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H–1117, Pázmány Péter sétány 1/D, Budapest, Hungary

Tel: (361) 463-3889, Fax: (361) 463-3107

E-mail: fmolnar,gefferthg@ttt-atm.ttt.bme.hu

Abstract

Two important and related factors in data network traffic are the burstiness and the

scaling phenomena. We use several analysis techniques to capture them including

also a new burstiness measure. We apply several tests for checking traffic station-

arity and several methods for testing the scaling behavior. In particular, we focus

on detecting and characterizing long-range dependence properties. The methods

are shown with applications based on real traffic measurements.

1 Introduction

Understanding and modeling the characteristics of the traffic in packet networks

are especially relevant for the design and dimensioning of our growing multime-

dia networks (e.g. Internet or ATM WANs and LANs) [2, 8, 12]. We can see

a number of new applications on these networks which dynamically change the

traffic structure being carried.

Traffic burstiness is one of the key properties observed in data traffic [8, 13].

Intuitively, burstiness is present in data traffic when the arrivals (e.g. packets)

appear to form clusters in time. Another indication of burstiness is that several

relatively short interarrival times are surrounded by relatively long ones. In spite

of the simple intuitive understanding the mathematical definition of burstiness is

more complex and not so obvious. There are several different burstiness mea-

sures introduced in the teletraffic literature [8, 13]. The two important factors that

influence burstiness are the marginal distribution and the autocorrelation of the ar-

rival process. For example, strong short-range correlations induce burstiness. We
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should note that in several practical cases the first- and even the second-order char-

acteristics of the arrival process are not adequate for a complete characterization

of burstiness and higher-order description is also required.

Scaling behavior is another important key characteristic of traffic in today’s

data networks [7]. It has a strong connection to the above mentioned burstiness

because burstiness should be defined in terms of time scales over which clustering

activities occur. The surprising scaling phenomenon observed in data traffic is that

these clustering activities are present over several time scales. It is in contrast to

traditional telephone traffic characteristics where the traffic burstiness is smoothed

out by increasing the time scale. In other words, there is an absence of character-

istic time scale and a bursty traffic over many time scales with a complex ”burst

within burst” structure is observed. This phenomenon triggered a new modeling

approach, called fractal modeling, which can offer parsimonious models for this

behavior [12, 24]. Even if scaling is identified, it is not simple to describe how

different statistical characteristics are scaled on different time scales. In many

cases there are different scaling rules on different time scales and the traffic has a

multifractal structure [6, 12].

In this paper we investigate both scaling and burstiness characteristics of actual

measured data traffic.

We report some results concerning the traffic structure of measured IP traffic

on an ATM link. These measurement have been made on our University ATM

campus network connected to the Internet. The traffic generated by several hun-

dred workstations represents a typical aggregated University traffic to and from

the Internet. The details of our measurements are described in Section 2.

There are four targets of our traffic analysis reported in the paper. First, we

have analyzed the traffic contributed to the aggregation concerning their volumes,

bandwidth shares and application types. In Section 3 we can see the dominant

applications and their properties.

Second, prior to any statistical analysis we performed several tests for checking

the stationarity of the measured traffic. With our methods we can select stationary

periods of the traffic which are the only candidates for traffic characterization

and modeling. Therefore we avoid pitfalls and misinterpretations due to the non-

stationarity effects present in real traffic. These results are shown in Section 4.

Third, the scaling structure of the traffic has been investigated in Section 5. We

have carried out a scaling analysis study including different statistical methods

(variance-time plot, periodogram, R/S analysis, wavelet analysis, etc.) to reveal

the scaling and correlation structure of the traffic. Among the scaling properties

we focus on the long-range dependence (LRD) analysis of the traffic because LRD

has a significant impact on performance issues.



Fourth, we introduce a new burst structure characterization method in Section 6.

We analyze the bursts and idle periods concerning their distribution and correla-

tion characteristics.

The contribution of this paper is to report traffic characteristics with analysis

techniques considered to be significant in packet switched network traffic.

2 Traffic Measurements

The purpose of this section is to present our measurements analyzed in this paper.

The traffic was measured in a University environment.

2.1 Network Topology

Figure 1: Network and measurement setup

Figure 1 shows the network and measurement setup. The network is located in

the new University building of the Technical University of Budapest. The building

is connected to the outside world by a 100MB FDDI and a 155MB ATM link. An

ATM backbone is installed inside the building connecting Ethernet based local

networks. These local networks are referred to as Department groups (DG). Each

DG consists of about 100 workstations. Ethernet frames are transmitted over the

ATM backbone using LAN emulation.

In our measurement a specific department group (DG1) was selected and the

traffic between DG1 and the rest of the world was measured. DG1 contains about

one third of all the workstation of the Department of Telecommunications and

Telematics and the Department of Telecommunications. These workstations be-

long to department staff, PhD students, and student laboratories with a variety of

operating systems. The network interfaces range from 10Base2 (BNC) through

100BaseT (UTP) to 100VGAnyLan. Some bridges and routers are also located in

DG1. Users mainly generate IP and IPX packets.

2.2 Measurement tools

A traffic monitoring tool, called CapTie [22], was located on the 155 MB/s ATM

link between DG1 and the switch. At the time of the measurement the analyzer

had limited capabilities. It recorded the preselected data objects (IP packet, ATM

cell, bytes) passing the link. It could measure a few different basic statistics at the

same time. To get data from the analyzer an SNMP [19] request had to be sent

requesting the value of the desired counter. In order to get detailed information

a periodical polling of the counters was needed. This polling was carried out by

an SNMP client program that ran on a workstation which was connected to the

analyzer via the Ethernet network. The client program was based upon the cmu-

snmp package.

2.3 Measured data

During our measurement the number of bytes in IP packets crossing the link

in both directions on three different days: 14th, 16th and 19th of April 1999,

from 8am to 6pm was logged. We investigated different layer protocols and also

counted the number of non-IP packets. These protocols include transport layer

protocols such as ICMP, TCP, UDP, and OSPF, as well as application layer pro-

tocols, FTP, SSH, Telnet, SMTP and HTTP. The granularity of our measurement

was one second.

2.4 Measurement errors

The SNMP request packages from the client to the analyzer had to cross over an

Ethernet segment which introduced some jitter in the request arrival time. This

resulted in inaccuracy of the measured data. The workstation which collected the

data ran a multitasking operating system with only a limited real-time support.

Exact scheduling of the processes was not possible which was another source of



Error Source Min. Delay Max. Delay Std. Dev

Network 3.4 910.2 93.8

Scheduling 0 152.3 1.3

Table 1: Measurement errors resulting form the two error sources in a

typical dataset. The values are measured in msec. The minimum and

maximum delays observed during the measurement and the standard de-

viation of the delays are reported.

inaccuracy. Table 1 shows the errors from these error sources in a typical dataset.

It should be mentioned that the difference of the maximum and minimum delay is

high in the case of the first source of error. However, it is only approximately 1%

of the values where the delay was larger than 2msec plus the minimum delay, in

this dataset, but in other datasets, this ratio is even smaller.

As can be read from Table 1 in our measurement the first source of inaccuracy

was dominant. It is described in Section3.2 how these errors were handled.

3 Basic traffic analysis

The calculations presented in this section deal with the amount of data passing the

ATM link. We focus on the contribution of different applications to the bandwidth

usage and the total amount of data on different days.

3.1 Traffic data

Our data which serves as input for the calculations consists of several time series,

also called traces.

We classified IP packets by their transport layer protocol identifier, as well as

by their well-known TCP port number. Using these pieces of information one can

decide which transport and application layer protocol data unit (PDU) is transmit-

ted in the packet. There was no distinction between request and response PDUs

in case of client-server services, such as FTP or WWW. The given trace contains

the bytes belonging to both.

The following protocols have been observed:

� Transport Layer Protocols: UDP, TCP, ICMP and OSPF.

� Application Layer Protocols: FTP, HTTP, SMTP, Telnet and SSH.

The total number of bytes belonging to IP packets was also measured. These

traces are referred to as total-IP traces and are used in the correlation and burst

analysis in Sections 4, 5 and 6.

3.2 Preprocessing raw measurement data

Preprocessing data consisted of the following steps:

� correcting errors caused by jitter and

� producing the per second data from the values of the aggregated counters.

The correction was done by dropping values where the round trip delay from the

SNMP agent to the analyzer and back was bigger than a given tolerance. The lost

and dropped values were replaced by linear interpolation using the neighboring

values. A typical dataset contained 36000 data, from which about 1-200 had to be

dropped. The timeout was set to 1msec which compared to the 1 sec granularity

of the measurement is not more than 0.1%. This inaccuracy is acceptable for our

purposes.

3.3 Traffic intensities

Before doing any calculations on measured dataset a visual investigation is always

useful. In Figure 2 the total-IP traces are depicted in direction out on all the three

days. We can conclude that the traffic is bursty on many scales. A few huge peaks

can be observed, which are much bigger than any of the other peaks. Removing

these peaks we get a similar result: the remaining high peaks are still much bigger

than the others, and so on.

In Figure 3 the same three datasets are depicted, where the values were aggre-

gated over 10 minutes interval. In this picture we see that a daily variation similar

to those observed by PSTN networks can not be seen clearly.

Figure 4 and Table 2 show the total amount of IP-traffic passing through the

link during our measurement in both directions on each of the three days. We see

that the volume of data coming in was always more than the volume of data going

out.

We explain this observation by the fact that FTP and web access is asymmetric

because outside world servers are more popular than the servers in the university.

We found (see Section 3.4) that the majority of data is carried using FTP and

HTTP protocols. We can also see that the amount of traffic on different days is

significantly different.
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Figure 2: Intensity of the traffic (time unit: 1 sec)
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Figure 3: Intensity of the traffic (time unit: 10 min)

Day 14th Apr. 16th Apr. 19th Apr.

Out 325 221 498

In 534 835 869

Table 2: Total traffic on different days measured in Megabytes
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3.4 Bandwidth share

The ratio of different protocols contributing to the overall load was calculated.

Figure 5 shows the bandwidth share of different protocols averaged over all of

our measurement data. Figure 5(a) shows the transport layer and Figure 5(b) the

application layer protocols.

The numerical values are shown in the middle rows of Tables 3(a) and 3(b).

Besides averaging over all the data, the computation was performed separately

for individual days and directions. The top and bottom rows of Tables 3(a) and

3(b) show the minimum and maximum bandwidth share of the protocols.

TCP UDP ICMP OSPF

Minimum: 85% 5% 1% 0%

Average: 90% 8% 1% 1%

Maximum: 93% 12% 2% 1%

(a) Transport Layer Protocols

FTP HTTP SMTP TN SSH Other

Minimum: 18% 21% 3% 2% 0% -

Average: 35% 29% 6% 2% 1% 27%

Maximum: 44% 40% 9% 3% 1% -

(b) Application Layer Protocols

Table 3: Bandwidth share of protocols at two different layers. The middle row

shows the overall average. The top and bottom rows show the minimum and the

maximum ratios measured on a daily basis.

We conclude, that the majority of data is carried by FTP and HTTP protocols.

Although the bandwidth share of the applications changes from day to day the

dominance of TCP, especially FTP and HTTP could be observed in all datasets.

These sources of data do not need real-time transmission but a low response time

is desirable.

TCP

ICMP

UDP

OSPF

Bandwidth share of transmission layer protocols

(a) Transport Layer Protocols

Telnet

FTP

SSH

HTTP

SMTP

Other

Bandwidth share of application layer protocols

(b) Application Layer Protocols

Figure 5: Ratio of the different protocols



4 Stationarity analysis

In the previous section the contribution of different protocols to the network traffic

was investigated. In this and the next sections the aggregated traffic is investigated.

We will use the total-IP traces introduced in Section 3.1.

Most of the existing tools for analyzing real traffic assume the stationarity of the

traffic. Therefore before using these tools the assumption of stationarity should be

validated.

It is usually not realistic to assume the stationarity of the whole traffic trace

since traffic intensity varies during the time. A straightforward approach to over-

come this problem is to select intervals, where traffic can be handled as stationary,

and analyze them independently. In this section our method of selecting station-

ary intervals is presented. In Section 5 the results of analyzing these intervals is

discussed.

Without any a priori information about the generation of the process the de-

termination of stationarity based on a measured finite data set is mathematically

impossible. Even if a given family of models exists, where the process is assumed

to be a realization of one of them, only a statistical test can be performed. How-

ever, this test always has a probability of false decision.

Two heuristic mathematical methods have been used and the results have been

combined to select stationary intervals.

4.1 Stationarity of distributions

This method is based on the changepoint detection method described in [18]. A

window is slid along the data and the distribution of the samples in the two halves

of the window are compared, see Fig. 6. Should the two distributions be signifi-

cantly different we reject the assumption of stationarity and assume a changepoint

near the middle of the window. It should be noted that (1) this method was devel-

oped for uncorrelated dataset, and (2) the equivalence of the two distributions is

necessary but not sufficient for stationarity. Because of these limitations we also

use another method described in the next subsection.

We choose a half-window size denoted byN . In the first stage we would like to

determine from all neighboring intervals of length N whether the samples in the

two intervals have the same distribution. Therefore we slide our window along the

process, and at each point we perform a two sample Kolmogorov-Smirnov [9, 18]

test to decide the equivalence of the two distributions.

We select those intervals

1. which are at least as long as the window,

0 50 100 150 200
0

2

4

6

8

10
x 10

4

                                  n

F(n)

Figure 6: Sliding a double-window along the interval

2. all neighboring intervals proved to have the same distribution, and

3. the interval can not be extended to have the same property.

The value of N is determined by a trade-off between having enough data for a

reliable statistical calculation, and at the same time have a fine picture of the data.

The value of 600 was used in our studies.

Next we describe the applied Kolmogorov-Smirnov test. The purpose of the test

is to decide whether two sets of samples are generated by the same distribution

or not. A general description about statistical tests can be found in [10]. The test

statistics is D = max jF (x) � G(x)j, where F (x) and G(x) are the empirical

distribution functions of the two samples. (See Figure 7.) D(n) is the value of the

test statistics when the middle-point of the window is at sample n.

If the two samples come from the same distribution then the following equation

holds:

lim

N!1

P

 

r

N

2

D < y

!

= K(y); 0 < y <1;

Where K(y) is the Kolmogorov distribution function, defined as

K(y) = 1� 2

1

X

j=1

(�1)

j

e

�2j

2

y

2
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Figure 7: Calculating the Kolmogorov-Smirnov statistics from the empir-

ical distributions

We set the significance level of the test to 0:1.

Figure 8 shows a part of the input dataset together with the value of the statistic

(D(n)), where the middle point of the interval is aligned with the data. (The

original dataset is scaled in order to fit in the figure.)

4.2 Smoothness of the process

The purpose of this method to identify stationary intervals of the sample by cap-

turing the periods with the same burstiness (smoothness) characteristics.

The original process (X
i

) is averaged over neighboring intervals of length M

to form a new process X
(M)

k

.

X

(M)

k

=

1
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kM
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i=(k�1)M+1
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The sample variance of this new process is denoted by �2.
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Figure 8: Kolmogorov-Smirnov statistics and the original time series

(scaled)

where d

X

(m) is the average of the process X
(M)

k

, and L is the length of the same

sample.

The longest possible intervals have been selected where the difference of adja-

cent values was smaller than ��. For our analysis � was set to one, and M was

set to 60.

4.3 Selecting the intervals

Both previous methods were applied to select the stationary intervals. The inter-

sections of the selected intervals were used for further study. To have enough data

for statistical analysis only intervals with a minimum length of 1500 samples were

used.

For further study only one of the measured traces was chosen, the traffic trace

measured on the 14th of April, direction in. The selected intervals are listed in

Table 4 and depicted in Figure 9. The selected intervals might overlap since the

changepoint based test might select overlapping windows. The selected 8 intervals

cover 13167 sec, which is 37% of the total trace.
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Figure 9: Intensity plot of stationary intervals, time unit: 1sec

Int. 1 2 3 4 5 6 7 8

Start 5312 18006 20952 25728 28274 30601 31383 33241

End 7104 20280 22598 27315 29929 32300 33180 34868

Len. 1793 2275 1647 1588 1656 1700 1798 1628

Table 4: Endpoints of the stationary intervals measured in seconds elapsed

from the beginning of the trace

5 Correlation Studies

In the previous section it was described how the intervals to be analyzed have

been selected. In this section the correlation structure of the process is analyzed,

separately for the long- and short-term correlations. A so-called scaling behavior

is reported to be present in network traffic traces. Scaling behavior means that

fundamental properties of the traffic are left unchanged when viewed at different

time-scales.

Different types of scaling behavior was detected in computer network traffic,

including long-range dependence, self-similarity, and fractality [11, 15, 16, 17].

This paper focuses on the long-range dependent (LRD) structure of the process.

5.1 Autocorrelation function

The autocorrelation function of a process X is defined as

�
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), and �2
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is the variance of X
s

. In case of weakly stationary

processes this definition reduces to
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E(X
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X)(X

(i+n)

�

�

X)

�

2

X

;

where �

X and �2
X

denote the common mean and variance of the values, respec-

tively. In practice the expected values are replaced by time averages.

The calculated values for the stationary intervals for the first few lags (time unit:

1sec) are shown in Figure 10. Most of the results show strong short-term positive

correlations. As we increase the lag the correlations become small but in most

of the cases the decay of the autocorrelation is slow (except in Figure 10 (h)). In

some cases the signs of periodicity can also be observed (cases of (c) and (d)).
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Figure 10: Autocorrelation function

5.2 Long-range dependence

In Section 5.1 the autocorrelation function was introduced and presented for small

lags. In this section we focus on the asymptotic behavior of the autocorrelation

coefficients at large lags.

The framework of LRD processes allows us to capture important properties of

such traffic with only a few parameters [3]. The most important of these param-

eters is the Hurst parameter, denoted by H . Its value is between 0.5 and 1 for

LRD processes. The higher the H the stronger the correlation. In this section our

definitions and notations are given.

A weakly stationary stochastic process is called long-range dependent if its

autocorrelation function (�
X

())decreases according to a power-law at large lags.

That is

�

X

(k) � c

�
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2H�2

; k !1; H 2 (0:5; 1) (1)

The equivalent of this definition in frequency domain is:
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; as � ! 0; (2)

where f
x

() is the spectral density function [4]. For a given value of H , c
f

and c
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differ in a constant factor only. The scaling property that LRD sources exhibit is

that the autocorrelation function converges to a fixed function when the process is

averaged over neighboring blocks. Let X
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denote the new series:
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whereX
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is the original dataset. If the autocorrelation function ofX
(m)
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is denoted

by �(m)

(:) then

lim

m!1
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(m)

(:) = �
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where �
1

(:) is a fixed function determined by H .

The Hurst parameter is very important since it defines the existence and strength

of the LRD. However, it only determines one of the two parameters used in Eq. 1

and Eq. 2. The other parameter, c
�

or c
f

- depending on the content - is called the

second parameter following the terminology of [23]. It is important to note, that

both H and the second parameter describe the asymptotic properties at large lags

and do not give any information about the short term correlation structure. Most

of the methods found in the literature concentrate on estimating the value of H

and little effort is made to give an estimate for the second parameter.



5.3 Parameter estimation methods

Several methods exist in the literature to estimate H . Some of these are heuris-

tic methods. These methods are adequate to indicate the presence of long-range

dependence but give no confidence interval, so the estimated values should be

handled with caution.

The methods are not described here in detail. They can be found in a number

of papers, including [1, 3, 16, 17, 23]. A more advanced estimation method is the

Abry-Veitch estimator [23], which estimates both c
�

and H (see Eq. 1) and gives

confidence intervals. We show this method in the next subsection.

The variance time plot (VTP) is based on estimating the decay of variance

when the samples are averaged over increasing windows. If X
k

is a stationary

LRD dataset, then [3]

lim

n!1

Var

�

P

n
i=1

X

i

n

�

=

c

�

H(2H � 1)

n

(2H�2) (3)

For short-range dependent dataset (H = 0:5) the autocorrelation is summable

and the variance of the time-average decreases as n�1, where n is the block size.

For LRD data this decrease is slower, n�� , with � = 2 � 2H , as can be read

from Eq. 3. In practice the the variance is estimated by the sample variance. The

estimated variance is plotted against the block size (n) in a log-log plot and a

linear regression is performed to fit a line on the values. H can be calculated from

the slope of the line. In theory c
�

could be calculated from the intersection but in

practice this estimation method is not used.

The periodogram [3] estimation is based upon property of Eq. 2. The spectral

density of the process is estimated by the periodogram which gave the name of this

estimation technique. Plotting the estimated spectral density function on a log-log

scale should produce a linear line at low frequencies with a slope of 1� 2H .

The rescaled adjusted range statistics (R/S) [3] is another estimator of the

Hurst parameter. For a discrete time stochastic process, X
j

, the rescaled range of

X over a time interval n is defined as

R

S

=

maxfW

i

: i = 1; 2; : : : ; ng �minfW

i

: i = 1; 2; : : : ; ng

p

var(X)

where W
i

=

P

i
k=1

(X

k

�

�

X); i = 1; 2; : : : ; n and �

X =

1

n

P

n
i=1

X

i

. It can be

proven that in case of LRD processes

R

S

�

�

n

2

�

H

The value of H is estimated by regression. In practice R=S is plotted against n

on a log-log graph and a straight line is fitted to the values. The slope of the line

gives H . This is the original method used by Hurst.

Since LRD describes the low-frequency behavior, only the low frequencies

should be taken into account during the estimates. This means large window sizes

for the variance-time plot, and low-frequencies for the periodogram method.

5.4 The Abry-Veitch wavelet analysis

Abry and Veitch gave a more sophisticated wavelet based estimator (AV) for the

Hurst and the second parameter [23]. The advantage of this method is that the

long-range dependent process in the time domain is converted to weakly corre-

lated coefficients in the wavelet domain, which makes the estimation of the pa-

rameters more reliable. This method proved to be robust again some changes in

the nature of traffic [21].

Wavelet transforms and the log-scale diagram will be introduced without the

need of rigorous mathematical precision. The details can be found in [1, 23].

Discrete wavelet transformation (DWT) transforms a discrete time process from

the time domain into a two dimensional discrete wavelet domain. The wavelet

coefficients of a process X are denoted by d

x

(j; k). Wavelet transformation is

based on a family of functions which are all transformed versions of the so called

mother wavelet denoted by 	

0

(t). The choice of mother wavelet depends on the

actual task. These functions have a common property that they are bounded in a

sense in both the time and frequency domain. As a result these coefficients hold

information about both time and frequency domain behavior.

Wavelets have a number N � 1 of vanishing moments, which means that if a

mother wavelet with N = n is chosen all polynomial parts of the signal of order

less than n vanish after the wavelet transform. Formally

R

t

z

	

j;k

(t)dt = 0; z =

0; 1; : : : ; N � 1; where 	

j;k

can be any wavelet base function, i.e. transformed

version of the mother wavelet. The value of N can be freely chosen. The greater

the value ofN the more insensitive is the transformation to ’smooth’ (polynomial)

parts of the signal.

Coefficients d
x

(j; k), where j = j

0

is fixed k = 1; 2; : : : belong to the same

frequency referred to as scale in wavelet framework. Parameter j is called octave

and is equal to log

2

(scale). However, the term ’scale’ is also used to refer to the

logarithm of scale.

It is known (see, e.g. [23]) that in case of LRD processes

E

�

d

x

(j; :)

2

�

= 2

j�

c

f

C



where

C =

Z

j�j

��

j	

0

(�)j

2

d�

is a constant that depends on � and the mother wavelet, 	
0

(). We note that � =

2H � 1. Ed

x

(j; :)

2 is estimated from the values of d
x

(j; k); k = 1; 2; : : : and

plotted against j on a log-lin scale.2 The values should produce a straight line.

The value of � can be calculated from the slope of the line, while the intersection

gives the second parameter. The calculated values do not closely align a straight

line due to the lack of any strong correlation between them. This is an advantage

of this method since strong correlation could make the line look more straight but

the estimated slope will be biased, which is the case, for example, at the variance

time plot method. The alignment of the values therefore should not be judged by

eye. A weighted linear regression is performed to fit a line over the estimated data.

The results depend on the mother wavelet used and on the choice of scales over

which the linear regression is performed.

As an example, we investigate the fractional Gaussian noise, which is the only

stationary, zero mean LRD process with Gaussian marginal distribution. Figures

11(a) and 11(b) show the log-scale diagram of the same fractional Gaussian noise

dataset generated with Hurst parameter 0.8. The difference is the number of van-

ishing moments of the mother wavelet. (With the increase of the vanishing mo-

ment, the maximum available scale decreases. This is a technical limitation of the

method.)

On the x-axis the octave j is plotted, and the y-axis shows the estimated value

of Ed
x

(j; :)

2 with the confidence intervals. Note, that with the increase of scale,

which is equivalent to the decrease of frequency, less and less details are avail-

able which makes the estimation less reliable and the corresponding confidence

intervals larger. The number of vanishing moments (N ), the scales over which

the straight line is fitted (j
1

; j

2

) and the goodness of fit (Q) can be read from

the title line of the figures. Since long-range dependence is a property of the low-

frequency behavior, in case of a LRD process the values align from a lower cut-off

scale, (j
1

) to the maximum scale available in the dataset. If this is not the case it

does not simply mean that the data is not LRD. Even short-range dependent pro-

cesses with summable autocorrelation coefficients have a ’trivial scaling’ behavior

with H = 0:5. In this case the slope of the fitted line is 0. If the values do not

align it can be because of two main reasons. Either the scaling behavior starts at

a lower frequency which is not present in the given data with finite length, or the

data has a more complicated structure, possibly due to non-stationarity.

2This, in fact, is a log-log scale since j is a logarithmic scale.

These figures show that the change of the number of the vanishing moments

does not result in drastical change of the estimated parameters, nor in drastical

change of the shape of the graphs. Although not detailed here one can believe

that the slope and intersection of the fitted line does not strongly depend on the

values of j
1

and j
2

. This is in contrast with real data, where the calculated values

do depend on the fitting region, and might also depend on the number of the

vanishing moments.
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Figure 11: Log-scale diagram of fractional Gaussian noise (fGn) dataset.

The value of N is the number of vanishing moments. The j
1

and j
2

give

the range over the least square line was fitted and Q gives the goodness

of fit. The critical level of rejecting the null-hypothesis that the values

form a straight line. The value is between 0 and 1, the higher the better.

(A value of about 0:1 is generally sufficient.) Vertical lines give the 95%

confidence intervals)



5.5 Results of LRD tests

The sequences of arrived bytes in every 1sec interval were analyzed in each

test.

Variance-Time Plot

The results of this method for all the selected intervals can be seen in Figure

12. The estimated values, which can be read form the picture, are very close to

each other suggesting that the Hurst parameter did not change during time. We

can observe that the values in the subfigures 12(h) and 12(g) are far from a straight

line, 12(b), 12(c), 12(d), 12(e), 12(f) are close to a straight line, and the values in

subfigure 12(h) almost perfectly fit, as far as the low-frequency (large aggregation

level) is concerned.

As we will later see this has nothing to do with the accuracy of the estimate,

since, e.g. the variance-time plot estimate of interval 8 is very far from values

estimated with other methods but the estimate for interval 1 corresponds well to

the other estimates.

R/S plot

The results of this method can be seen in Figure 13. In all of the subfigures

of Figure 13 the linear alignment of the values can be observed. This is not a

characteristic of the specific dataset, the RS analysis produces straight looking

graphs for most datasets measured in practice.

Periodogram

The results of this method can be seen in Figure 14. In case of the periodogram

method the estimated H value depends on the region over which the line was

fitted. This region should start from the leftmost value available and be sufficiently

long to be able to perform a linear regression but it should not be too long since

only the low-frequency values are desired to have an impact on the estimate. As in

the case of the variance time plot estimate interval 8 shows significantly different

behavior at low frequencies.

Wavelet analysis

Figure 15 shows the log-scale diagram for the second dataset for different num-

ber of vanishing moments (N ). It can be observed that although in all cases the

values align a straight line but the calculated values and the region where the val-

ues align (j
1

; j

2

) depend on N .
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Figure 12: Variance time plot
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Figure 13: R/S plot
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Figure 14: Periodogram



We have already seen in Figure 11 that in case of fractional Gaussian noise

(fGn), which is a pure stationary and zero mean self-similar process, that the cal-

culated values do not really depend on N . It is due to the fact that fGn is an exact

self-similar process having the same scaling parameter at each time scale. The

results show that the measured traffic has a more complicated structure than an

fGn. The values estimated at different values of N should be compared with the

corresponding confidence intervals. It is done later in this section.
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Figure 15: Logscale diagram for the second interval with different number

of vanishing moments

Comparison of results

All the results calculated with the different methods are depicted on the same

figure (see Figures 16(a) to 16(h)). The first few values give the results of the AV

estimation with different number of vanishing moments with the 95% confidence

intervals. The last values are the values from the variance time plot, R/S plot and

periodogram plot, respectively. These methods do not give any confidence inter-

vals. The horizontal line is the average of the values. Since the last three methods

do not give any confidence interval a weighted averaging would be pointless. The

fitting region (j
1

; j

2

) of the wavelet estimates was selected by manually investigat-

ing the goodness of fit for different values of j
1

and the largest scale j
2

available

in the dataset.

For the next discussion exclude the last three values and concentrate only on the

wavelet estimates. In case of intervals 1 and 3, the estimated values, correspond

well to each other, the confidence intervals overlap and the estimations are close

to each other.

In case of interval 2 the results are not that good but still acceptable. In Figure

16(h) we can see that estimates corresponding to N = 2 and N = 3 are quite

different form the other estimates but the corresponding confidence intervals are

much larger. This shows that these values are less reliable estimates and therefore

an average of the other three estimates fits in all the confidence intervals.

Although at the other intervals we might find a value that fits into all the confi-

dence intervals, the estimated values are far from each other and it is very unlikely

that the process has a simple LRD structure which can be characterized by two

parameters.

Now we can discuss the results of the heuristic methods. In the case of the first

three intervals, the heuristic estimates correspond well to the wavelet estimates.

In the case of the 4th, 5th, 6th and 7th interval the values are close to each

other and to the average of the wavelet estimates but these are to be handled with

caution since the wavelet analysis suggests that traffic is not generated by a pure

self-similar process.

In case of interval 8, we have seen that the results from the AV analysis do not

contradict each other but the heuristic estimates are far from the intersection of

the confidence interval. So again, here we might suspect non-stationarity or some

other complicated structure of the data. This shows a weakness of the heuristic

methods that they are not adequate for detecting any deviance from simple scaling.

It also shows that one should never rely on the results of only one analysis. Several

methods have to be performed to have a realistic picture of the data.
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Figure 16: All estimated H values

6 Characterization of the burst structure

The purpose of this section is to give an alternative approach to traffic characteri-

zation which could complement existing methods.

The fact that computer network traffic is very bursty was confirmed by our

study. The bursty nature of traffic was also pointed out and investigated in previ-

ous studies [2, 8, 12, 13, 14]. Burstiness means that sudden jumps occur frequently

in the link utilization. These sudden jumps make it very hard to interpret results

from correlation studies. Furthermore, it is very unlikely that our models for long-

range dependent traffic such as fGn or fARIMA would produce such high jumps.

On the other hand the dimensioning of computer networks should be based upon

the traffic characteristics during the highly utilized periods, as well as the charac-

teristics of the occurrence of highly utilized periods in the traffic. However, the

Hurst parameter describing the long-range dependence in the traffic does not ad-

equate for such a characterization. For this reason a characterization of the traffic

was carried out concentrating on the bursts themselves.

An interval of traffic was called a burst or busy period if it was the largest

possible interval where the bandwidth usage was constantly bigger than a given

value � viewed on a one second time-scale. For each value of � busy and non-busy

(silent) intervals can be separated.

In this section the behavior of these intervals will be examined for different

values of �.

As in Section 5 we use the total-IP traces introduced in Section 3.1.

6.1 Number of bursts

The number of bursts as a function of � was calculated and plotted in Figure

17, separately for the different directions. For each input data we define �
max

which gives the value of � where the maximum number of bursts can be observed.

�

max

is a natural separating level between busy and silent intervals since the more

burst occur the more useful is to observe their behavior. It can be seen that �
max

differs from trace to trace that shows that there is no characteristic level which

could be selected as the separator between busy and silent periods based upon this

characterization.

6.2 Correlation structure of bursts

In this and the remaining subsections only one trace, the total-IP trace measured

on the 16th of April, direction in, is investigated in more detail.
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Figure 17: Number of bursts as a function of threshold (�)

Int. 1 2

Start 1771 2788

End 2871 3650

Len. 1101 863

Table 5: Endpoints of the selected stationary intervals from the burst size

series. The values give the sequential numbers of the bursts.

Using � = �

max

, the autocorrelation structure of the busy periods was calcu-

lated. Two time series were produced,

� the duration of the bursts, measured in seconds, and

� the size of the bursts, measured in bytes, giving the total amount of data

transmitted during the burst.

The burst-size series are depicted in Figure 18. In this figure the series were av-

eraged over neighboring windows of size 50 and shows that this sample is not sta-

tionary. For this reason shorter stationary intervals were selected with the methods

described in Section 4.1 (with N = 50) and Section 4.2 (M = 10). The selected

stationary intervals are described in Table 5. The intervals were selected using the

burst-size series but the same intervals were used to investigate the burst-duration

series.
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Figure 18: Burst sizes

Autocorrelation function

The autocorrelation function of the two intervals of the selected series are de-

picted in Figures 19 and 20. We can see that the two intervals have different

correlation structure.

6.3 Correlation between busy and silent intervals

Besides calculating the self correlation structure of the busy periods the relation

of busy and silent intervals is also relevant for traffic characterization purposes.

0 10 20 30 40 50 60
−0.2

0

0.2

0.4

0.6

0.8

1

lag

C
or

re
la

tio
n 

C
oe

ffi
ci

en
t

(a) Interval 1

0 10 20 30 40 50 60
−0.2

0

0.2

0.4

0.6

0.8

1

lag

C
or

re
la

tio
n 

C
oe

ffi
ci

en
t

(b) Interval 2

Figure 19: Autocorrelation function of the burst sizes
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Figure 20: Autocorrelation function of the burst durations

For each value of � the correlation between the duration of busy and the duration

of subsequent silent interval was calculated and plotted as a function of � in Figure

21(a). The correlation between a pair of random variables, X and Y is defined as

� =

E(X �E(X)(Y �E(Y )

�

X

�

Y

;

where �
X

and �

Y

are the standard deviations of the two variables. The value

is estimated by calculating the time average. The correlation between busy and

preceding silent intervals was also calculated. This is shown in Figure 21(b). Here

the whole trace was used for this calculation.

These figures show that there is no significant correlation between these two

series. Similar results have been found by analyzing other input data.

6.4 Tail distribution of burst sizes

The file sizes transmitted on the Internet are reported to have a so-called heavy-

tailed distribution. Since the previously defined bursts are likely to be caused

by transmission of large files the burst series was analyzed to check whether its

distribution is heavy-tailed or not.

Let X be a non-negative random variable with cumulative distribution function

F . F is said to be heavy-tailed with parameter � [20] if

1� F (x) = x

��

L(x); x � x

0

; (4)

where L is slowly varying at infinity, i.e. lim
x!1

L(tx)=L(x) = 1, t > 0, and

x

0

depends on L(x).

0 0.5 1 1.5 2

x 10
4

−0.1

−0.08

−0.06

−0.04

−0.02

0

0.02

0.04

C
o
rr

e
la

ti
o
n
 C

o
e
ff
ic

ie
n
t

δ

(a) Cross-correlation between busy and

subsequent silent intervals

0 0.5 1 1.5 2

x 10
4

−0.1

−0.08

−0.06

−0.04

−0.02

0

0.02

0.04

C
o
rr

e
la

ti
o
n
 C

o
e
ff
ic

ie
n
t

δ

(b) Cross-correlation between busy and

preceding silent intervals

Figure 21: Cross-correlation between busy and silent intervals as a func-

tion of �. Note the small scale on the y axis.

For example, in the simplest case L(x) � 1, and the distribution with F (x) =

1� x

��

; x � 1 with � > 0 is the so-called Pareto distribution.

To test whether the distribution is heavy-tailed or not the complementary distri-

bution function (1�F (x)) is plotted on a log-log scale and a straight line is fitted

to the data. If the values fit the line closely we can conclude that the distribution

is heavy-tailed and the parameter � can be read from the slope of the line.

This test is depicted in Figure 22 for the burst size series for the two selected

intervals. We can see that the values form a straight line which shows that the

distribution is heavy-tailed. The value of the parameter � is different showing that

the statistical properties of the two traces differ.

This heuristic parameter estimation method is just one of the existing tools.

Other methods [17, 20] (QQ plots, Hill estimator, De Haan’s moment method,

etc.) are also recommended to use for reliable analysis results.

7 Conclusion

We have reported a burstiness and scaling analysis study based on real measured

data.

Our statistics show that the most dominant application protocols in our Uni-

versity environment are the HTTP and the FTP protocols approximately with the

same ratio of the total bandwidth. It is also not surprising that the most frequently
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Figure 22: Distribution of the burst sizes

used transfer protocol is the TCP.

We have carried out a stationarity analysis on the measured traffic traces and

identified stationary periods of the traffic.

Our correlation analysis shows that the traffic is bursty with positive short-term

correlations and also exhibit long-range dependence. The burst structure was in-

vestigated in detail and a new burstiness characterization method was also pre-

sented.

Our results also demonstrate that the traffic structure is rather complex with

non-stationary changes and the estimation of long-range dependence should not

be based only a single method in order to avoid pitfalls of statistical analysis.

We have also found that the correlation structure of traffic changes during the

time highlighting the importance of identifying stationary intervals of the traffic.
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