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Abstract. The tail asymptotics in an infinite capacity single server
queue serviced at a constant rate and driven by general multifractal input
process is presented. It has been shown that in the important subcase
of the monofractal Fractional Brownian Motion (FBM) input traffic our
result gives the well-known Weibullian tail. Practical engineering appli-
cations and validation of the results based on the analysis of measured
network traffic have also been presented.

1 Introduction

Teletraffic research papers have reported the high variability and burstiness na-
ture of network traffic in several LAN/WAN environments in the last decade.
Moreover, it seems that most of the measured network traffic exhibits properties
of scale invariance. It means that within a range of scales no characteristic dom-
inant scale can be identified and some statistical properties within this range
are not changing. This remarkable scaling phenomenon called for the fractal
modeling of the investigated LAN/WAN traffic [21, 20,9, 19].

In the fractal modeling framework long-range dependence (LRD) and self-
similarity have been analyzed intensively, and a number of studies is focused
on how to detect accurately the LRD property and how to estimate the Hurst
parameter [3,2]. LRD is revealed by the power law decay of the autocorrelation
function at large lags, i.e., r(k) ~ c|k|*! =2,k — oo, H € (0.5,1), where c is a
constant [3]. The degree of this slow decay is determined by the Hurst parameter

A large group of traffic models (Fractional Brownian Motion (FBM) models,
FARIMA models, Cox’s M/G/oco models, on/off models, etc.) to capture LRD
and self-similar properties has also been developed [16]. Among these models
the FBM [17] was found to be a popular parsimonious and tractable model of
traffic aggregation [4,12]. The performance implications of the fractal property
are also addressed in a series of studies [8, 7].

After a number of new measurements and deeper analysis of network traffic it
was discovered that the LAN/WAN traffic has a more complex scaling behaviour



which cannot be described by LRD and self-similarity [21,9]. More precisely, it
has been found that aggregate network traffic is asymptotically self-similar over
time scales of the order of a few hundreds of milliseconds and above but it
exhibits multifractal scaling below this time scale [9]. It has been also pointed
out that the transition from the multifractal to self-similar scaling occurs around
time scales of a typical packet round-trip time in the network [9]. However, some
studies showed that multifractal scaling can also be present even at large time
scales [15]. Therefore the monofractal traffic models (e.g. FBM) are inadequate
to characterize the network traffic and multifractal traffic models with a much
more flexible rule for the scaling law seem to be needed, especially for some
WAN environments. Multifractal models can allow a compact description of a
complex scaling behavior and it can also capture the non-Gaussian character of
network traffic. Multifractal models imply the non-redundant scaling behavior of
moments of many orders. The physical explanations and engineering implications
are also addressed in several papers, e.g. [9].

A stochastic process X (t) is called multifractal [13] if it has stationary incre-
ments and satisfies

E[IX (1)|9] = e(g)t™ @+ (1)

for some positive g, where 7(q) is called the scaling function of multifractality
and ¢(q) is independent of ¢. An easy consequence of this definition is that 7(q)
is a concave function [13]. If the scaling function 7(g) is a linear function of ¢ the
process is called monofractal. Multifractality is thus defined as a global property
of the process moments. The definition is very general and it covers a very large
class of processes. Multifractal processes are also called processes with scaling
property.

From a practical point of view queueing analysis of fractal traffic is a very
important issue for network dimensioning and management. Therefore the study
of queueing systems with fractal traffic input is a challenge in queueing theory.
In the recent years the performance of queues with LRD or self-similar input
has been deeply analyzed. A collection of studies has proven that the FBM
based models have a tail queue distribution that decays asymptotically like a
Weibullian law, i.e., P[Q > b] ~ exp(—6b>~2H), where § is a positive constant
that depends on the service rate of the queue [17, 6]. This important result shows
that queues with FBM input (H > 1/2) have a much slower decay than that of
the exponential.

However, there is a lack of queueing results available in the cases when the in-
put traffic has a more complex scaling behaviour. Especially, queueing systems
with multifractal input are an undiscovered field and only a few results have
been published in the literature. Véhel et al. [22] suggested a cascade model
for TCP traffic based on the retransmission and congestion avoidance mecha-
nisms with no performance analysis. Riedi et al. [19, 18] developed a multiscale
queueing analysis in the case of tree-based multiscale input models. Gao et al.
simulated queues fed by multiplicative multifractal processes in [10] but provided
no analytical results. In contrast to these results we consider general multifractal



process without any restrictions and derive analytical results for the queue tail
asymptotics.

Our aim is to contribute to the queueing theory of multifractal queues and
also to the traffic engineering implications. In this paper we present a novel
analysis of multifractal queues including the tail asymptotics, special cases, and
practical applications.

2 Queueing model

We consider a simple queueing model: a single server queue in continuous time,
the serving principle for offered work is defined to be FIFO (First In, First Out),
the queue has infinite buffer and constant service rate s. Denote by X (t) the
total size of work arriving to the queue from time instant —¢ in the past up to
this moment, time instant 0. The so called workload process W (t) is the total
amount of work stored in the buffer in time interval (—¢,0), i.e.,

W(t) = X(t) — st 2)

Our interest, however, is the current buffer length of the queue, denoted by
Q. This is the queue length in the equilibrium state of the queue when the
system has been running for a long time and the initial queue length has no
influence. If this state of the system does exist, i.e., stationarity and ergodicity
of the workload process hold, and the stability condition for the system is also
satisfied, i.e., limsup, E[X (¢)]/t < s, then:
Q =supW(t), 3)
>0
where W(0) is assumed to be 0. This equation is also referred to as Lindley’s
equation.
The input process X () is considered as a general multifractal process which
is defined by Eq. 1. This definition, presented by Mandelbrot et al. in [13],
describes multifractal processes in terms of moments which leads to a more
intuitive understanding of multifractality.

3 Approximation for queue tail probabilities

We now state our main proposition:

Proposition 1. The probabilities for the queue tail asymptotic of a single queue-
ing model with general multifractal input is accurately approximated by:

|: b1o(q) }To(q)
log(P(Q > b)) ~ minlog { e(g) ="

q> [ bg }q ’
q—7o0(q)

where 10(q) := 7(q) + 1. The scaling function 7(q) and c(q) are the functions
which define the multifractal input process.

b large (4)




Proof
Using Lindley’s equation the tail probabilities of queue length can be rewritten
of the form: P[Q > b] = Plsup,~, W(t) > b]. First let consider the quantity
P[W(t) > b]: -

Replacing W(t) by Eq. 2 we have

PW(t) > b] = P[X(t) — st > b

Pl X ()] > b+ st] (5)
Pl X ()] > (b+ st)?], for arbitrary ¢ > 0
E[X(1)1] . . .
(b sty , using Markov’s inequality. (6)
s

Since the input process is multifractal defined by Eq. 1 then:

c(q)t™(@
70(q)
= ilzllgP[W(t) > b < iglg C(éq_):st)q =: ilzllo)f(t) (7)

The straightforward derivation of f(¢) shows that it has a maximal value at

1))
t= m > 0. Therefore

[L@}TO(Q)
sup P[W () > b] < sup f(t) = e(q) LD

q
t>0 t>0 bg
q—70(q)

[%&L»]To(q)
= log (sup PW(t) > b]) <log c(q)T ,
=0 [Q*TO(Q)}
[ ”f’(‘” }To(q)
= log (sup PW(t) > b]) < min log c(q)%

For a large class of stochastic processes (including FBM) the following limit
holds [11]:

for arbitrary g > 0

(8)

- log(P[Q > b]) _ (9)
b—oo log(sup;sq P[W (t) > b]) .
In addition,
log(P[Q > b]) > log(iggP[W(t) > b)), (10)

then the right-hand side of Eq. 8 is a upper bound of a lower bound on log(P[Q >
b]). The used inequalities in Eq. 10 and Eq. 6 become tight for finite large b.



Thus our approximation for the queue tail asymptotics is the following:

[Mr@
log(P[Q > b]) ~ H1>1n log | ¢(q) s(a—=70(q))

W s b large.
qa—70(q)

O
For positive multifractal processes, i.e. X(t) > 0, Eq. 5 is an equality. In
addition, the approximation in Eq. 10 and the inequality in Eq. 6 turn to be
more accurate approximations as b tends to infinity. Thus the presented approx-
imation is supposed to be asymptotically tight. The tightness and accuracy of
the approximation is also experimentally investigated in Section V.
Considering the formula in Eq. 4 we see that it has an implicit form and just
the given form of the functions ¢(q) and 7(¢) can provide the final result. The
reason behind this is that the definition for the class of multifractal processes
gives no restrictions for the functions ¢(q) and 7(¢) (beyond that 7(q) is concave).
Our conjecture is that the analysis of queueing systems with general multifractal
iput may produce some similar general results. It means that there is no general
queueing behaviour for these systems as the Weibullian decay in the case of
Gaussian self-similar processes [17]. An actual multifractal model will determine,
for example, the queue length probabilities of the system.

4 Applications

4.1 Fractional Brownian Motion

As a simple application first we consider a monofractal Gaussian process, called
Fractional Brownian Motion (FBM). FBM is self-similar which is a simple case
of monofractality and it is also Gaussian. The increment process of FBM is called
Fractional Gaussian Noise (FGN). Queueing analysis of a single queue with FBM
input is first presented by Norros [17] which showed the Weibullian decay for the
asymptotic tail behaviour, i.e., P[X > x] ~ exp(—vz”) with 3 < 1. This result is
also justified by Large Deviation techniques in [6]. Applying this input process
model to our formula should show its use and robustness when comparing to
these available results.

First we prove that any Gaussian process with scaling property is in the class
of monofractal processes. Furthermore we give the explicit forms for 7(¢) and
c(q)-

Consider the following lemma:

Lemma 1. A Gaussian process with scaling property is monofractal with pa-

rameters
{ (@) =3[r(2)+1] -1

/2
clq) = ZOL=r (1),

where I'(+) denotes the Gamma function, I'(z) = f0+oo ¥ Llexp™®dz, z > 0.



The proof of this Lemma is provided in [5].
Turning back to our case of FBM with ¢(2) = 1 and 7(2) = 2H — 1 where H
is referred to as the Hurst parameter, we have
{T(Q) —qH -1

2a/2

c(q) = \/;F(%)'

Insert these two functions into our formula in Eq.4 we get

( )qH

) 292 g+ \sa-m .

log(P[Q > b]) ~ log | min \/%F< 5 ) ( ; >q =: log(min g(q))-
1-H

The minimum value of the g(gq) for ¢ > 0 function can be easily determined by
taking its derivatives. The result is the following:

v (log K
log(P[Q > b]) ~ log(min g(¢)) = log <\}%M> =:log(Trpm(H,s,b)),

(11)
where K = K(H, s,b) = $p>(—H) $2H (1 — )20~ H) =21 'y (.) is the digamma

function, ¥ (z) = LlogI'(z) = ?((;)), and W~1(-) denotes the inverse function

of U().
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Fig. 1. By setting fixed values for H and s, Fig.2. Our approximation compared to
the line in the log-log plot of —log Treas(b) the Large Deviation technique result.
versus b clearly shows the Weibullian decay

for TFBN[(H, S, b)

The Trpnm(H, s,b) function is quite complex with the presence of Gamma,
digamma, and its inverse function. However, we have quite a good approximation
of TFBM(H7 S, b)

Proposition 2. The approximation

1r (T~ (log z))

ﬁm ~ exp(—) (12)



holds for large x, x > 0.

The proof and the precise sense of this approximation can be found in [5].
Applying this approximation we find that the queue tail for the FBM case
satisfies:

1
log (Trpa(H,s,b)) ~ —§b2(1‘H)52H(1 — H)2A-H)g=2H - plarge. (13)

Eq. 13 shows the Weibullian decay of this queue which was first recognized and
proven by Norros [17]. Numerical evaluations of the result are presented in Fig. 1
and Fig. 2. In Fig. 1 we fix the values of H and s and then calculate the values of
the queue tail approximation Trpar(H, s, b) versus the queue size b and then plot
it in the log-log scale. The linearity of the plot also demonstrates the Weibullian
decay.

Now we compare our result to the result obtained by Duffield and O’Connell.
The asymptotic formula for queue tail probabilities provided by Large Deviation
technique presented in [6] is

2
g 2(1-H) _ e —2(1-H) (c+3)
bhém(><J b log P[Q > b] égg c —

1
& logP[Q > b — —§b2(1_H)s2H(1 — H)20-H =20 55b — 00, (14)

where s also denotes the service rate. Therefore we can conclude that our ap-
proximation yields the Large Deviation result, see Eq. 13 and Eq. 14. The two
results are depicted in Fig. 2 and we can see that the plots almost coincide for
all calculated values of the queue size.

Our conclusions can be summarized in two main points: (i) the asymptotic
tail approximation for the case of FBM has Weibullian decay; (ii) this result is
also consistent with the formula presented by Norros [17] and by Duffield et al.
with Large Deviation technique [6].

In the case of H = 1/2 (Brownian Motion) the above formula results in
log P[Q > b] ~ —2sb/o? where 0 denotes the variance of the process, which
is in agreement with the queueing formula known from the theory of Gaussian
processes [14, 6].

4.2 Practical solutions

We show here the practical use of the formula. Assume that we are interested
in the behaviour of the tail of the steady-state buffer occupancy (queue length)
distribution at a specific multiplexer in our network. The first step should be
the fine resolution measurements of the input process. We also assume that the
input process exhibits multifractal scaling properties. Then the scaling function
7(g) and the function ¢(q) can be estimated from the collected data for some
available parameters ¢ > 0. We emphasize the importance of the function c(q)
as the quantity factor of multifractal processes which is sometimes neglected in a
number of studies dealing with multiscaling properties of the high-speed network



traffic. The scaling function 7(q) defines only the quality of multiscaling and it
is not enough for the description of a multifractal model and therefore for the
analysis of queueing models with multifractal input processes.

Now we suggest two practical methods for the approximation of the queue
tail distribution:

1. Given the service rate s and the two sets {c(¢q)} and {7(q)}, using Eq. 4 the
approximation of log(P[Q > b]) can be computed for each value of b. This
method is very simple but it is the more useful from network planning and
capacity dimensioning point of view since we are only interested in some
values of the tail probabilities. We mainly focus on the practical use of this
method in this study.

2. The input process is fitted to a multifractal model. The two measured sets of
¢(q) and 7(q) are fitted by ¢(¢) and 7(g). Then the analysis of the Eq. 4 with
these functions can result in simple closed form of the queue tail probabilities.
We use this method when studying the queue tail behaviour of a multifractal
model.

5 Queueing analysis

In this section we show the validation for the mentioned practical solution pre-
sented above by the queueing analysis of some real traffic traces. We also provide
a simple method for estimation of multiscaling functions ¢(gq) and 7(q).

5.1 Simple method for multiscaling functions estimation

The full description of a multifractal model involves both ¢(q) and the scaling
function 7(g). We present here a simple method for testing of scaling properties
and also for the estimation of these functions.

The definition of multifractal processes (Eq. 1) claims the stationarity condi-
tion for the increments. Therefore it is easy to verify the following relation for the
moments of the increments: E[|Z(4D|9] = ¢(q)(At) ™D = ¢(q)(At)™@ ¢ > 0,
where Z(4Y) denotes the increment process of time sample At. Thus E[|Z(m41)|9]
= ¢(q)(mAt)™@ g > 0 also holds for m = 1,2, ...

Choose At as the time unit, then

log E[| 2™ |9] = 19(g) logm +logc(q), ¢ > 0. (15)

Based on this property, the method is the following: Given a data series of a
process increments Z, Zs, ..., Z, and define its corresponding real aggregated
sequence {Z(™)} of the aggregation level m by

Z]im) = Z(kfl)erl +Z(k71)m+2 + .o+ Zim, k,m=1,2,... (16>

If the sequence {Z;} has scaling property then the plot of absolute moments
E[|Z(™)]4] versus m on a log-log plot should be a straight line due to Eq. 15.
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The slope of the straight line provides the estimate of 79(g) and the intercept is
the value for log ¢(g). The illustration of the method can be seen in Fig. 3.

Note that we have no need to estimate ¢(q) and 79(g) for all positive value of
q, which is an impossible task. In fact, the largest value of ¢ we should consid-
ered depends on the interested finite queue length of the involved queue length
probability, see below.

5.2 Analysis results

Our results have been first validated by simulation of multifractal cascades [5].
We have also carried out analysis of several measured IP packet arrival traffic
traces (DEC-PKT-1, DEC-PKT-2, and DEC-PKT-3) obtained from the Inter-
net Traffic Archive [1]. In this paper we present only two typical cases, i.e.,
monofractal (DEC-PKT-2) and multifractal traffic (DEC-PKT-3). The analysis
validates the use of our approximation in a single queue with constant service
rate and general multifractal input.

Figure 5(a) shows the plot of absolute moments of the aggregated sets of the
set DEC-PKT-3 versus the aggregation level in a log-log plot for some values
of moment ¢. The linearity of the plots observed in the figure clearly indicates
the scaling property of this data set. After applying the estimation method we
presented in the previous subsection we get the two sets of estimated 79(¢q) and
¢(q) which are drawn in Fig. 5(b) and Fig. 5(c) (we estimate log ¢(q) instead of
¢(q)). The plot of the function 79(q) = 7(g) +1 is a concave curve which suggests
the multifractal property of DEC-PKT-3.

We then make a comparison between our approximation and the queueing
simulation of real data traces to validate the use of the formula in practice. The
approximation for probabilities of queue tail presented in Proposition 1 can be
rewritten in the form

~ min q logc T o} 71”-0@) —qlo 7bq
log P[Q >8] ~ >0 {1 2eld) +mo()] & 5la—0(a) al ggTo(Q)}
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Fig. 5. Analysis results of the DEC-PKT-3 data set.

=: rqn>ig {logT*(s,b)} = T(s,b). (17)

For the sake of calculation simplicity we choose the service rate such that s = 1.
The lower curve in Fig. 5(d) shows the simulation result of the DEC-PFT-3 data
set. Using Eq. 17 the value of the logarithmic tail probability at each concerned
value of queue size b is taken by the numerical minimization of log T*(s, b) with
the estimated sets {c(q)} and {m9(¢)}. An example is shown in Fig. 4.

In addition, we do not need to plot log T*(s,b) at each value of ¢ to find
its minimum. A simple program routine can do it for all concerned value of b
at once. Our theoretical tail probabilities are on the upper curve in Fig. 5. As
comparing with the simulation result which is seen in the same figure we found
that it has the similar shape and becomes tight as b increases. This validates our
result.

We have performed the same analysis with an other data set DEC-PFK-
2. The results are summarized in Fig. 6. The DEC-PKT-2 data set, however,
has the exact monofractal structure and can be well modelled by statistical self-
similarity with Hurst parameter H = 0.8. Our queueing model deals with general
multifractal input so it also involves the case of monofractal processes. Thus it
is not surprising that the analysis also provides the correct queueing results in
this case.
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Fig. 6. Analysis results of the DEC-PKT-2 data set.

6 Conclusion

In this paper we studied the queueing performance of a single server infinite
capacity queue with a constant service rate fed by general multifractal input
process. We have provided the following results:

(i) We derived an asymptotic approzimation of the steady-state queue length
probabilities.

(ii) We showed that our results gives the well-known Weibullian queue tail in
case of the monofractal Fractional Brownian Motion input process.

(iii) We proved that the class of Gaussian processes with scaling properties is
limited to monofractal processes.

(iv) We demonstrated the practical applicability of our approximation and vali-
dated the method by queueing analysis of both multifractal and monofractal
network traffic cases.

There are several interesting topics for further research. Based on the multi-
fractal process characterization one of our goal is to build a multifractal traffic
model parameterized by the multifractal functions. We also intend to carry out
more multifractal analyses of measured LAN/WAN traffic with corresponding
performance analysis.
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