CA, USA, 2006.

[7] T. Bonald, M. Feuillet, A. Proutiere, “Is the ‘Law of the Jungle’
Sustainable for the Internet?”, Proceedings of the 28th IEEE Conference
on Computer Communications, pp. 28–36, Rio de Janeiro, Brazil, 2009.

[8] L. López, A. Fernández, V. Cholvi, “A Game Theoretic Comparison
of TCP and Digital Fountain Based Protocols”, Computer Networks,
Elsevier, vol. 51, no. 12, pp. 3413–3426, 2007.

[9] A. Botos, Z. A. Polgar, V. Bota, “Analysis of a Transport Protocol Based
on Rateless Erasure Correcting Codes”, Proceedings of the 2010 IEEE
International Conference on Intelligent Computer Communication and
Processing, vol. 1, pp. 465–471, Cluj-Napoca, Romania, 2010.

[10] D. Kumar, T. Chahed, E. Altman, “Analysis of a Fountain Codes
Based Transport in an 802.11 WLAN Cell”, Proceedings of the 21st
International Teletraffic Congress, pp. 1–8, Paris, France, 2009.

[11] M. Luby, “LT Codes”, Proceedings of the 43rd IEEE Symposium
on Foundations of Computer Science, pp. 271–280, Vancouver, BC,
Canada, 2002.

[12] A. Shokrollahi, “Raptor Codes”, IEEE Transactions on Information
Theory, vol. 52, no. 6, pp. 2551–2567, 2006.

[13] M. Shreedhar, G. Varghese, “Efficient Fair Queuing Using Deficit
Round-Robin”, IEEE/ACM Transactions on Networking, vol. 4, no. 3,
pp. 375–385, 1996.

[14] A. Kortebi, L. Muscariello, S. Oueslati, J. Roberts, “On the Scalability
of Fair Queuing”, Proceedings of the 3rd ACM Workshop on Hot Topics
in Networks, pp. 1–6, San Diego, CA, USA, 2004.

[15] A. Kortebi, L. Muscariello, S. Oueslati, J. Roberts, “Evaluating the
Number of Active Flows in a Scheduler Realizing Fair Statistical
Bandwidth Sharing”, Proceedings of the ACM SIGMETRICS 2005
International Conference on Measurement and Modeling of Computer
Systems, pp. 217–228, Banff, AB, Canada, 2005.

[16] D. J. C. MacKay, “Fountain Codes”, IEE Proceedings – Communica-
tions, vol. 152, no. 6, pp. 1062–1068, 2005.

[17] G. Haßlinger, O. Hohlfeld, “The Gilbert-Elliott Model for Packet Loss
in Real Time Services on the Internet”, Proceedings of the 14th GI/ITG
Conference on Measurement, Modeling and Evaluation of Computer
and Communication Systems, pp. 269–286, Dortmund, Germany, 2008.

[18] ns-2 Network Simulator, http://www.isi.edu/nsnam/ns/
[19] S. Molnár, Z. Móczár, B. Sonkoly, Sz. Solymos, T. Csicsics, “Design

and Performance Evaluation of the Digital Fountain based Communi-
cation Protocol”, Technical Report, 2012.
http://hsnlab.tmit.bme.hu/∼molnar/files/DFCPTechReport.pdf

[20] J. Postel, “Transmission Control Protocol”, RFC 793, IETF, 1981.
[21] A. Shokrollahi, “LDPC Codes: An Introduction”, Technical Report,

Digital Fountain Inc., 2003.
[22] Dummynet Network Emulator, http://info.iet.unipi.it/∼luigi/dummynet/
[23] S. Kaune, K. Pussep, C. Leng, A. Kovacevic, G. Tyson, R. Steinmetz,

“Modelling the Internet Delay Space Based on Geographical Loca-
tions”, Proceedings of the 17th Euromicro International Conference
on Parallel, Distributed and Network-based Processing, pp. 301–310,
Weimar, Germany, 2009.

[24] N. Hu, P. Steenkiste, “Improving TCP Startup Performance using Active
Measurements: Algorithm and Evaluation”, Proceedings of the 11th
IEEE International Conference on Network Protocols, pp. 107–118,
Atlanta, GA, USA, 2003.

[25] D. Cavendish, K. Kumazoe, M. Tsuru, Y. Oie, M. Gerla, “CapStart:
An Adaptive TCP Slow Start for High Speed Networks”, Proceedings
of the 1st International Conference on Evolving Internet”, pp. 15–20,
Cannes, France, 2009.

[26] S. Molnár, Z. Móczár, “Three-dimensional Characterization of Internet
Flows”, Proceedings of the 2011 IEEE International Conference on
Communications, pp. 1–6, Kyoto, Japan, 2011.

[27] HTTP Archive, http://www.httparchive.org/interesting.php
[28] H. Zhang, “Service Disciplines for Guaranteed Performance Service in

Packet-Switching Networks”, Proceedings of the IEEE, vol. 83, no. 10,
pp. 1374–1396, 1995.

[29] T. V. Lakshman, U. Madhow, “The Performance of TCP/IP for
Networks with High Bandwidth-Delay Products and Random Loss”,
IEEE/ACM Transactions on Networking, vol. 5, no. 3, pp. 336–350,
1997.

[30] T. H. Henderson, E. Sahouria, S. McCanne, R. H. Katz, “On Improving
the Fairness of TCP Congestion Avoidance”, Proceedings of the IEEE
GLOBECOM 1998 International Conference, vol. 1, pp. 539–544,
Sydney, Australia, 1998.

[31] D.-M. Chiu, R. Jain, “Analysis of the Increase and Decrease Algo-
rithms for Congestion Avoidance in Computer Networks”, Journal of
Computer Networks and ISDN Systems, vol. 17, no. 1, pp. 1–14, 1989.

9

