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Abstract: Recently peer-to-peer file-sharing 
applications have shown an extreme popularity and 
the workload generated to the Internet has been 
dominated by the traffic coming from these 
applications. In this paper we develop a simple but 
effective mathematical model to capture the file 
population dynamics of such systems. Our modeling 
framework is based on the theory of branching 
processes. We describe analytically the behavior of the 
proposed model. The precise characterization of the 
necessary and sufficient conditions of population 
extinction or explosion is given based on the system 
parameters. We also present the expected ratio of 
active, passive and dead peers for the long-term 
regime. We validate and demonstrate our results in 
several simulation studies. Based on our results we 
propose a number of engineering guidelines to the 
design and control of file-sharing P2P systems. 

Keywords: peer-to-peer networking, population dynamics, 
branching processes. 

I. INTRODUCTION 

Recent traffic measurements (e.g. [1]) show that 
the workload generated by P2P applications are the 
dominant part of most of the Internet segments. In 
spite of the fact that the popularity of current P2P 
applications changes fast, it seems that the file 
sharing-like applications were, are and probably will 
be the most popular application type among all the 
P2P applications. P2P file sharing also shows an 
evolution starting from Napster and going through 
many new developments resulted in Gnutella, Kazaa, 
Morpheus, eDonkey, BitTorrent, etc. 

In this paper we analyze the population dynamics 
of a file-sharing peer-to-peer system. We build up a 

general model which is capable of capturing all the 
important characteristics of relevant P2P file-sharing 
systems. We perform a comprehensive performance 
analysis based on the theory of branching processes. 
We investigate the characteristics of the system and 
present several results about the necessary and/or 
sufficient conditions of extinction, stagnation and 
explosion of the population size of shared files. Our 
analytical results are validated by a simulation study 
and we also present a number of examples about the 
evolution of population size in different cases. Finally, 
we derive a number of useful engineering guidelines 
from the results which may help the design and the 
control of peer-to-peer file sharing systems. 

The rest of the paper is organized as follows. We 
overview the relevant related work in Section I-A. Our 
general model with its parameter description is 
introduced in Section II. Our detailed analytical study 
with the main results is presented in Section III. The 
validation results with engineering implications are 
described in Section IV. Finally, we conclude our 
paper in Section V. 

Some of the results in this paper have been 
published in a short form of a conference paper [14]. 
In this extended version we present details all our 
findings in this research approach, including further 
results in Section III/B, C and Section IV. 

A. Related work 

Most of the early P2P research was mainly focused 
on traffic measurements and design. These fields are 
still active and recently several studies were published 
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reporting results on these areas with related 
characterization studies, e.g. [9]. On the other hand, 
the performance evaluation of P2P systems is 
becoming a hot topic of recent research. Starting from 
[10] where a closed queueing system is used to 
analyze the performance of a P2P system a number of 
new results were published trying to get some more 
understanding about the behavior of such systems. 
Focusing only on the topic of this paper papers [2-8] 
are the most closely related published results. 

In [5] the authors studied the service capacity of a 
P2P system both in the transient regime with a 
branching process model and also in the stationary 
regime with a Markov chain model. They have found, 
among others, an exponential growth of service 
capacity during the transient phase. Several papers 
focused on the currently popular BitTorrent P2P 
applications, e.g. [2] [8] [4] [7]. The authors of [2] 
have applied a fluid model to reveal the performance 
and scalability aspects of BitTorrent. [8] presents an 
extensive trace analysis and modeling study of 
BitTorrent-like systems. The paper [4] uses a 
deterministic fluid model and a Markov chain to study 
the system behavior and an approximation for the life 
time of a chunk in BitTorrent is also proposed. The 
behavior of the peers in BitTorrent is studied in the 
paper [7], where the authors also investigate the file 
availability and the dying-out process. The population 
dynamics of the P2P systems is also addressed in [3], 
where a spatio-temporal model is proposed to analyze 
the resource usage of the system. 

In the recent paper [15] authors propose a general 
population dynamics model for DS over P2P with 
fixed population. The dynamic of the peers is captured 
by a closed Markov queuing network and they prove 
that this model has equilibrium and only one closed-
form solution. Wang et al. studied the evolutionary 
dynamics of reciprocity-based incentive mechanism, 
in P2P systems based on Evolutionary Game Theory 
(EGT). They found that the intensity of selection 
plays an important role in the evolutionary dynamics 
of P2P incentive mechanism [16]. Authors in [17] 

present an extensive study of BitTorrent availability 
through measurement and analysis. They show, 
among other things, that the variability of availability 
shows a typical life cycle pattern over time implying 
that it is difficult for users to obtain files in the latter 
half of stage. 

The main difference between these papers and our 
paper is that our analysis is entirely based on the 
theory of branching processes. We create a reasonable 
model for filesharing P2P system and derive a detailed 
characterization of the system in a particular way. In 
the most related previous work the authors in [5] also 
applied a branching process model but their analysis 
was restricted to showing the sensitivity of the 
exponential growth behavior to the system parameters 
in the transient regime. 

II. MODELING FILE POPULATION OF P2P 
SYSTEMS 

The objective of the proposed model is to describe 
the main characteristics of P2P file-sharing systems: 
the population of shared files. Technically, all the 
available P2P file-sharing systems apply the same 
rule. P2P users contribute to the common system 
resource by providing the access to a set of their files 
and they have access to the common resource in 
return. In general, the common resource consists of 
one or several copies of some individual, unique files. 
This is straightforward since a unique file provided by 
a P2P user in the file-sharing system will be 
downloaded by the other peers and some of them will 
also share this one to the system. The system state is 
modified each time a file download is completed. 

From a modeling point of view the operation of 
P2P systems can be simplified by focusing on an 
individual file. At a certain point in time, a file is first 
introduced into the system. Assuming that this 
individual is ’interesting’ for the community: it could 
be a new movie video or a popular MP3 song. 
Probably this file will be downloaded by some other 
peers and now there are already several copies of the 
file in the system. The new copy can also be cloned by 
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further peer’s download and so on. This mechanism is 
very similar to the branching process model of 
population growth, mainly applied in the field of 
biology. This suggests the idea of using branching 
processes to model the file population of the P2P file-
sharing systems. Results from the analysis of 
branching processes can give us a detailed 
understanding of the population size of shared files, 
which is the most important feature of a P2P system. 
The conditions related to the explosion, stagnation or 
extinction of the population could be the milestones of 
a successful P2P system design. 

Branching processes have been studied for over a 
century. The applications of branching processes are 
found in many areas such as population dynamics, 
algorithms, molecular biology, etc. The simplest 
single type discrete time branching model is presented 
in the next section. 

A. Branching Processes 

  

Figure 1. Branching process-like file replications in 
the P2P system 

Suppose that at the beginning there are X0 

individuals. In every generation each individual 
independently gives rise to a number of offsprings. 

Denote by  the number of offsprings 

of Xn  individuals in the nth generation. 
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P[ξ = k] = pk, k = 0, 1, 2, . . .   (1) 

 

The total size of the population in the (n+1)st 
generation is  

Xn+1=ξ(n)
1 +ξ(n)

2 +…+ξ
(n)
Xn

.   (2) 

The sequence {Xn}∞0  is called a branching process 

with initial population size X0  and offspring 

distribution {pj}. The definition of branching process 

assumed that Xn is independent of ξ(m)
k  for all m,k.  

Denote the mean and variance of the number of 
offsprings of an individual by μ=[ξ] and σ2=[ξ]. It can 
be shown, e.g. in [1], that the mean and variance of 
the population size in the nth generation, denoted by 
M(n)=[Xn] and V(n)=[Xn], satisfy  

 M(n) = μM(n−1) 

 V(n) = σ2M(n−1)+μ2V(n−1). 

By iterating, we have  

M(n)=μnM(0).   (3) 

If we impose that X0=1 then  

M(n) = μn 

V(n) = σ2(μn−1+μn+…+μ2n−2). 

The mean of offsprings (μ) has direct impact on the 
behavior of population growth: extinction or 
explosion. The branching processes with μ<1, μ=1, 
and μ>1 are referred to as subcritical, critical, and 
supercritical branching processes, respectively. In the 
first two cases the popularity dies out with probability 
1, while in the last case the population size tends to ∞ 
as n increases. An important difference between the 
subcritical and critical cases is that the mean of the 
extinction time T=min{n≥1:Xn=0} is finite for μ<1, 

i.e., E[T]<∞, and infinite for μ=1. Note that in both 
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cases P[T<∞]=1 [1]. 

B. Age-Dependent Multitype Branching Process 
Model of File Population 

The real operation of the P2P system is much more 
complicated than the model discussed above. Several 
important properties of real P2P systems must be 
taken into account:  

• Offsprings (copies) of an individual (file) are 
born at different (random) points in time.  

• Free riding problem: there is always a group 
of peers who download files without contributing to 
the system by making their files accessible to the 
others. The offsprings owned by these peers will have 
no descendants. They are considered ’dead’ from the 
point of view of the system.  

• Peers possessing the concerned file may not 
share the file constantly. Sometimes they can be offline 
when downloads from that peer are not possible.  

In addition, a file can be downloaded in some parts 
from several peers having the same file in the P2P 
system. It means that several similar individuals may 
contribute to the origin of an offspring. Furthermore, 
peers can even share incomplete objects in some P2P 
applications. However, this kinds of births have little 
impact on the overall population of the system in 
general. Therefore we assume only single and 
complete parent model in our description. In other 
words, a file can be shared only if it is complete and it 
has the origin from only one peer. 

Combining these characteristics we propose a 
model of age-dependent multitype branching process 
for P2P file-sharing system. We differentiate between 
two types of peers owning the concerned file: 
cooperating peers and free riders. After the successful 
download of a file the cooperating peers will share the 
file with the system, contributing to the newer copies 
of the file in the system. Further, cooperating peers 
have two possible states, active (A) and passive (P), 
corresponding to their online and offline activities. An 
online peer can give rise to a new copy while offline 

peers are unaccessible, thus do not create new 
offsprings. Non-cooperating peers or free riders are 
considered as dead (D) peers (copies), since they do 
not contribute to the birth of any offsprings. The 
possible transitions between states and the 
corresponding probabilities are shown in Figure 2.  

 

Figure 2. The state transitions and probabilities 

We assume that an active peer can only change its 
state when the offspring is born. To be more specific, 
when an individual is born, it has to choose to be 
active, passive or non-cooperative, i.e. “dead”. If the 
individual is active, it will stay in this state until its 
offspring is born. State transitions of active peers only 
happen at these instants. 

In the model we use the following assumptions and 
notations:  

• The age time, i.e. the age of the parent when 
offspring is born, is a random variable Ta  with an 

exponential distribution with mean α. A peer can have 
several offsprings during their activity time (lifetime) 
in the system. The age of the parent is counted from 
the parent’s activation time, i.e. when it turns from 
passive to active or it is just born, or from the birth of 
the last born offspring (see Figure 1). 

• The offline time of a peer (length of passive 
period) is also an exponential variable Tp with mean β. 

• The expected value of offsprings in a single 
birth is λ. This parameter expresses the average 
number of exact parallel downloads from a peer. In 
the P2P case λ≡1, since the probability that multiple 
downloads of a file from a peer end at the same time 
is zero. However, we use λ in the general discussion 
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of the model. 

• Let {πi}
3
i=1 be the probabilities that a new peer 

becomes active, passive or dead. Clearly, ∑
i=1

3
 πi=1 . 

From this point the lower indices 1,2,3 will refer to 
active, passive and dead peer states. 

• The type-transition matrix which describes the 
probabilities of state transitions is the following:  

  

where A,P and D stand for active, passive and dead 
state, respectively. For example: P[active→ dead]=p13 

Obviously, ∑
j=1

3
 p1j=1 , p21+p23=1  since the type-

transition matrix is a stochastic matrix.  

With the assumptions of the memoryless property 
of the age time Ta  and the offline time Tp  the 

population size process is Markovian. The next 
section derives the expected size of the population and 
the most important features of the process. 

III. ANALYSIS OF THE MODEL 

A. Model description 

In this subsection we show how our branching 
process model can be characterized by its transition 
operator and we derive the operator parameters from 
our P2P system model parameters. 

Theoretically, if the generating function [1] of a 
branching process is known, then all important 
properties of the process is determined (e.g. the 
extinction probability, the expected population size, 
the deviation of size). Unfortunately, to determine the 
generating function of the proposed branching model, 
the following probabilities should be calculated:  

P[the number of active and passive peers at time t0 
is (k, l)], which is a very complicated task. Therefore 
we avoid the use of generating functions. 

Zt=(Z(1)
t ,Z(2)

t ,Z(3)
t )Let  be the vector representing the 

population size of active, passive and dead peer at the 
time instant t. Let Mt be the transition operator defined 

by:  

Zt=MtZ0. 

It is easy to see that the process we investigate 
depends linearly on Z0 , which means that Mt  is a 

random matrix. 

First of all, since the process is Markovian it can 
be realized that the following equation holds:  

 Mt+s=MtMs,   (4) 

where Mt  and Ms  are independent random matrices. 

This implies:  

/lim ( )n
t n tn

EM E
→∞

= M    (5) 

The element ( ) 1,1tMΕ of the matrix EMt  can be 

determined as follows. Let us choose an appropriate 

small time interval δ R+, such that the probability that 

two or more downloads are finished in δ is o(δ), 

where 
lim
δ→0 

o(δ)
δ =0. Thus the probability that an active 

peer is going to have children within the time interval 

δ is 
δ
α+o(δ). Similarly, we have:  

 P[a passive peer becomes active within δ] = ( )oδ δ
β
+  

The average number of active peers produced by 

one active peer after the time interval δ is λπ1 
δ
α 
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because there are λ offsprings on average and only λπ1 

will be active. But an active peer may also become 
passive or dead with probabilitie p12  and p13 ; the 

probability that no file-sharing happens is 1− 
δ
α+o(δ). 

Then, 

 (6) 

Using similar considerations Mδ is given by:  

 

=

     

Letting δ= 
t
n, we get  

  

  
(7)

 

Eq. (7) implies that EZt grows exponentially with a 

rate determined by the eigenvalues of A. Let γi, i = 1, 
2, 3 be the eigenvalues of A. It is clear that one of 
them is zero. Put γ3=0. The other two eigenvalues of A 

are given by:  

2,1λ =  
a11+a22± (a11−a22)2+4a12a21

2  

:=  Error!   (8) 

b:=−(a22+a11)= 
1
β− 

λπ1+p11−1
α , 

and  

c:=a11a22−a12a21= 
(1−λπ1−p11)−p21(λπ2+p12)

αβ . 

Considering Eq. (8) one can clearly see that  2,1λ  

are real numbers since . In addition, 

γ1=γ2 if and only if  

0, 1,22,1 ≥aa

 

i.e., γ1=γ2<0  and either p12=0  or p21=0 . This means 

that either active peers cannot become passive or 
passive ones cannot become active. This is completely 
unlikely and unrealistic regarding the concerned 
systems. Thus the investigation of this case is ignored. 
Put γ1>γ2. 

B. The expected population size of the process 

Using the model description presented above some 
important properties of the system can be derived. In 
this subsection we present several necessary and/or 
sufficient conditions of extinction, stagnation and 
explosion of the population size of shared files. The 
ratio of active, passive and dead peers in the long-term 
behavior is also provided. 

Since the maximal eigenvalue of A determines the 
behavior of the process, it is worth differentiating 
between two cases:  

• max{γi}>0, i.e. there exists at least a positive 

eigenvalue of A (so γ1>0).  

• 0}max{ =iγ , i.e. 02,1 ≤γ  

By Eq. (8) it is straightforward that the first case 
happens if b<0 or (b≥0 and c<0). These two 
conditions can be expressed regarding the expected 

where aij is the (i,j)-th element of A,  
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number of offsprings of a single birth λ as  

 

(b ≥ 0 & c < 0)    
 
(11)

 

The latter condition in Eq. (11) is fulfilled if  

  
(12)

 

 
(13)

 

The left-hand side of Eq. (13) is always positive, 
so the inequality holds if the right hand side is non-
positive, i.e.,  

 p12(π1−π2)−π2p13≤0         
π1
π2
≤1+ 

p13
p12

. (14) 

Summarizing the results we get  

Lemma 1: If the condition 
⎝
⎜
⎛

⎠
⎟
⎞

 
π1
π2
≤1+ 

p13
p12

 holds, the 

matrix A has positive eigenvalue(s) if and only if  

 i:γi>0        λ> 
(p12+p13)+p12p21

π1+π2p21
 (15) 

Note that λ=1 in our particular model. 

The next statement provides the sufficient conditions 
for the existence of positive eigenvalues of A.  

Lemma 2: There exists a positive eigenvalue of A 
if any of the following two conditions hold: 

(i) λ> 
(1−p11)+p12p21

π1+π2p21
 

(ii) λ=1, 1−p11≤min{π1,π2}, and p13≠0 

 Proof: 

(i) If Eq. (10) holds, then there must be a positive 
eigenvalue. Otherwise, the first part of Eq. (11) must 
hold. This one and the condition (i) together imply 
that both parts of (11) hold. 

(ii) The conditions of (i) are simplified in our P2P 
model, when λ=1. Assume that p21,p12≠0, so p11<1, 

and min{π1,π2}>0. We will show that (i) holds.  

  
Lemma 1 and 2 show the conditions for the existence 
of positive eigenvalue(s). These results are important 
since we will show later in Lemma 6 that the 
existence of positive eigenvalues results in the 
explosion of the population size. It is interesting that 
the sufficient conditions do not depend on several 
parameters, e.g. α, β, p12, and also p21 in Lemma 2 

(ii). 

The following lemma shows conditions for non-
positive eigenvalues.  

Lemma 3: If λ=1 and the following conditions hold 
then A has only non-positive eigenvalues, which 
implies that the population will stop growing with 
probability 1 (see Lemma 5):  

 
(16)

  

Proof: 

Using Eq. (10) and (11) one can observe that if  
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 λ≤min 
⎩
⎨
⎧

⎭
⎬
⎫

 
(1−p11)+p12p21

π1+π2p21
, 
α+β(1−p11)

βπ1
 (17) 

then A does not have any positive eigenvalues. It can 
be shown that the conditions in the lemma satisfy the 
inequality above since  

 

and
  

If 02,1 ≠λ  the eigenvectors of A associated to the 
eigenvalues γ1,2,3 are the followings:  

 

s1= 

⎝
⎜
⎜
⎛

⎠
⎟
⎟
⎞

 

 
p

21
β

γ
1
-  
λπ

1
+p

11
- 1

α

 
p

23
β + 

a
31

a
12

- a
11

a
32

γ
1

; 

  (18) 

s2= 

⎝
⎜
⎜
⎛

⎠
⎟
⎟
⎞

 

 
p

21
β

γ
2
-  
λπ

1
+p

11
- 1

α

 
p

23
β + 

a
31

a
12

- a
11

a
32

γ
2

;s3= 
⎝
⎜
⎛
⎠
⎟
⎞

 
0
0
1

. 

 

Since γ1>γ2, the three eigenvectors form a basis in 

R3  and the expected number of peers will be the 
following:  

 Error! (19) 

Where ci,i=1,2,3 are given as the solution of the 

equation system Z0≡(Z(1)
0 ,Z(2)

0 ,Z(3)
0 )= ∑

i=1

3
 cisi . Z0  is the 

initial state of the system. 

If γ1=0 or γ2=0 (only one of them can be zero) A 

has only two eigenvectors, the previous calculation is 

not valid in this case. However, it can be shown that 
the rank of Ak is 1 if k≥2, i.e.,  

 Ak=(xyT)k=x(yTx)k−1yT  (20) 

where  

x= 

⎝
⎜
⎜
⎛

⎠
⎟
⎟
⎞

 

 
p21
β

-  
1
β

 
a

31
a

12
+a

32
a

22
a

11
+a

22

    y= 

⎝
⎜
⎛

⎠
⎟
⎞

 
 
β

p21
 
λπ1+p11- 1

α

1
0

 

yTand  is the transpose of y. Since the third eigenvalue 
of A is yTx=a11+a22, clearly it is not zero.  

exp(At) =I+At+ ∑
k=2

∞
  

(xyT)ktk
k!  

= I+At+x 
1

yTx 
⎣
⎢
⎢
⎡

⎦
⎥
⎥
⎤

 ∑
k=2

∞
  
(yTxt)k

k! exp(yTxt)−1−yTxty
T 

= I+t(A−xyT)L+xyT 
exp(yTxt)−1

yTx  (21) 

where  

 

(22)

 

It is easy to see that L exerts an influence only on 
the number of dead peers. 

Summarizing the results:  

Proposition 1: The expected value of file 
population at time t is given by  

(23)

Note that x=s1 if γ2=0 and x=s2 if γ1=0.  
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This yields some important results:  

Lemma 4: If γ1=0 the expected numbers of active 

and passive offsprings are bounded while the expected 
value of dead offsprings grows linearly as t tends to 
infinity.  

Lemma 5:  If γ1<0, the process will stop growing 

with probability 1.  

Proof: 

Denote by the sum of the 

components of the vector x ( L1  norm). Let 
 (it exists because the total 

number of peers is monotonic increasing). Since γ1<0, 

by Eq. (23)  is bounded. 

If a monotonic increasing sequence of integers 
never stops growing then it has to tend to infinity. 
Further, applying the Markov inequality we get  

 

Lemma 5 shows that in case of the existence of 
non-positive eigenvalues the population will become 
extinct. It is also interesting that the sufficient 
conditions in Lemma 3 do not depend on α, β, and p21. 

Lemma 6: If the matrix A has a positive 
eigenvalue, i.e. γ1>0 , the mean number of active, 

passive and also dead peers tends to infinity. 
However, the process can still die out in this case, 
even with a very small probability.  

Proof: 

See the proof of Prop. 2. 

This lemma shows that the existence of the 
positive eigenvalue which determined by the 
parameters as shown by Lemma 1 and 2 yields to the 
explosion of population size of shared files. 

Proposition 2:  The proportion of active, passive 

and dead peers converges to a deterministic vector, 
namely  

  

(24)

Proof: 

It is already shown that if γ1<0 then the process 

stops growing with probability 1. This implies that at 
the end there must be only dead peers since both 
active and passive peers may introduce new peers into 
the system and thereby raise the whole number of 
peers. 

If γ1=0 let B denote the event that 
1

t

t

Z
Z

 does not 

tend to (0,0,1). Suppose P(B)>0. Let 
(it exists since 1tZ is 

monotonically increasing). Our assumption implies 
(if Z∞<∞  then the process will 

become extinct almost surely).  

 

First we applied our assumption and the fact that 

the point (0,0,1) in the convex set S={x R3| ||x||1=1 

x≥0} is extremal (x S is extremal if 
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NN Sxxx λλλ ,...,,,,...,, 2121 ∃∈∃  such that 0≤λi≤1 

i and x= ∑
i=1

N
 λixi where S is a convex set). This means 

that if 
1

t

t

Z
Z

 does not tend to (0,0,1) then its mean 

also does not to (0,0,1). Our indirect assumption is 
proved to be wrong. 

If γ1>0 and the mean number of the population size 

of the process tends to infinity, the growing rate of Zt 

is determined by c1eγ1ts1  because γ1  is the largest 

eigenvalue of A (see Eq. (23)). It is important to note 
that the population size is likely to grow to infinity, 
but with probability less than 1. The reason is that 
there exists a very small but positive probability that 
all alive peers (active and passive) decide to die out at 
the same time. In addition, the proportion of the mean 
number of different peer types is expressed by the 
elements of s1. The probability that the limit holds is 

also less than 1 and it strongly depends on the number 
of initial peers. Since the elements of s1 are non zero, 

the number of all three types of peers separately tend 
to infinity. 

C. The non-Markov case 

Without the exponential assumptions of age time 
and offline time the branching model is not 
Markovian. However, our conjuncture is that the main 
features of the process do not change. The intuitive 
discussion of this case is given below. 

We have proven in the Markovian case that the 
mean of the transition matrix Mt=exp(At)  for some 

matrix A, which can be also rewritten as:  

)(tBCeM t
t +=Ε γ   (25) 

where C is the orthogonal projection to the subspace 
generated by the eigenvector belonging to the 

maximal eigenvalue of A (in our case this subspace 
was s1 in the case γ1>0 and (0,0,1) if γ1<0) and B(t) is 

a remaining term (matrix). It is easy to see that ||B(t)|| 
= O(eθt) for some θ < γ. This result is similar to the 
following theorem from branching process theory for 
the general, non-Markov cases:  

Theorem 1 [1] It can be shown that there exists a 
constant matrix C and a matrix B(t) such that  

   (26) )(tBCeM t
t +=Ε γ

where ||B(t)|| = O(eθt) for some θ < γ.  

The next result can also be expressed:  

Theorem 2 [1] In the supercritical case, let γ>0 be 
the Malthusian parameter and W(t)=e−γtZt(=e−γtMtZ0). 

At certain further conditions one can prove that  

 
lim

t→∞W(t)=vW      a.s. 

v being the right eigenvector of the matrix A 
associated with the maximal eigenvalue, and W being 
a one-dimensional random variable.  

Our model, on one hand, does not satisfy the 
conditions of the theorem since it is not a pure 
supercritical process. On the other hand, it has similar 
properties in the case γ1>0 : s1  corresponds to the 

vector v. We do not investigate the meaning of W 
since it is just a constant factor which does not change 
the behavior of the modeled process. The only 
difference is that in our model the limit holds with 
probability less than 1. Thus it can be expected that 
this theorem ’partly’ holds even if our process is not 
Markovian: there is a limit which determines the 
proportion of the peers and this limit exists with 
probability less than 1. 

IV. RESULT VERIFICATION AND 
IMPLICATIONS 

We have implemented a simulation study to verify 
the results presented in the previous sections. The 
simulation results are shown in this section. In 
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addition, the implications of the results and some 
engineering guidelines are also described and 
discussed. 

A. Simulation results 

 
Figure 3. The case of population extinction  

The P2P system model as described in section II-B 
is simulated using Matlab. The parameter λ is set to be 
1, i.e., only an offspring is born from its parent at a 
certain point in time. We will show how the set of 
system parameters can predict exactly the long-term 
behavior of the P2P system.  

Set α=4, β=5, π1 = π2 = 0.05; p11 = 0.25, p12 = 0.5, 
p21 = 18/19. It is easy to calculate that the conditions 
of Lemma 5 are satisfied. This means that the matrix 
A has only non-positive eigenvalues, i.e. the file 
population dies out almost surely. The exact values of 
γ1  and γ2  are calculated to be -0.025 and -0.349, 

respectively. The simulation result is shown in 
Figure 3. The figure displays the change of active and 
passive peers in the function of time. Once the number 
of these peers is zero the system is extinguished. It 
can be seen that it happens after about 160 time units.  

 

Figure 4. The case of population explosion 

If we change π1=0.15, π2=0.25 while keeping the 
others unchanged the Lemma 2 holds. This implies 
that the population of all types of peers is likely to 
tend to infinity. The exact calculation provides 
γ1=0.015,γ2=−0.365. The growth of population is also 
justified by simulation results, see e.g. Figure 4. 
Furthermore, the proportion of active, passive, and 
dead peers are very close to the expected values. 
Recall that by the result of Prop.  the ratio of peer 
types is determined by the eigenvector s1 

corresponding to the maximal eigenvalue γ1 which is 

calculated to be about 6:5.3:88.7 [%]. At the end of 
simulation this ratio is actually registered as 
6.1:5.4:88.5 [%].  

  
Figure 5. The critical case: γ1=γ3=0 
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It is also worth to showing a critical case when 
γ1=0 (π1 = 0.05, π2 = 0.05; p11 = 0.05, p12 = 0.9). This 

is the case when the process is likely to die out but the 
extinction time can be very large. As seen in Figure 5 
the simulated time is almost 1000. Note that average 
age time is α=4. The reason is that the expected 
number of active and passive peers is constant while 
the expected number of dead peers grows linearly (see 
Eq. (23)).  

Recent results in the research of P2P systems [11-
13] claim the important effects of free riding (peers 
that do not share). However, our analytical result 
shows that while free riding is an important factor in 
P2P system performance, it is not necessarily the only 
one that determines the system behavior. For instance, 
set π1 = 0.05, π2 = 0.05; p11 = 0.95, p12 = 0.02, p21 = 
0.65. In this case 90% of the downloads are free riders 
but with the proper setting of the other parameters the 
system capacity still grows, see Figure 6(a). In 
contrast, in another case (π1 = 0.7, π2 = 0.05; p11 = 0.2, 
p12 = 0.1, p21 = 0.6), Figure 6(b), when only 25% of 
the downloads is performed by freeloaders the system 
still collapses after a finite lifetime. 

 

(a) 

 

(b) 
Figure 6. The effects of free loaders 

  

Figure 7. The parameter set is changed at time instant 

t0 650 

Finally, in Figure 7 we present a case study when 
the system parameters are changed during the system 
operation. Originally the system has the parameter set 
π1 = 0.16, π2 = 0.04; p11 = 0.5, p12 = 0.45, p21 = 0.75, 
which implies that the population will grow to infinity 
(γ1=0.0047). This growth can be seen in the left half 
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of the figure. At time t0 650  we modify some 

parameters such that π1 = 0.04, π2 = 0.16, while the 
others are unchanged. The new parameters predict the 
extinction of the population (γ1=−0.00039), which is 

justified by the right side of Figure 7. The system 
actually died out at about 1350. 

B. Practical implications 

The proposed branching process model of P2P 
filesharing systems provides a very clear, simple, and 
reliable description of the population dynamics of the 
shared files in the system. The model establishes 
several practical implications which should be 
carefully considered by P2P system designers and 
operators.  

• If the population grows, the rate of growth is 
exponential (Eq. 7).  

• Under some certain conditions, the long-term 
behavior of the system does not depend on several 
system parameters (see details in Lemma 2 and 5).  

• As presented above we argue that the 
presence of free loaders is not the only factor which 
determines the system performance. It is one among 
many other important system descriptors: cooperative 
peers, online/offline times of peers, age times, etc.  

• The model can predict exactly the long-term 
performance of the system using its set of parameters. 
A successful system design should apply rules and 
techniques, e.g. incentives and/or reputation index, 
which somehow force the possible ranges of system 
parameters such that the shared files’ population grows.  

• The results are also valid with different 
system starting conditions. The impact of new 
modifications, developments, or any other external 
circumstances, provisions can be immediately 
measured, estimated for an ongoing (already under 
operation) P2P system using a built-in statistical 

monitor of the software.  

• In the long term with a fixed combination of 
parameters the system population dies out or grows 
exponentially or linearly (see Prop. ). The is no other 
possibility. Nevertheless, in practice the system may 
exhibit short term stationary behavior several times 
during its lifetime.  

V. CONCLUSION 

In this paper we presented a mathematical model to 
capture the main characteristics of file-sharing peer-
to-peer systems. Our model is general and flexible 
enough to be applied for most of the file-sharing P2P 
applications in current use. Our results clearly predict 
the long-term dynamics of the population size. 

We have shown that with fixed values of the 
parameter set the file population will either explode or 
die out. The important conditions that depend on the 
system parameters and that determine which case will 
happen are derived. We also derived the ratio of active, 
passive and dead peers in the long-term regime and 
showed that the growth is exponential. Using our results 
we have found some important practical implications: 
the population can explode even if most of the peers are 
free loaders, and the population can become extinct 
even if most of the peers are cooperative. We can 
conclude that the free loaders are not the only factor 
which determines the system behavior. 

We proposed some useful guidelines which can 
help the design and control of such systems since 
according to our results one can control and predict 
the system behavior in the future. 

However, the presented study still has some 
limitations. It approaches the P2P systems from the 
behaviors of a single file in the system, thus cannot 
explain exactly the performance of the system which 
contains thousands of individual files. Further, during 
the life cycle of a file, the users’ interest for it is 
changing and the interest is different from file to file. 
Therefore the parameter set shall be a function of time 
and file interest types. These issues are the topics for 
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the future research. 
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