
On Burst And Correlation Structure of Teletra�c Models(extended version)S�andor Moln�ar, Gy�orgy Mikl�osHigh Speed Networks Lab., Dept. of Telecommunications and TelematicsTechnical University of Budapest, H{1111, Sztoczek u. 2., Budapest, HungaryE-Mail: molnar@bme-tel.ttt.bme.hu, miklos@ttt-atm.ttt.bme.huAbstractThe clustering phenomenon of arrivals known as burstiness is an important and poorlyunderstood characteristic of broadband tra�c. Most of the B-ISDN services produce burstytra�c and the burstiness has a signi�cant impact on the network performance. However, thenature of burstiness of the various tra�c types can be very di�erent.Since, for the time being, there is no well established notion of burstiness there is needfor �nding an easily computable measure which can express the inherent nature of burstinessin such a way that it �ts well to the practical network dimensioning tasks.In this paper we review the most popular burstiness measures and give an analysis studyby evaluating them with di�erent kinds of tra�c produced by a large set of tra�c models.Our aim is to contribute to the understanding of the behaviour of the candidate burstinessdescriptors which could take us a step closer to establishing a generally acceptable burstinessmeasure.1 IntroductionBurstiness has been found a key characteristic of broadband tra�c which plays a critical rolein determining network performance [5, 18]. However, the nature of bursty tra�c is still poorlyunderstood, moreover, there is not even a single and widely-accepted notion of burstiness in theteletra�c literature.Burstiness expresses the clustering phenomenon of arrivals, that is, when arrivals tend toform clusters with relatively short inter-arrival times within the cluster separated by relativelylong intervals. It has a strong relationship to the correlation structure of the tra�c. Forexample, strong positive correlations are a particularly major cause of burstiness. However, thisrelationship is rather complex and not well understood.A simple class of burstiness measures takes only the �rst-order properties into account. Thesemeasures can be considered as di�erent characteristics of the marginal distribution of the inter-arrival time. A set of candidates are the moments of that distribution. However, in practicethe peak to mean ratio and the squared coe�cient of variation are the most frequently used�rst-order measures in the teletra�c literature [5, 18].Measures expressing second-order properties of the tra�c are more complex. The indices ofdispersion [7, 20] and the generalized peakedness [2, 3] are the most well known measures fromthis class. The indices of dispersion measures include the correlation properties of the tra�cand can be very informative [7]. The generalized peakedness measure, which gives a completesecond-order characterization of the tra�c, takes into account the reaction of a system to agiven tra�c via the complementary holding time distribution of the system [13].There are other approaches to capture the bursty nature of the tra�c. Recently self-similarityhas been identi�ed as a dominant property of the tra�c in several packet networks [11]. Bythe concept of self-similarity the Hurst parameter is also a candidate for burstiness measureExt. 22/1



[11, 15, 16]. Other ways of �nding a useful practical measure, e.g. based on capturing thequeueing behaviour of the tra�c is also a research topic [14].Several tra�c models have been proposed for capturing the correlation and bursty struc-ture of broadband tra�c [5, 18, 19, 21] but their complex burst-correlation analysis is not alwaysperformed. In this paper an analysis study is presented which collects the most popular tele-tra�c models (renewal process, Markov Modulated Poisson Process, overow process, batchrenewal process, aggregated process, voice model, video AR+IPP model) and their detailedburst-correlation properties are analyzed. The study includes the most important burstinessmeasures (peak to mean ratio, squared coe�cient of variation of inter-arrival times, higher mo-ments of inter-arrival times, index of dispersion for intervals and counts).The results give us a better understanding of the connections between the di�erent burstinessand correlation characteristics. We present the corresponding results for the widely used tra�cmodels revealing their burst modeling ability.2 Tra�c SourcesIn this section a short description of the analyzed tra�c sources is given. Each tra�c sourcewas implemented in such a way that it had a mean intensity of 1. Therefore the tra�c sourcesin our simulation study di�er only in the shape of tra�c and not in the amount of tra�c theyproduce.2.1 Renewal ModelsRenewal models [5] are favoured because of their simplicity: their inter-arrival times form asequence of independent identically distributed random numbers. In this paper, a renewalmodel with Erlang-2 inter-arrival distribution (ERL2) and one with hyper-exponential inter-arrival distribution (IPP) are considered.2.2 Correlated processesIn contrast to the uncorrelated renewal processes, we used correlated linear, batch renewal andMMPP processes (some of the later processes are also correlated).A linear process [1] is constructed from a renewal sequence f"ig: Xi =P1s=�1ws"i�s wherefwsg is a sequence of coe�cients. The usefulness of linear processes is that their correlationstructure can be prescribed (although it cannot be arbitrary). In this paper we use a linearprocess with 12 positive correlation coe�cients (LINPOS) and a linear process with negative lag1 and positive lag 2 correlation coe�cients (LINNEG). Batch renewal (BREN) processes [9, 10] areuseful because they can represent a wide range of di�erent correlation structures. Batch renewalprocesses are made up of batches of independent identically distributed batch sizes (i.e. numberof simultaneous arrivals in a batch), independent identically distributed inter-batch intervals,and the batch sizes are also independent from the inter-batch intervals.Markov Modulated Poisson Process (MMPP) models [4, 5, 21] have become very popular tra�cmodels over the last years. An MMPP consists of a Poisson process whose rate is controlled bythe state of a Markov process. In our study we use a 2-state MMPP.2.3 Overow and aggregation modelsWe considered an overow model (OVER) to model the tra�c which is overown from a queuewith �nite bu�er, Poisson arrivals and service. This tra�c is known to be more bursty than thePoisson process since if one arrival sees the bu�er full, the next arrival is more likely to see fullbu�er, too.Aggregation models are important in ATM studies. In our analysis the superposition of 100Interrupted Poisson Processes is used (AGGR).Ext. 22/2



2.4 Voice modelOur voice model (VOICE) is for a telecommunications line which is used by many customers(1000 in our example) making telephone calls.One customer is represented with a hierarchical model: the customer is either in call stateor in inter-call state. A call state is further divided into talk state and two types of silences:inter-word state and listen state. (See Fig. 1.) In our model, we used exponential distributionsfor the length of silences and talk periods (see [6] for parameters and justi�cation of exponentialdistributions).In this model, the tra�c generated by one customer is bursty, however, the superpositiontra�c generated by many customers is smoothed.
inter-
word

inter-call

call listen

talkFigure 1: The hierarchical voice model for one customer2.5 Video modelThere are many types of video coders with di�erent tra�c characteristics. Our model (VIDEO)is for a coder which uses predictive coding. In this case, the frames where scene changes occurare much larger than the other frames.We used an IPP+AR(1) model to capture this type of behaviour [17]. The IPP (InterruptedPoisson Process) model represents the infrequent and abrupt scene changes. The AR(1) (au-toregressive model) captures the high correlation in the frame lengths when there are no scenechanges. Our model was used to create the sequence of frame sizes. The arrivals in one frameare spread uniformly supposing constant rate over a frame.3 Burst and Correlation MeasuresIn this section we give a short description of the investigated burst and correlation measures.Their application is discussed in the next section.3.1 Measures based on the �rst order propertiesOne of the widely used measures is the peak to mean ratio (PMR) [5]. However, the de�nitionand the applicability of a peak is not at all clear. In the case of unshaped tra�c, the peakdetermined by the two closest arrivals may be very high and likely to correspond to two arrivalsin consecutive slots in practice. In the case of shaped tra�c, the peak gives more informationon the shaper parameter settings than the tra�c itself. Moreover, there is a variety of tra�cstructures corresponding to the same peak to mean ratio.Also widely used is the squared coe�cient of variation (SCV) of the inter-arrival times [5]which includes information from the �rst two moments and is de�ned as C2(X) = V ar(X)=E2(X)where X is the inter-arrival time.Higher moments can also give important information about the tra�c. For example, twotra�c with the same �rst two moments but di�erent third moment can produce very di�erentqueueing behaviour.
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3.2 Measures based on the second order propertiesIndices of dispersion measures are useful because they show the tra�c variability over di�erentscales and they capture the correlation structure. Two indices of dispersion measures are used:the index of dispersion for intervals (IDI) is related to the sequence of inter-arrivals; the indexof dispersion for counts (IDC) is related to the sequence of counts of arrivals in consecutive timeunits [1, 7, 9].The index of dispersion for indices is de�ned for a stationary inter-arrival sequence fXig asfollows: Jk = V ar(Xi+1 + : : :+Xi+k)kE2(X) :It is known that the IDI is constant for renewal processes, and it is easily seen that J1 = C2(X).In the de�nition, the variance of the sum of k consecutive inter-arrivals is taken. In the caseof bursty processes, the short and long inter-arrivals are grouped together, and it causes theIDI to increase with increasing k. In fact, the increase or decrease in the IDI graph is directlyrelated to the correlation of the inter-arrival sequence.The index of dispersion for counts for a stationary process is de�ned asIt = V (t)E(t) = V (t)tmwhere V (t) and E(t) are the variance and expected number of the arrivals in an interval oflength t, and E(t) = tm, where m is the mean intensity of arrivals.The IDC shows the variability of a process over di�erent time-scales. It is de�ned so that itis constant 1 for the Poisson process; however, it is not in general constant for a renewal process.A well known connection between the IDI and IDC of a given stationary process is that thevalue at in�nity of the two curves are equal.The slope of the IDI and IDC curves are directly related to the correlation structure of thetra�c [1, 7, 12]:The slope of the IDI graph is Jk+1 � Jk = C2(X)Pkl=1 l�lk(k+1)2 :where �l is the lag l correlation in the inter-arrival time sequence. In words, it is the squaredcoe�cient of variation times the weighted average of the correlation coe�cients from 1 to k,where the weights are just equal to the lag.Similarly, the slope of the IDC graph isI(k+1)� � Ik� = V (�)E(�) Pkl=1 l�l(�)k(k+1)2 :where �l(�) is the lag l correlation in the sequence of counts in intervals of length � , E(�) andV (�) are the mean and variance of counts in that length. In words, it is the variance to meanratio for the number of arrivals in a period of � times the weighted average of the correlationcoe�cients from 1 to k, where the weights are just equal to the lag.4 Analysis ResultsThe various burst characterization methods listed in the previous section were applied to thetra�c sources described in Section 2. For each tra�c type the source parameters were set toget sample tra�c sequences. (The detailed description of parameter sets of the models can befound in [12].) We used tra�c sequences of 10000 inter-arrivals (all with mean intensity 1) in oursimulation study. A sample intensity-time trace, the pdf of the inter-arrival times, correlationExt. 22/4



PMR SCV m3ERL2 0:500 � 0:014 3:03 � 0:12IPP 5:03 � 0:3 62� 14LINPOS 1:234 � 0:06 0:0031 � 0:0004 1:013 � 0:01LINNEG 1:46 � 0:02 0:0123 � 0:0003 1:0367 � 0:0027BREN 4:7 � 1:0 48� 18MMPP 2:5 � 0:3 23:0 � 3:3OVER 4:03 � 0:17 40:6 � 1:8AGGR 1:07 � 0:02 6:45 � 0:9VOICE 1:42 � 0:09 0:0181 � 0:004 1:058 � 0:03VIDEO 8:6� 2:2 1:42 � 0:5 6:91 � 1:9Table 1: Peak to mean ratio (where applicable), squared coe�cient of variation and thirdmoment of inter-arrival times for the sample tra�c sources. (The �rst moment was set to 1.)sequence for the inter-arrival times and for the counts in successive intervals of unit length, theIDI and IDC graphs are shown at the end of the paper (see Fig. 1-10). The PMR, SCV and thethird moment are listed in Table 1. Each computation was made 10 times and 90% con�denceintervals are shown. 10 experiments may not be enough from a statistical point of view but itis very informative concerning what we can get in practice with quick computation.The �gures give us a quick summary of the properties of a wide range of teletra�c models.4.1 Peak to mean ratioAmong the sources presented in this paper, the peak to mean intensity ratio as determined bythe closest two arrivals can only be evaluated for the sources LINPOS, LINNEG, VOICE, VIDEO.In the case of the other sources, the peak is not limited from above since we use unslottedinter-arrival times. (In slotted time, the corresponding models would give a peak correspondingto two arrivals in consecutive slots.)4.2 Squared coe�cient of variationThe results show that the squared coe�cient of variation can usually be computed accurately.Its use as a burstiness measure, however, is limited. This is shown, for example, by comparingthe values for example of the VIDEO and IPP processes. It is much higher for the IPP, yet theVIDEO source is much more bursty because it includes sustained high intensities. (Compare Fig.2 and Fig. 9.) Also, the low value of the squared coe�cient of variation of the VOICE indicatesa very smooth process, however this tra�c is characterized by short and long-term uctuations(see Fig. 8).The squared coe�cient of variation takes into account only the set of inter-arrival times; theorder of the inter-arrivals are disregarded. We can think of burstiness as being caused by twofactors [5]: the distribution and especially the tail of the inter-arrival times and the correlationbetween them. The squared coe�cient of variation being a �rst-order measure takes into accountonly the inter-arrival distribution and the results indicate that it is not adequate.4.3 Higher momentsThe third moment tells us about the long inter-arrivals. For the sources where the inter-arrivaltimes can be very high (e.g. IPP, MMPP, OVER), the third moment is much higher as comparedto the sources where the inter-arrival time is bounded from above (e.g. VOICE, VIDEO).
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4.4 Index of dispersion measuresFrom the �gures it can be seen that the index of dispersion measures cannot be estimated asaccurately as the squared coe�cient of variation. But once we have the IDI and IDC of a tra�c,they are very informative.In the case of MMPP, AGGR, VOICE, VIDEO the IDI and IDC curves both increase. Together theyimply that the low burstiness in short scales (shown by the relatively low squared coe�cient ofvariation) increases over higher scales due to positive correlation. In the case of the VIDEO thequickly increasing curves and the high value at in�nity imply that this is a very bursty source.As seen from the ERL2, IPP and OVER IDI and IDC graphs, the constant IDI (meaning nocorrelation in the inter-arrival sequence) does not imply uncorrelated sequence of counts as seenfrom the fact that the IDC curve is decreasing in the case of ERL2 and increasing in the case ofIPP and OVER.The example source of BREN (with our particular parameter settings) shows that the othercase is also possible: in this case we have low correlation in the sequence of counts (IDC ishorizontal) and high correlation in the sequence of inter-arrivals (IDI is increasing).The IDC for the LINPOS and LINNEG sources are interesting because they exhibit waves. Thiscan, however, be attributed to the very small support of the inter-arrival time distribution. Thisquasy-periodic nature is increased by the negative correlation for LINNEG which is why the IDCis more wavy in this case.As for the accuracy of the curves, the IDI and IDC for the voice source shows that thesecurves can be highly inaccurate, even though the curve is only plotted to 10% of the simulatedtrace. The reason for this inaccuracy is that the voice source is characterized by very longuctations. It folows that the accuracy of the index of dispersion curves is very dependend notonly on the length of the data but on the data itself.5 ConclusionIn this paper we have reported a burstiness and correlation analysis study by investigating themost important candidate measures of burstiness and applying them to the tra�c generated bya large set of tra�c models. The di�erent burst-correlation modeling ability of the models arereported.Our results indicate that the �rst-order measures like the squared coe�cient of variationsand the peak to mean ratio are not able to express the important bursty nature in several cases.These measures are frequently used in teletra�c and their limitations should be recognized.From the second-order measures the indices of dispersion are investigated in this paper(for results relating to the generalized peakedness we refer to [12, 13]) and found to be veryinformative and useful in practice. A quick evaluation of IDI and IDC curves immediatelyreveals a lot of important correlation and burstiness information about the tra�c. We believethat a good understanding of IDI and IDC properties gives us a very e�cient tool to understandthe nature of the tra�c. However, for practical purposes we often need a simple scalar or ameasure with few parameters. Choosing the important points of the IDI and IDC curves can bea candidate for such a measure and �nding them is one of our future research topic.References[1] D. R. Cox, P. A. W. Lewis, \The Statistical Analysis of Series of Events", Methuen & Co Ltd, 1966.[2] A. E. Eckberg, \Generalized Peakedness of Teletra�c Processes", ITC-10 , 1984.[3] A. E. Eckberg, \Approximations for Bursty (and Smoothed) Arrival Queueing Delays Based OnGeneralized Peakedness, ITC-11 .[4] W. Fischer, K. Meier-Hellstern, \The Markov-modulated Poisson process (MMPP) cookbook", Per-formance Evaluation 18 (1992) 149-171, North-Holland.Ext. 22/6
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Figure 1: ERL2, Renewal model with Erlang-2 inter-arrival time distr.
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Figure 2: IPP, Renewal model with hyper-exponential inter-arrival time distr.
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Figure 3: LINPOS, Linear process with 12 prescribed positive correlation coe�.
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Figure 4: LINNEG, Linear process with negative lag 1 and positive lag 2 corr. coe�.
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Figure 5: BREN, Batch renewal process
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Figure 6: MMPP, Markov Modulated Poisson Process with two states
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Figure 7: OVER, Overow process
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Figure 8: AGGR, Aggregated process, superposition of 100 IPPs
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Figure 9: VOICE, Voice model with 1000 customers
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Figure 10: VIDEO, Video model
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