
On the Impact of the Multiplication

Decrease Factor of QUIC

Maiass Zaher

Dept. of Telecomm. and Media Informatics

Budapest University of Technology and Economics

Budapest, Hungary

zaher@tmit.bme.hu

Sándor Molnár

Dept. of Telecomm. and Media Informatics

Budapest University of Technology and Economics

Budapest, Hungary

molnar@tmit.bme.hu

Abstract—QUIC is a new transport protocol for transferring

web traffic proposed by Google employing CUBIC as the default

congestion control algorithm with a small but important

modification where it uses a smaller congestion window reduction

than the one used in the original CUBIC. Motivated by this

change, in this paper we address the robustness and sensitivity of

the multiplication decrease factor. More specifically, we

investigate the page load time of QUIC as an impact of the

multiplication decrease factor in different network environments

by changing the loss rate, delay, buffer size, web page size, and

bandwidth. We have found that the region where the impact of

the change of the multiplication decrease factor in QUIC is

pronounced when large web pages are downloaded with low

round-trip time achieving 22% decrease in the page load time.

Keywords— QUIC; CUBIC; congestion window reduction;

page load time

I. INTRODUCTION

Conventional network stack is the most deployed model for
manipulating the network functions. However, one of the
reasons which makes the introduction of new solutions in the
network difficult is that the network stack resides in the kernel
space of the operating systems and it requires a lot of time to
adopt changes. This situation motivated network engineers to
introduce the network stacks and protocols as a part of the user-
space of the operating systems in order to simplify the
developing of new solutions. As a result, today there are some
user-space network stacks and protocols such as QUIC (Quick
UDP Internet Connections) [1], mTCP [2]. Furthermore, the
increasingly expanding architectures such as IoT and the cloud
computing encouraged network engineers to employ a user-
space network stack to mitigate the inefficiency of the
conventional general-purpose kernel network stack for
providing scalability for service providers. The user-space
network stacks have been proven to be developed and
configured in a very flexible way [3].

Google proposed QUIC over UDP (User Datagram
Protocol) to reduce the latency generated by TCP
(Transmission Control Protocol). Google deploys QUIC in its
servers and the Chrome browser. Google decided to design a
new protocol rather than modify TCP because modifying TCP
would take years due to TCP is built in the kernel of the
operating system which requires a long life-cycle in the market

to adopt. In contrast, QUIC is built in the user-space of the
operating system, so it is flexible to deploy and fast to update
[4]. Although QUIC employs UDP, QUIC provides a
connection-oriented and reliable transfer [5]. However, user-
space network protocols and stacks could implement the
congestion control algorithms provided for TCP and it
encouraged us to study the robustness and sensitivity of the
multiplication decrease factor (β) of the CUBIC congestion
control algorithm and its impact on the performance of QUIC.
In this paper, we investigate the impact of two different values
of β of CUBIC algorithm, which is implemented by QUIC as
the default congestion control algorithm. Note that, this
question is practically also motivated since QUIC changed the
congestion window reduction as compared to CUBIC from
30% to 15%. QUIC has been chosen for this research because
it is the most well designed and deployed user-space network
protocol at the time of writing.

The main contribution of this paper is providing an
experimental investigation to check the impact of two different
values of β on PLT (Page Load Time) of QUIC in case of a
lossy network where we compare the impact of β = {0.7, 0.6}.
This paper is organized as follows. Section II presents
background of QUIC, CUBIC, the congestion control
algorithm employed by QUIC and the related works. In Section
III, we present the testbed. Section IV presents the results.
Finally, in Section V we give our conclusion.

II. BACKGROUND AND RELATED WORK

A. QUIC

Google has developed QUIC to speed up the web traffic
more than that with SPDY [6] and Hypertext Transfer
Protocol (HTTP)[7]. To achieve this goal QUIC employs UDP
as a transport protocol, but at the same time QUIC provides a
connection oriented and reliable transmission [4]. QUIC
significantly reduces the connection startup delay where it
offers 0- RTT (Round Trip Time) connection establishment if
there was a connection established between the client and the
server before, as shown in Fig. 1. This 0-RTT latency for
connection establishment is the result of that QUIC applies a
dedicated ID to identify a connection instead of using source
and destination IP addresses and port numbers. Therefore, the
dedicated ID mechanism provides a persistent connection when

This research is supported by Tempus Public Foundation, Stipendium

Hungaricum Scholarship Programme and High Speed Networks Lab., Dept. of

Telecomm. and Media Informatics, Budapest University of Technology and

Economics.

978-1-5386-3779-1/18/$31.00 ©2018 IEEE

Fig.1. RTT for connection establishment of QUIC, TCP, TCP+TLS

mobile clients change their access points and get a new IP
address [5]. In contrast, TCP generates 1-RTT connection
establishment and 3-RTT in case of using Transport Layer
Security (TLS) due to key exchanging, as shown in Fig. 1 [8].
However, QUIC provides features similar to TLS and TCP
such as in-order reliable packet transmission, privacy, and
congestion avoidance mechanisms, but it presents itself in the
network as a UDP connection where it is a tunneling protocol
running on top of UDP for multiplexing data streams together.
One goal of QUIC is to improve the performance in case of
packets loss. To achieve this goal QUIC employs packet pacing
to estimate the available bandwidth by tracking the inter-
arrivals of packets [5].

B. CUBIC

CUBIC [9] defines the increase rate of the congestion
window as a cubic function of the elapsed time since the last
congestion event and β which is a coefficient of multiplicative
decrease. The dynamics of congestion window are controlled
as follows [9].

 (1)

Where C is a predefined constant for scaling, Δ is the
elapsed time since the last congestion event. is the
congestion window size just before the last loss event. β is the
multiplication decrease factor applied after a packet loss. When
a packet loss event occurs the size of the congestion window
will be reduced by β as follows [10]:

 cwnd = cwnd * β (2)

CUBIC sets β to 0.7 so that the reduction of the congestion
window size after a loss event will be 30%. Setting β to a value
bigger than 0.5 causes slower convergence which necessitated
to add a new mechanism to release a part of the bandwidth hold
by existing flows for new flows. Therefore, when a loss event
occurs, if the current size of is less than at the

former loss event, CUBIC reduces for the current
congestion event further to give new flows more time to
increase their windows [10].

C. Congestion Control of QUIC

 At the time of writing, QUIC implements many TCP
congestion control algorithms, but the default is CUBIC.
However, QUIC employs packet pacing to estimate the
available bandwidth by tracking the intervals between packets
at the receiver and the sender [11]. Packet pacing can mitigate
the congestion by decreasing the variation in packet flows [8]
since a packet loss still represents a sign of congestion in the
connection. QUIC reacts to loss events analogously to TCP,
specifically, according to CUBIC algorithm. It reduces the
sending rate according to the value of β where β equals to 0.7
with considering of emulating n connections, as shown in (3),
which reduces the congestion window by 15% instead of 30%
in the original CUBIC:

 (3)

However, the intent is to emulate the impact of n

connections so that when losing a packet, the streams over one
connection have bandwidth equal to n times that of a one
connection of traditional TCP to attain flow fairness, where n =
2. It is an algorithm known as (Multiple) MulTCP [12][13].

D. Packet Pacing

Packet pacing exists to mitigate the packet loss by sending
below than full rate, but it decreases the overall throughput in
case of high bandwidth. QUIC applies packet pacing to reduce
the page load time where packet pacing tracks inter-packet
spacing for estimating the available bandwidth such that a
sender cannot send at maximum rate as well as it reduces the
packet loss [5]. Experiments conducted by Google have shown
that packet pacing has good impact on QUIC performance in
the presence of packet loss. However, pacing rate is
approximately equivalent to division of the congestion window
size over an estimation of RTT [8].

To the best of our knowledge, so far there is no publications
regarding the experimental performance study of the impact of
β values of QUIC’s congestion control algorithm. However,
Authors in [14] compared the congestion control dynamics of
QUIC CUBIC and TCP CUBIC. They found that QUIC
CUBIC has more stable congestion window dynamics than that
of TCP CUIBIC because of the congestion window reduction
in QUIC is smaller. Miller and Hsiao found that adjusting the
value of β of TCP CUBIC resulted in less transfer time in case
of packet loss [15].

III. TESTBED AND METRICS

In this section we describe the testbed and the metrics
applied to investigate the impact of two values of β on PLT of
QUIC. We employed the testbed, presented in Fig. 2, which
consists of two computers. First one is employed as a client and
it has Intel Core i5 2.4GHz, 4 GB RAM, Ubuntu 15.10, kernel
4.2.0-22. Second one is acting as a server and it has Intel Core
i5 3.4GHz, 8 GB RAM, Ubuntu 14.04, kernel 3.16.0-38. On
the server side we used the QUIC server available on
Chromium project website [16] to carry out this evaluation,
whereas we used Google Chrome v60 as a QUIC client

Fig.2. Testbed

which provides QUIC version 38. For emulating different
network conditions, we applied traffic shaping between the
client and the server. We used Netem of the TC (Traffic
Control) to emulate different values of bandwidth, loss, queue
length, and delay. For loss, we investigated many values of
random loss: 0.2%, 0.5%, 1%, 2%, 5% to figure out the impact
of β in low, medium and high packet loss conditions where the
reduction of the congestion window size will occur after packet
loss events. Also, for delay we measured the impact of low and
high delay by setting RTT to 5, 10, 200 and 400ms. In all
scenarios we set the buffer size equal to the bandwidth-delay
product except one where we considered the impact of over-
buffered and under-buffered network [17]. Table I presents the
parameters applied in the experiment. We applied many
combinations of previous parameters to download different
web pages from the QUIC server to the QUIC client for both
values of β.

We repeated each scenario ten times and computed the
average. Furthermore, we investigated the impact of web page
size so we conducted a scenario for two different size web
pages, namely P = {small, medium} whereas we used the large
size web page for the other scenarios [18]. However, all objects
of web pages are jpg images only without CSS (Cascading
Style Sheets) nor javascript files to eliminate the impact of
processing as shown in the Table II. Web pages have higher
number of small size objects because QUIC loads small size
objects fast [19]. Consequently, these parameters define 45
different scenarios.

We used the developer tool of the Chrome browser which
measure the time elapsed since requesting a web page until the
page is fully loaded. We disabled the caching in the Chrome
browser during our experiment to fetch data from the QUIC
server all the time. We had a one connection between the
server and the client. Table III summarizes the different values
of congestion window reduction according to the investigated
values of multiplication decrease factor β.

IV. RESULTS

In this section we present the results of comparing PLT of
QUIC under the different scenarios. The goal of this paper is to

TABLE I. PARAMETERS USED IN THE EVALUATION

Parameter Value

Bandwidth – B 100, 10 Mbps

RTT – D 5, 10, 200, 400 ms

Packet Loss – L 0.2%, 0.5%, 1%, 2%, 5%

Buffer length – Q RTT * BW

multiplication decrease factor – β 0.6, 0.7

TABLE II. WEB PAGE STRUCTURE

Web page size -

P
Number of objects

Size of an object

in KB

Large: 3.3 MB
Small 153 15

Large 8 135

Medium: 1 MB
Small 50 15

Large 2 135

Small: 300 KB
Small 11 15

Large 1 135

TABLE III. VALUES OF MULTIPLICATION DECREASE FACTOR

β
Congestion Window

Reduction
Description

0.7 15% QUIC default multiplication decrease factor

0.6 20%
5% larger than QUIC’s default congestion

window reduction

investigate the impact of applying β = {0.6, 0.7} on the
performance of QUIC protocol. We mention that, other values
of β resulted in an ordinary behavior such that PLT is better
when β is larger than 0.7 and it is worse when β is smaller than
0.7 as also found in previous publications [14][15] except for β
= 0.6. Therefore, we present only the interesting results yielded
by applying β = 0.6 which represent a unique behavior.

We compute the percentage of PLT change, as shown in
(4), obtained by β = 0.6 with respect to β = 0.7 which is
considered the reference value of the comparison due to the
fact that it is the default value of β of QUIC. By tracking the
percentage of the PLT change, we evaluate the impacts of
different β values. All the following figures show percentages
of the PLT change (PLTC) which have been computed by (4).

 (4)

According to (4), the scenarios which have positive PLTC
indicate that QUIC with β = 0.6 has better PLT by a value
equal to the associated percentage in comparison to β = 0.7. On
contrary, QUIC has better PLT with β = 0.7 in case of negative
PLTC in comparison to β = 0.6. We considered three different
types of scenarios as shown in Table IV where we did not
consider all possible combinations of parameters listed in Table
I. Each scenario has been applied five times to evaluate the
impact of β under different rates of packet loss. However, we
did not consider L = 0% due to the fact that the congestion
control algorithm reduces the congestion window size when a
loss event occurs only; furthermore, we introduced the packet
loss by TC in the direction from the QUIC server to the QUIC
client only to avoid the timeout behavior in case of
acknowledgement packets are lost. Due to the fact that data
flow moves from the server side to the client side only in our
experiment, we applied values of β on the server side only.

TABLE IV. SCENARIOS USED IN THE EVALUATION

Scenario Goal

Delay impact
Presents the impact of β with respect to different

values of D and L

Buffer impact
Presents the impact of β with respect to different

values of Q, 2*Q, Q/2 and L

Page size impact
Presents the impact of β with respect to different

sizes of P and L

Fig.3. PLTC with respect to delay

A. Delay Impact

In this section we evaluate the impact of β on PLT of QUIC
under different RTT values. We considered B = 100 Mbps, D =
{200, 400, 10, 5}ms, and P = 3.3 MB. Each combination of D,
B, P, β has been applied five times to evaluate the PLT under
all different values of L. Buffer size has been set to bandwidth-
delay product in this scenario. Fig. 3 presents PLTC when β =
0.6 in comparison to β = 0.7 under different loss rates. Fig. 3
shows that all PLTC of QUIC with β = 0.6 are positive in case
of RTT = 10ms. This is due to the fact that when the network is
congested, packet pacing estimates a larger data transmission
rate in case of low RTT and the congestion window reduction
is 20% than that in case of the congestion window reduction is
15%. This behavior has been approved by repeating same
scenario but with smaller delay, as shown in Fig. 3, where RTT
has been set to 5ms resulting in PLT better than that when RTT
= 10ms. To investigate the impact of high RTT, we performed
the scenario with high RTT = {200 ,400}ms as shown in Fig. 3
which shows consistent results that PLT becomes higher than
that with β = 0.7 when RTT is high. Consequently, in case of β
= 0.6, the PLT will be better up to 21.9% when RTT is 5ms
and up to 10.73% when RTT is 10ms than that in case of β =
0.7.

B. Page Size Impact

In this section we compute PLTC of β = 0.6 in comparison
to that when β = 0.7 to investigate the impact of web page size
in both cases under different loss rates. We considered B = 10
Mbps, D = 10 ms and P = {Medium, Small}. We did not
consider the large web page for this scenario because it has
been applied in the other scenarios. Fig. 4 presents the PLTC in
case of β = 0.6 under different loss rates in comparison to β =
0.7. It consists of two curves for the two different web page
sizes. Fig. 4 shows that β = 0.6 provides better PLT than the
case when β = 0.7 under all loss rates for medium web page.
This mainly due to the fact that when the network is lossy,
smaller reduction in congestion window causes more packet
loss when more data needs to be transferred and consequently
the overall situation will be worse. Fig. 4 shows that, when
medium size web page needs to be transferred in a lossy

network, the PLT can be reduced to 8% by applying β = 0.6 in
comparison to β = 0.7.

C. Buffer Impact

In this section we measure the impact of buffer size Q when
applying two different values of β. We considered B = 100
Mbps, D = 5 ms and P = 3.3 MB for this scenario. Three
different buffer sizes have been considered Q = {64, 128,
32}KB with Token Pocket filter. In particular, for Q = 64KB
the network is well-buffered, for Q = 128KB the network is
over-buffered and for Q = 32KB the network can be considered
under-buffered. We applied this scenario five times to consider
the different values of loss rate, as shown in Fig. 5 which
presents the impact of different buffer sizes. The main
observation is that when β = 0.6, QUIC needs less time to load
the large web page than that in case of β = 0.7 regardless of the
buffer size. It is due to the fact that we have a one connection
between the QUIC client and the QUIC server so there are not
a lot of data to be transferred; consequently, the receiver’s
buffer cannot be overwhelmed. The results of this scenario
consistent with the results of previous scenarios where the
delay is low and the size of web page is large, i.e. the amount
of data needed to be transferred is not small, which yields
better PLT by a value between 12% - 22% in case of β = 0.6 in
comparison to β = 0.7 under different loss rates.

Furthermore, we summarize our measurement results in
Table V where we present the count of the positive PLTC
under the five loss rates of each scenario which implies that
QUIC with β = 0.6 has better PLT in comparison to that one
with β = 0.7. Table V shows that QUIC with β = 0.6 can
provide better PLT under different loss rates in particular when
RTT is low and the size of web pages need to be downloaded is
not small. However, Table V shows that QUIC with β = 0.6 has
better PLT in most of the cases even that it has larger window
reduction. It is worth to mention that we established a one
connection between the QUIC server and the QUIC client in all
scenarios for maintaining the accuracy of results due to the fact
that in the time of writing there was not any reliable QUIC
server available for evaluating the impact of many
concurrent connections.

Fig.4. PLTC with respect to page size

Fig.5. PLTC with respect to buffer size

TABLE V. NUMBER OF POSITIVE %PLTC FOR EACH

SCENARIO

Scenario
Scenario

Parameter

Number of Cases in which PLT

is Improved

Page Size
Medium 4/5

Small 1/5

Delay

200ms 0/5

10ms 5/5

400 ms 0/5

5 ms 5/5

Buffer Size

well 5/5

over 5/5

under 5/5

Total Number 30/45

V. CONCLUSION

In this paper we presented an experimental investigation
of the impact of the multiplication decrease factor used in
CUBIC congestion control algorithm applied by QUIC.
Under different network conditions, we have measured the
percentages of page load time change (PLTC) when setting β
of QUIC so that the congestion window reduction will be
20% instead of 15%. We have found that QUIC loads web
pages faster (12% - 22%) when β = 0.6 in comparison to β =
0.7 in case of large size web page along with small round-
trip time whereas we have found that β = 0.7 provides better
PLT when the size of the web page is small and RTT is high.
However, when setting β = 0.6, QUIC has better PLT in
most cases. In this study, we present the impact of two
values of β under different network conditions in case of one
connection between the QUIC client and the QUIC server for
maintaining the accuracy, but our future plan is to conduct a
research to evaluate the performance of QUIC when there
are many concurrent connections at the server side and to
compute the value of β by a dynamically adaptive manner.

REFERENCES

[1] R. Hamilton, J. Iyengar, I. Swett and A. Wilk, “QUIC: A UDP-based
secure and reliable transport for HTTP/2,” [Online]. Available:
https://tools.ietf.org/html/draft-tsvwg-quic-protocol-02.

[2] E. Jeong et al.,“mTCP: a highly scalable user-user-level TCP stack
for multicore systems,” in 11th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 14) , 2014.

[3] I. Marinos, R. Watson and M. Handley, “Network stack specialization
for performance,” ACM SIGCOMM Computer Communication
Review, vol. 44, no. 4, 2014, pp. 175-186.

[4] J. Roskind, “Quick UDP internet connections multiplexed stream
transport over UDP,” IETF-88 TSV Area Presentation, 2013.

[5] J. Roskind, “QUIC design document and specification rationale,”
2013. [Online]. Available:
https://docs.google.com/document/d/1RNHkx_VvKWyWg6Lr8SZ-
saqsQx7rFV-ev2jRFUoVD34/mobilebasic.

[6] “SPDY protocol – draft 3,” [Online]. Available:
https://www.chromium.org/spdy/spdy-protocol/spdy-protocol-draft3

[7] “Hypertext Transfer Protocol Version 2 (HTTP/2),” IETF RFC 7540,
[Online]. Available: https://tools.ietf.org/html/rfc7540

[8] J. Roskind, “Multiplexed stream transport over UDP,” Google, 2013.

[9] S. Ha, I. Rhee, and L. Xu, “CUBIC: a new TCP-friendly high-speed
TCP variant,” ACM SIGOPS Operating Systems Review, vol. 45, no.
5, 2008, pp. 64-74.

[10] I. Rhee et al., “CUBIC for fast long-distance networks,” IETF
Internet Draft, draft-ietf-tcpm-cubic-07, 2017.

[11] L. De Cicco, G. Carlucci and S. Mascolo, “Understanding the
dynamic behaviour of the google congestion control for rtcweb,” in
Packet Video Workshop 2013, San Jones, USA, 2013.

[12] F. Kuo and X. Fu, “Probe-aided mulTCP: an aggregate congestion
control mechanism,” ACM SIGCOMM Computer Communication
Review, vol. 38, January 2008, pp. 19-28.

[13] A. Langley et al., “The QUIC transport protocol: design and internet-
scale deployment,” In Proceedings of the Conference of the ACM
Special Interest Group on Data Communication, pp. 183-196. ACM,
2017.

[14] G. Carlucci, L. De Cicco and S. Mascolo, “HTTP over UDP: an
experimental investigation of QUIC,” in 30th Annual ACM
Symposium on Applied Computing, 2015.

[15] K. Miller and L. Hsiao, “TCPtuner: congestion control your way,”
arXiv preprint arXiv:1605.01987, 2016.

[16] Chromium project. https://cs.chromium.org/chromium/src/net/quic/

[17] G. Appenzeller, j. Keslassy and N. McKeown, “Sizing router
buffers,” in ACM SIGCOMM ’04, Portland, USA, 2004.

[18] “HTTP archive,” [Online]. Available:
http://httparchive.org/interesting.php. [Accessed: 1 November 2017].

[19] P. Megyesi, Z. Krämer and S. Molnár, "How quick is QUIC?," in
Communications (ICC), 2016 IEEE International Conference, 2016.

