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Abstract
In this paper a comprehensive scaling analysis of IP traffic
and its components is presented. We focus on the correla-
tion and scaling behavior of IP traffic components on both
transport and application layers. It is shown that the corre-
lation structure of the aggregation is mainly determined by
the component with the highest variance and correlations
at the investigated time scale. It is also demonstrated that
WAN traffic can exhibit complex multifractal structure even
at large time scales. The aim of the paper is to understand
the characteristics of the aggregated IP traffic by analyzing
its individual components.

1. Introduction

Significant research has been carried out recently to under-
stand thescaling phenomenain network traffic [19, 18, 15,
7, 6, 9, 14, 16, 11]. This is in close relationship to traffic
burstiness because bursts should be defined in terms of time
scales over which clustering activities occur. The surprising
scaling phenomenon observed in data traffic is that these
clustering activities are present over several time scales
[19]. This phenomenon triggered a new modeling approach,
calledfractal modeling, which can offer parsimonious mod-
els (e.g. self-similar or long-range dependent (LRD) traffic
models) to capture this behavior [19, 10, 12, 11].

A number of studies have reported that aggregated LAN
traffic is consistent with exact self-similarity and aggregated
WAN traffic is asymptotically self-similar (long-range de-
pendent) [13, 7]. Moreover, it has been found that the scal-
ing structure in measured WAN traffic can be categorized
into two main regions: a large time scaling phenomenon
with self-similarity and a small time scale phenomenon with
multifractal scaling [7, 6, 9]. It has been also pointed out
that the transition from the multifractal to self-similar scal-
ing occurs around time scales of a typical packet round-trip
time in the network [7, 6]. The physical explanations and

engineering implications are also addressed in several pa-
pers [6, 16].

However, most of the studies have investigated the aggre-
gated WAN or LAN traffic and only a few papers have ex-
amined the nature of IP traffic components [4]. We think
that the understanding of the characteristics of the indi-
vidual components in the aggregation, i.e. a comprehen-
sive analysis of different protocol layers with distinct traffic
components is vital for establishing a correct physical un-
derstanding and modeling methodology.

In this paper we present a scaling analysis of IP traffic
focusing on the characteristics of the components in the ag-
gregation on both transport and application layers and also
investigate their impacts on the characteristics of the aggre-
gation. The analysis is based on a series of ten-hour traffic
measurements. The analyzed traffic originates from flows
from the Internet to our University campus representing var-
ious IP applications. The scaling structure of the compo-
nents and the aggregation on large time scales, i.e. over a
few seconds have been studied.

The objective of this paper to contribute to the characteri-
zation of IP traffic, especially to improve the understanding
of the nature of IP traffic components and their influence on
the aggregated IP traffic.

The paper is organized as follows. The details of our
measurements are described in Section 2. A global view
about the structure of the measured IP traffic concerning the
bandwidth share of transport and application layer protocols
is presented in Section 3. The characteristics of the chosen
interval to be analyzed based on a stationary and trend anal-
ysis study are also described in this section. In Section 4
the results of our scaling analysis are shown based on LRD
tests (variance-time plots, R/S plots, periodograms) and also
scaling analysis tools (wavelet-based methods and partition
function method). Finally, the paper is concluded by Sec-
tion 5 with a summary of our main findings.
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2. IP traffic measurements

Figure 1 presents our traffic measurements setup. A num-
ber of LANs located at the Informatics Building of the Bu-
dapest University of Technology and Economics are con-
nected to the outside world by a 100MB FDDI and a 155MB
ATM link. These networks are composed of several Eth-
ernet based LANs which are referred to as Department
Groups (DG) and each DG consists of about 100 worksta-
tions. Connections between DGs and between a DG and the
outer world are guaranteed by an ATM backbone. Ethernet
frames are transmitted over the ATM backbone using LAN
emulation. Workstations belong to staff members, PhD stu-
dents, and student laboratories using a variety of operat-
ing systems and network interfaces ranging from 10Base2
(BNC) through 100BaseT (UTP) to 100VGAnyLAN. In the
measurements both the incoming and outgoing traffic of the
DG1 have been collected but in this paper the aggregated in-
coming IP traffic mainly generated by a WAN environment
is analyzed. The traffic monitoring tool, called Captie [17],
captured the IP traffic on the ATM link between DG1 and
the switch. The analyzer can monitor the data traffic trans-
mitted over the link and record different statistics of data
flows according to user requests.

DG1

DG2

DG3

0101

ATM switch

Ethernet switches

analyzer

Internet
router

Figure 1: The configuration of the IP traffic measurements

During weekdays of April 1999 statistics of IP and non-
IP traffic were continuously collected in log files every day
from 8am to 6pm. Our measurements concerned the traffic
volume transferred under IP packets, transport layer proto-
cols such as TCP, UDP, ICMP, and OSPF, as well as appli-
cation layer protocols such as HTTP, FTP, SSH, and SMTP.
Data series representing the traffic measured in bytes per

second used in most of our analyzes are gained from these
measurements.

3. Structure of the IP traffic

3.1. Overview of the traffic

Figure 2 shows the traffic intensity in bytes per second for
a typical IP traffic flow and its main components from our
measured traces. Traffic bursts can be observed over the
whole period of the measurement. It can be concluded
from Figure 2 and our more detailed investigations that huge
peaks over a short period can occur at any time of the day
so the well-known busy period concept from telephone traf-
fic engineering cannot be applied. Visual investigation sug-
gests that at the transport layer the TCP data is dominant and
its behavior determines the characteristics of the IP traffic.

Besides the TCP traffic there is a considerable amount of
UDP traffic as well but this sort of traffic is much smoother
than the TCP and it does not seem to have any influence
on the IP traffic nature. At application layer the HTTP and
the FTPdata traffic take the main roles (we differentiated
the FTPdata traffic from the FTPcontrol traffic because FTP
control messages are transported over the IP network by
separate packets) . However, the FTPdata traffic behavior is
rather complex since the most of the FTPdata connections
are transferred at low speed but traffic intensity also con-
tains some extremely high jumps during short periods. The
size of these jumps is often103�105 times greater than the
typical FTPdata connection speed. Therefore the empirical
autocorrelation function computed from a finite series with
such a peak may give misleading results. However, the anal-
ysis of a short time period of the FTPdata traffic (in order to
validate the assumption about stationarity) may not give us
the complete characteristics of this traffic type.

3.2. Bandwidth share

Figure 3 and Figure 4 present the ratio of different protocols
contributing to the overall load at the transport layer and the
application layer, respectively. These results are the average
values of several measurement days.

The majority of data is carried by the TCP protocol at
the transport layer which takes about 90% bandwidth of
the whole volume of transferred data. The rest of the load
mainly corresponds to the UDP protocol. The ICMP and
OSPF control messages share only 1-2% of the transport
layer traffic volume. On the other hand, based on the results
in Figure 4 we can conclude that among the applications the
HTTP and the FTP traffic are dominant in volume.
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Figure 2: Traffic intensity of IP and some higher layer protocols

3.3. Stationarity analysis

An important assumption in traffic modeling is stationarity.
However, it is rather difficult to justify completely this as-
sumption on the investigated data series [3, 11]. The real
traffic data over a longer time period often appear to have
local trends, load jumps, cycles, etc., which are the charac-
teristics of non-stationary processes. Thus a straightforward
approach to overcome this problem is to select time periods
where the stationarity seems to be acceptable.

TCP
90%

ICMP
1%

UDP
8%

OSPF
1%

Figure 3: Bandwidth share of transport layer protocols

A simple test to detect stationary periods in the data is
to slide a window along the measured data and investigate
the variations of the data averages in the windows. The
datagram of this series may give some information about
level-shift, trends, etc. However, for bursty data like our
measured traffic this method does not provide appreciable
results. To achieve this goal we also applied another tool
which is based on achange point detection method[5]. The
main idea of this method is to slide a window along the data

SMTP
6%

Telnet
2%

SSH
1%

HTTP
29%

FTP
35%

Other
27%

Figure 4: Bandwidth share of application layer protocols
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series and then compare the distribution of data samples in
two equal halves of the window. If the two distributions are
significantly different then the assumption of the stationarity
covered by the window is rejected. The comparison task of
distributions of the two series with equal size is performed
by applying the Kolmogorov-Smirnov test [5].

Based on our stationarity tests we have selected several
subsets from the whole measured data for analysis. The sub-
sets are obtained from time intervals where the IP traffic and
also each component of both transport layer protocol traffic
and application layer protocol traffic can be justified to be
stationary.

In this paper we present the analysis of a one hour trace
chosen from a collection of selected series by our test (see
the selected part in Figure 2).

4. Correlation and scaling analysis

In this Section we present the characteristics of the inves-
tigated IP traffic and its components. First, we study the
autocorrelation function and also discuss how the different
component autocorrelation functions produce their results
in the aggregation. Second, the long-term scaling is investi-
gated and our LRD test results are presented and discussed.
Third, the detailed scaling of each component of the IP traf-
fic is analyzed.

4.1. Correlation structure

There are a number different components with different
contribution effects on the correlation structure of the ag-
gregated IP traffic. The identification of the characteristics
of the components which mainly determine the characteris-
tics of the aggregated IP correlation structure is vital for the
understanding of IP traffic structure.

Consider the superposition of a number of independent
traffic streams, i.e.A =

PN
i=1Ai. Denote the autocorre-

lation function ofAi by rAi
(k). It can be shown that the

autocorrelation of the aggregated traffic stream is given by

rA(k) =
1

PN
i=1 �

2
Ai

NX

i=1

�2Ai
rAi

(k) (1)

where�2Ai
is the variance of the traffic volume in the cho-

sen time unit for streami. As k ! 1 the autocorrelations
of short-range dependent (SRD) streams vanish rapidly and
the autocorrelations of LRD streams decay asymptotically
as k��i . The autocorrelation ofA is determined by the
LRD stream which decays at the lowest rate, i.e.rA(k) �
k�min�i . Therefore the LRD stream with the highestH
parameter will dominate (� = 2 � 2H) and the aggrega-
tion will be LRD with this parameter. However, in practice
we investigatek for large values instead of infinity. For this

case we can also consider the variance of the streams be-
cause the variance is the weight in the sum in Eq. 1. Conse-
quently it may happen that there is a stream with a faster de-
caying autocorrelation function but with a high variance and
this stream will dominate in the autocorrelation function of
the aggregated traffic stream on the investigated time scale.
Moreover, it also follows from Eq. 1 that the volume of traf-
fic has no influence, so a small fraction of traffic with high
variance and slowly decaying autocorrelation can determine
the autocorrelation of the whole aggregation.

Observe now the above discussed properties in our mea-
sured IP traffic. We present in Figure 5 the sample autocor-
relation functions of different measured traffic flows. In the
evaluation of these functions (and especially investigating
correlation coefficients at large lags) we can observe that
the correlation coefficients often have small values. In these
cases we have to take care of the confidence interval which
can be roughly estimated by the�2=pn rule correspond-
ing to significance 0.05. In our cases we used 3600 samples
which gives about 0.03 for this confidence interval. We can
observe a slow decay in correlation of the IP traffic which
indicates a possible presence of LRD. The transport layer
protocols, TCP, UDP, ICMP, and OSPF, work above the
IP layer so the IP traffic is the aggregation of these flows.
Among these components the TCP traffic takes the domi-
nant role since the form of its correlation absolutely deter-
mines the correlation structure of the IP. This is so because
the TCP series has sample variance which is much greater
than that of the other transport traffic series (see in Table
1). This observation is in accordance with Eq. 1 and our
discussions above.Note that TCP has a significant impact
on the correlation structure of the IP aggregation because
it has the highest variability on the investigated time scale
and not because it has the highest bandwidth share in the IP
aggregation.Besides the TCP we also observed a possible
long-term decay of the UDP. The ICMP and the OSPF seem
to be SRD. However, the final conclusions about correlation
structure are stated just after detailed investigations of LRD
presented in the next subsection.

At the application layer traffic carried by the HTTP, FTP,
SMTP, and the Telnet protocols is considered. All of these
traffic flows are components of the TCP traffic aggrega-
tion. Figure 5 shows that the autocorrelation functions of
HTTP, FTPdata, FTPcontrol, and Telnet all seem to have a
long-term decay. Moreover, we also see that the correla-
tion structure of the TCP inherits the form of the correlation
structure of HTTP traffic in spite of the fact that the FTP-
data appears to have stronger correlation and slower decay.
By investigating the sample variance of these components
in Table 1 we see that the HTTP traffic has the greatest vari-
ance value, which is at least 60 times greater than the vari-
ances of the other traffic flows and this is the reason for its
dominance to form the autocorrelation of the TCP aggre-
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Traffic type volume variance (:105) VT plot R/S Per. correlation structure

IP 100% 1951.4 0.72 0.73 0.75 LRD H=0.73
TCP 88.5% 1946.6 0.72 0.73 0.75 LRD H=0.73
UDP 8.87% 4.3 0.67 0.68 0.7 LRD H=0.68
OSPF 0.88% 2.1 - - - SRD
ICMP 1.68% 2.9 0.63 - - SRD

TCP 100% 1946.6 0.72 0.73 0.75 LRD H=0.73
HTTP 47.64% 800.4 0.72 0.74 0.72 LRD H=0.73
FTPdata 12.29% 14.6 0.85 0.78 0.86 LRD H=0.85
FTPcontrol 0.26% 0.004 0.72 - 0.74 LRD H=0.72 (artifact)
SMTP 1.69% 5.8 - - - SRD
Telnet 1.99% 1.5 0.7 - - SRD
Others 36.13%

Table 1: Summary of the LRD analysis of the IP based protocols

gation. Note again that HTTP is the dominant protocol to
influence the correlation structure of the TCP aggregation
because its high variability on the investigated time scale.
Of course, the correlation structures of these protocols are
the results of the interactions between these protocols. For
example, the correlation structure of TCP is the joint result
of the contributing protocols (mainly HTTP) and the TCP
mechanism rather than simply the “HTTP forms the corre-
lation structure of TCP”.

4.2. Long-range dependence analysis

The long-range dependent(LRD) property of a traffic flow
is revealed in the power law decay of the autocorrelation
function at large lags, i.e.r(k) � cjkj2H�2; k !1; H 2
(0:5; 1) and c is a constant [3]. The degree of this slow
decay is determined by the Hurst parameter (H). There are
several statistical methods for LRD testing and parameter
estimation [3, 2]. In our case we choose the variance-time
plot, the R/S analysis, and the periodogram plot [3] for this
goal and use the Logscale Diagram based on the wavelet
transform [2] to verify the results.

Results of our LRD analysis are summarized in Table 1.
It should be noted that traffic volumes of the transport layer
protocols and of the application layer protocols are com-
pared to the IP and the TCP volume, respectively. The LRD
behavior of the IP traffic is determined by the TCP traffic
because it has both the largest Hurst parameter and variance
among the transport protocols. This finding is in accordance
with our discussions in the previous subsection. In the case
of general protocols used for network control (ICMP and
OSPF) the LRD tests failed. Considering also their correla-
tion structure shown in Figure 5 we can conclude that they
are in the class of SRD traffic. UDP was found to be LRD
but with smaller variance and Hurst parameter compared to
TCP.

In the application layer traffic the HTTP is dominant to
form the LRD characteristic of the TCP traffic in spite of
the fact that the FTPdata has larger Hurst parameter (see
Table 1). As we discussed above this is due to the fact that
HTTP has a significantly larger variance compared to FTP.
We note that some other analyzed FTPdata subsets do not
exhibit LRD property so we still do not make a general con-
clusion about the correlation structure of this traffic type.
We have found that the SMTP is SRD. Concerning the Tel-
net data series our comprehensive analysis has shown that
this traffic is SRD in spite of the fact that the variance-time
test suggests LRD. In the case of the FTPcontrol our LRD
analysis indicates the presence of LRD withH = 0:72. By
analyzing the datagram of this series we have found that the
occurred long-term dependence is caused by the periodicity
in control messages sending. Beyond that, the FTP control
messages take only a negligible amount of the whole traffic
with small variance. Therefore from a traffic engineering
point of view we can disregard the presence of this flow.

4.3. Scaling analysis

In our scaling analysis we looked for multifractal and
monofractal (e.g. self-similar) scaling structures. In our
terminology a time seriesfXi; i = 1; 2; : : : ; ng is called
multifractal if the logarithms of thepartition function
Sm(q) (or equivalently the absolute moments) scale lin-
early with the logarithm of the aggregation levelm [18, 8],
i.e. logSm(q) = �(q) logm + c1(q) whereSm(q) =Pn=m

k=1 jZ(m)
k jq with Z

(m)
k =

Pm
i=1X(k�1)m+i andc1(q)

is a constant. Furthermore, if thescaling function�(q) is a
linear function ofq we call it monofractal. A special and
well-known case of monofractals is theself-similarityin the
case of�(q) = qH � 1 whereH is the self-similarity pa-
rameter (Hurst parameter) [8].

Scaling behavior can also be tested by wavelet-based
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methods [1]. The discrete wavelet transform (DWT) rep-
resents a data seriesX of size n at a scaling levelj by
a set of wavelet coefficientsdX(j; k); k = 1; 2; : : : ; nj ,
wherenj = 2�jn. Define theqth order Logscale Dia-
gram (q-LD) by the log-linear graph of the estimatedqth

moment�j(q) = 1=nj
Pnj

k=1 jdX(j; k)jq against the oc-
tavej. Linearity of the LDs at a different moment orderq
suggests the scaling property of the series, i.e.log2 �j(q) =
j�(q)+ c2(q) where�(q) is thescaling exponentandc2(q)
is a constant. The plot of�(q) againstq can reveal the type
of scaling [1].

In our analysis both the partial function method and the
wavelet-based method were used. In [15] it was found that
in some cases multifractal scaling is more convincing with-
out subtracting the mean from the time series because the
centered data has several disadvantages, see [15]. We have
performed scaling analysis both with and without subtract-
ing the mean but in our case no significant differences were
found in the results. In this paper the results are related to
the centered data because it is the case when we have any
hopes to find possible self-similar scaling [18]. A summary
of our scaling analysis results are shown in Table 2

Traffic type volume scaling structure

IP 100% multifractal
TCP 88.5% multifractal
UDP 8.87% none
OSPF 0.88% none
ICMP 1.68% none

TCP 100%
HTTP 47.64% multifractal
FTPdata 12.29% monofractalh = 0:74
SMTP 1.69% none
Telnet 1.99% none
Others 36.13%

Table 2: Summary of the scaling analysis of the IP based
protocols

The results are presented in Figure 6. Concerning the
LD of moment orderq = 2 in Figure 6(a) a nearly linear
interval of the LD plot at octaves1 � j � 5 can be ob-
served1. The larger values ofj were not considered because
of the limited size of the data set and also because the set of
the wavelet coefficients at large scaling levels contains only
a few values, which cannot give a reliable approximation.
(These considerations are also taken into account in scaling
analysis of other flows.) A linear regression to the interval
gives an estimation of LRD parameterH = 0:76with confi-
dence interval(0:73; 0:8). The result deviates slightly from
estimates ofH provided by other LRD tests in Table 1 but

1In this LD plot an improved estimation was used (yj = log �j + gj )
with a correcting factorgj described in [1]

the confidence interval still includes those values.
LDs of the IP traffic computed at differentq provide the

estimation of the scaling exponent�(q) presented in Fig-
ure 6(b). The non-linear curve of the scaling function sug-
gests that IP traffic has a multifractal structure on these time
scales. The renormalized partition functions of the IP traf-
fic are depicted in Figure 6(c). (Renormalization was per-
formed in order to have the same intercepts of the curves for
all q.) Our estimation of the scaling function�(q) in Figure
6(d) based on the partition functions shown in Figure 6(c)
also confirms our findings concerning multifractal scaling.

Investigating data series from the transport layer proto-
cols our scaling analysis showed that although the UDP traf-
fic may have LRD property as discussed but the scaling tests
of UDP failed. We have found that the OSPF and the ICMP
traffic flows also do not have scaling structure. In the case
of the TCP we have found that its scaling structure is simi-
lar to the scaling structure of IP traffic. The estimated�(q)
and�(q) shown in Figure 7 rather resemble these functions
of the IP traffic. We can conclude that the TCP traffic also
exhibits multifractal scaling.

We have also analyzed the scaling structure of application
layer protocols. Scaling analysis results of the HTTP can be
seen in Figure 8. Both the scaling exponent�(q) and the
scaling function�(q) have convex curves which suggest the
presence of multifractality. Moreover, the estimated�(q) is
nearly the same as in the case of the IP and the TCP traffic.
Analysis results of the FTPdata are shown in Figure 9. It can
be seen that both the scaling exponent�(q) and the scaling
function �(q) are linear functions ofq. Therefore, our se-
lected FTPdata set reveals clear evidence of monofractality.
However, according to our earlier discussions the identified
monofractal structure is not our general conclusion about
the characteristics of the traffic carried by the FTP protocol.
Finally, we have found that the SMTP and the Telnet traffic
do not exhibit a scaling structure.

Our results confirm the results presented in [7, 6, 9] show-
ing that WAN traffic is LRD. However, we also complement
these findings by demonstrating thatWAN traffic can ex-
hibit a complex multifractal structure not only at small but
also at large time scales. Moreover, the analysis revealed
that the aggregation is composed of components with very
different scaling behavior(no scaling, multifractal scaling,
monofractal scaling).

5. Conclusions

In this paper we have presented traffic analysis results from
a wide range of IP traffic measurements. It has been found
that the IP traffic is bursty during the whole day and some-
times it also contains extremely high traffic peaks over a
short time period. These observations are questioning the
concept of busy period in case of this kind of IP traffic.
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We have carried out a stationarity analysis prior to our
correlation and scaling studies and selected a time period of
the IP traffic in which the aggregated IP traffic and all of
its analyzed components at both transport and application
layers can be considered to be stationary.

We have investigated the impacts of different character-
istics of the correlation structures of the components on the
correlation structure of the aggregation. We have found that
the ruling impact is due to the component which has the
highest variance and also significant correlations on the in-
vestigated time scale. Among the transport layer and the ap-
plication layer protocols the TCP and the HTTP were found
to have these properties, respectively, which is the main rea-
son (and not the high bandwidth share!) of the dominance
of these protocols.

At the transport layer both TCP and UDP exhibit LRD but
only the TCP has detectable multifractal structure. Other
protocols at this layer were found to be SRD with no scaling
properties.

At the application layer both HTTP and FTP have LRD
properties. Multifractal and monofractal scaling have been
identified for HTTP and FTP, respectively. However, we ob-
served that the scaling of FTP traffic is not a general char-
acteristic.

We conclude that the investigated IP traffic is a LRD ag-
gregate of components with different scaling properties re-
sulting in a complex multifractal structure for the aggre-
gated WAN traffic even at large time scales.
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Figure 5: Correlation structure of IP traffic and its components
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Figure 6: Scaling analysis results of the IP traffic
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Figure 7: Scaling analysis results of the TCP traffic
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Figure 8: Scaling analysis results of the HTTP traffic
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Figure 9: Scaling analysis results of the FTPdata traffic
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