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Abstract

The fractal nature of Internet traffic has been observed
by several measurements and statistical studies. In this pa-
per a new monofractal stochastic process called Limit of the
Integrated Superposition of Diffusion processes with Lin-
ear differential Generator (LISDLG) is presented, which ef-
fectively characterizes network traffic monofractality. Sev-
eral properties of the LISDLG model are presented includ-
ing covariance structure, cumulants, spectrum and bispec-
trum. The model captures high-order statistics by means
of the cumulants. The relevance and validation of the pro-
posed model are demonstrated by application studies for
measured Internet traffic.

1 Introduction

A number of studies in the last decade confirmed the
presence of scaling behavior of network traffic [14, 24, 4,
16]. Significant research was carried out to obtain a good
understanding of these observed fractal-like phenomena.
Several studies showed the presence of monofractal scal-
ing at large-time scales (from a few hundreds of millisec-
onds and above) which can be modeled by self-similar mod-
els [14, 12, 4, 5, 9]. However, some studies indicate that
in small time scales a more complex scaling property can
be observed which is consistent with multifractal scaling
[4, 5, 9]. Some recent studies argue that this multifractal
scaling may be present even at large-time scales [13].

The analysis, characterization and modeling of
monofractal scaling captured by self-similar models (e.g.
on/off models, Cox’s M/G/1 models, Fractional Brownian
Motion models, FARIMA models, etc.) have been well
established in teletraffic research during the previous
decade [24]. However, the physical explanation of these
phenomena still represents open research issues. Some
studies show that the on/off dynamics of traffic flows with

heavy-tailed file sizes can result in self-similar behavior
[3, 18]. Other studies argue that the TCP can adapt to
self-similar fluctuations and propagate it to other parts
of the Internet where there is no physical reason for its
generation [22].

In contrast to self-similar modeling the observed fractal
phenomena are still poorly understood. It becomes clear
that self-similar traffic models which capture first and sec-
ond order statistical characteristics result in an incomplete
description of network traffic. Higher-order statistical char-
acteristics should also be taken into account for an accurate
traffic model. This means that multifractal models seem
to be more relevant in the case of traffic with significant
non-trivial high-order statistics. However, if we build these
additional information into our traffic models we might in-
crease the complexity of the model, so these models are rec-
ommended from a practical point of view only in the cases
where there are significant effects of high-order statistics on
the performance metrics. These complex models can also
be useful if we can get a deeper understanding of network
traffic dynamics by using these multifractal models.

The physical explanations of multifractal scaling prop-
erties which appear in network traffic are rather incomplete
at this time. Recent studies explain this behavior by observ-
ing that networks appear to act as conservative cascades [4].
The motivation of this conjecture is based on the fragmen-
tation process of TCP/IP protocol hierarchy. Other explana-
tions say that the multifractality at small time scales is due
to the TCP flow control [6]. Other studies argue that the
interactions between network elements resulting in a com-
plex buffering and multiplexing effects are responsible for
the multifractal behaviour [15]

The complex fractal nature of Internet traffic has been
observed by several measurements and statistical studies
starting with Taqqu et al. [23] and followed by a number
of studies [4, 5, 9, 15, 13]. However, so far only a few rel-
evant multifractal models have been developed and these
are based on constructing a multiplicative process structure



[4, 7].

In this paper a new monofractal model is presented
which is not self-similar and has a more powerful modeling
ability to capture scaling behavior compared to self-similar
models. We argue that our monofractal model is flexible
enough to accurately capture the fractal scaling of network
traffic and no need to use more complex multifractal mod-
els. In this model we fit the cumulants of the measured traf-
fic to the cumulants of the process generated by the model
and show that the resulted bispectrum of the traffic can be
accuratelly captured.

The paper is organized as follows. Our measurements
are described in Section 2. We present the mathematical
background of cumulants, high-order spectra, mono- and
multifractality in Section 3. Our proposed new monofractal
model with its properties is described in Section 4. The
application of the model for our measured Internet traffic is
presented in Section 5. Finally, the paper is concluded by
Section 6 with a summary of our main results.

2 Traffic Measurements

Our measurements were gathered in a university campus
network shown in Figure 1. As a part of the University Net-
work a number of LANs located at the Informatics Building
of the Budapest University of Technology and Economics
(BUTE) are connected to the outside world by a 100MB
FDDI and a 155MB ATM link via the University backbone
network. In the figure DG denotes a Department Group and
each DG is built on an Ethernet based LAN and consists
of about 100 workstations. These workstations belong to
staff members, PhD students, and student laboratories us-
ing a variety of operating systems and network interfaces
ranging from 10Base2 (BNC) through 100BaseT (UTP) to
100VGAnyLAN. Connections between DGs and between a
DG and the outer world are guaranteed by the ATM back-
bone. Ethernet frames are transmitted over the ATM back-
bone using LAN emulation. Traffic generated by LANs and
going to the global Internet are multiplexed by the FORE
ES-2810 ATM switch and passed to the router.

Our measurements are based on some outstanding fea-
tures of the FORE ES-2810 instrument. This ATM switch
has the ability to make an on-line monitoring of packet
flows arriving at its input ports. We chose the most loaded
link for measurements. The switch was configured to copy
the chosen traffic flow to another port which was routed to
a Red Hat Linux workstation configured only for our mea-
surement goals. All packets were captured by thetcpdump
1 utility. We carried out our measurements continuously
during a nearly two week period from 4 to 16 November
2000.

1Tcpdump is available athttp://www-nrg.ee.lbl.gov/
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Figure 1. The configuration of the traffic mea-
surements

3 Preliminaries

Here we give a brief account of the analysis of data in
frequency domain.

3.1 Cumulants, spectra and estimation of bispec-
trum

For properties of cumulants and higher order spectra
we refer to the books [1], [17] and [20]. If a strictly sta-
tionary processY (t) has third order moments, then not
only the covariancesCov(Y (t); Y (t + s)) are invariant
with respect to the time-shift but the third order cumu-
lantsCum(Y (t); Y (t + r); Y (t + s)) as well. The third
order cumulants are just the third order central moments,
i.e.Cum(Y (t); Y (t+ r); Y (t+ s)) =
E (Y (t)� EY (t)) (Y (t+ r)� EY (t+ r))
(Y (t+ s)� EY (t+ s)) but in general they are the coef-
ficients of the Taylor expansion of the log-characterisitic
function. The cumulants of orderm can be expressed
by the central moments of order less than or equal with
m. For instant the first six cumulants are given by the
C`(Y ) $ E (Y � EY )

`, i.e., the central moments of order



`; as

Cum1(Y ) = EY (1)

Cum2(Y ) = C2(Y )

Cum3(Y ) = C3(Y )

Cum4(Y ) = C4(Y )� 3C2(Y )

Cum5(Y ) = C5(Y )� 10C2(Y )C3(Y )

Cum6(Y ) = C6(Y )� 15C4(Y )C2(Y )� 10C3(Y )2

+ 30C2(Y )3:

It is convenient to use the notationsz = ei!; zk = ei!k :

The Fourier transform of the third order cumulantsS 3;Y is
called thebispectrum,

S3;Y (z1; z2) =
1X

r;s=�1

Cum(Y (0); Y (r); Y (s))z�r1 z�s2 :

While the spectrumS2 is real and nonnegative the bispec-
trumS3;Y is complex valued and it has the following prop-
erties of symmetry,

S3;Y (z1; z2) = S3;Y (z2; z1) = S3;Y (z1; z3) =

S3;Y (z3; z1) = S3;Y (z3; z2) = S3;Y (z2; z3) =

S�3;Y
�
z�11 ; z�12

�
;

wherez3 = (z1z2)
�1, and � denotes complex conjuga-

tion. These equations imply that there are twelve triangles
of frequencies in the plane, each of which can be consid-
ered as the basic domain for the bispectrum because it is
completely specified over the entire plane if it is determined
over one of the twelve triangles. We shall fix the triangle
with vertices(0; 0) ; (�; 0) ; (2�=3; 2�=3) as the basic do-
main for the bispectrum.

3.2 Self-similarity and Fractality

A wide variety of physical systems including data net-
works traffic exhibit fractal properties. We are interested in
fractal data, i.e. data ”look the same across of wide range
of scales”, at least in some regard. The notion of fractals,
in the sense that it has similarity on all scales is translated
into the stochastic analysis by the definition ofSelf-Similar
processes with Stationary Increments. We shall denote it by
H-SSSI. The stochastic processY (t) is calledH-SSSI, if it
has stationary increments and for alla > 0 real numbers

Y (at)
d
= aHY (t) ;

where
d
= means the equality of the finite dimensional distri-

butions. The parameterH is referred to as Hurst parameter
or Hurst exponent. An example is the Fractional Brownian
Motion (FBM) B(H)(t), where the parameterH 2 (0; 1).

Suppose that themth order cumulant,cumm (Y (t)) exists.
Then it follows form the self-similarity that

cumm (Y (t)) = tmH cumm (Y (1)) ;

i.e. log jcumm (Y (t))j scales linearly with respect to
log (t) with coefficientmH: This property is referred to
usually as monofractality, which comes down to the incre-
ments as well. A stationary processX(k) is multifractal
if

log
���cumm

�
X(n)(k)

���� = � (m) log (n) + c (m) ; (2)

where� (m) is some (possible nonlinear) function ofm and
the aggregated seriesX (n)(k) is defined by

X(n)(k) =
1

n

n�1X
j=0

X(kn� j); k 2 N:

In general the subclass of multifractal processes for which
� (m) is linear will be calledmonofractal. If X(k) is the
series of increments of aH-SSSI process then� (m) =
m [H � 1] i.e. it is linear according tom and the pro-
cess is monofractal. Another particular case of multifrac-
tality is when� (m) is constant. In that case it can not
be increments of anyH-SSSIprocess threfore the class of
monofractal processes are wider then increments ofH-SSSI

processes. An example for such a monofractal process is
the dilatative stable process, see [10] for details. Note that
Taqqu [19] considers absolute moments instead of cumu-
lants for the aggregated processes. As far as monofractals
are concerned, the two definitions are equivalent. We pre-
fer cumulants, because the scaling properties should not
change with additive constants and summing up indepen-
dent processes.

A number of studies showed that Poisson-like traf-
fic models do not account for time dependencies ob-
served at multiple time scales in network traffic, see
[24]. This dependence structure in the time series is ex-
hibited by the property that the variance of the aggre-
gated seriesvar(X (n)(k)) converge to zero slower than
the rate n�1. This property is usually calledLong-
Range Dependence (LRD) of network traffic. Letrk $
cov (X(i); X(i+ k)) =�2 denote the autocorrelation func-
tion. Recall that a stationary seriesX(k) is Long-Range
Dependent (LRD) if

rk = L(k)k2H�2; k !1;

whereL(k) is slowly varying at1,
i.e., lim

x!1
(L(tx)=L(x)) = 1, for all t > 0.

It was observed that traffic on Internet networks exhibits
the same characteristics regardless of the number of simul-
taneous sessions on a given physical link. At the same time
the following characteristics were pointed out, see [15].



� Many signals possess significant LRD, but display
short term correlations and behavior inconsistent with
strict self-similarity.

� In many signals, the scaling behavior of moments
as the signal is aggregated is a nontrivial (nonlinear)
function of the moment order.

� Many signals have increments that are inherently pos-
itive and hence non-Gaussian.

There is an additional property which is motivated by
our experimental study of ATM traces, see [21], providing
strong evidence of presence of Gamma distribution and real
valued bispectrum.

� Marginal distribution of many signals of ATM traces
is close to Gamma.

� Many signals of ATM traces have real valued bispec-
trum

Several papers address the question of a more accu-
rate description of Internet traffic, a broader model class,
namely that of multifractal processes, has to be considered,
see [19]. In our paper we propose a particular multifractal
process, which is in the subclass of monofractal processes
but not in the subclass of self-similar processes for network
traffic description.

4 A Monofractal Model

The basic idea of the model comes from a particular con-
struction of a fractal process as a limit, see [10] for detailes.
The construction starts with the basic process of a superpo-
sition. It is calledDiffusion with Linear differential Genera-
tor (DLG). It is the solution of the diffusion-type stochastic
differential equation

dR(t) = (�+ 2�R(t)) dt+ 2�
p
R(t)dB(t) (3)

where� > 0, � 2 R, � > 0 are the parameters. The
solutionR(t) of the stochastic differential equation (3) is
treated under the name: Diffusion process with a Linear
differential Generator (DLG process). Note here that the
DLG process has recently been used successfully for mod-
eling interest rates, because it is one of the simplest models
avoiding negative values [2]. It is referred to as CIR (Cox-
Ingersoll-Ross) process and in the special case� = 0 it
would be called the squared Bessel process. Because of
the form (3) it is called square-root diffusion, too. The
results obtained by Watanabe and his coauthors show that
there is a strong connection between the DLG process, in-
finitely decomposable diffusion processes and continuous-
state branching processes [11]. It is also pointed out that the

finite-dimensional distribution of the DLG process is multi-
variate�. The first step of the construction is a triangular ar-
ray of random coefficient DLG processes, i.e. a sequence of
series of independent stationary DLG processes with prop-
erly chosen random parameters. The row sums converge in
a certain sense to a limit processY�, calledSuperposition
of DLG processes (SDLG), i.e.,

Zn $

nX
k=1

Rn;k �!
n!1

Y�:

The SDLG process also has a� finite-dimensional distribu-
tion. It is stationary, it has a real-valued positive bispectrum
and it is LRD. The main result is the existence of theLimit
of Integrated SDLG processes, referred to as the LISDLG
process.

J(t) $ lim
�!0

tZ

0

(Y�(s)� EY�) ds;

The fact is that there exists an a.s. continuous processJ in
C[0; T ] with the following basic properties:

� The LISDLG processJ(t) has cumulants

cum1(J(t)) = 0;

and
cumm(J(t)) =

(m�1)!
21�2H

1�H
c0�

2m�2
0

Z

[0;1]m

D�0(s)
2(H�1)ds tm+2(H�1);

for m � 2; whereH 2 (1=2; 1),

D� (t) $ jti1 � t1j+ jti2 � ti1 j � � �+
��t1 � tim�1

�� ;
� = (i1; : : : ; im�1) 2Perm(2; 3; : : : ;m); �0 =
(2; 3; : : : ;m): Form = 1; D� (t) $ 0.

� The LISDLG processJ(t) has the same covariance
structure as that of the Fractional Brownian Motion
(FBM). Namely, fort1; t2 > 0,

cov(J(t1); J(t2)) = const.
�
t2H1 + t2H2 � jt2 � t1j

2H
�
:

� The discrete time increment process ofJ(t)

�J(t) = J(t+ 1)� J(t); t = 0; 1; 2; : : : ;

is stationary and LRD with long-range parameterH .

� The 2 � mth order joint cumulants of the LISDLG
processJ(t) are

cum(J(t1); : : : ; J(tm)) =



const.�2m0 (m� 1)! sym
t

0
@

tZ

0

D�0(s)
2(H�1)ds

1
A :

� The increments of the LISDLG processJ(t) are sta-
tionary and monofractal, i.e.,� (m) does not depend
on the order of the cumulants, because

cumm

�
�J (n)(k)

�
= k1(m)n2H�2; (4)

where

k1(m) = (m�1)!
21�2H

1�H
c0�

2m�2
0

Z

[0;1]m

D�0(s)
2(H�1)ds:

(5)
Note here that the cumulants above show that the pro-
cess is non-Gaussian but more Gamma like.

� The spectrum of the process�J(t) exists and it is
given by

S2;�J(!) = (6)

�(2H � 1)

2�(1�H)
sin(H�)c0�

2
0

��ei! � 1
��2 1X

k=�1

���!(k)
����1�2H ;

for ! 2 (0; 2�), where!(k)
$ ! + 2k�, k 2 Z, the

same as the spectrum of the Discrete Fractional Gaus-
sian Noise (DFGN). See [8] for the latter spectrum.

� The bispectrum of the process�J(t) exists and it is
real valued and positive, namely,

S3;�J

�
!(2)

�
=

�9ic0�
4
0

2� sin(H�)�(3� 2H)

3Y
j=1

(1�ei!j )

(7)

sym�
!
(k;`)

(3)

�

1X
k=�1

1X
`=�1

2
64

���!(k)
1

���2(1�H)

!
(k)
1

�
!
(`)
2 !

(k+`)
3

�2
3
75 ;

where!j 2 (0; 2�), !(k)
j $ !j+2k�, k 2 Z,j = 1; 2

and!(k)
1 + !

(k)
2 + !

(k)
3 = 0: The consequence of the

real valued bispectrum is that the process can not be
linear (see [10] for details). It means that the process
is not only non-Gaussian but it is also non-linear.

The discrete time increment process�J(t) is applied
for the modeling of different type of network traffic. If we
compare our models to other fractal models (e.g. [4] or
[7]) the main difference is that those models based on con-
structing multiplicative processes. In contrast, our model is

a limit process obtained by the limit of the integrated su-
perposition of diffusion processes with linear differencial
generator. Moreover, we use cumulants instead of absolute
moments because in this case the scaling properties should
not change with additive constants and with summing up of
independent copies of a process. The second advantage of
using cumulants is that high-order frequency domain inves-
tigation can be directly applicable. Since our model is based
on the increments of a continuous-state branching process
with immigration and superposition of these, we can use
well-known classical stochastic analysis and computation
methods, which are also advantages of the model.

5 Application to Network Traffic

In this section our new monofractal model LISDLG is
applied for the measured Internet traffic described in Sec-
tion 2. The measured data (measured TCP data in bytes
in 100ms time-unit) are considered as the increments of a
LISDLG processJ(t); i.e. �J(t). The intensity diagram
of the measured trace is depicted in Figure 2.
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Figure 2. Intensity of the traffic

The parameters of the model are computed by fitting
the empirical cumulants to the theoretical cumulants of the
model. First, the empirical moments are estimated from
the measured data. The empirical cumulants are calculated
from the empirical moments using formula (1). For a LIS-
DLG process by taking the logarithm in (4) we have

log
���cumm

�
�J (n)(k)

���� = 2 (H � 1) log (n)+ log k1(m)

(8)
For each cumulant of orderm, (8) means that the depen-
dence is linear and the lines must be parallel, each with
slope 2(H � 1). Now, for eachm the common slope
parameter is2(H � 1) and the constants arelog k1(m),
m = 2; : : : ; 6. Before we use equations (8) simultaneously
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Figure 3. Theoretical (continuous lines) and
estimated cumulants (discrete points)

for all m fit linear regression individually whenm is fixed,
i.e., regresslog

��cumm

�
�J (n)(k)

��� onlog (n). The results
are the estimations for2 (H � 1) ; log k1(m) and the stan-
dard deviations of the residual in the regressionv (m). Now
the slope and the constants are estimated by weighted linear
regression from the linear model with equations (8), where
the weights are the inverse of the standard deviations, i.e.,
consider the linear model

log
��cumm

�
�J (n)(k)

���
v (m)

=

2 (H � 1)
log (n)

v (m)
+

log k1(m)

v (m)
+ u;

for m = 2; : : : ; 6; where the variance ofu does not de-
pend onm: The estimated constants of formula (5) arec 0 =
1:0445e+ 003; �20 = 1:9241e+ 005 andH = 0:9280.
The plot of the theoretical cumulants by (4) and the esti-
mated one by (1) is plotted in Figure 3.

Both the estimated spectrum and the estimated bispec-
trum are calculated as described in Section 3.1. The the-
oretical spectrum and the theoretical bispectrum are com-
puted with the estimated parameters by formula (6) and (7),
respectively. The spectra are shown in Figure 4-7. Note
that the imaginary part of the theoretical bispectrum is zero
and therefore the imaginary part of the estimated bispec-
trum is fluctuating around zero with a small amplitude, see
Figure 5.The real part of the theoretical bispectrum and the
real part of the estimated bispectrum are plotted in Figure 6
and in Figure 7, respectively.

As the results show the model accurately captures the
characteristics of the traffic in both spectrum and bispec-
trum domain. The well-known1=f noise phenomenon
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Figure 4. The estimated and the theoretical
spectrum.
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Figure 5. The imaginary part of the estimated
bispectrum.

which is a manifestation of long-range dependence in fre-
quency domain can also be observed in both spectrum do-
main (around zero) and bispectrum domain (around (0,0)),
see Figure 4, Figure 6 and Figure 7.

6 Conclusions

In this paper a new monofractal stochastic process called
Limit of the Integrated Superposition of Diffusion pro-
cesses with Linear differential Generator (LISDLG) is ap-
plied. It is demonstrated that the model can effectively char-
acterize the monofractality of network traffic. The main
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properties of the LISDLG model are shown including co-
variance structure, cumulants, spectrum and bispectrum.
The model captures high-order statistics by the cumulants
which allow us the analysis in high-order frequency do-
main. The relevance and validation of the proposed model
are demonstrated by an application study for measured In-
ternet traffic.

Our future work addresses the further analysis and mod-
eling in high-order frequency domain in order to get a
deeper understanding of network traffic monofractality.
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