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Abstract

There is an increasing tendency in the tra�c characterization of high speed

networks to model the complex bursty tra�c by fractal models exhibiting

very appealing parsimony properties [9, 19]. This approach is supported by

a number of tra�c analysis studies based on several network measurements

demonstrating di�erent manifestations of self-similarity and long-range de-

pendence [19].

In this paper a short framework of fractal tra�c characterization is pre-

sented and our tra�c analysis results concerning the relevance of fractal

modeling of ATM WAN and Internet tra�c are reported.

1 Introduction

Recent tra�c measurement studies indicated that our tra�c in modern

communications networks (e.g. ATM, Internet) has high variability and

burstiness over many time scales [19]. From a modeling point of view this

phenomenon is di�cult to characterize by Markovian models. An alterna-

tive but not very well elaborated type of modeling approach is to use the

notion of fractals to characterize the complex \burst within burst" tra�c

structure.

The concept of fractal tra�c modeling introduced the notion of long-

range dependence and self-similarity to teletra�c theory. The �rst indica-

tion of the presence of fractal properties was published in [9] and since that

time a number of similar results were reported investigating also the per-

formance implications of fractal behaviour [10, 12, 18]. A good historical

guide of tra�c measurements, analysis and fractal tra�c modeling can be

found in [19].

A considerable amount of research is focused on �nding the physical ex-

planations of fractal behavior in network tra�c. We do not have the �nal

answer to this question but several important observations have been made.

For example it was shown by Taqqu et al. [16] that the self-similar behav-

ior of Ethernet LAN can be well explained by an ON/OFF model having

heavy-tailed distributions with in�nite variance of the ON and/or OFF

periods. The aggregation of tra�c generated by these ON/OFF sources

produces self-similar tra�c. Other results based on the M=G=1 queue-

ing model were also published by Cox [3] and a more re�ned model by

Kurtz [8] which provides explanations for self-similar tra�c dynamics. A

common and important observation of all these models is that heavy-tailed

distributions play an important role in the observed fractal properties [20].

It should be noted that non-stationarities in network tra�c can also

produce properties detected by many statistical methods which are similar

to fractal properties [4, 11]. Non-stationarity models can o�er an alternative

modeling approach to capture these properties [10].

In spite of the various publications in this �eld the framework of fractal

tra�c modeling (including multifractals, a recent development of this re-

search �eld, see [6, 10] for details) is not well established. Especially, the

connections between self-similarity, long-range dependence and heavy-tails

are not clear in the present literature.

In this paper we provide a short summary of this framework and provide

an analysis study of long-range dependence, self-similarity and heavy-tails

of di�erent tra�c data including ATM and Internet. We have analyzed

a large amount of tra�c traces taken during a trial on the Swedish ATM

Wide Area Network. The traces were measured by a custom-built mea-

surement tool which is able to record more than 8 million consecutive cell

arrivals. The analysis of heavy-tailed distributions requires enormous sized

data which we collected exploiting this special ability of our recording in-

strument. Thus we had the opportunity to get results supported by well

established statistics. Besides ATM data we also performed a comprehen-

sive analysis on Internet data, the results of which are reported in this

paper.

We give a short overview about the mathematical basics of heavy-tailed

distributions. For testing heavy-tailed distributions we used di�erent statis-

tical methods such as variants of QQ-plot, Hill-method and the De Haan's

moment method. Similarly, for the statistical analysis of long range depen-
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dence and self-similarity a number of methods have been used (variance-

time plot, R/S plot, periodogram plot, Whittle estimator). The results are

presented with explanations.

2 The Concepts of Heavy-Tails, Long-Range

Dependence and Self-Similarity

In this chapter a brief overview about the fractal tra�c framework is given.

The important de�nitions and only the most important properties are men-

tioned here. For details see the indicated references.

2.1 Heavy-tailed distributions

Let X be a non-negative random variable with distribution function F .

De�nition 1 [13] F is said to be heavy-tailed if

1� F (x) = x

��

L(x); (1)

where L is slowly varying at 1, i.e., lim

x!1

L(tx)=L(x) = 1, t > 0.

For example, in the simplest case L(x) � 1, and the distribution with

F (x) = 1 � x

��

is the so-called Pareto distribution. In the general case

this de�nition can be reformulated by using the concept of regular varying

functions [13]:

De�nition 1

0

F is heavy-tailed if and only if 1 � F is regularly varying

with index ��, i.e., lim

t!1

(1� F (tx))=(1� F (t)) = x

��

, x > 0 .

For heavy-tailed distributions tails decay like a power, hence they are also

called power law or hyperbolic distributions. (This behaviour is in contrast

to the exponentially decaying tails of light tailed distributions, where 1 �

F (x) � e

�cx

, c > 0, as this is the case for exponential distributions, for

example.) Heavy-tailed distributions are also subexponential in the wide

sense (see [5] for the exact mathematical de�nition) in the sense that the

rate of decay is slower than exponential. Similarly, the term long tailed

(see [7] for details) can also be used for heavy-tailed distributions. (It

should be noted, however, that these terms cannot be treated as equivalent

de�nitions. The set of heavy-tailed distributions is the subset of both the

subexponential distributions and the long-tailed distributions.)

The following properties can be derived from heavy-tailedness. When

X � 0 has a heavy-tailed distribution, a simple condition for the existence

of the moments can be given [13],

E(X

�

) <1; � < �; (2)

E(X

�

) =1; � � �: (3)

For example, if 1 � � < 2, F has �nite mean but in�nite variance. This

phenomenon is known in the literature as the Noah e�ect or in�nite variance

syndrome .

Suppose now that X

1

; : : : ; X

n

are iid samples with heavy-tailed distribu-

tion. Denote the partial sum of X

1

; : : : ; X

n

by S

n

= X

1

+ � � � + X

n

and

their maximum by M

n

= max(X

1

; : : : ; X

n

). Then heavy-tailedness implies

P (S

n

> x) � P (M

n

> x), as x ! 1 [5]. (Note, that the distribution

family satisfying the above property is called subexponential [5]. For exam-

ple, the Weibullian distribution is subexponential.) This striking feature

reveals the fact that in case of heavy-tails the large samples dominate since

the probability of 'being large' is non-negligible.

2.2 Long-range dependence

Let X

t

be a stationary process with autocorrelation function �(�) and power

spectral density f(�).

De�nition 2 [1] X

t

is called a stationary process with long range depen-

dence (LRD or long memory) if there exists a real number H 2 (0:5; 1) and

a constant c

�

> 0 such that

lim

k!1

�(k)

c

�

k

2H�2

= 1; (4)

where H is called the Hurst parameter and measures the degree of LRD.

The following statement is equivalent to the de�nition: if X

t

is LRD, then

there exists a constant c

f

> 0 such that

lim

�!0

f(�)

c

f

j�j

1�2H

= 1: (5)

LRD is also referred to as the Joseph e�ect or the persistence phe-

nomenon. In this case

P

k

�(k) = 1. (Note, that the non-summability
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of the autocorrelation function is not equivalent but more general property

than the de�nition used.) In contrast, for short range dependent (SRD

or short memory) processes the autocorrelation function is geometrically

bounded, i.e., lim

k!1

�(k)=c

k

= 1, 0 < c < 1 and thus

P

k

j�(k)j < 1.

Processes for which Eq.(4) holds with H < 0:5 the

P

k

j�(k)j < 1. These

processes are called intermediate memory processes [2].

Examples for LRD processes are fractional Gaussian noise and F-ARIMA

processes, while all Markovian, ARMA and �nite memory processes are

short range dependent.

2.3 Self-similarity

De�nition 3 [14] The real-valued process fY (t); t 2 Rg is self-similar with

index H > 0 (H-ss) if for all a > 0, the �nite-dimensional distributions of

fY (at)g are identical to the �nite-dimensional distributions of fa

H

Y (t)g;

i.e., if for any d � 1, t

1

; t

2

; : : : ; t

d

2 R and any a > 0,

(Y (at

1

); Y (at

2

); : : : ; Y (at

d

))

d

=

�

a

H

Y (t

1

); a

H

Y (t

2

); : : : ; a

H

Y (t

d

)

�

: (6)

A non-degenerate H-ss process cannot be stationary, but can have sta-

tionary increments.

De�nition 4 [14] The process fY (t); t 2 Rg is called H-sssi if it is self-

similar with index H and has stationary increments.

If fY (t)g is a (non-degenerate) H-sssi �nite variance process, then 0 <

H � 1. The increment sequence of fY (t)g in discrete time can be de�ned

as X

k

= Y (k)�Y (k�1), k = 1; 2; : : :. De�ne the m-aggregated time series

X

(m)

and its autocorrelation function r

(m)

(�) as follows:

X

(m)

k

=

1

m

km

X

i=(k�1)m+1

X

i

; (7)

r

(m)

(k) = EX

(m)

k

X

(m)

0

: (8)

The interesting range of H is 0:5 < H < 1 for tra�c modeling because

H-sssi Y (t) processes with H < 0 are not measurable and represent patho-

logical cases while for the H > 1 case the autocorrelation of the incre-

mental process does not exist. The range of 0 < H < 0:5 can also be

excluded from our practice because in this case the incremental process

is SRD. For practical purposes the range of 0:5 < H < 1 is only im-

portant. In this range the autocorrelation of the incremental process is

r(k) =

1
2

[(k+1)

2H

� 2k

2H

+ (k� 1)

2H

)]. This incremental process is LRD

which shows the connection between self-similar and long-range dependent

processes.

For an exactly (second-order) self-similar process

var(X

(m)

) =

1

m

2�2H

var(X); (9)

r

(m)

(k) = r(k): (10)

A weaker condition is the following: A process X is said to be asymptot-

ically (second-order) self-similar if for all k large enough

lim

m!1

r

(m)

(k) = r(k): (11)

The only Gaussian process that is self-similar and has stationary in-

crements is called fractional Brownian motion (FBM) and its increment

process is referred to as fractional Gaussian noise (FGN).

3 Tra�c Measurements

During our study, some real data sets were analyzed. These data sets were

measured at di�erent environments in ATM networks and on the Internet.

The ATM measurements were performed at Telia Research on the SUNET

WAN ATM network. The Internet data bases are freely available from the

Internet Tra�c Archives [17]. This section describes in detail these tra�c

measurements.

3.1 SUNET ATM networks

The con�guration of the measurement is shown in Figure 1. As a business

customer of Telia, the Swedish network operator, di�erent parts of the

Swedish University Network (SUNET) are attached to Telia's ATM wide

area networks. During summer 1996, the aggregated tra�c on a SUNET

LAN interconnection was analyzed in the framework of a common trial

between the SUNET community and Telia research. The LAN tra�c of

universities in the northern region, around Uppsala is connected to an FDDI

backbone, which is further connected on R1, R2 routers and a 34 Mbps
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PDH link to the ATM backbone in Stockholm. This network joins the

northern LANs of SUNET to the international Internet backbone and to

the southern university networks around G�oteborg. A CBR (Constant Bit

Rate) connection with 38:16 Mbps cell rate was established on the SDH link

between the routers R4 and R5 for the trial. The measurements reported

here were performed on the connection between Uppsala and G�oteborg.

ATM tra�c streams were duplicated by means of optical splitters avoiding

impacts on original tra�c ows. The duplicated tra�c streams were routed

on dedicated links to Telia Research in Haninge, where almost one hundred

tra�c traces were collected with more than 8 millions cell arrivals in each

trace.

R2

Göteborg

Haninge

Uppsala

Stockholm

PDH, 34 Mbps

ATM, 155 Mbps

ATM, 155 Mbps

FDDI, 100 Mbps

to international Internet

R4

R1

R3

R5

MSW

Figure 1: The con�guration of the SUNET measurements

This tra�c was an ordinary mix of common Internet tra�c types such as

HTTP, FTP, Telnet, Chat, etc. and can be considered as a typical sample

from today's tra�c with integrated services and applications. From the

trace, the process of ATM cell arrival counts in consecutive time-windows

of 400 cell time was used for analysis.

3.2 IP tra�c traces

This trace is the result of an hour long Ethernet measurement run from

14:00 to 15:00 on Friday, January 21, 1994. The tracing was done on the

Ethernet DMZ network which provided all the incoming and outgoing tra�c

of the Lawrence Berkeley Laboratory, located in Berkeley, California. The

raw traces were made using tcpdump on a Sun SparcStation using the BPF

kernel packet �lter.

The measurement captured arrival timestamps in microsecond precision

of TCP, UDP, TCP SYN/FIN/RST, encapsulated IP and other IP pack-

ets in �ve �les, respectively. After processing these �les, a set of around

300; 000 IP packet arrivals in consecutive time-windows, equally 0:021sec,

was selected for analysis.

3.3 WWW tra�c traces

These measurements were done at Boston University's Computer Science

Department. In order to capture all of the Web activity on a Local Area

Network (LAN), researchers modi�ed the Web browser NCSA Mosaic and

installed it for general use. After that Mosaic browsers could write down all

working activities of browsers in a log �le. Each line in a log corresponds

to a single URL requested by the user; it contains the machine name, the

timestamp when the request was made, the user id number, the URL, the

size of the document (including the overhead of the protocol) and the object

retrieval time in seconds (reecting only actual communication time, and

not including the intermediate processing performed by Mosaic in a multi-

connection transfer). These traces contain records of the HTTP requests

and user behavior of a set of Mosaic clients running in a general computing

environment at the department. This environment consists principally of

37 SparcStations 2 workstations connected in a local network, which is

divided into two sub-nets. Each workstation has its own local disk; logs

were written to the local disk and subsequently transferred to a central

repository. The data collection then took about 5 months from 17 January

1995 until 8 May 1995.

In this study we consider only the characteristics of the �le sizes trans-

mitted over the Internet. So a small C routine was implemented to extract

this information from over 6; 000 log �les. Around 230; 000 unique �le sizes

were recorded. As the suggestion of some previous studies, this data set|

called the Web �le sizes data set or the WFS set|may contain heavy-tailed
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properties.

4 Analysis

There are number of methods developed in statistics to investigate the

presence of heavy-tailedness, long-range dependence and self-similarity [1,

5, 13, 15, 20]. However, working in practice a number of di�culties arises.

A practical problem is that in order to have a reliable description of these

properties a huge data set is needed. Moreover, most of our statistical tools

require di�erent assumptions about the data which can be very di�cult to

check (e.g. stationarity). We have to use more statistical tools to check

di�erent manifestations of the investigated property to avoid pitfalls and

mis-interpretations.

4.1 Testing for heavy-tails

For estimating the index � of the heavy-tailed distributions, a lot of esti-

mating methods can be found in the literature. Among them the modi�ed

QQ-plot, the Hill estimator and DeHaan's moment estimator seem to be

the better known ones.

1

10

100

1000

10000

1 10001 20001 30001 40001 50001 60001 70001 80001 90001

window size in byte

lo
g

(n
u

m
b

er
 o

f 
fi

le
s)

Figure 2: The histogram of the WWW �le sizes set on the log-lin graph

These methods should be used to estimate the index � when there is a

certain evidence which indicates the possible existence of heavy-tail. The

log-linear plot of empirical histogram is a good tool for visualizing the tail

behaviour. Figure 2 is the histogram built from the WFS set. To draw the

histogram the number of �les whose size in bytes is between 1 and 100, then

101 and 200, and so on, was counted and displayed on a log scale against

the window size. Note that in this scale the histogram of a light-tailed

process should be a straight line. In our case, the slow decay observed on

the �gure shows that WFS data set may be heavy-tailed.

4.1.1 Modi�ed QQ-plot

The modi�ed QQ-plot is based on the QQ-plot, which is a widely known

testing method in statistics. Modi�ed QQ-plot is adapted to the problem

of detecting heavy-tails and for estimating index �. The description of this

method is also discussed in [5].

Suppose fX

1

; X

2

; : : : ; X

n

g are iid random samples of distribution F .

Pick k upper order statistics X

�

1

� X

�

2

� : : : � X

�

k

= u and neglect the

rest. The plot of

��

logX

�

j

� logu; � log

�

j

k + 1

��

; 1 � j � k

�

(12)

should roughly look like a straight line with slope = �, if data is approxi-

mately Pareto or even if 1� F is regularly varying (see De�nition 1').

The main idea of using modi�ed QQ-plot follows the assumption: if

X

�

1

� X

�

2

� : : : � X

�

k

are samples from a distribution F and k is large

enough, the distribution function F at x = X

�

j

can be estimated by

P (x < X

�

j

) = F (X

�

j

) � 1�

j

k + 1

: (13)

Figure 3 is the modi�ed QQ-plot of WFS data set. It can be seen in the

�gure that the plot is not exactly a straight line but a regression line can be

�tted to the points with a small deviation. The slope provides the estimate

of � to be 0:73.

4.1.2 Hill estimator

The Hill estimator is a statistical test which is optimized for estimating the

index � for distributions close to Pareto [13].

Suppose that X

1

; X

2

; : : : ; X

n

are iid samples from a distribution F . Let

X

�

1

� X

�

2

� : : : � X

�

n

be the order statistics. If F is a Pareto distribution
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est. alpha = 0.73
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Figure 3: The modi�ed QQ-plot of the WWW �le sizes set

then the Hill estimate can be taken from the maximum likelihood estimator

(MLE) of logX

�

1

; logX

�

2

; : : : ; logX

�

k

H

k;n

= ^�

�1

=

1

k

n

X

j=1

logX

�

j

� logX

�

k

(14)

where k is the number of upper-order statistics used in the estimation.

Thus the Hill estimate of index � is

^� =

1

H

k;n

: (15)

As discussed before, the Hill estimator is designed for Pareto distribu-

tions, so it can be misleading when dealing with some heavy-tailed data

sets, which are not exactly Pareto.

The Hill estimation of WFS data set can be seen on Figure 4. The plot

goes fast to its stable value 0:67. It is the estimate of index � of the WFS

distribution tail.

4.1.3 De Haan's moment method

De Haan's moment estimator (see also [13]) is designed to estimate param-

eter  from random samples in the domain of attraction of the extreme

0
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Figure 4: The Hill plot of the WWW �le sizes data set

value distributions G



.

G



= e

�(1+x)

�1=

;  2 R; 1 + x > 0 (16)

When the estimate of  is positive, it also provides the estimate of index

� with ^� = 1=^. This method also provides another method of deciding

whether a distribution is heavy-tailed or not. If the estimate of  is negative

or very close to zero, it suggests that the sample distribution does not

possess heavy-tailedness.

De Haan's moment estimator is de�ned as follows: Let X

�

1

� X

�

2

�

: : : � X

�

n

be the order statistics from a random sample of size n. De�ne for

r = 1; 2 and for k upper-order statistics

H

(r)

k;n

=

1

k

k

X

i=1

�

log

X

�

i

X

�

k+1

�

r

: (17)

De Haan's estimate of  can be calculated by the form

^ = H

(1)

k;n

+ 1�

1

2

�

1�

(H

(1)

k;n

)

2

H

(2)

k;n

�

: (18)
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Figure 5: The DeHaan estimation of the WWW �le sizes set

Figure 5 shows the plot result generated by De Haan's testing method.

The estimate of � in this case, 0:65, is a bit smaller than in the Hill's

case. It may be the e�ect of the smoothing technique used in De Haan's

algorithm.

From the results presented above we can conclude that the �le sizes trans-

mitted over the Internet (WFS set) have heavy-tails and can be modeled

by a Pareto distribution with parameter � to be approximately 0:7.

4.2 Testing for long-range dependence

The phenomenon of long-range dependence in data tra�c has been a hot

topic in tra�c modeling in the recent several years. When trying to estimate

the Hurst parameter most authors use the following methods: variance-time

plot, R/S plot, periodogram, and Whittle estimator. These testing methods

are discussed in detail in [1] and [15], for example.

Using LRD tests and other statistical tests, it is di�cult to make reliable

conclusions about the self-similarity of tra�c. Note that in most cases

statistical methods cannot prove whether an empirical data set is taken

from an exactly self-similar process. Instead, as discussed in subsection 2.3,

a data set may only have the property of second-order or asymptotically

second-order self-similarity.

4.2.1 Variance-time plot

Based on property Eq.(9) of a LRD process, the variance-time plot is de�ned

as follows: Using the property of LRD given in Eq.(9) with � = 2� 2H we

have

log

�

var(X

(m)

)

�

= log

�

var(X)

�

� � log(m): (19)

Because log(var(X)) is a constant independent of m, if we plot var(X

(m)

)

versus m on a log-log graph, the result should be a straight line with a

slope of ��. The Hurst parameter can be calculated from � by the formula

H = 1� (�=2). The plot can be easily generated from the data series X by

generating the aggregated processes of X at di�erent levels of m and then

computing their empirical variance. A plot with slope values between �1

and 0 suggests LRD.

HVW��+� �����
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ORJ�DJJUHJDWLRQ�OHYHO�
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�YD
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QFH

�
Figure 6: The variance-time plot of the IP data set

The variance-time plot of IP data set is drawn on Figure 6. It is surprising

that there is a breaking point in the picture. From a certain large value of

the time unit, the slope takes up a bigger value. Anyway, by the De�nition

2 of LRD it is an asymptotic characteristics, so the Hurst parameter should
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be estimated by the slope on the higher aggregation levels. The estimate

of H was 0:83.
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Figure 7: The variance-time plot of the SUNET data set

In the case of SUNET data (Figure 7), the variance-time plot clearly looks

like a curve rather than a straight line. From this result the estimation of

Hurst parameter is not possible.

4.2.2 R/S plot

For a stochastic process X de�ned in discrete time fX

j

: j = 1; 2; : : : ; ng,

the rescaled range of X over a time interval n is de�ned as the ratio R=S:

R

S

=

maxfW

i

: i = 1; 2; : : : ; ng �minfW

i

: i = 1; 2; : : : ; ng

p

var(X)

(20)

where W

i

=

P

i
k=1

(X

k

�

�

X); i = 1; 2; : : : ; n and

�

X =

1

n

P

n
i=1

X

i

. It can

be proven for any stationary process with LRD that the ratio R/S has the

following characteristics for large n:

R

S

�

�

n

2

�

H

(21)

which is known under the name Hurst e�ect. Thus if we plot R=S versus

n on a log-log graph log(R=S) � H log(n) �H log 2, the plot should �t a

straight line with slope H .
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Figure 8: The R/S estimation of H of the IP data set

Using this algorithm, the R/S analysis of IP data set was provided and

can be seen in Figure 8. Data points are scattered around a straight line,

which means that IP packet arrivals seem to be LRD with Hurst parameter

H = 0:84, which is the estimate from the slope of regression line.

Figure 9 is the R/S plot of the SUNET data set. The plot also displays

a break point. The LRD parameter of the SUNET set looks not to be the

same over all scale values. The estimate of H in this case, by De�nition 2,

should be calculated at the bigger values of k (number of samples), where

it equals 0:95 (!).

4.2.3 Periodogram

This testing method is based on property Eq.(5) of LRD processes, namely,

the power spectral density of a LRD process obeys a power law near the

origin. So

log f(�) � � log �; as � ! 0; (22)

8



HVW��+� �����
-1

-0,5

0

0,5

1

1,5

2

2,5

3

3,5

4

0 1 2 3 4 5 6

ORJ�QXPEHU�RI�VDPSOHV�

ORJ
�5�

6�
Figure 9: The R/S estimation of H of the SUNET data set

where  = 2H�1. The spectral density of a discrete-time stochastic process

is de�ned as

f(�) =

�

2

2�

1

X

k=�1

r(k)e

ik�

(23)

where �

2

is the variance and r(k) is the autocorrelation function.

Since the spectral density is the Fourier transform of the autocorrelation

function, an estimate of the spectral density can be obtained by doing the

Fourier transform on the estimate of the autocorrelation function. (This in

fact produces a good estimate under certain reasonable conditions.) This

estimator is referred to as a periodogram, and is de�ned as

I(�) =

1

2�n

�
�
�
�
�

n

X
k=1

(X

k

�

�

X)e

ik�

�
�
�
�
�

2

: (24)

The periodogram plot is the graph of

�

log �

j

; log I(�

j

)g, j = 1; 2; : : : ; M

where �

j

= 2�j=n and M is always chosen to be n=4; n=8; n=16 or n=32

depending on how large n is. Following Eq.(22), the plot should be a

straight line with slope � = 1� 2H .

The periodogram plot of IP data set is shown on Figure 10. The estimate

of H in this case is 0:82.
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Figure 10: The periodogram estimation of the IP data set

4.2.4 Whittle estimator

The Whittle estimator is a concrete application of the maximum likelihood

method (MLE). On the other hand, the Whittle estimation is based on the

periodogram. So in most cases these methods provide the same estimates

of the Hurst parameter.

The Whittle estimator was suggested to estimate the Hurst parameter of

Fractional Gaussian Noise (FGN), which is an exactly self-similar process.

If the data is from a FGN process, the estimate of H is the value that

minimizes the function Q(H):

Q(H) =

Z

�

��

I(�)

f(�;H)

dx+

Z

�

��

log f(�;H) d�: (25)

To calculate the value of Q(H), we consider the behavior of the spectral

density of the process close to the origin (see Eq. (5))

f(�;H) � c

f

j�j

1�2H

; � ! 0 (26)

Remember that the power spectral density function f(�;H) can be esti-
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Figure 11: The Whittle estimation of the IP data set

mated by the periodogram I(�), so the estimate of c

f

is

^c

f

= ^c

f

(H) =

1

M

M

X

j=1

I(�

j

)

�

1�2H

j

: (27)

So in the discrete case

Q(H) =

1

M

M

X

j=1

 

I(�

j

)

^c

f

(H) �

1�2H

j

!

+ log

�

^c

f

(H) �

1�2H

j

�

(28)

where �

j

= 2�j=n, frequencies are summed up to 2�M=n and M is always

chosen to be n=4; n=8; n=16 or n=32 depending on how large n is. Inserting

Eq.(27) into Eq.(28), we have

Q(H) = 1 + log

0
@

1

M

M

X

j=1

I(�

j

)

�

1�2H

j

1
A

� (2H � 1)

1

M

M

X

j=1

log(�

j

): (29)

The Whittle estimator also provides the con�dence interval (95%) of H

at 1:96�, where

�

2

=

4�

n

Q(H): (30)

The disadvantages of this method are that we need to know the parametric

form of the spectral density of the process and it takes a lot of time to

calculate the result.
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Figure 12: The periodogram and Whittle estimation of the SUNET data

set

Figure 11 shows the results of the Whittle estimation of IP data set.

The result is 0:83 with 95% con�dence interval (0:81; 0:85). All the four

statistical methods of the IP data set support our �nal conclusion that this

IP tra�c is LRD with Hurst parameter aboutH = 0:83. We found that this

tra�c has similar LRD structure for more investigated aggregation levels so

it seems to be consistent with asymptotically second-order self-similarity.

On the contrary, the estimate of H of the SUNET data set provided

by the periodogram plot and Whittle estimator is quite di�erent from the

IP data set. The values of H change with the values of aggregation levels.

This result is plotted in Figure 12. As we demonstrated above the variance-

time plot and R/S estimation provided non-evaluable results for this data

set. All of these results suggest that the SUNET tra�c is not consistent

with self-similarity but has a more complex structure. In Figure 12 we can

see that a di�erent parameter estimate is obtained for di�erent aggregation

levels. This indicates that the scaling parameter is not constant at all time-

scales but changes as we alter the time scale. This observation suggests

that this tra�c has no self-similar but rather multifractal structure. The

10



detailed analysis of the multifractality of the SUNET data is one of our

future research topics.

5 Conclusion

We presented a brief overview of the framework of fractal tra�c charac-

terization with the important mathematical concepts including heavy-tails,

long-range dependence and self-similarity. We chose teletra�c data taken

from both a living ATM WAN and the Internet to determine whether or

not these data sets are consistent with heavy-tailed, long-range dependence

and self-similarity properties. For the statistical analysis we used di�erent

methods to reveal these properties.

Our results demonstrate that the �le sizes transmitted over the Internet

(WFS set) have heavy-tails and can be modeled by a Pareto distribution

with parameter � to be approximately 0:7.

We also concluded that the IP tra�c is LRD with Hurst parameter about

H = 0:83 and seems to be asymptotically second-order self-similar.

On the contrary, we have found that the investigated ATM WAN tra�c

data is not consistent with self-similarity and we detected the presence

of a possible multifractal structure. Our future research will address the

detailed investigation of this conjecture.
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