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Abstract

Over the past decades, the congestion control algorithm of the Transmission Control Pro-
tocol (TCP) has played a key role in providing reliable communication between Internet
hosts. Since the deployment of TCP, networks have undergone a significant change due to
the emerging technologies, the diversity of applications and the growing number of users.
This process has led to a myriad of TCP variants intended to achieve better performance
under various network conditions. However, the long research history of TCP suggests
that its incremental development and continuous optimization for specific target environ-
ments cannot keep up with the current trends in networking, hence there is an urgent
need for novel data transport methods based on fundamentally different principles.

This dissertation addresses the challenging task of building an Internet architecture
without the functionality of congestion control while still ensuring reliable end-to-end
communication. As a possible solution, a new data transmission paradigm built upon dig-
ital fountain codes is presented and investigated. The main component of our concept is
a transport mechanism called Digital Fountain based Communication Protocol (DFCP),
which runs on the top of a network architecture where fairness is managed at the routers
instead of endpoints. In the first part of the dissertation, the design and operating princi-
ples are introduced together with the discussion of the potential benefits. The second part
presents a comprehensive performance analysis of DFCP and TCP carried out in a multi-
platform evaluation framework using testbed measurements and packet-level simulations.
Since today’s networks are highly variable, the third part is devoted to the characteriza-
tion of the two transfer paradigms under dynamic traffic conditions. Finally, a bandwidth
estimation method is proposed for mobile networks, which can estimate the available
bandwidth by exploiting the user-generated downlink network traffic with negligible ad-
ditional load. Overall, our results point out that the digital fountain based approach is an
efficient and promising way of reliable data transfer well-suited to a broad range of future
applications.

ii



Acknowledgments

First of all, I would like to express my deepest gratitude to my supervisor, Sándor Molnár,
for his guidance, support and encouragement throughout my PhD studies that made it
possible to become a researcher. He taught me the way of thinking and how to present
scientific results, as well as shared a lot of knowledge and personal experience.

I wish to thank Balázs Sonkoly for his valuable advice, ideas and for the assistance
in coping with technical issues. Thanks are also due to Szilárd Solymos for the thorough
development, and to all of my undergraduate students who contributed to the results.
In addition, I am indebted to Péter Megyesi for the common work we have done in the
framework of our joint research projects.

I am also thankful to the colleagues at Ericsson TrafficLab including László Kovács,
András Veres, Tamás Borsos, Sándor Rácz, Géza Szabó and Attila Mihály for research
cooperations, which gave me the opportunity to deal with industry-relevant topics. My
special thanks go to Szilveszter Nádas for the exciting and useful discussions on the field
of congestion control and resource management.

My work was done in the High Speed Networks Laboratory (HSNLab) hosted by the
Department of Telecommunications and Media Informatics (TMIT) at the Budapest Uni-
versity of Technology and Economics (BME). I say thanks to the head of our laboratory,
Attila Vidács, for the financial support of my research that enabled me to attend several
leading international conferences.

Last but not least, I would like to thank my whole family for their continuous support
during my student years. I am especially grateful to my wife, Réka, her unconditional love
and patience provided me a stable background to carry out my research.

iii



Contents

1 Introduction 1

1.1 Motivation and Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Research Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Structure of the Dissertation . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 The Evolution of Transport Protocols 5

2.1 Transmission Control Protocol . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1.1 Loss-based Versions . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1.2 Delay-based Versions . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.1.3 Hybrid Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2 Alternative Proposals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.3 Present and Future . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3 A Digital Fountain Based Network Communication Paradigm 15

3.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.1.1 Digital Fountain Codes . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.1.2 Advanced Error Correction in Data Transport . . . . . . . . . . . . 18

3.2 Networking without Congestion Control . . . . . . . . . . . . . . . . . . . 19

3.2.1 Operating Principles . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.2.2 Rate Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.2.3 Potential Benefits . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.3 DFCP: Fountain Coding in the Transport Layer . . . . . . . . . . . . . . . 22

3.3.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.3.2 Protocol Header . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.3.3 Connection Establishment and Signaling . . . . . . . . . . . . . . . 24

3.3.4 Coding Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.3.5 Data Transfer and Flow Control . . . . . . . . . . . . . . . . . . . . 28

iv



Contents

3.3.6 Main Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.4 Evaluation Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.4.1 Performance Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.4.2 Network Topologies and Scenarios . . . . . . . . . . . . . . . . . . . 32
3.4.3 Test Environments . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.5 Fundamental Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.5.1 Operation under Different Network Conditions . . . . . . . . . . . . 37
3.5.2 Effect of Protocol-Specific Parameters . . . . . . . . . . . . . . . . . 37
3.5.3 Analysis of the Dead Packet Phenomenon . . . . . . . . . . . . . . 38

3.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4 Fountain Coding versus Congestion Control: A Comprehensive Perfor-

mance Evaluation Study 42

4.1 Steady-State Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
4.1.1 Goodput Performance . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.1.2 Buffer Demand and Occupancy . . . . . . . . . . . . . . . . . . . . 47
4.1.3 Flow Transfer Efficiency . . . . . . . . . . . . . . . . . . . . . . . . 48
4.1.4 Fairness Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
4.1.5 Scalability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
4.1.6 Network Utilization . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.2 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

5 Characterization of Transport Mechanisms under Dynamic Traffic Con-

ditions 58

5.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
5.2 Dynamic Behavior Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 60

5.2.1 Stability and Convergence . . . . . . . . . . . . . . . . . . . . . . . 60
5.2.2 Responsiveness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
5.2.3 Saturation Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

5.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

6 Available Bandwidth Estimation in Mobile Networks 69

6.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
6.2 Bandwidth Estimation Scheme . . . . . . . . . . . . . . . . . . . . . . . . . 72

6.2.1 Basic Idea . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
6.2.2 Algorithm Description . . . . . . . . . . . . . . . . . . . . . . . . . 73

v



Contents

6.3 Evaluation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
6.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

7 Summary 81

7.1 Main Contributions and Conclusions . . . . . . . . . . . . . . . . . . . . . 81
7.2 Possible Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
7.3 Open Issues and Future Directions . . . . . . . . . . . . . . . . . . . . . . 84

Bibliography 86

Publications 95

vi



List of Figures

2.1 Slow-start and congestion avoidance algorithms . . . . . . . . . . . . . . . 8

2.2 The congestion window dynamics of TCP Reno . . . . . . . . . . . . . . . 9

2.3 The window growth function of TCP Cubic . . . . . . . . . . . . . . . . . 9

3.1 The digital fountain principle . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.2 The evolution of digital fountain codes . . . . . . . . . . . . . . . . . . . . 17

3.3 The decoding failure probability of different Raptor codes . . . . . . . . . . 18

3.4 The digital fountain based communication architecture . . . . . . . . . . . 20

3.5 Protocol header structure . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.6 The connection establishment and termination processes . . . . . . . . . . 24

3.7 The flow chart of the coding and data transfer process . . . . . . . . . . . 26

3.8 The encoding phases of message blocks . . . . . . . . . . . . . . . . . . . . 26

3.9 Example of an LDPC code . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.10 The concept of LT coding . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.11 Dumbbell topology with N source-destination pairs . . . . . . . . . . . . . 33

3.12 Parking lot topology with three source-destination pairs . . . . . . . . . . . 33

3.13 The DFCP-compatible integrated simulation framework . . . . . . . . . . . 36

3.14 The impact of the redundancy parameter . . . . . . . . . . . . . . . . . . . 38

3.15 The impact of window size on the goodput performance . . . . . . . . . . . 38

3.16 Packet drop rate at the bottleneck router using SDN-driven rate control
(simulation) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.1 The performance of DFCP and TCPs in a lossy environment (simulation) . 43

4.2 Goodput performance of a single flow for varying RTT (simulation) . . . . 44

4.3 Bandwidth sharing of two competing flows (testbed) . . . . . . . . . . . . . 44

4.4 Goodput for two competing flows with equal and different packet loss rates
(testbed) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

vii



List of Figures

4.5 Bandwidth sharing in a multi-bottleneck network with varying delay (testbed) 46

4.6 Goodput performance in a multi-bottleneck network with varying packet
loss rate (testbed) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.7 The impact of buffer size on the performance of DFCP and TCPs (simulation) 47

4.8 Buffer occupancy (simulation) . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.9 Flow completion time for different packet loss rates (testbed) . . . . . . . . 49

4.10 Flow completion time for different round-trip times (testbed) . . . . . . . . 49

4.11 Flow completion time for two competing flows with the one having a fixed
RTT of 10 ms and the other one having an RTT varied between 10 and
100 ms (testbed) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.12 The general concept of per-flow fair scheduling . . . . . . . . . . . . . . . . 51

4.13 Bandwidth sharing with different queuing mechanisms (simulation) . . . . 52

4.14 Intra-protocol fairness with WFQ, DRR and FIFO schedulers (simulation) 53

4.15 Fairness for increasing number of competing flows (simulation) . . . . . . . 54

4.16 CDF of network utilization for different buffer sizes (simulation) . . . . . . 55

5.1 Network architectures relying on different transport mechanisms . . . . . . 59

5.2 Dynamics of concurrent flows started with different delays and their con-
vergence to the fair share . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

5.3 Goodput ratio in the function of time for two delayed flows . . . . . . . . . 61

5.4 Responsiveness of per-flow (top) and aggregate (middle) traffic, and the
adaptation error (bottom) for DFA with a buffer size of 100 packets . . . . 63

5.5 Responsiveness of per-flow (top) and aggregate (middle) traffic, and the
adaptation error (bottom) for DFA with a buffer size of 5000 packets . . . . 63

5.6 Responsiveness of per-flow (top) and aggregate (middle) traffic, and the
adaptation error (bottom) for CCA with a buffer size of 100 packets . . . . 64

5.7 Responsiveness of per-flow (top) and aggregate (middle) traffic, and the
adaptation error (bottom) for CCA with a buffer size of 5000 packets . . . 64

5.8 CDF of adaptation error of per-flow and aggregate traffic for DFA and CCA 65

5.9 The change pattern of the available bandwidth . . . . . . . . . . . . . . . . 65

5.10 Queue saturation time for increasing number of flows . . . . . . . . . . . . 67

5.11 Queue saturation time for different round-trip times . . . . . . . . . . . . . 67

6.1 The tight and narrow link of a network path . . . . . . . . . . . . . . . . . 70

6.2 The operation of the bandwidth estimation scheme . . . . . . . . . . . . . 72

viii



List of Figures

6.3 The flow chart of the operation phases . . . . . . . . . . . . . . . . . . . . 75
6.4 Busy period detection by modeling the queue dynamics . . . . . . . . . . . 76
6.5 The choice of busy threshold . . . . . . . . . . . . . . . . . . . . . . . . . . 77
6.6 Traffic intensity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
6.7 Busy period statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
6.8 Measured rate characteristics . . . . . . . . . . . . . . . . . . . . . . . . . 79
6.9 Estimated bandwidth characteristics . . . . . . . . . . . . . . . . . . . . . 79

ix



List of Tables

2.1 The evolution of TCP variants . . . . . . . . . . . . . . . . . . . . . . . . . 6

3.1 Hardware components of our laboratory test computers . . . . . . . . . . . 34
3.2 Hardware components of the Emulab test computers . . . . . . . . . . . . 35
3.3 Goodput performance in Mbps for different network parameters . . . . . . 37
3.4 Packet drop rate for different response times and estimation error (simulation) 40

4.1 Performance scalability (simulation) . . . . . . . . . . . . . . . . . . . . . . 54
4.2 The ratio of load levels for different buffer sizes (simulation) . . . . . . . . 56

5.1 Convergence time to the fair share . . . . . . . . . . . . . . . . . . . . . . . 62
5.2 The mean (left) and standard deviation (right) of the adaptation error in

percentage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

x



List of Abbreviations

3GPP 3rd Generation Partnership Project

ACCF Adaptive Congestion Control Framework

ACK Acknowledgment

AIMD Additive Increase Multiplicative Decrease

ARQ Automatic Repeat reQuest

ATCP Ad-hoc TCP

BDP Bandwidth-Delay Product

BIC Binary Increase Congestion control

BSD Berkeley Software Distribution

BTC Bulk Transfer Capacity

CCA Congestion Control based Architecture

CDF Cumulative Distribution Function

ConEx Congestion Exposure

CTCP Compound TCP

DCTCP Data Center TCP

DFA Digital Fountain based Architecture

DFCP Digital Fountain based Communication Protocol

DRR Deficit Round-Robin

DVB-H Digital Video Broadcasting — Handheld

ECN Explicit Congestion Notification

EDGE Enhanced Data rates for GSM Evolution

FBP Fountain Based Protocol

FCT Flow Completion Time

FEC Forward Error Correction

FIFO First In First Out

xi



List of Abbreviations

FMTCP Fountain code-based Multipath TCP

GENI Global Environment for Network Innovations

GPRS General Packet Radio Service

HSDPA High-Speed Downlink Packet Access

HSTCP HighSpeed TCP

HTTP HyperText Transfer Protocol

IAT Inter-Arrival Time

IETF Internet Engineering Task Force

IP Internet Protocol

LDPC Low-Density Parity-Check

LEDBAT Low Extra Delay Background Transport

LT Luby Transform

MBMS Multimedia Broadcast Multicast Service

MIMD Multiplicative Increase Multiplicative Decrease

MPTCP MultiPath TCP

MTU Maximum Transmission Unit

NSC Network Simulation Cradle

PCC Performance-oriented Congestion Control

PGM Probe Gap Model

PRM Probe Rate Model

QoE Quality of Experience

QST Queue Saturation Time

QUIC Quick UDP Internet Connections

RCP Rate Control Protocol

RFC Request for Comments

RTT Round-Trip Time

SACK Selective Acknowledgment

SCTP Stream Control Transmission Protocol

SDN Software-Defined Networking

SDT Software-Defined Transport

SFQ Stochastic Fair Queuing

SSL Secure Sockets Layer

STCP Scalable TCP

xii



List of Abbreviations

TCL Tool Command Language

TCP Transmission Control Protocol

TCP-LP TCP Low Priority

TCP/NC TCP with Network Coding

TLS Transport Layer Security

UDP User Datagram Protocol

UDT UDP-based Data Transport

UMTS Universal Mobile Telecommunications System

WFQ Weighted Fair Queuing

WLAN Wireless Local Area Network

XCP eXplicit Control Protocol

XOR eXclusive OR

xiii



Chapter 1

Introduction

1.1 Motivation and Objectives

From the very beginning of the Internet, traffic congestion has been recognized as an
undesirable phenomenon that must be avoided in order to maintain stable operation.
Congestion occurs when the aggregate demand for a resource exceeds its capacity, which
typically leads to significant performance degradation in communication networks. As a
solution, the Transmission Control Protocol (TCP) [1] was introduced in 1981 and it de-
fined a set of mechanisms to prevent such adverse events by adjusting the transmission
rate based on various observations. Closed-loop congestion control performed by TCP
has proven to be a successful approach, but several versions have been developed over the
past decades to satisfy the ever-changing requirements of heterogeneous network environ-
ments [2]. However, in the recent years it became apparent that the continuous refinement
of TCP cannot follow the incredibly fast evolution of technologies and applications, as
well as the increasing user demands.

It is clear that emerging paradigms like cloud computing and software-defined network-
ing, and what is more, the upcoming era of 5G mobile networks and Internet of Things
will require much more efficient transport methods governed by fundamentally different
principles. Taking into account these trends, it is natural to ask if congestion control is
indispensable to ensure reliable communication. While the research community is urged
to find the answer, only a few papers elaborate on this challenging issue. For example,
the authors of [3] argue that it may not be necessary to keep the network uncongested
to yield good performance, and a greedy transport protocol has the potential to outper-
form TCP. In 2007, a research plan [4] published by the organization of GENI (Global
Environment for Network Innovations) recommended the omission of TCP’s congestion

1



1 Introduction

control mechanism and suggested to use error correction techniques instead so as to cope
with packet loss. The validity of this approach is supported by a recent study [5] claiming
that congestion collapse does not happen in many cases even if no congestion control is
applied at the network endpoints. To investigate whether the Internet can work efficiently
without the key functionality of TCP, extensive research needs to be conducted.

In this dissertation, we take an important step towards the understanding of data
transmission in the absence of congestion control. We aimed to carry out a clean-slate
research and to design the concept of reliable transport from scratch. Our main contribu-
tion is the investigation of a novel digital fountain based communication paradigm, which
consists of a transport protocol and an underlying network architecture where congestion
control is completely omitted. First, we present a comprehensive performance analysis
of the new paradigm in a multi-platform evaluation framework and make a comparison
with the traditional TCP-based solution of current Internet. We explore the fundamental
features of the different mechanisms with a special focus on their characteristics under dy-
namic traffic conditions. Furthermore, we deal with available bandwidth estimation when
there is no information about the network in advance, and propose an algorithm capable
of providing accurate results. We believe that our findings greatly promote the research
on alternative data transfer methods as we can deliver the message that communication
without the need of controlling the congestion is possible and merits further analysis from
several aspects.

1.2 Research Methodology

The Digital Fountain based Communication Protocol (DFCP), presented in Chapter 3,
has been implemented in the Linux kernel. To deeply investigate our proposal, measure-
ments were conducted both in a simulation framework and in real test networks. As a
simulation tool, the Network Simulation Cradle (NSC) [6] has been integrated into the
widely known ns-2 packet-level simulator [7], and extended in C++ to properly handle
the kernel implementation of DFCP. Testbed measurements were performed in different
laboratory network configurations and in a remote network emulation environment called
Emulab [8]. In order to get sound results, these three platforms have been extensively
cross-validated, which is unique in a sense regarding the literature of transport protocols.
The available bandwidth estimation algorithm, introduced in Chapter 6, was evaluated
on packet traces gathered from a 3G mobile network.

2



1.3 Structure of the Dissertation

1.3 Structure of the Dissertation

The rest of this dissertation is organized as follows. In Chapter 2, we review the evolution
of transport protocols since the early days of the Internet discussing the main pitfalls
the researchers faced with during the last decades. We present different types of conges-
tion control algorithms highlighting their advantages and drawbacks, as well as introduce
some recent alternative proposals for data transfer. We close this chapter with the main
consequences of the long history of transport protocols and shed light on the motivation
for future research by concluding state-of-the-art papers.

Chapter 3 presents a novel network communication paradigm built upon a digital
fountain based transport mechanism abbreviated as DFCP, which completely omits the
functionality of congestion control. We introduce the operating principles and the poten-
tial benefits of the new approach together with a discussion of the main protocol design
aspects. In addition, we describe our carefully cross-validated evaluation environment con-
sisting of real testbeds and a simulation framework used to investigate the nature of digital
fountain based communication. At the end of Chapter 3, the fundamental properties of
DFCP are revealed.

In Chapter 4, we elaborate on the performance analysis of two completely different data
transfer paradigms, namely fountain coding and congestion control. We aim to explore the
main benefits of DFCP over the traditional TCP-based approach in a variety of network
environments. The comprehensive performance evaluation of transport mechanisms covers
a wide range of capabilities including the maximum achievable transmission rate in lossy
and high-latency networks, the buffer space demand and usage, the transfer efficiency of
short-lived and long-lived flows, the bandwidth sharing among concurrent traffic flows, as
well as network utilization and scalability.

Chapter 5 is devoted to the characterization of transport mechanisms under continu-
ously changing network conditions. We carry out well-designed experiments to understand
the dynamic behavior of the digital fountain and congestion control based paradigms, re-
spectively. First, we investigate the convergence speed of these mechanisms to the steady-
state operating phase, and examine how stable the performance they can provide in the
long run. Moreover, the property of responsiveness is thoroughly analyzed in order to
reveal the ability to handle abrupt change of network parameters.

In Chapter 6, we deal with available bandwidth estimation recognized as an important
task in the context of data communication. After an overview of the related work, we
introduce our bandwidth estimation algorithm especially tailored for mobile networks,

3



1 Introduction

which is based on the idea of busy period detection. We demonstrate the operability of
our algorithm on a packet trace gathered in a cellular network by using a realistic traffic
emulator.

Finally, Chapter 7 summarizes the contributions of the dissertation and draws our
main conclusions. The potential future applications of the new results together with a
brief discussion are also given. Furthermore, we sketch some open issues and possible
research directions.

4



Chapter 2

The Evolution of Transport Protocols

In the current Internet, the Transmission Control Protocol (TCP) carries the vast majority
of network traffic. The history of TCP dates back to 1981 when the official protocol
specification was published by the IETF in RFC 793 [1]. Over the past three decades, a
significant research effort has been devoted to TCP in order to meet the requirements of
evolving communication networks. This process has resulted in countless TCP versions
aimed to provide high performance in various environments [2]. Although TCP determined
the mainstream of the research on transport protocols, in the last years many alternative
proposals have also been published to serve as the basis of reliable data communication.
In this chapter, we give an overview of the most widely known protocols including the
main TCP variants and other approaches, as well. Finally, we review some interesting
recent work intended to highlight the challenges of handling today’s heterogeneous set of
congestion control mechanisms and the architectural deficiency of TCP, which strongly
motivate future research on fundamentally different paradigms.

2.1 Transmission Control Protocol

TCP is a connection-oriented transport protocol that provides reliable data transfer in
end-to-end communication. It means that lost packets are retransmitted, and therefore,
each sent packet will eventually be delivered to the destination. One of the most important
features of TCP is its congestion control mechanism, which is used to avoid congestion
collapse [9] by determining the proper sending rate and to achieve high performance.
To this end, TCP maintains a congestion window (cwnd) that controls the number of
outstanding unacknowledged packets in the network. An important aspect in the context
of congestion control protocols is how they can share the available bandwidth among

5



2 The Evolution of Transport Protocols

Table 2.1. The evolution of TCP variants

Version
Congestion indicator Target environment

New features
Loss Delay Wired Wireless High-speed

TCP Tahoe [1]
à 1988 5 5

slow-start, congestion avoid-
ance and fast retransmit

TCP Reno [25]
à 1990 5 5

fast recovery to mitigate the
impact of packet losses

TCP Vegas [31]
à 1995 5 5

bottleneck buffer utilization
as a congestion feedback

TCP NewReno [27]
à 1999 5 5

fast recovery, resistance to
multiple losses

Freeze-TCP [18]
à 2000 5 5

considering radio signal
quality in mobile networks

TCP-Peach [19]
à 2001 5 5

sudden start and rapid re-
covery for satellite networks

TCP Westwood [29]
à 2001 5 5

estimation of the available
bandwidth

ATCP [20]
à 2001 5 5

detection of route changes in
ad-hoc networks

TCP Nice [21]
à 2002 5 5

delay threshold as a sec-
ondary congestion indicator

Scalable TCP [12]
à 2003 5 5 5

MIMD congestion avoidance
algorithm

TCP-LP [22]
à 2003 5 5

early congestion detection
to react sooner than TCP

HighSpeed TCP [13]
à 2003 5 5 5

AIMD mechanism as the
function of cwnd

FAST TCP [14]
à 2003 5 5 5

updating cwnd based on dif-
ferent equations

BIC TCP [28]
à 2004 5 5 5

binary search to find the
proper cwnd

Compound TCP [32]
à 2005 5 5 5 5

calculation of cwnd using
loss and delay components

TCP-Illinois [33]
à 2006 5 5 5 5

AIMD as the function of the
queuing delay

TCP Cubic [15]
à 2008 5 5 5

control of cwnd by applying
a cubic function

LEDBAT [23]
à 2012 5 5

congestion control for low-
priority traffic

competing flows, also known as fairness property. Fairness can be interpreted between the
same and different TCP versions (intra- and inter-protocol), as well as on various time
scales (transient and steady-state) [10].

TCP variants can be classified based on the type of congestion indication and the
target environment as shown in Table 2.1. Most congestion control methods use packet
loss information to detect congestion also known as loss-based TCPs. In the case of these
algorithms, packet loss is interpreted as the sign of a full network buffer from which the
last incoming packet was dropped, hence the transmission rate should be reduced. Another
group of congestion control mechanisms react to the increase observed in the round-trip
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time (RTT) of packets due to the building up of queues. This approach, often referred to
as delay-based TCP, has the ability to detect congestion early rather than merely waiting
until the network gets overutilized and packets are lost. In addition, hybrid solutions have
also been proposed, which combine the beneficial properties of loss-based and delay-based
algorithms.

During the years, the fast development of networks motivated researchers to opti-
mize TCP for certain environments and purposes by modifying the traditional congestion
control mechanism. Since standard TCP versions (like TCP Tahoe and Reno) failed to
obtain full utilization in networks with high-bandwidth links, new algorithms have been
introduced to improve the performance in such conditions [11]. The most relevant high-
speed TCP versions include Scalable TCP [12], HighSpeed TCP [13], FAST TCP [14]
and TCP Cubic [15]. On the other hand, as TCP was primarily designed for wired net-
works, emerging wireless communication induced a considerable research work to develop
TCP versions, which can provide better performance in different kinds of wireless net-
works [16, 17]. The performance issues experienced in such environments stem from the
unique characteristics of wireless links and the packet loss model used by TCP. The prob-
lems manifest in many applications as degradation of throughput, inefficiency in network
resource utilization and excessive interruption of data transmissions. Modification of stan-
dard TCP for wireless communication has been an active research area in recent years,
and many schemes have been proposed for various environments such as cellular (e.g.
Freeze-TCP [18]), satellite (e.g. TCP-Peach [19]) and ad-hoc networks (e.g. ATCP [20]).
In real networks a traffic mix consists of hundreds or thousands of flows generated by
diverse applications and services. In order to treat low-priority traffic (e.g. background
transfers like automatic software updates and data backups) differently from high-priority
traffic, low-priority congestion control methods have been introduced. These protocols,
such as TCP Nice [21], TCP-LP [22] and LEDBAT [23], respond to congestion earlier
than standard TCP yielding bandwidth to concurrent TCP flows with higher priority.

2.1.1 Loss-based Versions

One of the earliest approaches to handle congestion was introduced in TCP Tahoe [9],
which was also served as the first practical implementation of these control schemes in
the BSD operating system. The proposal is based on the original TCP specification [1]
and introduces new algorithms called slow-start (SS) and congestion avoidance (CA), as
illustrated in Figure 2.1. These mechanisms allow the sender to detect available network
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Figure 2.1. Slow-start and congestion avoidance algorithms

resources and adjust the transmission rate accordingly. In the slow-start phase the window
growth follows an exponential function. If a packet loss is detected due to the total utiliza-
tion of network resources, the congestion window (cwnd) is reset to the initial value. The
congestion avoidance algorithm is aimed at improving TCP effectiveness in networks with
limited resources. In this operating phase, the congestion window increases by one only if
all data packets have been successfully delivered during the last round-trip time, and it
is merely halved when a packet loss is detected (the mechanism is abbreviated as AIMD:
additive increase multiplicative decrease [24]). To switch between the two algorithms, a
threshold parameter (ssthresh) is introduced. This threshold determines the maximum
size of the congestion window in the slow-start phase, and each packet loss adjusts its
value to half of the current window size. The congestion window itself is always reset to
a minimum value upon loss detection. Until the size of the congestion window is lower
than ssthresh, the slow-start algorithm is used. Once the window becomes greater than
the threshold, the protocol enters the congestion avoidance phase. However, the main
problem with Tahoe is that it reduces the congestion window too aggressively upon loss
detection.

TCP Reno [25] tackles the deficiency of Tahoe by applying a novel method referred to
as fast recovery (FR) algorithm, which keeps the congestion window size constant until
the network is recovered from the loss event (see Figure 2.2). In the case of Reno, a lost
packet is detected and retransmitted if triple duplicate acknowledgments are received or
a timeout occurs at the sender. This mechanism makes TCP Reno effective to recover
from a single packet loss, but it still suffers from performance degradation when multiple
packets are dropped from a window of data. To overcome this limitation, a selective
acknowledgment (SACK) option has been proposed in [26]. Later, in order to improve
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Figure 2.2. The congestion window dynamics of TCP Reno

the performance of TCP Reno when a burst of packets is lost, TCP NewReno [27] was
developed in 1999. NewReno modifies Reno’s fast recovery algorithm making it possible
to recover without a retransmission timeout by resending one packet per each round-trip
time until all of the lost packets from the window have been retransmitted.

TCP Cubic [15], being an enhanced version of its predecessor, BIC TCP [28], is one
of the most widely used TCP versions today since it serves as the default congestion
control algorithm of Linux operating systems. BIC (Binary Increase Congestion control)
was originally designed to solve the well-known RTT unfairness problem by combining
two schemes called additive increase and binary search. TCP Cubic simplifies the window
control of BIC and it applies a cubic function in terms of the elapsed time from the
previous packet loss event, which provides good stability and scalability. Furthermore, it
keeps the window growth rate independent of RTT making the protocol TCP-friendly
along both short and long RTT paths. According to the TCP-friendliness principle, any
congestion control scheme has to achieve equal long-term throughput, or in other words,
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Figure 2.3. The window growth function of TCP Cubic
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has to consume equal bandwidth of a bottleneck link as TCP if they are operated in
the same network environment. The congestion window dynamics of TCP Cubic (see
Figure 2.3) is governed by the following equation:

w = C(t−K)3 + wmax. (2.1)

In the above formula, C is a scaling factor, t denotes the elapsed time since the last
window reduction and wmax gives the target window size. The value of parameter K can
be determined as follows:

K =
3

√
wmax

β

C
(2.2)

where β is a multiplicative decrease factor applied for window reduction at the time of a
congestion event. When data transmission starts, the target window size is unknown and
discovered using the right branch of the cubic function. In this phase, the growth speed
is slower than the exponential discovery of the slow-start algorithm, and at later stages
the congestion window gently approaches the target window.

Beside the congestion control algorithms described above, many other solutions have
been worked out to improve the performance of standard TCP. One of the main issues is
that it takes a long time to make a full recovery from packet loss for high-bandwidth, long-
distance connections, because the congestion window builds up very slowly. In order to
cope with this limitation, HighSpeed TCP (HSTCP) [13] was proposed, which can achieve
better performance on high-capacity links by modifying the congestion control algorithm
for use with large congestion windows. Scalable TCP (STCP) [12] applies a multiplicative
increase multiplicative decrease (MIMD) algorithm to obtain performance improvement
in high-speed networks and it can also guarantee the scalability of the protocol. TCP
Westwood [29] is a sender-side modification of the congestion control mechanism that
improves the performance of TCP Reno both in wired and wireless networks. The main
problem is that TCP Reno equally reacts to random and congestion losses, thus cannot
distinguish between them. In fact, TCP Westwood shows moderate sensitivity to random
errors, therefore the improvement is the most significant in wireless networks with lossy
links. MultiPath TCP (MPTCP) [30] is a recent approach for enabling the simultaneous
use of multiple IP addresses or interfaces by a modification of TCP that presents a regular
TCP interface to applications, while spreading data across several subflows.
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2.1.2 Delay-based Versions

As a pioneer of delay-based TCPs, TCP Vegas [31] measures the difference (δ) between
the expected and actual throughput based on round-trip delays. If δ is less than a lower
threshold denoted by α, Vegas assumes that the path is not congested and increases
the sending rate. If δ is larger than an upper threshold denoted by β, it is regarded as
the indication of congestion, hence Vegas reduces the transmission rate. The expected
throughput is calculated as the division of cwnd by the minimum RTT.

FAST TCP [14] is a congestion avoidance algorithm especially targeted for long-
distance, high-latency links. FAST determines the current congestion window size using
the round-trip delay as a primary congestion indicator. The algorithm first estimates the
queuing delay based on RTTs over a network path, and if the delay falls below a threshold,
it increases the window aggressively. If it gets closer to the threshold, the algorithm slowly
reduces the increasing rate.

2.1.3 Hybrid Solutions

Compound TCP (CTCP) [32], implemented in several Microsoft Windows operating sys-
tems, is a synergy of delay-based and loss-based approaches extending the standard TCP
Reno congestion avoidance algorithm by a scalable, delay-based component. CTCP ex-
ploits the information about both packet loss and delay to control the transmission rate.
The delay-based component can rapidly increase the sending rate when the network path
is underutilized, but ease if the bottleneck queue becomes full. This mechanism provides
good scalability in terms of bandwidth, and a reasonably fair behavior.

TCP-Illinois [33] uses packet loss information to determine whether the congestion
window size should be increased or decreased, and measures the queuing delay to deter-
mine the amount of increment or decrement. This hybrid solution makes it possible to
obtain high throughput and fair resource allocation while being compatible with standard
TCP.

2.2 Alternative Proposals

Beyond the Transmission Control Protocol, several approaches have also been suggested
for reliable data transport in communication networks. Some of these protocols are par-
tially based on the concept of TCP, or use similar mechanisms.
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Stream Control Transmission Protocol (SCTP) [34] is a reliable transport protocol
that provides stable, ordered delivery of data between two endpoints by using congestion
control like TCP and also preserves data message boundaries like UDP (User Datagram
Protocol). However, unlike TCP and UDP, SCTP offers additional services such as multi-
homing, multi-streaming, security and authentication.

eXplicit Control Protocol (XCP) [35] uses direct congestion notification instead of
the indirect congestion indicators such as packet loss or delay. XCP delivers the highest
possible application performance over a broad range of network infrastructures including
high-speed and high-delay links where TCP performs poorly. It also introduces a novel way
for separating the efficiency and fairness policies of congestion control, enabling routers to
quickly make use of the available bandwidth while conservatively managing the allocation
of the available bandwidth to competing flows. XCP carries the per-flow congestion state
in the packet header allowing the sender to request a desired throughput for its transmis-
sion, and XCP-capable routers inform the senders about the degree of congestion at the
bottleneck.

Internet traffic has a complex characteristics investigated in many papers in the last
decade. Recent studies showed that most flows are small carrying only several kilobytes of
data and short lasting less than a few seconds [36]. Rate Control Protocol (RCP) [37] is
a congestion control algorithm designed to significantly speed up the download of short-
lived flows generated by typical applications. For example, a mid-size flow contains 1000
packets and TCP makes them last nearly 10 times longer than it would be necessary. RCP
enables flows to finish close to the minimum possible, leading to a notable improvement
for web users and distributed file systems.

Quick UDP Internet Connections (QUIC) [38] is a new approach for data transfer
announced by Google in 2013. QUIC has been integrated into Google Chrome for eval-
uation purposes and it is currently under active development. The protocol supports a
set of multiplexed connections over UDP, and was designed to provide security protec-
tion equivalent to TLS/SSL, along with reduced connection and transport latency. It also
implements and applies a bandwidth estimation algorithm in each direction in order to
avoid network congestion. QUIC’s main goal is to optimize the performance of connection-
oriented web applications and services by the reduction of connectivity overhead to zero
RTT. Until now, no comprehensive evaluation has been carried out on the performance of
QUIC, but a recent study showed that it can reduce the overall page retrieval time with
respect to HTTP in the case of a channel without induced random losses [39].
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2.3 Present and Future

The history of transport protocols has been dominated by the continuous refinement and
optimization of TCP for various environments over the past decades. Countless TCP
variants have been proposed to achieve performance gain under specific conditions, but
most of them have never been used in real networks. Moreover, this long development
process has led to an unmanageable set of congestion control algorithms with several
interoperability and fairness issues.

An Adaptive Congestion Control Framework (ACCF) is presented in [40] to cover a
wide range of network conditions by automatically switching among different loss-based
and delay-based congestion control mechanisms depending on the current network state.
The operation of ACCF was investigated through extensive experiments conducted both in
simulation and testbed environments. The authors found that ACCF can significantly im-
prove performance compared to other state-of-the-art algorithms in terms of throughput,
fairness and TCP-friendliness. The study presented in [41] examines what aspects should
be taken into account in the design phase of a distributed transport mechanism, including
the network parameters (e.g. link delay and capacity), the topology, the degree of multi-
plexing and the aggressiveness of contending endpoints. The authors carry out a quantita-
tive analysis by using an automated protocol-design tool to approximate the best possible
congestion control scheme given imperfect prior knowledge about the network. Their sur-
prising results point out that, in many cases, the performance of machine-generated opti-
mal protocols can attain and even surpass the performance of human-designed congestion
control algorithms.

As for now, due to the incredibly rapid growth of communication networks and services,
it is clear that the current practice of making yet another TCP version to tackle the
upcoming challenges becomes more and more hopeless, and many researchers suggest to
find fundamentally different solutions for reliable data transport in future Internet.

The authors of [42] believe that the root cause of problems is an architectural defi-
ciency of TCP. They claim that the reason why TCP variants have suffered from poor
performance for decades is the hardwiring of packet-level events to control responses. In
addition, the authors do not think that TCP can achieve consistent high performance if
this control policy remains unchanged. To cope with this issue, they propose Performance-
oriented Congestion Control (PCC), a new congestion control architecture in which each
sender continuously observes the connections between its actions and empirically experi-
enced performance, enabling it to consistently adopt actions that result in high perfor-
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mance. As a control action, PCC chooses a certain sending rate then calculates a utility
value depending on measured performance metrics such as throughput, loss rate and la-
tency. The utility function can be customized for various data transmission objectives,
but typically it maximizes the overall throughput and minimizes the packet loss rate.
According to the results, PCC increases its sending rate if this action leads to higher
utility, otherwise the sending rate will be decreased. The paper shows that across many
real-world environments, PCC can significantly outperform TCP while converging to a
stable and fair equilibrium.

There is no doubt of the need for investigating new approaches, and in the following
chapter we present a novel data transfer paradigm, which is able to eliminate several
shortcomings of TCP and offers a promising alternative for future communication net-
works.
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Chapter 3

A Digital Fountain Based Network
Communication Paradigm

Over the years, the issues of TCP motivated researchers to find alternative ways for data
transfer beside the traditional congestion control based approach. In 2007, an organization
called GENI [4] published a research plan, in which the authors recommend the omission
of the congestion control mechanism and suggest to use efficient erasure coding techniques
to cope with network congestion. Since then, the questions related to this idea have been
investigated only in a few papers. Raghavan and Snoeren argue in [3] that it may not be
necessary to keep the network uncongested to achieve good performance and fairness. They
introduce the concept of decongestion control and presume that a protocol relying upon
greedy, high-speed transmission has the potential to perform better than TCP. Bonald et
al. studied the consequences of operating a network without congestion control [5], and
concluded that it does not inevitably lead to congestion collapse as believed earlier. In
this chapter, we present and describe a novel data transfer paradigm for future Internet,
which applies a fundamentally different principle compared to that of TCP by completely
omitting congestion control from the transport layer.

3.1 Background

3.1.1 Digital Fountain Codes

Fountain codes, also known as rateless codes, are a class of erasure codes with the property
that a potentially limitless sequence of encoded symbols (n) can be generated from a given
set of source symbols (k) such that the original source symbols can ideally be recovered
from any subset of the encoded symbols of size equal to, or only slightly larger than the
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number of source symbols [43]. As illustrated in Figure 3.1, in the case of the digital
fountain principle it does not matter what is lost if enough is received. In contrast to
traditional erasure codes, rateless codes do not have a fixed coding rate, and this coding
rate tends to zero as the length of the encoded message tends to infinity (i.e. k

n
→ 0 if

n→∞).

Figure 3.1. The digital fountain principle

The development of fountain codes over the past decades can be seen in Figure 3.2 with
the official publication date of each proposal. Historically, Tornado codes [44] were the
first generation of erasure codes intended to approximate the principle outlined above. The
basic structure of a Tornado code consists of layered bipartite graphs with left and right
nodes corresponding to the message and check symbols, respectively. A check symbol is
generated by computing the XOR (eXclusive OR) of the values of its neighboring message
nodes. The encoding process works in the following way. Let assume that we have the
bipartite graphs B1, B2, . . . , Bl and C. The graph B1 has k message symbols as input and
produces βk check symbols where 0 < β < 1. These output symbols serve as the input
symbols of the next layer B2, hence β2k new check symbols are generated. This step is
repeated for each layer Bi (i = 1, 2, . . . , l), and finally, the result is concatenated with a
conventional error-correcting code C. The decoding of the message can be accomplished
by using a simple belief propagation algorithm. Given the value of the check symbol and
all but one of the message symbols on which it depends, the missing symbol is set to be
the XOR of the check symbol and its known neighboring message symbols. The decoding
process terminates successfully when all of the original symbols are recovered.

As Tornado codes were proven to be impractical due to the requirement for a cascade
of graphs, they were quickly replaced by irregular Luby Transform (LT) codes [45], which
have much simpler structure and equal or even better performance. To generate an en-
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Figure 3.2. The evolution of digital fountain codes

coded symbol, a degree d is chosen randomly according to a given distribution Ω(d) where
1 ≤ d ≤ k and

∑k
d=1Ω(d) = 1. The degree d determines the number of message symbols

involved in the generation of an encoded symbol, which are then chosen at random and
XORed with each other. This encoding process exhibit a fountain-like property, because
as many encoded symbols as desired can be generated efficiently. In order to ensure proper
decoding, the random number generator must be initialized with the same predefined seed
at both the encoder and decoder sides. After that, the original message symbols can be
recovered using a similar procedure as in the case of Tornado codes. The efficiency of
LT codes is highly determined by the choice of the degree distribution. According to the
theoretical analysis presented in [45], the maximum performance can be obtained if the
ideal soliton distribution is used, namely

Ω(d) =


1

k
d = 1

1

d(d− 1)
d = 2, 3, . . . , k

. (3.1)

The average number of neighbors of each encoded symbol, and therefore, the expected
number of XOR operations is proportional to

k∑
d=2

d

d(d− 1)
=

k∑
d=2

1

d− 1
≈ ln(k). (3.2)

This degree distribution guarantees that the belief propagation algorithm can recover a
source block of k symbols from slightly more than k received encoded symbols with high
probability. However, (3.1) works poorly in practice, and Luby proposes to use a so-called
robust soliton distribution instead [45], which is designed for asymptotic optimality and
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Figure 3.3. The decoding failure probability of different Raptor codes

covers various applications. The main drawback of LT codes is that they are unable to
provide low complexity encoding and decoding operations.

In these days, Raptor codes [46] are the most efficient ones in the family of fountain
codes. Their most significant improvement over LT codes is the reduction of the average
degree of encoding symbols to a constant, which is achieved by an additional precoding
phase (the operation is discussed in Section 3.3). As a result, Raptor codes offer linear time
encoding and decoding complexity as they require only a small number of XOR operations
proportional to k for each generated symbol. The first version of Raptor codes (also known
as R10 ) is specified in [47], and it has also been adopted into multiple standards in the
area of broadcast file delivery and streaming services (e.g. 3GPP MBMS, DVB-H) [48, 49].
Currently, the most flexible and powerful variant of Raptor codes is RaptorQ (or simply
RQ) [50], which supports larger source block sizes (up to 56403 symbols) and provides
better coding efficiency than R10. The decoding failure probability is shown in Figure 3.3
for different number of encoding symbols collected by the decoder beyond the original
message length k. The illustration reveals the outstanding recovery properties of Raptor
codes. For example, if two additional symbols are available, the chance of decoding failure
for RaptorQ is only one in a million.

3.1.2 Advanced Error Correction in Data Transport

In recent times, many research works have focused on the application of erasure codes in
data transport. A theoretical fountain based protocol (FBP) was investigated in [51]. The
authors showed that a Nash equilibrium can be reached in a network with FBP-based
hosts resulting in a performance similar to the case when each host uses TCP. Kumar
et al. proposed a transport protocol for wireless networks using fountain codes [52] and
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analyzed its performance by a Markovian stochastic model. They demonstrated through
packet-level simulations that their protocol may perform better or worse than TCP de-
pending on the redundancy parameter, the number of nodes in a WLAN cell and the
wireless channel conditions. The authors of [53] designed a new TCP version on the basis
of rateless erasure codes to enhance its operation in lossy environments. According to
their results, such modification of TCP has proven to be effective in case of high packet
loss rate. Y. Cui and his colleagues proposed FMTCP (Fountain code-based Multipath
TCP) in [54], which exploits the advantage of the fountain coding scheme to avoid the
performance degradation caused by frequent retransmissions applied in MPTCP. The
authors introduced an algorithm to flexibly allocate encoded symbols to different sub-
flows based on the expected packet arrival time over different paths. In another proposal
called TCP/NC, network coding is incorporated into TCP with only minor changes to the
protocol stack [55]. According to this method, the source transmits random linear com-
binations of packets currently found in the congestion window. Coding essentially masks
losses from the congestion control algorithm and allows TCP/NC to react smoothly to
them providing an effective solution for lossy environments like wireless networks. As a
fundamentally new approach, this dissertation introduces a reliable, digital fountain based
transport mechanism where no congestion control is employed at the endpoints.

3.2 Networking without Congestion Control

In this section, we envision a network architecture built upon digital fountain based com-
munication and highlight the benefits of the approach with some potential future appli-
cations. The main component of the architecture is a novel data transport mechanism,
which provides reliable transmission by efficient erasure coding and inherently makes it
possible to get rid of congestion control and all related tasks at the transport layer.

3.2.1 Operating Principles

The novel data transfer method uses efficient erasure coding schemes to recover lost pack-
ets instead of traditional retransmissions. This approach enables endpoints to transmit at
the maximum possible rate, thus the network can easily be driven to a state with heav-
ily congested, fully utilized links. In our transport protocol, we propose to use Raptor
codes [46] as a forward error correction (FEC) mechanism to cope with packet losses,
which is an extension of LT codes with linear time encoding and decoding complexity.
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Figure 3.4. The digital fountain based communication architecture

The suggested network architecture relying on digital fountain based error correction
is shown in Figure 3.4. We have multiple senders communicating with the corresponding
receivers by producing a potentially infinite stream of encoded symbols from the original
message of size k. Each received packet at the destination host increases the probability of
successful decoding, and once any subset of size ⌈(1+ ε)k⌉ encoded symbols arrive to the
receiver, decoding can be performed successfully with high probability (here ϵ > 0 denotes
the amount of redundancy added to the original message). One of the most important
issues that must be resolved by this novel network architecture is fairness. More exactly,
mechanisms have to be provided in order to give a solution to the share allocation problem
among competing traffic flows sending at different rates. To this end, we suggest the use
of fair schedulers in the network nodes since several implementations approximating the
ideal fair scheduling, such as Deficit Round-Robin (DRR) [56], are available and can
be configured easily in network routers. If equal bandwidth sharing is provided by the
inner nodes then it becomes possible to decouple fairness control from the transport layer
protocol. The feasibility of this approach is supported by the scalability of per-flow fair
queuing, as its complexity does not increase with link capacity [57, 58].

3.2.2 Rate Control

Greedy transmission at the maximum rate can easily lead to an operational state when
a huge number of packets are steadily sent via some parts of the network, but reaching
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a bottleneck, they are dropped. This unnecessary wasting of available bandwidth, also
known as dead packet phenomenon [59], can be avoided in several ways.

The sender could perform passive or active measurements on the currently available
bandwidth along its network path like in the case of UDT (UDP-based Data Trans-
port) [60]. Available bandwidth estimation has received considerable attention in the last
decades due to its key role in many areas of networking such as transport layer proto-
cols, admission control, network management and multimedia streaming (for a literature
overview, please see Chapter 6). Different estimation techniques work with different over-
head, speed and estimation error. In fact, it is almost impossible to obtain very precise
estimation results because of the fast and dynamic change of traffic conditions, however,
the proposed transfer mechanism does not require high accuracy. One of the key princi-
ples of our concept is to operate the network in the overloaded regime, which makes it
possible to fully utilize the available resources. Of course, this approach leads to a con-
siderable amount of packet loss at the network nodes, but from the user’s point of view
goodput-based QoE (Quality of Experience) metrics will only slightly be affected even
in case of high congestion levels. Although the consequences of shifting the operation to
the overloaded regime is a relevant aspect to be considered by the network operator, a
rough estimate of the bottleneck bandwidth is still sufficient to reduce the packet drop
rate at the buffers, and to keep it in an acceptable range. The measurement frequency
depends on the applied algorithm, but it is practical to perform estimation such that it
can roughly follow the network dynamics without causing significant overhead.

Another possibility to adjust the source rate properly is using a mechanism capable
of providing feedback about network congestion, for instance, as XCP does. One of the
most widely known solutions is called ECN (Explicit Congestion Notification) [61], which
allows to signal congestion by marking packets instead of dropping them from the buffer.
The re-ECN [62] protocol extends the ECN mechanism in order to inform the routers
along a path about the estimated level of congestion. Today, network elements at any
layer may signal congestion to the receiver by dropping packets or by ECN markings,
and the receiver passes this information back to the sender in a transport layer feedback.
ConEx (Congestion Exposure) [63] is a recent proposal, currently being standardized by
IETF, that enables the sender to relay the congestion information back into the network
in-band at the IP layer, such that the total amount of congestion from each element on
the path is revealed to all nodes, which can be used to provide input for traffic man-
agement. SDN-based (Software-Defined Networking) mechanisms can also help to cope
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with this issue where the network domains have dedicated central controllers with central
knowledge regarding the domains, hence they could provide information on the available
bandwidth to senders. For example, OpenTCP [64] is an SDN-based framework, which
takes advantage of the global network view available at the controller to make faster and
more accurate congestion control decisions.

3.2.3 Potential Benefits

The proposed networking paradigm offers a suitable framework for a wide range of ap-
plications and use-cases. For example, our scheme supports not only unicast type traffic
but inherently provides efficient solution for multicast and broadcast services. The more
challenging n-to-1 and n-to-n communication patterns including multiple servers can also
be realized in a straightforward manner due to the beneficial properties of the fountain
coding based approach, as it does not matter which part of the message is received, and
it can be guaranteed that each received block provides extra information. In addition,
our transport mechanism enables multipath communication, which has received a great
interest in the recent years because of its potential to achieve higher network resiliency
and load balancing targets. Another possible application area is data centers since the
solution fits very well to the high utilization requirement of such environments. Moreover,
our transport protocol is insensitive to packet loss and delay in contrast to TCP making
it a good candidate for wireless networks. The deployment in optical networks should
also be considered reflecting the fact that the proposed framework can support bufferless
networking, thus it has the ability to eliminate the expensive power-hungry line cards and
to build all-optical cross-connects. A more detailed discussion about the application and
deployment options can be found in Section 7.2.

3.3 DFCP: Fountain Coding in the Transport Layer

This section is devoted to introduce the Digital Fountain based Communication Protocol
(DFCP), and to describe the main design principles and implementation issues. First,
a brief overview of DFCP is given, then its operating mechanism is discussed including
the protocol header structure, the connection establishment and termination processes,
the coding and data transfer method, as well as flow control. Since DFCP is under con-
tinuous research and development, we close the section with adjustable protocol-specific
parameters intended to facilitate future experiments.
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3.3.1 Overview

DFCP is a connection-oriented transport protocol, which can be found in the transport
layer of the TCP/IP stack, and it ensures reliable end-to-end communication between
hosts like TCP. The operation of the protocol consists of four main steps, namely con-
nection establishment, coding, data transfer and connection termination. However, unlike
TCP our protocol does not use any congestion control algorithm, but just encodes the
data using Raptor codes and sends the encoded data towards the receiver at the max-
imum possible rate yielding a very efficient operation. In this case, efficient means that
available resources in the network can be fully and quickly utilized without experiencing
performance degradation. Although coding and decoding need extra overhead, it will be
shown in Chapter 4 that this approach has many advantages and can eliminate several
drawbacks of TCP.

DFCP has been implemented in the Linux kernel version 2.6.26-2. Similar to TCP, the
interaction between the applications and our transport mechanism is handled through the
socket layer using the standard system calls. The socket structure associated with DFCP
stores all protocol-specific information including flow control and coding settings.

3.3.2 Protocol Header

The protocol header can be seen in Figure 3.5 including the name of each field and
its size in bits. The source and destination ports give the port numbers used for the
communication between the sender and receiver applications. Since packets are organized
into blocks, the block ID identifies the block which the given packet belongs to. The

S2 (32)

S3 (32)

Data

Offset (4) Flags (6)

Checksum (16)

Source port (16) Destination port (16)

Block ID (32)

S1 (32)

Figure 3.5. Protocol header structure
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Figure 3.6. The connection establishment and termination processes

fields S1, S2 and S3 contain 32-bit unsigned integers, which play roles in the encoding
and decoding processes. The offset gives the number of 32-bit words in the header, and
hence specifies where the first bit of the application data can be found. Flags (e.g. SYN,
FIN ) are primarily used in the connection establishment and termination phases, which
are discussed in detail in the following subsection. The checksum is a generated number
depending on the content of the header and partially on the data field.

3.3.3 Connection Establishment and Signaling

DFCP’s connection establishment is based on a three-way handshake procedure (see Fig-
ure 3.6) as in the case of TCP [1]. The handshaking mechanism is designed so that the
sender can negotiate all the parameters necessary for decoding with the receiver before
transmitting application data. When the data is successfully received by the destination
host, the connection is released similarly to TCP.

Creating a Connection

Step 1. First, a SYN segment is sent to the destination host including the infor-
mation used in the decoding process at the receiver side, and a timer is started
with a timeout of 1 second. After transmitting the SYN segment, the sender gets
into SYN_SENT state. If no reply is received before the timeout expires, the SYN
segment is retransmitted and the timeout is doubled. After 5 unsuccessful retries,
connection establishment is aborted, and the resources are released at the sender.
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Step 2. If the SYN segment is received by the destination host, it gets into
SYN_RECV state and sends back a SYNACK segment to the source host. The
SYNACK message also contains information for the coding process, and it is re-
transmitted a maximum of 5 times if necessary as in the case of the SYN segment.

Step 3. After receiving the SYNACK segment, the source host sends an ACK
segment to the destination and gets into ESTABLISHED state. When the ACK is
received by the destination, it also gets into ESTABLISHED state indicating that
the connection is successfully made. If the ACK segment is lost, it can be detected
at the sender by receiving SYNACK again. When the SYNACK message cannot be
delivered 5 times, the connection is closed by an RST segment.

Closing the Connection

Step 1. When one of the hosts wants to terminate the connection, it sends a FIN
segment to the other side, and the state of the sender is changed to FIN_WAIT1.
Similar to the connection establishment phase, a timeout and retransmitting are
used for FIN messages. If the acknowledgment is not received after 5 times of retry,
the connection is closed and the resources are released.

Step 2. The receiver sends an ACK message as a reply to the FIN segment and gets
into CLOSE_WAIT mode while the state of the sender is changed to FIN_WAIT2.
If the receiver also wants to close the connection, it sends a FINACK segment to the
sender and gets into LAST_ACK state. FINACK can be retransmitted a maximum
of 5 times similar to the FIN message.

Step 3. By receiving the FINACK segment, the sender gets into TIME_WAIT
state and sends an ACK message to the receiver. Since the receiver can retransmit
the FINACK segment, it can be detected if the ACK segment is lost. After waiting in
TIME_WAIT state for a given time, the resources are released. When the receiver
gets the ACK message, its state is changed to CLOSED and the resources are
released at this side as well.

Since DFCP keeps the network congested due to the operation in the overloaded
regime, important signaling messages and acknowledgments can be lost during the trans-
mission. A possible way to handle this problem is giving high priority to these packets.
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Figure 3.7. The flow chart of the coding and data transfer process

3.3.4 Coding Scheme

The flow chart of the coding and data transfer process can be seen in Figure 3.7. Once the
connection is successfully established, the protocol is ready to send application-level data.
First, the original data bytes received from the application are organized into message
blocks and each of them is temporarily stored as a structure in the kernel memory before
encoding. DFCP performs encoding for the stored message blocks sequentially, and once
a given encoded block has been transferred to the receiver, the allocated memory is freed.

As shown in Figure 3.8, Raptor coding [46] involves two phases: precoding and LT
coding [45]. In our implementation, precoding is realized by LDPC (Low-Density Parity-
Check) coding [65], which adds some redundant bytes to the original message. The LT
coder uses the result of the LDPC coding phase as input and produces a potentially
infinite stream of encoded bytes.

The concept of LDPC coding is the following. Let us consider a bipartite graph having
nm nodes on the left side and nc nodes on the right side. The nodes on the left and
right sides are referred to as message nodes and check nodes, respectively. An example is

LDPC coding

LT coding

redundant bytes

Figure 3.8. The encoding phases of message blocks
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Figure 3.9. Example of an LDPC code

shown in Figure 3.9. As can be seen, for each check node it holds that the sum (XOR) of
the adjacent message nodes is zero. In the latest version of the protocol, LDPC codes are
generated by using a given probability distribution, and the initial value of the check nodes
is set to zero. A specific degree d is calculated for each message node, which determines
the number of its neighbors. After that, d check nodes are selected according to a uniform
distribution. These check nodes will be the neighbors of the actual message node, and the
new values of check nodes are computed as follows:

cr = cr ⊕mi (3.3)

where cr denotes the randomly chosen check node and mi is the actual message node.
For example, as illustrated in Figure 3.9, degree d = 2 is chosen for the second message
node x2, and it is XORed with its neighbors, the first and the third check nodes. The
value of a message node is associated with a byte of the original message. The LDPC
encoder receives the application-level data in k bytes long blocks, which are extended by
nc = n−k redundant bytes, and as a result the length of the encoded message will be n. In
our implementation, the size of the original message block is k = 63536 and n− k = 2000

redundant bytes are added, thus the encoded length is n = 65536. If the application-level
data is less than k, it will be padded with dummy bytes. It is an important part of the
LDPC coding process that a random generator is used at both sender and receiver sides.
The initial state of the random generator is determined by three variables (S1, S2 and
S3), which are exchanged through the SYN and SYNACK segments.
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Figure 3.10. The concept of LT coding

The second phase of the Raptor coding scheme, LT coding, is performed on an encoded
block of 65536 bytes received from the LDPC encoder. Figure 3.10 illustrates the LT coding
process through a simple example. We have a given set of source symbols x1, x2, . . . , xn

(which correspond to single bytes in our implementation), and we would like to produce
an encoded output symbol y. To this end, a degree distribution has to be given first, which
defines how many source symbols will be used for generating the output symbol. After
that, the following steps are performed:

Step 1. A degree d is chosen based on the given degree distribution, which is equal
to d = 3 in this example.

Step 2. A specified number of random source symbols r1, r2, . . . , rd are selected
according to the previously chosen degree.

Step 3. XOR operations are performed on the selected source symbols resulting in
an encoded output symbol, that is y = r1 ⊕ r2 ⊕ · · · ⊕ rd = r1 ⊕ r2 ⊕ r3.

This procedure generates a single encoded byte that can be repeated as many times as
needed. Finally, the LT encoder provides an encoded byte stream as output, which is then
organized into 65536 bytes long encoded blocks. Since the actual state of the random
generator depending on the initial state and the block ID is included in the protocol
header, decoding at the receiver can be performed successfully.

3.3.5 Data Transfer and Flow Control

In order to prevent buffer overflows at the receiver side, we introduce a simple flow control
mechanism by using a sliding window (see Figure 3.7). The sender is allowed to send a
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certain number of LT encoded blocks, specified by the window size, without waiting for
acknowledgments. Each encoded block is divided into packets and the encoded data is
sent to the receiver packet by packet for all blocks found in the window. The size of
a DFCP packet extended with the protocol headers is close to the MTU. During the
transmission, the sending rate is controlled at the source host according to the result
provided by the bandwidth estimation algorithm. The data transfer process continues until
an acknowledgment has been received for the given block allowing the user application to
send the next encoded blocks. This procedure guarantees that even if a large number of
packets are lost, the receiver is able to restore the original message. As soon as the receiver
has collected a sufficient number of LT encoded bytes (arriving in packets), it sends an
acknowledgment for the received block to the sender. If the acknowledgment has been
lost, the receiver resends it when additional packets are received from the same block. To
ensure in-order delivery, DFCP assigns a continuously increasing unique identifier to each
block in the protocol header, hence the receiver can recover the original order of blocks
automatically.

We mention that, until a block ACK travels back to the sender, it produces and
transmits additional encoded symbols which are not useful for the receiver, and this
phenomenon is more pronounced in high BDP networks. However, we emphasize that any
kind of reliable, feedback based transport mechanisms (including TCP) suffer from similar
issues causing performance degradation or low network utilization. In comparison with
TCP, DFCP utilizes available resources more efficiently at the price of this factor, but
its impact can be mitigated in several ways. For example, acknowledgments can be sent
immediately by the receiver when enough encoded symbols are received even if decoding
has not been performed yet. In the case of RaptorQ [50], which is currently the most
efficient variant of Raptor codes, only two additional symbols can provide a successful
decoding probability greater than 99.9999%. Another possible way is to collect statistics
about some relevant network parameters such as link delay and packet loss rate, and
to calculate the expected number of encoded symbols to be sent, which will probably
be sufficient for decoding at the receiver. The main advantage of this approach is that
the sender can stop the transmission of encoded symbols without waiting for an ACK,
and additional symbols are required only in the case when the link characteristics change
abruptly (e.g. the loss rate gets significantly higher than the estimated value). Decoding
failure is very rare [50], but when it occurs the extra packets received in the meantime
will be enough for a successful outcome. Moreover, the block size can also be flexibly set

29



3 A Digital Fountain Based Network Communication Paradigm

in a wide range, which could lead to more efficient operation in some applications (e.g.
long data transfers) as the number of unnecessarily sent symbols can be reduced.

3.3.6 Main Parameters

The recent version of DFCP offers a number of ways for experimentation through the
following adjustable protocol-specific parameters:

Window size. It controls the maximum number of LT encoded blocks within the
sliding window. The receiver acknowledges each block, but the sender is allowed to
send all blocks of a window without waiting for acknowledgments.

Redundancy. It gives the total redundancy (in percentage) added to the original
message by both the LDPC and LT coders. The lowest possible value of this pa-
rameter depends on the applied coding scheme. In general, the lower the value, the
more useful data can be transmitted from source to destination assuming a given
link capacity.

The main goal of our research is to investigate the performance aspects of the digital
fountain based data transfer paradigm. The use of Raptor codes is only one possible option
for encoding data, hence the proposed concept is not restricted to the type of fountain
code and is open for its future evolution. To enable the separation of the coding process
from the transport mechanism itself, the different coding phases (encoding/decoding) and
ACKs can be switched ON or OFF independently of each other for testing purposes.

3.4 Evaluation Methodology

In practice, performance evaluation of a transport protocol requires using different tools to
get a clear picture about its behavior and specific properties, and to draw right conclusions.
Even so, most researchers choose only one way to investigate their proposed protocols,
namely simulation or testbed measurements. Especially for novel protocols and algorithms
it can be misleading due to the unique nature of such environments. On the one hand, the
main risk of relying only on simulation results is the fact that simulation environments are
far from realistic in most cases, thus many real-world factors can easily be neglected [66,
67]. On the other hand, performing only testbed measurements can also lead to the loss
of generality, because special hardware components can affect the results. In addition,
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building a network testbed is a time-consuming process, and measurements are often very
difficult to repeat [68, 69].

Since DFCP is based on a novel paradigm, it is crucial to ensure that our performance
analysis results are reliable and the conclusions are valid. In order to fit these requirements,
the measurements were carried out on multiple platforms including our laboratory testbed,
the Emulab network emulation environment [8] and the ns-2 network simulator [7]. First,
this section describes the performance metrics used for the evaluation, and after that
the network topologies and scenarios are presented. Finally, a description of the different
platforms is given focusing on the configurations, settings and parameters used in the
analysis.

3.4.1 Performance Metrics

To evaluate the performance of transport protocols, there are some well-known metrics
in the literature. One of the most widely used measures is throughput, which gives the
amount of data successfully transferred per second from source to destination [70]. How-
ever, in many cases —especially if we compare the efficiency of transport mechanisms
based on different principles— it is better to investigate goodput instead of throughput,
because it refers only to the useful data bytes excluding the protocol headers, the added
redundancy and the coding overhead. Therefore, in our measurements goodput was used
as a primary performance metric. In the case of our proposed network architecture built
upon DFCP, the analytical calculation of the goodput is feasible for simple scenarios.
For example, consider a dumbbell topology (Figure 3.11) with a single bottleneck link of
capacity cB and N senders having access link capacities c1, c2, . . . , cN . Each sender trans-
fers one flow simultaneously that results in N concurrent flows competing for the shared
bottleneck capacity. Assuming that fair schedulers are used in the network routers, and
the redundancy is denoted by ε, the goodput of flow i can be given as follows:

Gi =



cB
(1+εi)N

∀j : cj ≥ cB
N

ci
1+εi

ci <
cB
N

cB−

N∑
k=1

I{ck< cB
N

}ck

(1+εi)

N∑
k=1

I{ck≥ cB
N

}

∃j : cj < cB
N

and ci ≥ cB
N

. (3.4)
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Beyond measures related to the transfer rate, flow completion time (FCT) also serves
as an important metric since most of the applications use flow transfers and the users’ main
interest is to download their flows as fast as possible [37]. FCT is the time elapsed from
when the first packet of a flow is sent until the last packet is received. Flows transmitted
via the Internet have very complex characteristics [36], and the mechanisms of different
transport protocols can handle them differently. For example, it is known that TCP enters
the congestion avoidance phase after slow-start, which takes many round-trip times, but
the majority of short-lived flows never leave slow-start resulting in a high FCT. In the
case of long-lived flows the additive increase of the congestion avoidance phase limits the
transfer speed, and the fact that TCP fills the bottleneck buffer also contributes to the
increase of FCT and it is far from being optimal.

Fairness is also an important property of transport protocols describing how they
behave in a situation when two or more flows compete for the available bandwidth of
a bottleneck link [71]. In our experiments we used the Jain’s index as the fairness mea-
sure, which is a widely accepted fairness index in the literature [24]. Jain’s index can be
calculated by the following formula:

JI =
(
∑n

i=1 xi)
2

n
∑n

i=1 x
2
i

(3.5)

where xi denotes the throughput (or goodput) of flow i and n is the number of concurrent
flows. It returns a value between 0 and 1 where a higher value indicates a higher degree
of fairness.

3.4.2 Network Topologies and Scenarios

The performance of DFCP was evaluated on different network topologies including the
simple dumbbell topology and the more complex parking lot topology frequently used
in the literature for experiments [72]. The dumbbell topology consisting of N source-
destination pairs can be seen in Figure 3.11 where the data is transmitted from Si to Di

in flow i. First, we experimented with a single flow (N = 1) to reveal the ability of DFCP
to resist against varying delay and packet loss rate values of the connection. In this case,
the bottleneck link capacity (cB) was set to 1 Gbps. Furthermore, we studied the fairness
properties of DFCP by using two source and destination nodes (N = 2). The main purpose
was to observe how DFCP behaves in a situation when two concurrent flows compete for
the available bandwidth determined by the bottleneck link. In this scenario, both the
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Figure 3.11. Dumbbell topology with N source-destination pairs

access links (a1, a2) and the bottleneck link (B) had a capacity of 1 Gbps. Regarding
scalability, we investigated the performance and fairness stability of DFCP for increasing
number of flows (N = 10, 20, . . . , 100) and bottleneck bandwidth (cB = 0.1, 1, 10 Gbps).

The scenarios described above made it possible to explore the fundamental features
of DFCP and its scalability. Beyond these experiments, DFCP was studied in a more
realistic environment as well. Figure 3.12 depicts a parking lot topology with three sender
and receiver nodes, which contains two bottleneck links. In a real network multiple bottle-
necks are common, and therefore, it is indispensable to evaluate how a transport protocol
performs in such conditions. In these tests, the capacity was 1 Gbps for each access link
(a1, a2, a3), and the bottleneck link capacities (cB1 , cB2) were set to different values as
discussed in the following chapters.

Measurements lasted for 60 seconds in most scenarios (except if mentioned other-
wise), and the results were obtained by excluding the first 15 seconds in order to ignore
the impact of transient behavior of the investigated transport protocols. Regarding the
scheduling discipline, WFQ (Weighted Fair Queuing) was applied by default in the in-
termediate nodes with equal weights [73]. However, we also experimented with other fair
schedulers like DRR (previously suggested for our paradigm) [56] and SFQ (Stochastic
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Figure 3.12. Parking lot topology with three source-destination pairs
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Table 3.1. Hardware components of our laboratory test computers

(a) Hardware components of senders and receivers

Component Type and parameters

Processor Intel R⃝ CoreTM2 Duo E8400 @ 3 GHz
Memory 2 GB DDR2 RAM
Network adapter TP-Link TG-3468 Gigabit PCI-E
Operating system Debian Lenny with modified kernel

(b) Hardware components of network emulators

Component Type and parameters

Processor Intel R⃝ CoreTM i3-530 @ 2.93 GHz
Memory 2 GB DDR2 RAM
Network adapter TP-Link TG-3468 Gigabit PCI-E
Operating system FreeBSD 8.2

Fair Queuing) [74], as well as with FIFO scheduler (using the DropTail queue management
policy) [75] which is the simplest algorithm available in today’s network routers.

3.4.3 Test Environments

Performance evaluation was conducted on the following three different platforms indepen-
dently, and here we give a brief description of each:

Laboratory test network. The laboratory testbed consisted of senders, receivers
and a Dummynet network emulator [76], which was used for simulating various net-
work parameters such as queue length, bandwidth, delay and packet loss probability.
Each test computer was equipped with the same hardware components according
to Table 3.1.

Remote emulation environment. Our second testing platform was Emulab,
which is a network testbed giving researchers a wide range of environments in which
to develop, debug and evaluate their systems [8]. The Emulab architecture consists
of two control servers (called boss and ops), a pool of physical resources that are
used as experimental nodes (generic computers, routers or other devices) and a set
of switches that interconnect the nodes. The boss server provides a graphical in-
terface to the users and controls the internal operation of the test network. The
experimental nodes can be accessed through a login shell running on the ops server.

34



3.4 Evaluation Methodology

Table 3.2. Hardware components of the Emulab test computers

(a) Hardware components of senders and receivers

Component Type and parameters

Processor Intel R⃝ Xeon R⃝ processors @ 3 GHz
Memory 2 GB DDR2 RAM
Network adapter Intel Gigabit PCI-E
Operating system Debian Lenny with modified kernel

(b) Hardware components of network emulators

Component Type and parameters

Processor Intel R⃝ Xeon R⃝ E5530 @ 2.40 GHz
Memory 12 GB DDR2 RAM
Network adapter Broadcom NetXtreme II 5709 Gigabit PCI-E
Operating system FreeBSD 8.3

In order to design and perform different experiments, the virtual network topology
has to be defined by a TCL (Tool Command Language) description. Our measure-
ment setup in Emulab was identical to the one used in our laboratory testbed for
each test scenario, but the test machines were equipped with different hardware
components as summarized in Table 3.2. The type of the sender and receiver nodes
was pc3000 according to the Emulab label system, and the network emulators were
run on d710 type nodes. As done in the case of laboratory measurements, our mod-
ified kernel including the implementation of DFCP was loaded into the sender and
receiver machines.

Simulation framework. Beyond the real testbeds described above, we also used
the widely known ns-2 network simulator, which provides a powerful tool for re-
searchers to try out and evaluate their new methods [7]. Since the prototype of
DFCP has been implemented in the Linux kernel, we had to find a way to make
the simulation of our protocol possible directly through the network stack of Linux.
In fact, there are some tools available for this purpose, but only few of them can
provide reasonable accuracy and efficiency, as well as support a wide range of oper-
ating systems and kernel versions [77]. Focusing on these requirements, after careful
consideration Network Simulation Cradle (NSC) was chosen, which is an extension
for wrapping kernel code into simulators allowing the investigation of real-world
behavior [6]. NSC supports the simulation of network stacks of many operating
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Figure 3.13. The DFCP-compatible integrated simulation framework

systems such as FreeBSD, OpenBSD, lwIP and Linux. Regarding reliability, it has
been validated by comparing situations using a test network with the same situa-
tions in the simulator, which showed that NSC is able to produce extremely accurate
results. However, NSC only enables the simulation of TCP versions and new TCP-
like transport mechanisms, hence several protocol-specific modifications have been
made to integrate the source code of DFCP into the framework. Figure 3.13 shows
the main elements of the integrated simulation environment. The basic models of
transport protocols are defined in ns-2 including all necessary parameters. The two
simulator components (ns-2 and NSC) communicate through a common interface,
provided by a C++ shared library. In case of an interaction, ns-2 invokes the related
protocol-specific methods in NSC, which then call the proper kernel function. NSC
can handle multiple copies of the global data used by the network stack making
possible to run independent instances of protocol implementations within the same
simulation scenario.

3.5 Fundamental Properties

In this section, we first study and validate the fundamental properties of DFCP on the
three different testing platforms discussed above. We also quantify the impact of the main
parameters of DFCP on the goodput performance, as well as present and discuss the
consequences of the dead packet phenomenon by investigating an SDN-based rate control
mechanism.
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Table 3.3. Goodput performance in Mbps for different network parameters

Platform
Packet loss rate Round-trip time

0.1% 1% 5% 10% 0 ms 10 ms 50 ms

Testbed 730 690 623 562 791 791 774
Emulab 773 718 649 583 821 821 821
ns-2 755 720 677 631 842 842 842

3.5.1 Operation under Different Network Conditions

Table 3.3 presents the main features of DFCP introducing its high resistance to varying
network conditions such as packet loss rate and round-trip time. In our experiments,
unless mentioned otherwise, we used a uniform loss model with random, independent
packet losses. These measurements were carried out on a dumbbell topology with one
source-destination pair (see Figure 3.11). It is known that TCP is very sensitive to packet
loss resulting in a quick performance degradation for increasing loss rate. The table clearly
indicates that DFCP can operate efficiently even in high loss rate environments with only
a negligible decrease in goodput. The table also illustrates that the goodput performance
of DFCP is independent of the round-trip time.

Considering intra-protocol fairness, DFCP can ensure equal bandwidth sharing among
concurrent traffic flows thanks to the use of fair schedulers in the routing nodes. Our mea-
surements conducted on dumbbell and parking lot topologies also confirmed this beneficial
property.

3.5.2 Effect of Protocol-Specific Parameters

Redundancy, denoted by ϵ, highly determines the efficiency of fountain coding schemes
since a lower value makes it possible to transmit more useful data bytes at a given link.
Figure 3.14 demonstrates how the redundancy parameter of DFCP affects the goodput
performance when the window size is set to 1000 blocks. The theoretical curve of Fig-
ure 3.14a is derived from the goodput formula (3.4) defined in Section 3.4 by taking into
account the overhead (i.e. protocol headers) at different layers as well. One can see that
ns-2 simulation results fit well to the theoretical values. Figure 3.14b shows the goodput
degradation of DFCP as the amount of redundancy increases. If the redundancy is about
5%, it leads to approximately the same degree of performance degradation. However, the
decrease in goodput does not change linearly with increasing redundancy. For example,
50% of redundancy wastes only 33% of the maximum bandwidth, which can be utilized
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Figure 3.14. The impact of the redundancy parameter
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Figure 3.15. The impact of window size on the goodput performance

for useful data transmission. In practice, the typical value of redundancy is below 5% for
recent fountain codes [46].

Figure 3.15 illustrates the impact of DFCP’s flow control with ϵ = 0.05, which can be
controlled by the window size parameter. As mentioned in Section 3.3, the window size
is measured in LT encoded blocks. The figure shows that, as the window size increases, a
higher goodput can be realized. Since the Raptor coding scheme can generate an infinite
stream of encoded bytes, in theory it is plausible to choose a window size as high as
possible. However, there are two aspects should be taken into consideration. First, flow
control is used to prevent buffer overflow at the receiver end. Secondly, the use of a larger
window leads to a more bursty traffic. In general, it is practical to limit the window
size at the point where further increasing does not improve goodput, but delay-sensitive
applications may require smaller windows.

3.5.3 Analysis of the Dead Packet Phenomenon

In Section 3.2.2, we pointed out that our mechanism requires the proper control of trans-
mission rate in order to cope with the so-called dead packets [59], and hence, to minimize
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the extent of bandwidth waste. This subsection focuses on how to leverage the capabilities
of SDN to solve this issue and also quantifies the impact of the dead packet phenomenon.
In the last years, as the SDN paradigm [78] becomes more and more decisive in the net-
working industry, a significant research effort has been devoted to explore the benefits it
can bring in comparison to traditional computer networks. One of the areas where the
SDN architecture opens new horizons is network monitoring. Although passive and ac-
tive measurement techniques have a long research history (see Section 3.2.2 for a brief
overview), the central knowledge of SDN controllers can help to design much more effi-
cient and accurate monitoring tools, therefore it is a very active research topic being in
the focus of many papers and ongoing works. For example, FlowSense [79] measures link
utilization in a non-intrusive way by analyzing the control messages between the switches
and the controller. Due to the fact that SDN controllers know both the topology and
the link capacities, the available bandwidth can easily be computed. Another framework
called PayLess [80] can deliver highly accurate information about the network in real-time
without incurring significant overhead whereas OpenNetMon [81] exploits OpenFlow [82]
to provide per-flow metrics including throughput, delay and packet loss. Authors of [83]
present a software-defined transport (SDT) architecture for data center networks in which
a central controller computes and sends flow rates periodically to hosts enabling real-time
rate control in a scalable way.

To quantify the bandwidth wasted due to the greedy transmission mechanism of DFCP,
we carried out some experiments assuming that an SDN-based solution is used to estimate
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(b) Drop rate in case of sudden bandwidth
change (enlarged view)

Figure 3.16. Packet drop rate at the bottleneck router using SDN-driven rate control
(simulation)
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Table 3.4. Packet drop rate for different response times and estimation error (simulation)

Response time
Drop rate at the bottleneck router
1% error 5% error 10% error

5 ms 0.58% 3.32% 7.74%
10 ms 0.59% 3.37% 7.81%
50 ms 0.63% 3.48% 7.97%

100 ms 0.69% 3.65% 8.19%

the available bandwidth and to control the rate at the sender. In software-defined networks
the monitoring accuracy is mainly determined by the polling frequency and the link delay
between the switches and the controller, which we call response time in the following.
In the context of our concept, response time is interpreted as the time elapsed from a
bandwidth change until rate adaptation is performed at the sender, which includes the
polling and processing overhead, as well as the switch-to-controller and controller-to-
sender communication delay.

Here we investigate a scenario on the parking lot topology illustrated in Figure 3.12
where the bottleneck links, B1 and B2, have a capacity of 1 Gbps and 400 Mbps, respec-
tively. The link delays were set such that flows experienced a round-trip time of 50 ms
on B1 and 30 ms on B2. In DFCP, the window size was adjusted to 1000 and we used a
redundancy value of 5%. Assume that flow 1 and flow 2 start data transfer at the same
time while flow 3 launches 10 seconds later. Each sender can control its transmission rate
with a given accuracy according to the information provided by the SDN-based available
bandwidth measurement method. Figure 3.16 shows the packet drop rate at the second
bottleneck router in the function of time for 5% estimation error and 50 ms response time.
Before flow 3 enters flow 1 and flow 2 receive 400 Mbps and 600 Mbps of B1, respectively,
because the available bandwidth is 400 Mbps along the path that flow 1 traverses. When
flow 3 joins at the time of 10 seconds, the available bandwidth on the path of flow 1
decreases to 200 Mbps since the scheduler shares the capacity of B2 between flow 1 and
flow 3 equally. At this point, a high instantaneous drop rate can be observed because the
bandwidth is wasted until the sender reacts to traffic changes. Table 3.4 summarizes the
mean drop rate calculated over a 30 seconds long measurement period from 10 runs for
realistic parameter settings. The results suggest that estimation accuracy is an important
factor whereas response time only slightly affects the drop rate.

Overall, we believe that in the case of any transfer mechanism including TCP and
DFCP, a trade-off has to be found among different performance determining factors. In
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fact, DFCP uses a very efficient transfer method but it pays the price in the dead packet
phenomenon. However, this issue can be handled as shown in the above case study, and
SDN offers a promising solution, which will be one of our future research directions.

3.6 Conclusion

This chapter presented a novel communication paradigm exploiting efficient fountain codes
for error correction. Our main concept, which is built upon a network architecture and a
data transfer mechanism, was introduced together with the potential benefits. Since the
key component of the solution is a transport protocol called DFCP, its design and oper-
ating principles were discussed in detail as well. Moreover, we carried out a performance
analysis in a multi-platform environment to explore the fundamental properties of digital
fountain based transport. Our results demonstrated the high loss resistance of DFCP and
its low sensitivity to delay. We also elaborated on the impact of protocol parameters and
gave some guidelines about how to set them optimally.
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Chapter 4

Fountain Coding versus Congestion
Control: A Comprehensive Performance
Evaluation Study

In the previous chapter, we investigated a novel data transfer paradigm based on digital
fountain codes as a possible alternative to congestion control. This chapter is intended to
present a comprehensive performance evaluation of these two concepts under different net-
work conditions. The experiments were carried out in a cross-validated test environment
consisting of multiple platforms such as real testbeds and a packet-level network simu-
lator. We focus on the steady-state behavior of transport mechanisms and reveal how it
is affected by various network parameters. Finally, we close this chapter with our main
conclusions regarding the advantages of the new proposal over the traditional congestion
control based approach.

4.1 Steady-State Analysis

This section presents a comprehensive performance analysis study by comparing DFCP
to different TCP versions, namely TCP Cubic which is the default congestion control
algorithm in the Linux kernel and TCP NewReno with SACK option. Most of the mea-
surements were performed on three testing platforms (testbed, Emulab and ns-2), and
here we present representative results. Unless mentioned otherwise, the window size and
redundancy parameters of DFCP were set to 10000 blocks and 10%, respectively. In sin-
gle flow experiments, we used a bottleneck buffer of 1000 packets and a buffer of 10000
packets in other scenarios except network utilization and scalability measurements.
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(a) A wide range of packet loss rates
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Figure 4.1. The performance of DFCP and TCPs in a lossy environment (simulation)

4.1.1 Goodput Performance

In this part, we focus on the goodput performance of DFCP and TCPs they can provide in
the long run. One of the main beneficial properties of DFCP can be seen in Figure 4.1. It
demonstrates that DFCP is much more resistant to packet loss than TCP Cubic and TCP
Reno. The difference in goodput is already considerable for 0.1% of packet loss, but for
increasing loss rate DFCP highly outperforms both TCP variants (see Figure 4.1a). For
example, for 1% of packet loss the ratio between the goodput obtained by DFCP and TCP
Reno is about 4, and this ratio is almost 8 for TCP Cubic. When the loss rate attains 10%,
DFCP gets more than 250 times faster compared to TCPs, and it works efficiently even in
case of extremely high loss (50%) in contrast to TCPs, which are unable to operate under
these network conditions. A practical result is shown in Figure 4.1b where the goodput
is examined only in the interval 0.1–1%. The figure illustrates that, in realistic settings,
DFCP becomes insensitive to packet loss, hence the rate variation experienced in the case
of TCP can be avoided. Moreover, the goodput performance of DFCP is significantly
better compared to both TCP versions in the whole range.

Figure 4.2 shows the performance comparison results of DFCP and TCPs for varying
round-trip time. The figure illustrates that TCP versions perform better than DFCP in
terms of goodput regarding the RTT interval 0–10 ms, but the difference is negligible
and it is due to the coding overhead. Nevertheless, for delay values greater than 10 ms
DFCP achieves significantly higher transfer rate compared to TCP Cubic and TCP Reno.
Since the typical value of round-trip time in a real network exceeds 10 ms [84], DFCP can
function more efficiently than TCP in such conditions.
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Figure 4.2. Goodput performance of a sin-
gle flow for varying RTT (simulation)
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Figure 4.3. Bandwidth sharing of two com-
peting flows (testbed)

Additionally, it is essential to reveal and investigate how a transport protocol shares
the available bandwidth of a bottleneck link among competing flows often referred to as
fairness property. As mentioned earlier, DFCP and TCP cannot work together within
the same network due to the fact that they operate in different regimes according to the
applied principles. For this reason, here we deal only with intra-protocol fairness analy-
sis. As widely known, standard TCP cannot provide an equal portion of the bottleneck
bandwidth for competing flows with different round-trip times [85] due to its AIMD mech-
anism [24]. Figure 4.3 depicts the goodput for two competing DFCP and TCP Cubic flows,
respectively. The delay of flow 1 was fixed at 10 ms, and for flow 2 we varied the delay pa-
rameter between 10 and 100 ms. Since the results for TCP Reno were quite the same as in
the case of TCP Cubic, only the latter was plotted. The figure shows that the bottleneck
link capacity is equally shared by the two TCP flows for RTT values less than 20 ms in
our testbed measurements. However, for RTTs greater than 20 ms the goodput of flow 2
starts to decrease, and as a result, flow 1 with lower RTT can gain access to a greater
portion of the available bandwidth indicating the unfair behavior of TCP. In contrast,
DFCP flows achieve perfect fairness as they share the bottleneck capacity equally and
they are much less sensitive to the round-trip time compared to TCP. We note that the
difference can be observed in the goodput of DFCP and TCP flows for RTT values less
than 20 ms is due to the coding overhead.

Figure 4.4 illustrates the impact of packet loss rate on the goodput performance for
two competing flows. Figure 4.4a shows the case when packet loss rates are equal for both
flows and changed according to the horizontal axis, and Figure 4.4b shows the case when
they experienced different loss rates. In the latter case, the first flow has a fixed loss rate
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(a) Equal packet loss rate
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(b) Different packet loss rates

Figure 4.4. Goodput for two competing flows with equal and different packet loss rates
(testbed)

set to 0.1%, and the second one has a loss rate varied between 0.1% and 5% as shown in
Figure 4.4a. In Figure 4.4a, it can be observed that neither TCP Cubic nor TCP Reno
flows share the available bandwidth equally for lower values of loss rate, however, the
difference is reduced for increasing packet loss rate. Unlike different TCP variants, DFCP
provides a fair resource allocation. On the one hand, each DFCP flow achieves nearly the
same goodput value, and on the other hand it is almost independent of the packet loss
rate. We note that the slight increase in goodput for higher loss rates can be attributed
to some measurement artifacts. Figure 4.4b shows that, while DFCP behaves similarly in
the cases of equal and different loss rates for the two flows, respectively, TCP Cubic and
TCP Reno share the bottleneck link capacity in an unfair way in the whole range. We can
conclude the robust property of DFCP, namely, it is irrelevant to DFCP that loss rates
are equal or different for the competing flows, and what values they have.

Figure 4.5 presents the performance comparison of DFCP and TCP Cubic carried out
on the parking lot topology illustrated in Figure 3.12 by starting three concurrent flows.
In this test scenario, the capacity was set to 1 Gbps for both bottleneck links denoted by
B1 and B2. The round-trip time was fixed at 10 ms on B1, but it was increased on B2

from 0 to 100 ms. Looking at the figure, we can make the following observations. Until
the round-trip time experienced on B2 attains 10 ms, both DFCP and TCP Cubic share
the bottleneck bandwidth of B1 and B2 in a fair way. However, for higher delay values
TCP Cubic gradually becomes unfair due to the fact pointed out in this section, namely,
TCP is sensitive to round-trip time. As the goodput obtained by flow 1 and flow 3 drops
for increasing RTT (since they go through B2), flow 2 with lower RTT receives more
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Figure 4.5. Bandwidth sharing in a multi-
bottleneck network with varying delay
(testbed)
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Figure 4.6. Goodput performance in a
multi-bottleneck network with varying
packet loss rate (testbed)

and more bandwidth. Accordingly, TCP Cubic does not provide fairness between flow 1
and flow 2 having different RTTs. Moreover, the available capacity of B2 is also shared
unequally, and hence, flow 1 and flow 3 achieve different goodput performance. As we
mentioned earlier it is an undesirable behavior, and the results show that DFCP can
resolve this issue by providing perfect fairness for each flow independently of their RTTs
thanks to its robustness to varying network conditions.

Figure 4.6 demonstrates the results of a similar test scenario for varying packet loss
rate performed on the same parking lot topology. In this case, the capacity was set to
1 Gbps and 500 Mbps for the bottleneck links denoted by B1 and B2, respectively. The
packet loss rate was fixed at 0.01% on B1, but it was increased on B2 from 0.01% to 5%.
The round-trip delay was set to 10 ms on both links. We can see that DFCP provides
fair shares for the flows competing for the available bandwidth of B2, and their goodput
drops very slowly as the packet loss increases. Furthermore, the link utilization of DFCP is
excellent on both bottleneck links due to its high loss resistance. In contrast, TCP Cubic
and TCP Reno ensure fairness for flow 1 and flow 3 only for packet loss rate greater than
1% where both flows become almost unable to transfer data. The goodput of flow 1 starts
from a lower value than the goodput of flow 3, because flow 1 goes through both B1 and
B2, and hence experiences a higher rate of packet loss. The link utilization achieved by
the investigated TCP variants is quite poor due to their sensitivity to this factor.

Overall, we can say that the goodput performance of DFCP is significantly better
than in the case of the investigated TCP versions in a wide range of packet loss rates and
round-trip times.
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Figure 4.7. The impact of buffer size on the performance of DFCP and TCPs (simulation)

4.1.2 Buffer Demand and Occupancy

It is a well-known fact that the buffer size demand of TCP is at least of root order in the
number of competing flows [86]. This requirement imposes a significant challenge in all-
optical networks where only very small buffer sizes can be realized due to both economic
and technological constraints [87].

Figure 4.7 demonstrates on the dumbbell topology how the performance of DFCP
and TCPs is affected by the buffer size. In this scenario, the round-trip time was fixed
at 10 ms and no packet loss was simulated. The buffer size is given in packets, and the
vertical axis represents the performance utilization of the investigated transport protocols.
Performance utilization is the ratio (expressed in percentage) between the goodput can
be obtained with a particular buffer size and the maximum goodput that can be achieved
when the buffer size is set as high as to exclude it from the limiting factors. We can see that,
with a buffer size of 1000 packets, each protocol is able to realize maximum performance
utilization. However, by decreasing the buffer size the performance of TCP variants drops
considerably. For example, with a small buffer of 50 packets, TCP Cubic and TCP Reno
can work only at a reduced transfer rate, 92% and 79% of the ideal case, respectively.
In contrast, DFCP can bring out the maximum performance not only for large buffers,
but also for small ones, and thanks to this property the transport mechanism of DFCP is
closely aligned to the concept of all-optical networking [87].

Figure 4.8 illustrates how DFCP and different TCP versions utilize the bottleneck
buffer. The average occupancy was calculated for a 600 seconds long interval. In the
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(a) Buffer size: 100 packets
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Figure 4.8. Buffer occupancy (simulation)

case of a small buffer of 100 packets (see Figure 4.8a) DFCP operates with an average
utilization of 54% while TCP Cubic and Reno use only 43% and 11% of the available
buffer space. Considering queue length dynamics, we can see that DFCP builds up the
queue in a very short time, and then keeps it stable in contrast to TCPs. If the buffer
can store 1000 packets (see Figure 4.8b), utilization becomes higher for each transport
protocol. Specifically, DFCP works at a 95% buffer occupancy demonstrating that our
concept is designed to fully saturate router buffers irrespective of their sizes. TCP Cubic
and Reno also show considerable improvement in utilization as the average occupancy is
75% and 58%, respectively.

Our results revealed the robust property of DFCP regarding the buffer space demand,
as it performs well both in small and large buffer environments without any oscillation
phenomena usually observed in the case of different TCP versions.

4.1.3 Flow Transfer Efficiency

As we mentioned in Section 3.4, flow completion time is one of the most important per-
formance metrics from the user’s point of view because of the fact that users want to
download web pages, softwares, movies and many other contents as fast as possible. Ac-
cordingly, we investigated two different categories: (1) web object (150 kB, the mean size
is about 100–200 kB [88]) and (2) DVD (4.7 GB), which represent short and long data
transfers, respectively.

Figure 4.9 illustrates how the flow completion time depends on the packet loss rate. One
can see that DFCP provides the fastest download in both cases, indicating its potential
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Figure 4.9. Flow completion time for different packet loss rates (testbed)
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Figure 4.10. Flow completion time for different round-trip times (testbed)

in the case of web traffic as well as heavy data transfers, however, the benefit is more
significant in the latter case. By transferring a typical web object, the most considerable
performance gain can be experienced for high packet loss rates (see Figure 4.9a). However,
if we transfer a full DVD, the advantage of DFCP is pronounced in the whole range of
packet loss rate (see Figure 4.9b). Moreover, DFCP becomes almost insensitive to packet
loss in these practically relevant scenarios.

Investigating the impact of round-trip time, we can also find significant differences in
the performance of DFCP and TCPs as shown in Figure 4.10. Specifically, in the case
of a web object there are several orders of magnitude between the flow completion time
of DFCP and TCPs for increasing round-trip delay (see Figure 4.10a). Considering the
category of DVD, it can be stated that the difference in download time is negligible for
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Figure 4.11. Flow completion time for two competing flows with the one having a fixed
RTT of 10 ms and the other one having an RTT varied between 10 and 100 ms (testbed)

low RTT values, however, it gets more and more significant towards high RTT values as
shown in Figure 4.10b.

Figure 4.11 shows the flow completion time for two competing DFCP and TCP Cubic
flows where the first flow has a fixed RTT of 10 ms and the delay of the second flow is
varied between 10 and 100 ms. We observed that the results for TCP Reno were quite
the same as in the case of TCP Cubic, hence only the latter was depicted. Looking at
Figure 4.11a one can see that in the case of a web object DFCP produces excellent results.
It does not only provide 20 times faster download than TCP even in the worst case, but
also achieves perfect fairness, thus both DFCP flows have nearly the same download time.
If we transfer a full DVD, the two TCP flows behave in a fair way, but only for RTT values
less than 20 ms (see Figure 4.11b). In contrast, DFCP flows attain equal download time
in the whole range since DFCP protocol is insensitive to high RTTs compared to TCP.
We note that the difference in the flow completion times of DFCP and TCP flows for
RTT values less than 20 ms is due to the coding overhead of DFCP.

The important issue of efficient flow transfer regarding different transport protocols
is addressed in this subsection. The results demonstrate that the currently used TCP
versions cannot achieve optimal performance in the case of short-lived and long-lived
flows. In many applications such as web browsing it is a real limiting factor, and the user
experience would be significantly improved by using a much more effective data transfer
mechanism like DFCP.
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Figure 4.12. The general concept of per-flow fair scheduling

4.1.4 Fairness Properties

In our proposed future network architecture, fairness can be realized by the application of
fair schedulers as we mentioned in Section 3.2. In fact, unlike TCP the transfer mechanism
of DFCP cannot guarantee fairness at the host side. Therefore, the only way is to perform
this task by network routers. However, in this context there are some open questions to
be answered. On the one hand, a plenty of fair scheduling algorithms have been worked
out during the last two decades, but only a few are available in today’s routers and their
impact on Internet performance is still poorly understood [89]. So, the natural question is
which one to choose? On the other hand, in most routers a FIFO scheduler is applied by
default as it is the simplest algorithm, but it does not eligible for providing fairness. How
does DFCP perform in such conditions? To answer these questions, we extend our fairness
analysis by investigating different queuing mechanisms. Since the fairness properties of
SFQ and WFQ were very similar, we show results only for the latter.

About one decade ago, researchers pointed out that the pretty old DRR algorithm [56]
can provide a much more efficient way for bandwidth sharing among concurrent flows than
it thought before. According to a flow-level traffic model developed by Kortebi et al. [57],
the number of flows that need to be handled by a per-flow scheduler is typically low and
does not increase with link capacity. Measurements taken from commercial networks also
confirmed this observation showing that the number of these active flows attains only
several hundreds even in the case of high-speed connections [58]. Since we propose DRR
as the primary queuing mechanism for our digital fountain based architecture, here we
introduce its main principles and operating mechanism. The general concept of per-flow
fair scheduling is illustrated in Figure 4.12 where three flows share a common bottleneck
link. The packets of each flow are buffered in separate FIFO queues and serviced according
to the given fair scheduling (FS) algorithm. DRR works in a round-robin fashion meaning
that queues are serviced one after another in each round. A variable called deficit counter
di is maintained for each per-flow queue, which determines the number of bytes that can
be transmitted from queue i in the next round.
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Figure 4.13. Bandwidth sharing with different queuing mechanisms (simulation)

The algorithm performs the following steps:

Step 1. The initial value of deficit counters is set to zero, that is, di = 0 for each
queue i = 1, 2, . . . , N where N denotes the number of queues.

Step 2. A so-called quantum q is added to the deficit counter of per-flow queue i:
di := di + q.

Step 3. Let l be the length of packet p at the head of queue i. If di ≥ l, then p is
transmitted and the deficit counter is decremented by l: di := di − l.

Step 4. The scheduler continues with the next queue. Steps 2–4 are repeated until
there is a non-empty queue.

The DRR algorithm is not only scalable but can also easily be implemented in network
routers. Beyond DRR, there are some other well-known fair schedulers like SFQ and WFQ.
SFQ [74] does not allocate a queue for each flow, instead it uses a limited number of queues
and distributes network traffic among these queues by a hash function. This stochastic
approach enables efficient operation at the expense of less accurate approximation of the
ideal fair scheduling. WFQ [73] allows network operators to define traffic classes and then
assign different bandwidth proportions to them. Although WFQ is able to obtain fair
allocation, it is difficult to implement in hardware due to its complexity.

Figure 4.13 shows the goodput performance of DFCP and TCP versions for the same
test scenario presented in Section 4.1.1. Figure 4.13a indicates that, with DRR scheduler,
DFCP can provide equal bandwidth sharing for the competing flows similar to the case
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Figure 4.14. Intra-protocol fairness with WFQ, DRR and FIFO schedulers (simulation)

when WFQ was used. In addition, we can observe that applying DRR makes TCP less
sensitive to the difference experienced between the RTTs of flow 1 and flow 2 resulting
in better performance. Figure 4.13b demonstrates that the unfairness phenomenon is
more pronounced if we use the simple FIFO scheduling algorithm. Even though, for both
transport protocols the difference in goodput between the competing flows gets higher for
increasing delay, for DFCP this change is much slower than for TCP Cubic.

Figure 4.14 presents a fairness comparison of DFCP and TCP Cubic using different
schedulers. The results clearly show that DFCP can guarantee perfect fairness for the two
competing flows independently of their RTTs if fair schedulers are used. Moreover, DFCP
achieves better fairness than TCP with the much simpler FIFO algorithm as well, even if
TCP is coupled with fair scheduling.

It is clear that in typical network conditions DFCP can obtain a higher degree of
fairness compared to TCP for each queuing discipline. In other words, according to the
results, current Internet architecture with FIFO queues would provide better fairness for
competing flows by applying DFCP as a transport protocol instead of TCP. However, the
highest degree of fairness can be realized by deploying DFCP together with fair schedulers,
which can significantly improve TCP-based bandwidth sharing.

4.1.5 Scalability

On a typical bottleneck link hundreds of flows compete for the available bandwidth, and
the capacity of these links is continuously increasing due to the development of communi-

53



4 Fountain Coding versus Congestion Control: An Evaluation

Table 4.1. Performance scalability (simulation)

Bandwidth
Normalized aggregate goodput (DFCP / TCP) [%]

10 flows 50 flows 100 flows

0.1 Gbps 100 / 98 100 / 100 100 / 100
1 Gbps 100 / 96 100 / 98 100 / 99

10 Gbps 100 / 22 100 / 95 100 / 96

cation technologies. Good scalability is an important requirement for transport protocols
meaning that they have to provide similar performance and fairness as the number of
flows and the link capacity increase. The following simulations compare the scalability of
two fundamentally different data transfer paradigms, DFCP with DRR scheduling and
TCP Cubic with FIFO queue management. The results obtained for a 200 seconds long
measurement period on the topology of Figure 3.11 with a 0.1 BDP buffer, and each flow
experienced 100 ms of RTT.

Table 4.1 describes the performance scalability of the investigated transport protocols
for different numbers of flows and link capacities. We computed the normalized aggregate
goodput as the ratio of the aggregate goodput of concurrent flows and the maximum good-
put can be achieved by a single flow. The normalized values are expressed in percentage
and given for DFCP and TCP Cubic, respectively, separated by a slash mark. The results
show that DFCP is able to gain the maximum performance irrespective of the number
of flows and bottleneck bandwidth. In contrast, for TCP Cubic the normalized aggregate
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Figure 4.15. Fairness for increasing number of competing flows (simulation)
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goodput increases with the number of flows, but decreases with the link capacity. For
example, in the case of a 100 Mbps link the maximum performance can be obtained by
50 competing flows, however, an increase in the link capacity by two orders of magnitude
leads to a 5% performance degradation. Moreover, high capacity links cannot be fully
utilized by a small number of flows since the round-trip time limits the transmission rate
of individual flows. In this special case, 100 ms of RTT results in a goodput reduced to
approx. 200 Mbps for each flow (see Figure 4.2), and hence the underutilization of the
10 Gbps link by 10 flows.

Figure 4.15 demonstrates the fairness scalability of DFCP and TCP Cubic for increas-
ing number of flows. In this scenario, each flow experienced the same delay to avoid the
phenomenon of RTT unfairness. In spite of that the tendency is obvious for TCP Cubic:
the larger the number of concurrent flows, the lower the fairness index. However, in con-
trast to all of these results DFCP can ensure fair bandwidth sharing independently of the
number of competing flows.

4.1.6 Network Utilization

Most network operators choose over-provisioning as a way to satisfy resource demands
even during the busy hours of the day [90], which is based on the assumption that quality
issues can be readily addressed by allowing some excess capacity. However, this approach
can often be very inefficient leading to degraded QoE [91], and for some environments, it
is simply not a viable option due to various constraints. Utilization is a key measure to
support the proper design and sizing of networks. The following results reveal the extent
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Figure 4.16. CDF of network utilization for different buffer sizes (simulation)
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Table 4.2. The ratio of load levels for different buffer sizes (simulation)

Buffer size
Underloaded Normal Overloaded
DFCP TCP DFCP TCP DFCP TCP

Tiny 0% 68% 10% 32% 90% 0%
Small 0% 45% 6% 52% 94% 3%
Large 0% 0% 5% 73% 95% 27%

Average 0% 38% 7% 52% 93% 10%

of utilization can be achieved by different transport mechanisms. In these experiments,
DFCP with DRR scheduling and TCP Cubic with FIFO queue management are inves-
tigated, as well as network utilization is interpreted as the total mean utilization of all
bottleneck links and buffers. Simulations were conducted on the parking lot topology of
Figure 3.12 with bottleneck link capacities 1 Gbps and 400 Mbps.

Figure 4.16 shows the cumulative distribution function (CDF) of network utilization for
different buffer sizes. We define three categories called tiny, small and large corresponding
to buffer space of 0.01 BDP, 0.1 BDP and 1 BDP, respectively. The evaluation results
indicate that, with larger buffers higher utilization can be achieved for both paradigms,
but DFCP surpasses TCP irrespective of what type of buffers is used. We can also see that
DFCP can utilize more than 90% of network resources in most cases, both with small and
large buffers. The difference in utilization levels is the most pronounced between tiny and
small buffers. In contrast, the network utilization significantly drops for TCP not only
when tiny buffers are used but also when small ones. Overall, we can say that, regarding
resource utilization, TCP can bring out the maximum with large buffers while DFCP is
able to do so even with small buffers.

Table 4.2 gives the ratio of different load levels using tiny, small and large bottleneck
buffers. Underloaded, normal and overloaded regimes are defined as an operational state
with mean network utilization falling in the interval of 0–20%, 20–80% and 80–100%,
respectively. The results point out that DFCP never keep the network underutilized, and
in about 90% of the time it works in the overloaded regime with highly saturated links
and buffers. Regarding TCP, the case is the opposite: in most of the time, the network
operates in the underloaded or normal regimes. The results also reveal that, with large
buffers, the network does not get underloaded whereas the use of tiny buffers prevent the
network from overloading.
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4.2 Conclusion

In this chapter, we carried out a steady-state analysis of two alternative paradigms as
possible data transport mechanisms for future networks: the digital fountain based DFCP
and the congestion control based TCP. In order to draw solid conclusions, we studied
the operation of these protocols on various network topologies and multiple platforms
including our laboratory testbed, the Emulab network emulation environment and the
ns-2 network simulator. We showed that the goodput performance of DFCP is significantly
better than in the case of the investigated TCP versions in a wide range of packet loss
rates and round-trip times. The results also pointed out that DFCP is able to obtain
maximum performance even with small buffers, which could make it attractive for all-
optical networks. Moreover, DFCP provides fair bandwidth sharing among competing
flows independently of their RTTs. Although perfect fairness can only be achieved when
fair schedulers (e.g. DRR) are used, DFCP can ensure better fairness than TCP even in
the absence of any fair scheduler and if the simplest FIFO algorithm is applied. Finally,
digital fountain based transport guarantees good scalability and stability, both in terms of
performance and fairness for increasing number of flows and link capacity while keeping
the network highly utilized. The results suggest that it is a promising approach with
numerous beneficial properties and a broad spectrum of possible applications.
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Chapter 5

Characterization of Transport
Mechanisms under Dynamic Traffic
Conditions

The volume of Internet traffic has been growing exponentially in the last years, and this
trend is expected to intensify in the future [92]. In typical backbone networks hundreds of
thousands of flows, originated from different users and versatile applications, compete for
the available resources. Such a heterogeneous mixture of traffic flows leads to a continu-
ously changing environment, hence it is crucial to deeply understand the behavior of the
underlying data transfer mechanisms regarding many features like stability, convergence
and responsiveness. In this chapter, we study the characteristics of digital fountain based
transport (discussed in Chapter 3) under dynamic network conditions, and carry out a
comparison with the traditional approach relying on TCP’s congestion control.

5.1 Background

Since the early days of the Internet, congestion control introduced by TCP, has played the
key role in reliable host-to-host communication. In the last decades, the characteristics
of network traffic have changed considerably due to the evolving technologies and the
diversity of applications. Today’s Internet is a large-scale, highly dynamic network in
which sudden variations are common due to topology and bandwidth changes. While a
great portion of TCP evaluation studies deal with performance analysis solely in static
environments, some researchers emphasize the importance of exploring how responsive a
transport protocol is under rapidly changing conditions [93, 94]. In spite of the significant
research efforts devoted to optimize the operation of TCP for a wide range of network
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Figure 5.1. Network architectures relying on different transport mechanisms

environments, it seems that congestion control may not be able to cope with the increasing
demands of future networks. The comprehensive performance evaluation of our digital
fountain based transport paradigm (see Chapter 4) revealed that this new approach has
several potential benefits. In this chapter, we deeply investigate the dynamic behavior
of our proposal, and carry out a comparison with the traditional TCP-based solution of
current Internet.

Nowadays, most network routers apply a simple FIFO queue management algorithm
to handle packet buffering. By using this method, when the queue becomes full, the newly
arriving packets are dropped until the queue has enough room to accept incoming traf-
fic. Due to the fact that network traffic consists of thousands of competing flows, a data
transfer paradigm has to ensure fair bandwidth sharing. In the TCP-based architecture
fairness is managed at the host side, but different TCP versions realize different types of
fairness [71]. In this analysis, the operation of TCP Cubic with FIFO queue management
is investigated (see Figure 5.1a), and we call this approach as Congestion Control based
Architecture (CCA). Chapter 3 and Chapter 4 highlighted that our digital fountain based
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approach can overcome TCP in terms of high loss and delay tolerance, fair bandwidth
allocation, low buffer space demand and fast completion of traffic flows. Here the opera-
tion of DFCP with DRR scheduling is evaluated under dynamic network conditions (see
Figure 5.1b), and we refer to this concept as Digital Fountain based Architecture (DFA).

5.2 Dynamic Behavior Analysis

The experiments were performed on a dumbbell topology with N senders and receivers as
shown in Figure 3.11. In the measurement scenarios we examined real-world situations,
which typically occur in a dynamic environment by varying the link capacity and delay,
the buffer size and the number of competing flows. Simulations lasted for 600 seconds, and
if not mentioned otherwise, the bottleneck link capacity was set to 1 Gbps, the round-trip
time was fixed at 50 ms and the buffer size (denoted by b) was equal to the bandwidth-
delay product. In DFCP, the redundancy and the window size parameters were adjusted
to ϵ = 0.05 and 1000 blocks, respectively.

5.2.1 Stability and Convergence

Network traffic is generated by heterogeneous applications that results in many concurrent
flows traversing different network paths with multiple bottlenecks from source to desti-
nation. The transmission rates of these flows fluctuate rapidly since the currently used
congestion control based transfer mechanism could not adapt to changing conditions as
fast as needed. Stability is an important property from both traffic engineering and user
experience points of view [70]. Rate variations often lead to the oscillation of queue length
that can eventually cause buffer overflows. Such an undesirable behavior can result in the
loss of synchronization among competing flows, periodic underutilization of link capacity
and degraded quality of service. It is also crucial regarding efficiency how fast a flow can
obtain its equilibrium rate or converge to the fair share in a dynamic environment [70].

In Figure 5.2, the dynamics of three concurrent flows is illustrated when they were
started with different delays, namely at 0, 100 and 200 seconds. The goodput gives the
current useful data transmission speed in one second resolution, and the curves were
smoothed by using a 10 seconds long moving window. We can observe that, for CCA,
flows converge slowly to the fair share and then their goodput highly fluctuates around it.
In the case of DFA, the convergence time is very low whereas the fluctuation around the
fair share remains moderate. However, the transfer mechanism of DFA leads to a more
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Figure 5.2. Dynamics of concurrent flows started with different delays and their conver-
gence to the fair share

bursty transmission than that of CCA, which is due to the trade-off between the window
size and the burstiness of traffic.

To describe the transient fairness of transport mechanisms, we measured the goodput
ratio of two competing flows started with unequal shares of the bottleneck bandwidth for
DFA and CCA, respectively. Figure 5.3 shows a scenario when the flows were launched at
0 and 100 seconds, hence flow 1 had been utilizing the total available bandwidth at the
time of starting the second flow. The vertical axis gives the goodput ratio of flow 2 to
flow 1. We can see that, for CCA, transmission rates of competing flows converge slowly,
but they remain stable at different time scales. In contrast, for DFA, while the goodput
convergence is fast providing high degree of long-term fairness, a slight oscillation around
the equal share (i.e. the goodput ratio of 1) can be observed at small time scales.

100 200 300 400 500 600
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Simulation time [s]

G
o

o
d

p
u

t 
ra

ti
o

 

 

DFA

CCA

Figure 5.3. Goodput ratio in the function of time for two delayed flows
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A frequently used metric to quantify the convergence speed is δ-fair convergence
time [93], which can be given as the time taken by two flows to obtain a bandwidth
allocation of (1+δ

2
B, 1−δ

2
B) starting from (B−B0, B0) where B >> B0. Using the settings

of B = 1000 and B0 = 0, the average δ-fair convergence times provided by DFA and CCA
are summarized in Table 5.1. These results have great significance in the case of short
downloads and suggest that CCA cannot guarantee reasonable fairness for many Internet
applications since about half of network flows last less than a few seconds.

Table 5.1. Convergence time to the fair share

Paradigm
δ-fair convergence time
δ = 0.1 δ = 0.3 δ = 0.5

DFA 2 sec 1 sec 1 sec
CCA 180 sec 60 sec 5 sec

5.2.2 Responsiveness

One of the key concerns in the design of transport protocols is the ability to handle
abrupt change of network parameters and traffic conditions. In a real network competing
flows governed by different transfer mechanisms often face with quick variations mainly
originated from routing and bandwidth changes, or sudden congestion. Responsiveness is
of high importance describing how fast and accurately a transport protocol can adapt to
these environmental factors [70].

In this section, we focus on the change of the available bandwidth and quantify the re-
sponsiveness of per-flow and aggregate traffic for the two different data transfer paradigms.
To this end, we defined and calculated a metric called adaptation error as follows. Let
gi be the goodput of flow i and fi the ideal fair share for flow i taking into account the
bandwidth change pattern. Using these notations the adaptation error of per-flow (ep)
and aggregate traffic (ea) can be computed by the following formulas:

ep =
1

n

n∑
i=1

|gi − fi|
fi

and ea =

∑n
i=1 |gi − fi|∑n

i=1 fi
(5.1)

where n denotes the number of flows competing for the bottleneck bandwidth.
We analyzed the behavior of 10 competing flows by periodically halving the available

bandwidth of the bottleneck link. Specifically, the bandwidth was reduced from 1000 Mbps
to 500 Mbps in the interval of [100,200], [300,340], [380,420] and [460,500] as illustrated in

62



5.2 Dynamic Behavior Analysis

0 100 200 300 400 500 600
0

100

200

300

P
e

r−
fl
o

w
g

o
o

d
p

u
t 
[M

b
it
/s

]

 

 

Simulation time [s]

0 100 200 300 400 500 600
0

250

500

750

1000

A
g

g
re

g
a

te
g

o
o

d
p

u
t 
[M

b
it
/s

]

 

 

Simulation time [s]

0 100 200 300 400 500 600
0

25

50

75

100

Simulation time [s]

A
b

s
o

lu
te

 e
rr

o
r 

[%
]

 

 

Per−flow Aggregate

Figure 5.4. Responsiveness of per-flow (top) and aggregate (middle) traffic, and the adap-
tation error (bottom) for DFA with a buffer size of 100 packets
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Figure 5.5. Responsiveness of per-flow (top) and aggregate (middle) traffic, and the adap-
tation error (bottom) for DFA with a buffer size of 5000 packets

63



5 Transport Mechanisms under Dynamic Traffic Conditions

0 100 200 300 400 500 600
0

100

200

300

P
e

r−
fl
o

w
g

o
o

d
p

u
t 
[M

b
it
/s

]

 

 

Simulation time [s]

0 100 200 300 400 500 600
0

250

500

750

1000

A
g

g
re

g
a

te
g

o
o

d
p

u
t 
[M

b
it
/s

]

 

 

Simulation time [s]

0 100 200 300 400 500 600
0

25

50

75

100

Simulation time [s]

A
b

s
o

lu
te

 e
rr

o
r 

[%
]

 

 

Per−flow Aggregate

Figure 5.6. Responsiveness of per-flow (top) and aggregate (middle) traffic, and the adap-
tation error (bottom) for CCA with a buffer size of 100 packets
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Figure 5.7. Responsiveness of per-flow (top) and aggregate (middle) traffic, and the adap-
tation error (bottom) for CCA with a buffer size of 5000 packets
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Figure 5.8. CDF of adaptation error of per-flow and aggregate traffic for DFA and CCA

Figure 5.9. In Figure 5.4–5.7, the responsiveness of per-flow and aggregate traffic, and the
adaptation error are shown for DFA and CCA. Figure 5.8 depicts the CDF of error whereas
Table 5.2 summarizes the mean and standard deviation of values. To reveal the adaptation
capability of transfer paradigms to different network environments, we investigated both
small (b = 100) and large (b = 5000) buffer sizes (measured in packets). The good
operability with small buffers is a mandatory requirement for all-optical communication
and also makes it possible to avoid the bufferbloat phenomenon experienced in current
Internet mainly due to the use of over-sized router memories [91].

Regarding the small buffer case (b = 100), we can see that the adaptation speed of
CCA flows to bandwidth changes is very low (Figure 5.6). Ideally, each flow would receive
an equal share of the bottleneck link, but in this case some flows react too aggressively and
some too mildly to changing network conditions. This behavior leads to uneven bandwidth
allocation especially during the periods after the available bandwidth is doubled. For
example, in the interval of [200,300] the maximum perceived difference in goodput between
individual flows exceeds 200 Mbps, which is two times more than the fair share. In spite of
the high unresponsiveness of single flows, the aggregate traffic roughly follow the change
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Table 5.2. The mean (left) and standard deviation (right) of the adaptation error in
percentage

Source
DFA CCA

b = 100 b = 5000 b = 100 b = 5000

Single flow 2.7 2.6 2.3 1.9 26.1 20.7 2.4 4.5
10 flows, per-flow 6.7 9.2 4.8 4.3 37.5 23.7 13.5 10.4
10 flows, aggregate 6.1 8.4 3.0 2.1 13.2 10.4 0.9 1.9

pattern. The per-flow adaptation error is significant and ranges between 20% and 70%
with a mean of 38% (Table 5.2) while in the case of the aggregate more than half of the
samples are below 10% (Figure 5.8) with a mean of 13%. For DFA, we can experience
a moderate oscillation of per-flow goodput around the fair share (Figure 5.4), however,
the stability of aggregate traffic does not show noticeable difference compared to that of
CCA. Apart from some outlier values, the error rate remains moderate with an average
of 7% and 6%, hence it is only slightly higher for per-flow traffic. If large buffers with size
close to the BDP (b = 5000) are used in CCA routers (Figure 5.7), individual flows can
follow much more smoothly the bandwidth changes, which results in high responsiveness
of the aggregate traffic. While the per-flow adaptation error does not exceed 25%, for the
aggregate traffic, the error rate is negligible and can only be measured when changes occur.
Although the use of large buffers also has a positive effect on the adaptation accuracy
of DFA, the improvement is barely noticeable as can be seen in Figure 5.8. To sum up,
our measurements indicate that CCA can provide better adaptivity than DFA only in the
case of the aggregate traffic and if sufficiently large buffers are applied.

5.2.3 Saturation Time

The operation of congestion control algorithms consists of two main transmission phases.
In the initial phase, TCP gradually increases the sending rate until the bottleneck buffer
is filled. Then, it is followed by an equilibrium state when the protocol achieves the
maximum transmission rate and tries to keep it stable. The length of the transient phase
highly determines the download efficiency of short-lived flows, therefore it can affect the
quality of experience for many applications. In order to capture this behavior, we defined
a performance metric called saturation time [10], which can be given for a loss-based
protocol as the time elapsed from the starting of a flow until the first packet is dropped.
Queue saturation time (QST) is a good indicator of how fast a transport protocol can
obtain its steady-state performance.
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Figure 5.10. Queue saturation time for increasing number of flows

Figure 5.10 shows the queue saturation time can be provided by the two data trans-
mission paradigms for increasing number of flows. Similarly to responsiveness we inves-
tigated the impact of both small and large buffers. If we use a buffer size greater than
the bandwidth-delay product, the bottleneck queue is saturated in a very short time and
independently of the number of concurrent flows for both transfer mechanisms. The figure
also clearly demonstrates that, by using a buffer size of only 100 packets, QST becomes
dramatically high for CCA and it decreases when many concurrent flows share the band-
width of the bottleneck link. However, even if the results suggest that we can theoretically
achieve low QST values for hundreds of competing flows, CCA is unable to handle such
amount of network traffic with small buffers in comparison to DFA.

In Figure 5.11, the queue saturation time is depicted for different round-trip time
values. We can see that, using CCA, the round-trip time considerably affects QST in the
case of a particular buffer size. With a buffer size of 100 packets QST is already noticeable
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Figure 5.11. Queue saturation time for different round-trip times
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on low-latency links and it increases for higher RTTs. The same tendency can be observed
with a larger buffer of 5000 packets, but the increase in QST is less significant. In contrast,
DFA is able to keep QST low even in high-delay environments.

5.3 Conclusion

In this chapter, we investigated the dynamic behavior of our DFCP-based data transfer
paradigm (DFA) and compared it to the current Internet architecture (CCA) relying on
the congestion control mechanism of TCP. The simulation results revealed that, while
CCA can work with moderate goodput oscillation at small time scales, DFA is more
stable in the long run and can guarantee fast convergence for competing traffic flows. We
also found that DFA is able to cope with sudden change of network conditions regarding
both per-flow and aggregate traffic independently of the buffer size. CCA shows better
adaptivity only in the case of aggregate traffic and if sufficiently large buffers are used,
with small router memories CCA is highly unresponsive. Furthermore, DFA provides low
queue saturation time making QoE improvement possible for many applications.
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Chapter 6

Available Bandwidth Estimation in
Mobile Networks

In the recent years, a significant research effort has been devoted to the development of
bandwidth estimation techniques and tools due to the broad range of possible applications.
The vast majority of bandwidth estimation algorithms are designed and optimized for
wired networks. Therefore, these solutions not only provide inaccurate results in wireless
environments but also rely on some information usually not known in advance, or produce
a severe additional load on the network. Specifically, in mobile networks the continuously
varying characteristics of radio links make it an extreme challenge to estimate the currently
available bandwidth. In this chapter, we present a bandwidth estimation method worked
out for mobile networks, which models the dynamics of the bottleneck queue and identifies
its busy periods. Our algorithm can estimate the unused bandwidth by exploiting the
user-generated downlink network traffic with negligible extra load. The operation of the
algorithm is demonstrated on real traffic traces captured by a mobile device in a 3G
network.

6.1 Background

Traditionally, bandwidth is used as a measure quantifying the data transfer rate that a
network link or path can provide. However, it is important to distinguish between the
different meanings of the term bandwidth. In the literature, there are three frequently
used interpretations [95]: the maximum possible bandwidth that a link or path can deliver
(capacity), the maximum unused bandwidth at a link or path (available bandwidth), and
the maximum throughput can be obtained by a single TCP connection (bulk transfer
capacity).
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Figure 6.1. The tight and narrow link of a network path

The available bandwidth (ABw) of a link is described as the unused bandwidth of
that link for a given time interval [95]. The ABw is a time-varying metric since it depends
on the traffic load, also known as cross-traffic. The average utilization of the link can be
given as follows:

uτ (t) =
1

τ

∫ t

t−τ

u(x)dx (6.1)

where u(x) is the instantaneous utilization of the link at time x with values falling between
0 and 1, as well as τ denotes the averaging interval. Let Ci and ui be the capacity and
the mean utilization of link i, respectively. In this case, the ABw is defined as

Bτ
i (t) = (1− uτ

i (t))Ci. (6.2)

If we have a path with n links, the end-to-end ABw can be given as the minimum of all
values, that is

Bτ (t) = min
i=1,2,...,n

{Bτ
i (t)} = min

i=1,2,...,n
{(1− uτ

i (t))Ci}. (6.3)

The link with the minimum ABw is called the tight link of the path, while the link
having the lowest capacity is the narrow link. Figure 6.1 shows a simple network model
consisting of three consecutive links where the used bandwidth is colored gray and the
rest of the area corresponds to the ABw. One can see that the first link has the lowest
ABw, whereas the link with the lowest capacity is the third one. This example illustrates
that the tight link and the narrow link can be different along a network path.

In the last decade, a plenty of bandwidth estimation algorithms and tools have been
developed in order to meet the increasing demands [95, 96]. The design of efficient band-
width estimation methods is not easy because some contradicting requirements are need
to be fulfilled. An ideal algorithm would provide high estimation accuracy, fast operation

70



6.1 Background

and low overhead. However, in practice not all these features are equally relevant, and it
highly depends on the application area which ones have to be optimized. For example, in
the case of transport protocols low overhead and low estimation time are required, but
they do not need high accuracy for proper operation, a rough estimate is acceptable [96].

Available bandwidth estimation is one of the most challenging tasks in the context
of bandwidth estimation methods addressed in many papers [95, 97]. The majority of
ABw estimation techniques send probe packets to the receiver utilized in the estimation
process and are based on two basic models: the Probe Gap Model (PGM) and the Probe
Rate Model (PRM). PGM exploits the information about gap dispersion between two
consecutive probe packets at the receiver. The gap dispersion has a strong correlation
with the amount of cross-traffic in the tight link, that is, with the link having the lowest
available bandwidth. The methods using PGM (e.g. Abing, Spruce) first determine the
amount of cross-traffic, and then subtract the result from the known capacity of the
tight link. PRM tools (e.g. Pathload, pathChirp, DietTopp) are based on the idea of self-
induced congestion where probe packets are sent at increasing rates to the receiver, and
the available bandwidth is determined by studying the change of the queuing delay and
measuring the output rate.

The issue of estimating the bulk transfer capacity (BTC) is investigated only in a few
papers. BTC is defined as the maximum throughput can be obtained by a single TCP
connection [98]. For example, Allman introduces a BTC measurement tool in [99] and
presents its empirical evaluation together with the investigation of reliability. Gardner et
al. propose a novel method for estimating the BTC of an IPv6 network path, conducted
from a single point to a non-instrumented target [100]. In fact, BTC is very hard to mea-
sure since it can be affected by several factors such as the type of cross-traffic, the number
of competing TCP connections, the buffer space in routers and the queuing policies [95].

Unfortunately, the vast majority of bandwidth estimation tools discussed above are
designed for wired networks, therefore they cannot provide accurate results and short con-
vergence time in wireless environments, especially in mobile networks. Cellular networks
bring a lot of additional challenges, which make bandwidth estimation more difficult com-
pared to wired networks. The bandwidth available by the user is continuously varying due
to the changing network conditions such as the location and motion speed of the mobile
device, the number of users in the current cell, the signal strength, handovers and many
other effects [101]. Negreira et al. discuss the issues of end-to-end measurements over
GPRS-EDGE networks in [102] and presents a new methodology capable of providing ac-
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Figure 6.2. The operation of the bandwidth estimation scheme

ceptable results in such environments. The authors of [103] defined a so-called in-context
network performance measure to express the user experience when they are interacting
with their mobile devices. They carried out a large-scale measurement study using data
collected across cell subscribers and controlled experiments. They pointed out that, to
obtain accurate results, performance measurements must be conducted on devices, which
are actively used during the measurement time frame, currently exchanging limited user
traffic and can be found in the same position and environment since the last usage of
device. Bergfeldt et al. performed an evaluation of bandwidth measurement tools over a
high-speed downlink UMTS channel by running experiments in a commercial mobile net-
work [104]. In this work, they investigated several test scenarios by using various types of
cross-traffic and bottlenecks. The results showed that algorithms can significantly under-
or overestimate the available bandwidth under certain network conditions.

6.2 Bandwidth Estimation Scheme

6.2.1 Basic Idea

Our bandwidth estimation method is designed to estimate the unused bandwidth avail-
able on a mobile device by exploiting the user-generated downlink network traffic with
negligible extra load. Figure 6.2 shows the main concept in an architectural view with the
main hardware and software components.

The bandwidth estimation scheme works as follows. The downlink network traffic
generated by the user is continuously monitored on the mobile device. When the type
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and amount of traffic are considered as sufficient to initiate the bandwidth estimation
process, the mobile device sends a request signal to the test server. The test server starts
to generate a sequence of test packets with a specified frequency and sends it towards
the mobile device. The generation of test packets at the test server is finished if a stop
request is received from the mobile device or a timeout is occurred. By this way, test
packets are injected into the user-generated downlink traffic. Our algorithm running on
the mobile device simply estimates the unused bandwidth by dividing the amount of
traffic observed between two test packets by the elapsed time. However, it can be highly
inaccurate, therefore the key step is to determine which periods of the data flow are eligible
for performing estimation. The algorithm utilizes two basic information to achieve this:
(1) the fixed test packet generation interval and (2) the measured test packet inter-arrival
times (IAT). Based on these information, our method models the queue dynamics of the
bottleneck link (assumed to be the wireless connection between the base station and the
mobile device) and identify its busy periods in order to enhance the estimation accuracy.

In summary, the presented available bandwidth estimation algorithm has the following
capabilities:

no specific information about the network is needed (e.g. bottleneck link capacity);

the bandwidth estimation algorithm runs only when the user is active (e.g. browsing
the web), and a probe traffic is injected into the user-generated downlink network
traffic;

since the probe traffic consists of a sequence of small-sized packets, the estimation
scheme causes a very low additional network load;

by modeling the dynamics of the bottleneck queue and identifying the busy periods,
it can provide reasonable accuracy in spite of quick and high variations often seen
in mobile data networks.

6.2.2 Algorithm Description

The most challenging task is to capture the busy periods of the bottleneck queue. In other
words, we find those intervals in the downlink traffic trace when the queue is not empty,
and hence, enqueued packets will be serviced at maximal rate. The pseudocode of the
algorithm can be seen in Algorithm 1 where d, th, and gap denote the delay between the
generation of test packets, the positive threshold used for busy period detection and the
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highest IAT can be accepted in the queue modeling phase, respectively. Furthermore, ti
is the arrival time of the ith test packet captured at the mobile device, ti+1 is the arrival
time of the (i + 1)th test packet and n is the number of test packets in the traffic trace.
The boolean variables m and b indicate if the queue modeling and busy period detection
phases are active.

Algorithm 1: Available bandwidth estimation
input : trace, d, th, gap
output: bw

1 m← false; b← false;
2 for i← 1 to n− 1 do
3 if ti+1 − ti = d and m = false then
4 q ← 0;
5 m← true;
6 else if ti+1 − ti > gap and m = true then
7 m← false;
8 b← false;
9 else if m = true then

10 q ← ti+1 − ti − d+ q;
11 if q ≥ th and b = false then
12 s← ti;
13 b← true;
14 else if q < th and b = true then
15 rates← Add

(
amount of traffic in [s,ti]

ti−s

)
;

16 b← false;
17 end
18 end
19 end
20 return bw ← Mean(rates);

In the following, we discuss each main step performed by our bandwidth estimation
scheme, which is also illustrated in the flow chart of Figure 6.3:

Step 1 (initialization). As a first step, the algorithm detects whether the queue
is empty by finding an IAT of two successive test packet arrivals, which is equal to
the test packet generation interval (ti − ti−1 = d). In ideal case, it means that the
ith test packet will experience zero waiting time (qi = 0).

Step 2 (queue dynamics modeling). The algorithm starts to model the queue
dynamics and computes the current waiting time by determining the difference
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Figure 6.3. The flow chart of the operation phases

between the IAT (ti − ti−1) and the generation interval (d). In the following time
slots, current waiting time comes from the sum of this difference and the waiting
time calculated in the previous slot (qi = ti − ti−1 − d+ qi−1). In theory, the result
should be a non-negative value, but in practice there are some factors (e.g. jitter),
which can turn it to negative.

Step 3 (busy period detection). Ideally, when the cumulative waiting time (re-
ferred to as queue length) becomes greater than zero, we could say that the queue
is busy. However, to make the detection more accurate in realistic environments,
the algorithm uses a positive threshold (th) instead of zero as a reference point to
identify the start of the busy period (see Figure 6.4). If the waiting time drops below
this threshold, it indicates the end of the busy period. Another effect which can lead
to the termination of the busy period detection and the queue modeling phase is
observing a high test packet IAT probably not due to the impact of user-generated
traffic. We call these IATs as outliers, and the outlier detection can also be con-
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trolled by a threshold parameter (gap). When the queue modeling phase ends, the
algorithm finds the next empty state of the queue to restart the modeling process.

Step 4 (bandwidth estimation). Once the busy periods are captured, the algo-
rithm performs bandwidth estimation by computing the fraction of the amount of
downlink traffic observed between the first and last test packets of the busy period
and the elapsed time. We note that, depending on the length of the traffic sample,
our method may identify several busy periods. The final result will be the mean of
the estimated values.
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Figure 6.4. Busy period detection by modeling the queue dynamics

6.3 Evaluation Results

To evaluate the operation of our heuristic bandwidth estimation scheme, we conducted
several measurement scenarios in a controlled environment. In this section, we show an
example from our test results obtained on a real traffic trace captured in a 3G mobile net-
work. As discussed above, the algorithm was designed to estimate the currently available
bandwidth by exploiting the user-generated downlink traffic. To examine typical user
behaviors, we used a multi-functional network traffic emulator presented in [105]. This
tool can accurately simulate different types of user activity such as web browsing, or the
use of video streaming services (e.g. YouTube) and social networking applications (e.g.
Facebook).

The measurements were performed on a smartphone with HSDPA support and An-
droid operating system where we generated realistic web traffic based on user behavior
emulation. The test packets were sent periodically from the server towards the mobile
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Figure 6.5. The choice of busy threshold

device over UDP with an inter-arrival time of 100 ms. We measured the IAT distribution
at the receiver with no cross-traffic and observed that the time spaces between consecutive
UDP packets were only slightly changed (in the order of few milliseconds). However, to
take this effect into account, mostly caused by the variation of signal quality, a positive
busy threshold was applied in the queue modeling phase according to Algorithm 1. In
order to mitigate the network load induced by the test traffic, small-sized (i.e. 60 bytes)
UDP packets were injected into the user’s downlink stream. At the mobile device we cap-
tured 60 minutes long packet traces for evaluation purposes and carried out an extensive
analysis by investigating many different aspects.

The following results present the traffic intensity for the measured and estimated time
series, the busy period statistics, as well as the histograms and distribution functions
of the download rate. To identify the busy periods of the bottleneck queue, we used a
positive threshold of 50, and for outlier detection we defined the maximum acceptable
inter-arrival time as 1000 ms. During our evaluation tests, we experimented with different
busy thresholds and concluded that a positive value has to be applied in order to filter out
the impact of some undesirable phenomena like jitter. However, in general, above a certain
threshold we get very similar estimation results including the distribution and mean of the
estimated bandwidth values (Figure 6.5a), but a higher value leads to a smaller number
of detected busy periods over a given time interval (Figure 6.5b). To obtain the best
outcome, it is practical to choose the lowest possible threshold which otherwise can be
considered as sufficient to avoid the issues mentioned above.

Figure 6.6 shows the measured downlink traffic intensity in one second resolution and
the estimated available bandwidth calculated for the busy periods. Web traffic is eligible
to demonstrate the capabilities of our bandwidth estimation method since typical users
frequently check their emails and favorite social networking sites, or simply browse the
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web. Our main goal was to design such an algorithm, which can give an estimate for the
unused bandwidth even if the user generates only a small amount of network traffic, for
example, by web browsing. The figure indicates that the downlink traffic highly fluctuates
due to the characteristics of user activity, but we can identify many intervals when a
page load utilizes the instantaneous available bandwidth. This means that during several
periods of time the bottleneck queue is busy, or in other words, it works at the maximum
service rate. The figure depicts the estimated bandwidth calculated for these busy periods.
We emphasize that it is really hard to give an accurate estimation, because in a mobile
network available bandwidth is continuously changing and affected by many conditions
like motion speed, the number of users in the current cell, signal strength, handovers, and
so on [101, 102]. In spite of this fact, one can see that the busy periods identified by our
heuristic algorithm covers well the highest download rates offered by the network.
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Figure 6.8. Measured rate characteristics
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Figure 6.9. Estimated bandwidth characteristics

Figure 6.7 presents the relative frequencies of busy period lengths. The results clearly
show that busy periods are quite short in the case of web traffic. Specifically, almost 50%
and 75% of all captured busy periods are shorter than half and one second, respectively.
Web browsing typically results in bursty traffic since users spend at least a few seconds
on a page before proceeding. Nevertheless, the length of the downloading periods is still
sufficient to calculate proper bandwidth estimates.

Figure 6.8 and Figure 6.9 depict the histogram and the CDF of the measured download
rate and the estimated available bandwidth, respectively. Looking at Figure 6.8, we can
find low download rates much more frequent compared to high rates in the measured
packet trace. This is due to the phenomenon discussed earlier in the chapter, namely, the
maximum bandwidth is utilized only in the cases of traffic bursts, which are separated
by idle periods. For example, more than 70% of transmission rates fall below 0.5 Mbps,
because once a page is loaded no further network traffic is usually generated or only small
amount of data is need to be exchanged (e.g. for online advertisements). Our purpose
was to capture those intervals when downloading consumes the available bandwidth. We
ran 100 rounds of the widely used Speedtest [106] on the mobile device with half minute
breaks before and after the one hour long measurement period. The perceived available
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downlink bandwidth was between 1.6 and 4.2 Mbps in accordance with our estimation
results calculated for the busy periods, see Figure 6.9a. Furthermore, the mean bandwidth
provided by Speedtest was 3.1 Mbps, which is also very close to our estimate of 3 Mbps
(Figure 6.5a). As pointed out in the discussion of Figure 6.7, busy periods are short in time.
Moreover, Figure 6.9b suggests that web traffic originated from a typical smartphone user
contains small number of busy periods, hence it is crucial how accurately the detection
method can capture them. While each estimated bandwidth value exceeds 1.7 Mbps,
about 85% of measured rates are below this limit (Figure 6.8b), accordingly, do not fall
into any of the identified busy periods.

6.4 Conclusion

Bandwidth estimation in cellular networks is challenging due to the nature of radio com-
munication. Currently available bandwidth is a continuously changing metric affected by
numerous environmental factors. In this chapter, we proposed a heuristic approach, which
can exploit the user-generated traffic and is capable of modeling the dynamics of the bot-
tleneck queue and capturing its busy periods. We demonstrated the operability of our
algorithm on a packet trace gathered in a 3G mobile network by using a realistic traffic
emulator. It has been found that busy periods can be relatively short, but the presented
method is able to capture them with high reliability. The results suggest that proper
identification of busy periods makes it possible to estimate the available bandwidth.
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Chapter 7

Summary

7.1 Main Contributions and Conclusions

Reliable end-to-end communication over the Internet was ensured by the congestion con-
trol algorithms of TCP throughout the past decades. However, due to the rapid growth of
computer networks, several different TCP versions have been worked out to enhance the
performance under specific conditions. This long development process has been resulted
only in a barely manageable set of transport protocols instead of an optimal and universal
solution. As the researchers had recognized that TCP cannot keep up with the evolving
network technologies, they started to look for new research directions and advocated
different approaches.

In this dissertation, we have investigated a novel data transfer paradigm relying on
digital fountains for future networks, which omits congestion control from the transport
layer together with its inherent drawbacks. We have presented a network architecture
based on our suggested transmission mechanism and identified the necessary core compo-
nents. We also have designed a transport protocol called DFCP for this new architecture
with all of its features like signaling, coding, data transfer and flow control. A detailed
discussion was given about the operating principles and the potential benefits. In or-
der to explore the main properties of DFCP, a highly reliable multi-platform evaluation
environment has been built. By using this framework, we have carried out a comprehen-
sive performance analysis to compare DFCP and TCP in terms of goodput performance,
buffer demand, flow transfer efficiency, fairness, network utilization and scalability. Since
today’s networks are highly variable, we have characterized the two transfer paradigms
under dynamic traffic conditions as well, focusing on the features of stability, convergence,
responsiveness and saturation time. Our results clearly revealed that the digital fountain
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based approach is a promising alternative to congestion control. The major advantages lie
in the moderate packet loss and delay sensitivity, the good performance even in networks
with tiny buffers, the low flow completion times, the fair bandwidth sharing, the stability
and the fast convergence.

Furthermore, we have worked out a bandwidth estimation method for mobile networks,
which can estimate the unused bandwidth by exploiting the user-generated downlink
network traffic with negligible extra load. The operation of the algorithm is investigated
on real traffic traces captured by a mobile device in a 3G network. Our key finding is that,
even though the busy periods are typically very short, proper identification can make it
possible to estimate the available bandwidth with reasonable accuracy.

7.2 Possible Applications

The envisioned architecture built upon the transport mechanism of DFCP is a good
candidate for data communication of future networks due to its capability of supporting
novel applications and use-cases. In this section, we discuss these potential application
areas.

Multipath transport has received significant attention in recent years. As a result of
these activities, MPTCP has been standardized by IETF [30]. Moreover, now it is available
as a kernel implementation to Linux [107] giving the chance of proliferation. By multipath
communication, network resiliency, efficient transfer or load balancing can be provided.
However, the congestion control scheme of MPTCP is currently based on TCP Reno, which
is the root cause of some severe issues of the protocol (e.g. poor performance in high BDP
networks). As we see, many of the congestion control related problems of MPTCP can be
mitigated by combining it with our digital fountain based transfer mechanism.

In data centers, the communication between network nodes can be significant. This
type of operation is supported by well-designed network topologies. However, it is not
enough to make efficient transfer possible between inner nodes. DCTCP (Data Center
TCP) is a recent approach intended to fulfill the specific requirements of data center
networks, which can maintain small queue length and low latency for short flows [108].
The key points where DFCP would improve the performance of DCTCP includes the
possibility of further reducing the buffer size, a moderate queue oscillation, a lower flow
completion time and the fact that the queue length is independent of the number of
concurrent flows.
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Another and potential application area of DFCP is wireless networks. The perfor-
mance of TCP is very poor in wireless environment, which is due to the basic inherent
design principle of TCP assuming that packet loss is a result of network congestion [16].
In contrast, in wireless communication we find significant packet loss caused by not con-
gestion but erroneous wireless channels resulting in high bit error rate that may arrive
in bursts. Wireless links often use data link level solutions to tackle this problem like
layer 2 methods with forward error correction and automatic repeat request (ARQ) [109].
However, such solutions hardly cooperate with TCP. For example, these mechanisms add
an extra delay to TCP’s RTT estimate assuming a far higher latency on the path than
the case is. Moreover, TCP easily triggers a retransmission at the same time when ARQ is
already retransmitting the same data. In this case, TCP will experience an ACK timeout
and it is forced to recommence from the slow-start mode and from the point of packet
loss. In general, TCP is very sensitive to packet loss and has a very poor performance
even if the packet loss rate does not exceed 1 percent. In contrast, DFCP is insensitive
to packet loss in a wide range of packet loss rates as it was demonstrated in Chapter 4.
This property gives a great motivation for applying DFCP as the transport protocol in
wireless environments and it also implies that the application of DFCP eliminates the
need for all additional and essential mechanisms (e.g. ARQ methods in layer 2) with their
interoperability problems, which are unavoidable if TCP is used.

The new transport mechanism also has a high potential to deploy it in optical networks.
This is due to the attractive feature of our concept that makes it possible to build a
bufferless network architecture. Since DFCP inherently counts for congestion due to packet
loss in the network, there is no need to apply buffers in network nodes to avoid packet loss.
Therefore, the great challenge currently preventing the deployment of building all-optical
cross-connects in optical networks can be solved [86]. This feature also makes a possibility
to build a more cheaper wired Internet, because it is unnecessary to use expensive and
power-hungry line card memories in network routers as we do it in our TCP-based Internet.
Buffers can be short or even totally eliminated in this networking paradigm. Moreover,
as a consequence of this approach the extra queuing delay in router buffers, which is a
significant, hardly treatable and highly variable performance determining factor in our
current Internet, can be avoided resulting in an easier network design and dimensioning
process.

Considering the deployment options of DFCP, as we pointed out in Section 3.5.3,
SDN is a very attractive environment. In general, inter-protocol fairness between different
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7 Summary

TCP versions is an important issue, but DFCP and TCP cannot work together within
the same network due to the fundamental difference in the applied paradigms. It means
that DFCP would grab all capacity from TCP since it operates in the overloaded regime
(see Chapter 4). One possible solution to avoid such incompatibility is to deploy DFCP
alone in a given target environment like SDN. Although we do not believe that our pro-
tocol should certainly be used in the whole Internet, its co-existence with TCP could be
realized by building overlay networks on top of the current physical infrastructure. More
precisely, during a transition period physical resources such as link capacities and router
memories can be split between the traditional TCP-based and the proposed DFCP-based
architectures.

7.3 Open Issues and Future Directions

Our research, presented in this dissertation, pointed out that digital fountain based trans-
port is a promising alternative to TCP, which merits further investigation. However, be-
yond the several potential benefits it also brings a lot of challenges and raises many
questions.

One of the most important unsolved problems is the consequence of the maximal rate
sending principle of DFCP since it is easy to construct a network topology where this ap-
proach results in an undesirable bandwidth waste also known as dead packet phenomenon.
In fact, it is due to the absence of congestion control, however, there are several possible
ways to tackle this issue as outlined in Section 3.2. Emerging paradigms and technologies
such as SDN may provide an excellent framework to effectively control the transmission
rates of individual flows. To this end, a suitable algorithm needs to be worked out and
investigated by careful experiments.

Regarding the data transfer mechanism, it would be interesting and practical to extend
the features with the capability of adaptive parameter optimization during the communi-
cation so as to make efficient operation possible under dynamically changing conditions.
The coding scheme of DFCP currently implements standard Raptor codes [47], which is
eligible to study the main principles of digital fountain based transport. However, it would
be useful to experiment with the most advanced version called RaptorQ [50], and to take
into account the future evolution of Raptor codes from the point of view of protocol de-
sign as seeking for more and more efficient decoding algorithms is a very active research
area [110, 111].
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7.3 Open Issues and Future Directions

We note that the measurements were performed on simple network topologies. Al-
though most researchers evaluate their proposals by using these widely known reference
topologies, the next step could be a large-scale analysis on a platform like PlanetLab [112].
Another possible direction is to deeply investigate how the new transfer mechanism fits
into specific environments such as data centers or all-optical networks.
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