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Abstract. This paper is concerned with the parameter setting problems of some delay-
based versions of TCP (TCP Vegas and the recently developed Vegas-based FAST TCP)
from a game-theoretic point of view. It is shown that if the TCP Vegas’ users are assumed
to be selfish in terms of setting their desired number of backlogged packets in the buffers
along their paths, then the network as a whole, in certain circumstances, would operate
very inefficiently. Our analysis also points out that FAST TCP faces the same parameter
setting problem as with TCP Vegas, and as a result, it is very vulnerable to selfish actions
of the users. This poses a serious threat to the possible deployment of FAST TCP in the
future Internet.

1 Introduction

The Internet has been a huge success since its creation in the early 70’s. It has a big impact
on the way we interact and communicate. As the Internet evolves, it is shared, used by
millions of end-points and many kinds of applications. They compete with each other
for the shared resources and their demand for resources (such as bandwidth) is growing
rapidly. As a result, congestion at certain points of the network is inevitable. The TCP
protocol suite was originally designed to control congestion in the Internet and to protect
it from congestion collapse. Basically, TCP is a closed loop control scheme. Congestion in
the network is fed back to the source in the form of losses (Reno-like versions) or delay
(such as TCP Vegas) The source then reacts to the congestion signal from the network
by reducing its transmitting rate. In other words, we can consider packet loss and high
queueing delay as the cost of (aggressively) sending packets into the network. The higher
the rate, the higher the cost (certainly, the relationship is not necessarily linear in nature),
given a fix network.

A natural question arises then: Why TCP Vegas? The answer is quite straightforward.
We believe that by better understanding TCP Vegas, we will have a better insight into
delay-based TCP traffic in general. Secondly, the emergence of very large bandwidth-delay
product networks such as the transatlantic link with a capacity in the range of 1 Gbps
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- 10 Gbps, new transport protocols have been proposed to better utilize the network in
these circumstances. One promising proposal is the FAST TCP [9]. Since the design of
FAST TCP is heavily based on the design of TCP Vegas, there is a need to reconsider
the benefits as well as the drawbacks of TCP Vegas in order to have an insight into the
performance and possible deployment of FAST TCP in the future Internet.

Given the parameter setting, another natural question arises then: Are these efficient?
Is there any equilibrium state from where no one has the incentive to deviate? Game
theory (see [5] for a comprehensive introduction) provides us the tools to answer these
questions as we will illustrate later in the paper. We use these game-theoretic tools to
investigate the impact of the parameter setting in TCP on the performance of each user
as well as the network as a whole.

Regarding the related work, Akella et al in [1] also used the tools from game-theory to
examine the behavior of TCP Reno-like (loss-based) flow controls under selfish parameter
setting. Our work is different from their work in the sense that we study delay-based
versions of TCP. We provide an extensive analysis of the parameter setting problem of
the traditional TCP Vegas, the modified version of TCP Vegas (TCP Vegas under REM)
as well as FAST TCP. Other game-theoretic analysis of flow control can also be found in
[2], [3], [4].

The main contributions of the paper are the followings. First, we provide an extensive
game-theoretic analysis of parameter setting problems in TCP Vegas. We conclude that,
in this case, the Nash equilibria (if any), can be very inefficient. We then extend our
analysis to FAST TCP case. Our analysis show that parameter setting of FAST TCP is
very sensitive and this poses a serious threat to the possible deployment of FAST TCP in
the future Internet. Finally, the results are validated by simulations using ns2 [6](Network
Simulator tool). Some preliminary results of this work is partly published in our paper in
[10].

The rest of the paper is organized as follows. The background on TCP is provided in
Section 2. The TCP Vegas and FAST TCP parameter setting games are described and
analyzed in detail in Section 3. Section 4 provides simulation validation of the results.
Finally, Section 5 concludes the paper.

2 Goodput models of TCP Vegas

Throughout the paper our game-theoretic analysis uses the Thomas Bonald’s models [8]
for goodput of TCP Vegas. In [8], the goodput of multiple flows sharing a bottleneck
link is analyzed (by using fluid approximation) both for TCP Reno and TCP Vegas case.
Assume N TCP flows sharing a bottleneck link with capacity µ, propagation delay τ and
buffer size B. The parameters of TCP are: α and β. The main results in their paper that
we use in our analysis are the following:

– If Nα < B, there exists a finite time from which no loss occurs. In addition, the window
size stabilizes in finite time. If α 6= β, the congestion windows converge not to a single
point (but a region). This implies unfairness among flows even in equilibrium. If α = β,
then w1 = w2 = ... = wN = µτ

N
+α and the average rate λ1 = λ2 = ... = λN = µ

N
. Note

that in this case the link is fully utilized.



– If Nα ≥ B, then TCP Vegas behaves exactly like TCP Reno. Let ω = µτ
B

and γ
is the multiplicative decrease of TCP Reno (typically 1

2
). If ω ≥ γ

1−γ
then λtotal =

(1−γ2)(ω+1)2

2(1−γ)(ω2+ω)+1
µ < µ. This implies that in this case the link is not fully utilized.

3 The TCP Vegas and FAST TCP games

3.1 Parameter Setting Games of TCP Vegas

In this section, we consider the parameter setting of TCP Vegas. We consider a simple
topology of N TCP Vegas sources sharing a single bottleneck link with a buffer size of B
packets. Source i is associated with a set (αi, βi) (its parameters). In this paper, we deal
with the case when αi = βi.

As described in [7], TCP Vegas tries to maintain the number of backlogged packets in
the network between α and β. We examine here the situation when a selfish (and greedy)
user tries to increase the number of its backlogged packets in the network in order to
grab more bandwidth in the network. If all other players do the same thing (i.e. they
are also selfish and greedy), the total number of packets in the network would increase
without bound. However, the size of the buffers at routers are bounded and packet loss
would occur, reducing the goodput of the connection. We are interested in a situation (i.e.
a parameter setting, if at all exists) from where no player would deviate. We model the
problem as a single shot (static) game in this paper.

The payoff function in the parameter setting game (a static one) should represent
the selfishness of the users (human being at the end-point or the operating system that
run those TCP at the middle) of the TCP flows in consideration. A useful metric is the
goodput (long term average, not instantaneous rate), such as in [1] (for a game-theoretic
analysis of loss-based TCP).

We examine in this section different kinds of the payoff function of the players. First,
we examine the case when the payoff function is the goodput (λi) only. Then, we examine
the case when the payoff function takes into account of delay ( λi

αi
), since the average

queueing delay increases as the number of backlogged in the queue increases.

Game 1.1

Players: N TCP Vegas flows
Actions: Each player can set its parameter (αi) in order to control the number of

its backlogged packets in the queue of the bottleneck link (with capacity µ and delay
τ). The router is assumed to use Drop-Tail mechanism (FIFO principle)

Payoff: f(αi) = λi (the goodput)

If the total number of backlogged packets is smaller than the buffer size at the bottleneck
router (i.e.

∑N
j=1 αj < B) then the payoff function of player i (assuming identical α) can

be expressed as follows:

f(αi) = λi =
αiPN

j=1 αj

µ

=
µαi∑N
j=1 αj

=
µαi

αi +
∑

j 6=i αj

(1)



From Equation 1 we have:

∂f

∂αi

=
µ

∑
j 6=i αj

(αi +
∑

j 6=i αj)2
> 0, i = 1 . . . N (2)

Since
∑

j 6=i αj is always positive, it follows from Equation 1 that ∂f
∂αi

> 0,∀i. This implies
that given other players’ strategies, player i will set αi as high as possible in order to
maximize its payoff. Notice that Equation 1 is valid only if

∑N
j=1 αj < B. Otherwise,

TCP Vegas, according to [8], behaves exactly like TCP Reno. In this case, there are two
possibilities [8]:

λReno
i =

{
(1−γ2)(ω+1)2

2(1−γ)(ω2+ω)+1
µ
N

< µ
N

if ω ≥ γ
1−γ

µ
N

otherwise.
(3)

Thus, we have two cases:
Case 1: w < γ

1−γ

It is important to note that in this case, the link is fully utilized both for TCP Ve-
gas and TCP Reno. Furthermore, in TCP Reno style performance, the bandwidth is
fairly (equally) shared between flows (because they have the same RTT). Denote α∗ =
(α∗1, α

∗
2, ..., α

∗
N) be the Nash equilibrium of the game in this case. Without losing general-

ity, we can assume that α∗1 ≤ α∗2 ≤ . . . ≤ α∗N . Notice that in Nash equilibrium, we must
have α∗1 = α∗2 = ... = α∗N . Otherwise, player 1 has the incentive to deviate (i.e. to increase
its number of backlogged packets - α1) in order to get higher goodput, because in Reno
style performance, it would get a fairer share of the total bandwidth (i.e. µ

N
). As a result,

we have the Nash equilibria for this game: α∗ = (α∗1, .., α
∗
N) where α∗i ≥ bB

N
c, ∀i. This

means that, in this case, in Nash equilibrium, the parameter α can be arbitrarily large.
Case 2: w ≥ γ

1−γ

In this case, the link is not fully utilized in Reno style operation. Following similar rea-
soning as in Case 1, we have a set of Nash equilibria defined as follows: Ω = {α =
(α1, ..αN)|α1 ≤ α2 ≤ .. ≤ αN} with the conditions that

∑N
i=1 αi = B − 1 and α1 ≥

(1−γ2)(ω+1)2

2(1−γ)(ω2+ω)+1
B−1
N

. The latter expression simply means that even player 1 (who gets the

smallest bandwidth) would not deviate, so no other player would deviate. If this condition
does not hold, player 1 would deviate to get higher bandwidth share.

Our final comment on these Nash equilibria is that each TCP Vegas flow (player)
maintains the number of its own backlogged packets as many as possible. As a result,
the buffer is nearly full and the queueing delay is unnecessarily high. A nearly full buffer
may cause many difficulties for TCP Vegas (e.g. the estimation of baseRTT might be
inaccurate if there are already many packets in the queue when the connection starts).

From what have been discussed so far, it is reasonable for each player to take into
account both goodput and delay. The players try to maximize the goodput and minimize
its share of queueing delay. In that sense, the payoff function for player i can be defined
as λi

αi
and we have the following game.



Game 1.2

Players: N TCP Vegas flows

Actions: Each player can set its parameter (αi) in order to control the number of
its backlogged packets in the queue of the bottleneck link (with capacity µ and delay
τ). The router is assumed to use Drop-Tail mechanism (FIFO principle)

Payoff: f(αi) = λi

αi

If the total number of backlogged packets is smaller than the buffer size at the bottleneck
router (i.e.

∑N
j=1 αj < B) then the payoff function of player i can be expressed as follows:

f(αi) =
λi

αi

=
αiPN

j=1 αj

µ

× 1

αi

=
µ∑N

j=1 αj

=
µ

αi +
∑

j 6=i αj

(4)

From Equation 4 we have:

∂f

∂αi

= − µ

(αi +
∑

j 6=i αj)2
< 0, i = 1 . . . N (5)

Equation 5 implies that given the values αj, j 6= i, the best response of player i is to set
αi = 1. This, in turn, implies that α = (1, 1, ..., 1) is the unique Nash equilibrium of the
game. It should be noted here that from the system (the network as a whole) point of
view, this Nash equilibrium is an efficient and desirable equilibrium, since it minimizes
the total backlogged packets at the buffer, and in so doing, minimizes the queuing delay
at the buffer.

Next, let’s consider the situation when each player’s payoff function is proportional to
its average bandwidth and inversely proportional to the total queueing delay (this problem
reminds us of the classical Cournot game in economics theory) with one restriction that if
the total number of backlogged packets is greater than the buffer size B, then all players’
payoff is 0. Our game then can be described as follows:

3.2 Game 2: Application to FAST TCP

In this section, we discuss how to apply the TCP Vegas games investigated above to
analyze FAST TCP game. First, let’s consider the FAST TCP’s window dynamics as
described in [9]:

w ← min{2w, (1− γ)w + γ(
baseRTT

RTT
w + α(w, qdelay))} (6)

with 0 < γ ≤ 1 and the parameter α(w, qdelay) is defined as a function of w and qdelay
as follows:

α(w, qdelay) =

{
aw if qdelay = 0,

α otherwise.
(7)



We can interpret FAST TCP as a ”faster” TCP Vegas as follows. First, denote diff =
RTT−baseRTT

RTT
w, we have:

w(t + 1) =





w(t) + γ(α− diff) if diff < α,

w(t)− γ(diff− α) if diff > α,

w(t) otherwise.

(8)

From Equation 8 we can see that FAST TCP increases (or decreases) its window size by
γ(α − diff), instead of 1 as in TCP Vegas. Since in the original paper [9], no guidance
or suggestion on how to set the parameter α as well as other parameters (a, γ) were
provided, we will discuss some of the issues here. First, notice that if α, γ are chosen so
that γ(α− diff) = 1, then FAST TCP would behave exactly like TCP Vegas. In fact, this
feature (the amount of window increment/decrement) is the major difference between
FAST TCP and TCP Vegas. If there is a difference between α and diff, FAST TCP tries
to balance this difference by increment/decrement its current window size more quickly
than TCP Vegas. So purposely, FAST TCP would set its parameter α much larger than 1
in a very high bandwidth-delay network. This is only from the point of a single connection
in the network. We will show that, in the case of multiple FAST TCP flows sharing a very
high bandwidth-delay product link, from game theoretic point of view, each flow has the
incentive to increase its own αi parameter in order to have better share of bandwidth.
Let’s consider the following game:

Game 2.1

Players: N FAST TCP flows
Actions: Each player can set its parameter (αi) in order to control the number of

its backlogged packets in the queue of the bottleneck link (with capacity µ and delay
τ). The router (with buffering capacity of B packets) is assumed to use Drop-Tail
mechanism (FIFO principle)

Payoff: f(αi) = λi (the goodput)

Notice that the goodput of a FAST TCP connection has the same formula as of a TCP
Vegas connection. That is, if

∑N
j=1 αj < B, then:

λi =
αi

qi

= µ
αi∑N

j=1 αj

(9)

Again, similar to the TCP Vegas game, we have the payoff function of player i is strictly
increasing function with respect to αi. This implies that the FAST TCP game is similar
to the TCP Vegas game when the bandwidth-delay product is large (Game 1.1, Case
2) As a result, the Nash equilibrium for the FAST TCP game is the same as in TCP
Vegas game (the only difference is the rate to equilibrium, not the equilibrium itself).
There is a number of problems associated with these Nash equilibria. First, the nearly
full queue-length at equilibrium makes the network vulnerable in the sense that there is a
high probability of FAST TCP flows’ behavior turns back to the behavior of TCP Reno
and we come back to where we started. Second, a large queue-length means a high delay,
which is undesirable.



4 Simulation analysis

For simulating the TCP Vegas parameter setting games, we used ns2 [6](Network Sim-
ulator tool) and the standard dumb-bell topology (Figure 1), where all Vegas flows pass
through a single bottleneck link. The capacity of the bottleneck link was µbottleneck = 10
Mbps with τbottleneck = 50 ms delay. The capacity of the access links was C = 100 Mbps
with a delay of t = 5 ms. The buffer size in packets for the bottleneck link was set to
B = 100 packets. The packet size was 552 bytes.
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Fig. 1. General topology for the simulation

Flow Fi, i = 1 . . . n, traverses the path from Si to Di. In our simulations we fix n = 5.
We investigate goodput values for the flows when they are allowed to vary their increase
parameters alone. We restrict our simulations to the case where the parameters of TCP
Vegas (α, β) are the same (α = β), therefore we have only a single parameter to vary
(α). When varying α, we use the following procedure. We run our simulations in rounds.
In the jth round, we fix the parameter α for flows F1, . . . , Fn−1 to the single αj

all value.
The first round starts with α1

all = 1. Let the α parameter for the flow Fn be denoted by
αcheater. We run simulations for values of αcheater in the interval (0;200), which defines 199
iterations for each round. Let us denote the value of the αcheater parameter by αi,j

cheater

for the ith iteration in the jth round. In each iteration, we record the value of G(αi,j
cheater)

(the goodput of the flow). In each iteration, we run the simulation 20 times (the total
simulation time is 100s and we discard the first 50s of simulation data to allow the flows
reach steady state). In each of the 20 runs, the start times of the n flows are randomized.

Figure 2 illustrates the dynamics of the goodput of the ”cheater” by increasing its
αcheater value, supposing that all other players keep their parameter (αall) unchanged.
The αall values illustrated are the odd numbers (1, 3, 5, ...). For example, Figure 2 shows
the dynamics of the goodput of the cheater by increasing its αcheater parameter when
αall = 9. The theoretical result regarding the goodput of the cheater (in Game 2.1) is also
compared with the result from the simulation in Figure 2.

Notice that in our simulation configuration mentioned above we have ω > γ
1−γ

(i.e.

µτ > B), so within Game 1.1, case 2 is of particular interest. As it can be seen in the
graphs, the cheater’s goodput values rise with the increase of its αcheater as far as the sum
of all the α is smaller than certain values and close to the buffer size (

∑
αall+αcheater < B).

If the cheater further increases its αcheater, its goodput decreases because the buffer gets
full, and a slowly decreasing and fluctuating Reno behavior can be observed. Specifically,
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Fig. 2. Goodput dynamics of the cheater: (a) under different parameter settings; (b) an example, alpha = 9.

when αall = 1, our simulation shows that the best value for αcheater was 91, making
the sum of all the α equal to 95 (1 + 1 + 1 + 1 + 91). When αall = 9, our simulation
shows that the best value for αcheater was 58, making the sum of all the α equal to 94
(9 + 9 + 9 + 9 + 58). Taking into consideration that the buffer size was 100 packets, the
queue in these situations was indeed nearly full and close to the theoretical result (with
99 packets in the queue, in equilibrium state). The symmetric Nash equilibrium of the
Game 2.1, case 2 is when all the α take the values around 19 in our simulation (Figure 2)
and a fair share is achieved in this equilibrium (goodput for each player is around 2 Mbps
where 5 players sharing a 10 Mbps link).

Now, let us consider the validation of the Game 1.2. In this game, theoretical analysis
shows that there exists a unique Nash equilibrium for the game (α = (1, 1, ..., 1)). In
our simulation analysis, we follow similar methodology as in the Game 1.1 with only the
difference that the payoff function now is f(αi) = λi

αi
.
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Fig. 3. Goodput dynamics of the cheater in game 2.2: (a) under different parameter settings; (b) theoretical
analysis vs. simulation .



Figure 3 shows the dynamics of the payoff of the cheater under different parameter
settings (αall takes the value 1,3,5,...). From the dynamics of the payoff, we can observe
two things. The first observation is that for all parameter settings in consideration, the
payoff function of the cheater is a decreasing function of its parameter (αcheater). This
means that regardless of the setting of other players, the payoff of the cheater decreases
as its increases its αcheater. As a result, the αcheater = 1 maximizes the payoff of the
cheater, given the settings of other players. Applying this reasoning to all the players we
have α = (1, 1, ..., 1) is the unique Nash equilibrium of the game. Figure 3 shows the payoff
of the cheater when αall = 1 from theoretical analysis and from simulation. It confirms
the validity of the payoff function used.

Finally, let us consider FAST TCP. We simulate FAST TCP in the same topology as
for TCP Vegas.

,
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Fig. 4. Dynamics of the payoff of the cheater under different parameter settings in FAST TCP game

Figure 4 illustrates the dynamics of the goodput of the FAST TCP ”cheater” by
increasing its αcheater value, supposing that all other players keep their parameter (αall)
unchanged. As we can see in 4, the shape of the goodput of the FAST TCP cheater is
similar to TCP Vegas. However, the change (drop) of bandwidth is much more drastic
than in TCP Vegas case when the buffer at the bottleneck link is getting full. We also
observe from 4 that FAST TCP has a quite long ”stabilized” period before the drastic
decrease in bandwidth. Our simulation results also support this behaviour, however, the
exact understanding of this phenomenon is a target of future research.

5 Conclusion

We have demonstrated, by using game-theoretic approach, how the parameter setting
problems of delay-based TCPs impact on their performance. Our analysis shows that the
parameter setting of TCP Vegas (and also FAST TCP) are very vulnerable to selfish



actions of the users. This poses a serious threat to the possible deployment of FAST TCP
in the future Internet.

There are still some avenues to further improve our current work. Firstly, the simu-
lation analysis can be made more comprehensive by examining all the possible settings
of the parameters (not only one player can cheat). We are under way in this direction.
Secondly, the games can be made more realistic if we allow players to change their para-
meters at different stage of the games. Repeated game seems to us a good candidate to
model this situation.
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