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Abstract—QUIC is a new transport protocol for transferring 

web traffic proposed by Google employing CUBIC as the default 

congestion control algorithm with a small but important 

modification where it uses a smaller congestion window reduction 

than the one used in the original CUBIC. Motivated by this 

change, in this paper we address the robustness and sensitivity of 

the multiplication decrease factor. More specifically, we 

investigate the page load time of QUIC as an impact of the 

multiplication decrease factor in different network environments 

by changing the loss rate, delay, buffer size, web page size, and 

bandwidth. We have found that the region where the impact of 

the change of the multiplication decrease factor in QUIC is 

pronounced when large web pages are downloaded with low 

round-trip time achieving 22% decrease in the page load time. 

Keywords— QUIC; CUBIC; congestion window reduction; 

page load time 

I. INTRODUCTION 

Conventional network stack is the most deployed model for 
manipulating the network functions. However, one of the 
reasons which makes the introduction of new solutions in the 
network difficult is that the network stack resides in the kernel 
space of the operating systems and it requires a lot of time to 
adopt changes. This situation motivated network engineers to 
introduce the network stacks and protocols as a part of the user-
space of the operating systems in order to simplify the 
developing of new solutions. As a result, today there are some 
user-space network stacks and protocols such as QUIC (Quick 
UDP Internet Connections) [1], mTCP [2]. Furthermore, the 
increasingly expanding architectures such as IoT and the cloud 
computing encouraged network engineers to employ a user-
space network stack to mitigate the inefficiency of the 
conventional general-purpose kernel network stack for 
providing scalability for service providers. The user-space 
network stacks have been proven to be developed and 
configured in a very flexible way [3]. 

Google proposed QUIC over UDP (User Datagram 
Protocol) to reduce the latency generated by TCP 
(Transmission Control Protocol). Google deploys QUIC in its 
servers and the Chrome browser. Google decided to design a 
new protocol rather than modify TCP because modifying TCP 
would take years due to TCP is built in the kernel of the 
operating system which requires a long life-cycle in the market 

to adopt. In contrast, QUIC is built in the user-space of the 
operating system, so it is flexible to deploy and fast to update 
[4]. Although QUIC employs UDP, QUIC provides a 
connection-oriented and reliable transfer [5]. However, user-
space network protocols and stacks could implement the 
congestion control algorithms provided for TCP and it 
encouraged us to study the robustness and sensitivity of the 
multiplication decrease factor (β) of the CUBIC congestion 
control algorithm and its impact on the performance of QUIC. 
In this paper, we investigate the impact of two different values 
of β of CUBIC algorithm, which is implemented by QUIC as 
the default congestion control algorithm. Note that, this 
question is practically also motivated since QUIC changed the 
congestion window reduction as compared to CUBIC from 
30% to 15%. QUIC has been chosen for this research because 
it is the most well designed and deployed user-space network 
protocol at the time of writing. 

The main contribution of this paper is providing an 
experimental investigation to check the impact of two different 
values of β on PLT (Page Load Time) of QUIC in case of a 
lossy network where we compare the impact of β = {0.7, 0.6}. 
This paper is organized as follows. Section II presents 
background of QUIC, CUBIC, the congestion control 
algorithm employed by QUIC and the related works. In Section 
III, we present the testbed. Section IV presents the results. 
Finally, in Section V we give our conclusion. 

II. BACKGROUND AND RELATED WORK 

A. QUIC 

Google has developed QUIC to speed up the web traffic 
more than that with SPDY [6] and Hypertext Transfer 
Protocol (HTTP)[7]. To achieve this goal QUIC employs UDP 
as a transport protocol, but at the same time QUIC provides a 
connection oriented and reliable transmission [4]. QUIC 
significantly reduces the connection startup delay where it 
offers 0- RTT (Round Trip Time) connection establishment if 
there was a connection established between the client and the 
server before, as shown in Fig. 1. This 0-RTT latency for 
connection establishment is the result of that QUIC applies a 
dedicated ID to identify a connection instead of using source 
and destination IP addresses and port numbers. Therefore, the 
dedicated ID mechanism provides a persistent connection when
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Fig.1. RTT for connection establishment of QUIC, TCP, TCP+TLS 

mobile clients change their access points and get a new IP 
address [5]. In contrast, TCP generates 1-RTT connection 
establishment and 3-RTT in case of using Transport Layer 
Security (TLS) due to key exchanging, as shown in Fig. 1 [8]. 
However, QUIC provides features similar to TLS and TCP 
such as in-order reliable packet transmission, privacy, and 
congestion avoidance mechanisms, but it presents itself in the 
network as a UDP connection where it is a tunneling protocol 
running on top of UDP for multiplexing data streams together. 
One goal of QUIC is to improve the performance in case of 
packets loss. To achieve this goal QUIC employs packet pacing 
to estimate the available bandwidth by tracking the inter-
arrivals of packets [5]. 

B. CUBIC 

CUBIC [9] defines the increase rate of the congestion 
window as a cubic function of the elapsed time since the last 
congestion event and β which is a coefficient of multiplicative 
decrease. The dynamics of congestion window are controlled 
as follows [9]. 

  (1) 

Where C is a predefined constant for scaling, Δ is the 
elapsed time since the last congestion event.  is the 
congestion window size just before the last loss event. β is the 
multiplication decrease factor applied after a packet loss. When 
a packet loss event occurs the size of the congestion window 
will be reduced by β as follows [10]: 

 cwnd = cwnd * β (2) 

CUBIC sets β to 0.7 so that the reduction of the congestion 
window size after a loss event will be 30%. Setting β to a value 
bigger than 0.5 causes slower convergence which necessitated 
to add a new mechanism to release a part of the bandwidth hold 
by existing flows for new flows. Therefore, when a loss event 
occurs, if the current size of  is less than   at the 

former loss event, CUBIC reduces  for the current 
congestion event further to give new flows more time to 
increase their windows [10]. 

C. Congestion Control of QUIC 

 At the time of writing, QUIC implements many TCP 
congestion control algorithms, but the default is CUBIC. 
However, QUIC employs packet pacing to estimate the 
available bandwidth by tracking the intervals between packets 
at the receiver and the sender [11]. Packet pacing can mitigate 
the congestion by decreasing the variation in packet flows [8] 
since a packet loss still represents a sign of congestion in the 
connection. QUIC reacts to loss events analogously to TCP, 
specifically, according to CUBIC algorithm. It reduces the 
sending rate according to the value of β where β equals to 0.7 
with considering of emulating n connections, as shown in (3), 
which reduces the congestion window by 15% instead of 30% 
in the original CUBIC: 

   (3)     

 
However, the intent is to emulate the impact of n 

connections so that when losing a packet, the streams over one 
connection have bandwidth equal to n times that of a one 
connection of traditional TCP to attain flow fairness, where n = 
2. It is an algorithm known as (Multiple) MulTCP [12][13]. 

D. Packet Pacing 

Packet pacing exists to mitigate the packet loss by sending 
below than full rate, but it decreases the overall throughput in 
case of high bandwidth. QUIC applies packet pacing to reduce 
the page load time where packet pacing tracks inter-packet 
spacing for estimating the available bandwidth such that a 
sender cannot send at maximum rate as well as it reduces the 
packet loss [5]. Experiments conducted by Google have shown 
that packet pacing has good impact on QUIC performance in 
the presence of packet loss. However, pacing rate is 
approximately equivalent to division of the congestion window 
size over an estimation of RTT [8]. 

To the best of our knowledge, so far there is no publications 
regarding the experimental performance study of the impact of 
β values of QUIC’s congestion control algorithm. However, 
Authors in [14] compared the congestion control dynamics of 
QUIC CUBIC and TCP CUBIC. They found that QUIC 
CUBIC has more stable congestion window dynamics than that 
of TCP CUIBIC because of the congestion window reduction 
in QUIC is smaller. Miller and Hsiao found that adjusting the 
value of β of TCP CUBIC resulted in less transfer time in case 
of packet loss [15]. 

III. TESTBED AND METRICS 

In this section we describe the testbed and the metrics 
applied to investigate the impact of two values of β on PLT of 
QUIC. We employed the testbed, presented in Fig. 2, which 
consists of two computers. First one is employed as a client and 
it has Intel Core i5 2.4GHz, 4 GB RAM, Ubuntu 15.10, kernel 
4.2.0-22. Second one is acting as a server and it has Intel Core 
i5 3.4GHz, 8 GB RAM, Ubuntu 14.04, kernel 3.16.0-38. On 
the server side we used the QUIC server available on 
Chromium project website [16] to carry out this evaluation, 
whereas we used Google Chrome v60 as a QUIC client 



 

 

Fig.2. Testbed 

which provides QUIC version 38. For emulating different 
network conditions, we applied traffic shaping between the 
client and the server. We used Netem of the TC (Traffic 
Control) to emulate different values of bandwidth, loss, queue 
length, and delay. For loss, we investigated many values of 
random loss: 0.2%, 0.5%, 1%, 2%, 5% to figure out the impact 
of β in low, medium and high packet loss conditions where the 
reduction of the congestion window size will occur after packet 
loss events. Also, for delay we measured the impact of low and 
high delay by setting RTT to 5, 10, 200 and 400ms. In all 
scenarios we set the buffer size equal to the bandwidth-delay 
product except one where we considered the impact of over-
buffered and under-buffered network [17]. Table I presents the 
parameters applied in the experiment. We applied many 
combinations of previous parameters to download different 
web pages from the QUIC server to the QUIC client for both 
values of β.  

We repeated each scenario ten times and computed the 
average. Furthermore, we investigated the impact of web page 
size so we conducted a scenario for two different size web 
pages, namely P = {small, medium} whereas we used the large 
size web page for the other scenarios [18]. However, all objects 
of web pages are jpg images only without CSS (Cascading 
Style Sheets) nor javascript files to eliminate the impact of 
processing as shown in the Table II. Web pages have higher 
number of small size objects because QUIC loads small size 
objects fast [19]. Consequently, these parameters define 45 
different scenarios.  

We used the developer tool of the Chrome browser which 
measure the time elapsed since requesting a web page until the 
page is fully loaded. We disabled the caching in the Chrome 
browser during our experiment to fetch data from the QUIC 
server all the time. We had a one connection between the 
server and the client. Table III summarizes the different values 
of congestion window reduction according to the investigated 
values of multiplication decrease factor β. 

IV. RESULTS 

In this section we present the results of comparing PLT of 
QUIC under the different scenarios. The goal of this paper is to  

TABLE I.  PARAMETERS USED IN THE EVALUATION 

Parameter Value 

Bandwidth – B 100, 10 Mbps 

RTT – D 5, 10, 200, 400 ms 

Packet Loss – L 0.2%, 0.5%, 1%, 2%, 5% 

Buffer length – Q RTT * BW 

multiplication decrease factor – β 0.6, 0.7 

TABLE II.  WEB PAGE STRUCTURE 

Web page size - 

P 
Number of objects 

Size of an object 

in KB 

Large: 3.3 MB  
Small 153 15 

Large 8 135 

Medium: 1 MB  
Small 50 15 

Large 2 135 

Small: 300 KB  
Small 11 15 

Large 1 135 

TABLE III.  VALUES OF MULTIPLICATION DECREASE FACTOR 

β 
Congestion Window 

Reduction 
Description 

0.7 15% QUIC default multiplication decrease factor 

0.6 20% 
5% larger than QUIC’s default congestion 

window reduction 

 

investigate the impact of applying β = {0.6, 0.7} on the 
performance of QUIC protocol. We mention that, other values 
of β resulted in an ordinary behavior such that PLT is better 
when β is larger than 0.7 and it is worse when β is smaller than 
0.7 as also found in previous publications [14][15] except for β 
= 0.6. Therefore, we present only the interesting results yielded 
by applying β = 0.6 which represent a unique behavior.   

We compute the percentage of PLT change, as shown in 
(4), obtained by β = 0.6 with respect to β = 0.7 which is 
considered the reference value of the comparison due to the 
fact that it is the default value of β of QUIC. By tracking the 
percentage of the PLT change, we evaluate the impacts of 
different β values. All the following figures show percentages 
of the PLT change (PLTC) which have been computed by (4). 

  (4) 

According to (4), the scenarios which have positive PLTC 
indicate that QUIC with β = 0.6 has better PLT by a value 
equal to the associated percentage in comparison to β = 0.7. On 
contrary, QUIC has better PLT with β = 0.7 in case of negative 
PLTC in comparison to β = 0.6. We considered three different 
types of scenarios as shown in Table IV where we did not 
consider all possible combinations of parameters listed in Table 
I. Each scenario has been applied five times to evaluate the 
impact of β under different rates of packet loss. However, we 
did not consider L = 0% due to the fact that the congestion 
control algorithm reduces the congestion window size when a 
loss event occurs only; furthermore, we introduced the packet 
loss by TC in the direction from the QUIC server to the QUIC 
client only to avoid the timeout behavior in case of 
acknowledgement packets are lost. Due to the fact that data 
flow moves from the server side to the client side only in our 
experiment, we applied values of β on the server side only. 

TABLE IV.  SCENARIOS USED IN THE EVALUATION 

Scenario Goal 

Delay impact 
Presents the impact of β with respect to different 

values of D and L 

Buffer impact 
Presents the impact of β with respect to different 

values of Q, 2*Q, Q/2 and L 

Page size impact 
Presents the impact of β with respect to different 

sizes of P and L 



Fig.3. PLTC with respect to delay 

A. Delay Impact 

In this section we evaluate the impact of β on PLT of QUIC 
under different RTT values. We considered B = 100 Mbps, D = 
{200, 400, 10, 5}ms, and P = 3.3 MB. Each combination of D, 
B, P, β has been applied five times to evaluate the PLT under 
all different values of L. Buffer size has been set to bandwidth-
delay product in this scenario. Fig. 3 presents PLTC when β = 
0.6 in comparison to β = 0.7 under different loss rates. Fig. 3 
shows that all PLTC of QUIC with β = 0.6 are positive in case 
of RTT = 10ms. This is due to the fact that when the network is 
congested, packet pacing estimates a larger data transmission 
rate in case of low RTT and the congestion window reduction 
is 20% than that in case of the congestion window reduction is 
15%. This behavior has been approved by repeating same 
scenario but with smaller delay, as shown in Fig. 3, where RTT 
has been set to 5ms resulting in PLT better than that when RTT 
= 10ms. To investigate the impact of high RTT, we performed 
the scenario with high RTT = {200 ,400}ms as shown in Fig. 3 
which shows consistent results that PLT becomes higher than 
that with β = 0.7 when RTT is high. Consequently, in case of β 
= 0.6, the PLT will be better up to 21.9% when RTT is 5ms 
and up to 10.73% when RTT is 10ms than that in case of β = 
0.7. 

B. Page Size Impact 

In this section we compute PLTC of β = 0.6 in comparison 
to that when β = 0.7 to investigate the impact of web page size 
in both cases under different loss rates. We considered B = 10 
Mbps, D = 10 ms and P = {Medium, Small}. We did not 
consider the large web page for this scenario because it has 
been applied in the other scenarios. Fig. 4 presents the PLTC in 
case of β = 0.6 under different loss rates in comparison to β = 
0.7. It consists of two curves for the two different web page 
sizes. Fig. 4 shows that β = 0.6 provides better PLT than the 
case when β = 0.7 under all loss rates for medium web page. 
This mainly due to the fact that when the network is lossy, 
smaller reduction in congestion window causes more packet 
loss when more data needs to be transferred and consequently 
the overall situation will be worse. Fig. 4 shows that, when 
medium size web page needs to be transferred in a lossy 

network, the PLT can be reduced to 8% by applying β = 0.6 in 
comparison to β = 0.7. 

C. Buffer Impact 

In this section we measure the impact of buffer size Q when 
applying two different values of β. We considered B = 100 
Mbps, D = 5 ms and P = 3.3 MB for this scenario. Three 
different buffer sizes have been considered Q = {64, 128, 
32}KB with Token Pocket filter. In particular, for Q = 64KB 
the network is well-buffered, for Q = 128KB the network is 
over-buffered and for Q = 32KB the network can be considered 
under-buffered. We applied this scenario five times to consider 
the different values of loss rate, as shown in Fig. 5 which 
presents the impact of different buffer sizes. The main 
observation is that when β = 0.6, QUIC needs less time to load 
the large web page than that in case of β = 0.7 regardless of the 
buffer size. It is due to the fact that we have a one connection 
between the QUIC client and the QUIC server so there are not 
a lot of data to be transferred; consequently, the receiver’s 
buffer cannot be overwhelmed. The results of this scenario 
consistent with the results of previous scenarios where the 
delay is low and the size of web page is large, i.e. the amount 
of data needed to be transferred is not small, which yields 
better PLT by a value between 12% - 22% in case of β = 0.6 in 
comparison to β = 0.7 under different loss rates. 

Furthermore, we summarize our measurement results in 
Table V where we present the count of the positive PLTC 
under the five loss rates of each scenario which implies that 
QUIC with β = 0.6 has better PLT in comparison to that one 
with β = 0.7. Table V shows that QUIC with β = 0.6 can 
provide better PLT under different loss rates in particular when 
RTT is low and the size of web pages need to be downloaded is 
not small. However, Table V shows that QUIC with β = 0.6 has 
better PLT in most of the cases even that it has larger window 
reduction. It is worth to mention that we established a one 
connection between the QUIC server and the QUIC client in all 
scenarios for maintaining the accuracy of results due to the fact 
that in the time of writing there was not any reliable QUIC 
server available for evaluating the impact of many 
concurrent connections.



 

 

Fig.4. PLTC with respect to page size 

 

Fig.5. PLTC with respect to buffer size

TABLE V.  NUMBER OF POSITIVE %PLTC FOR EACH 

SCENARIO 

Scenario  
Scenario 

Parameter 

Number of Cases in which PLT 

is Improved 

Page Size 
Medium 4/5 

Small 1/5 

Delay 

200ms 0/5 

10ms 5/5 

400 ms 0/5 

5 ms 5/5 

Buffer Size 

well 5/5 

over 5/5 

under 5/5 

Total Number 30/45 

V.  CONCLUSION 

In this paper we presented an experimental investigation 
of the impact of the multiplication decrease factor used in 
CUBIC congestion control algorithm applied by QUIC. 
Under different network conditions, we have measured the 
percentages of page load time change (PLTC) when setting β 
of QUIC so that the congestion window reduction will be 
20% instead of 15%. We have found that QUIC loads web 
pages faster (12% - 22%) when β = 0.6 in comparison to β = 
0.7 in case of large size web page along with small round-
trip time whereas we have found that β = 0.7 provides better 
PLT when the size of the web page is small and RTT is high. 
However, when setting β = 0.6, QUIC has better PLT in 
most cases. In this study, we present the impact of two 
values of β under different network conditions in case of one 
connection between the QUIC client and the QUIC server for 
maintaining the accuracy, but our future plan is to conduct a 
research to evaluate the performance of QUIC when there 
are many concurrent connections at the server side and to 
compute the value of β by a dynamically adaptive manner. 
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