RED Revisited

Tuan Anh Trinh and Sandor Molnar
High Speed Networks Laboratory
Department of Telecommunications and Telematics
Technical University of Budapest
E-mail: {tuan,molnaj @ttt-atm.ttt.bome.hu

Abstract—One of the most promising active queue man- global synchronization, maximizing global power and fair-
agement schemes being proposed for deployment in the In-ness. However, RED has some problems to face. First, it
ternet is RED. However, research results on RED perfor- 5 not a thoroughly understood scheme [2]. Second, it has

mance are highly mixed, especially in the field of tuning its many parameters, and in consequence, is hard to tune [3].
parameters. In this paper, we revisit some features in RED

and study them in greater details. We pointoutthat REDin ~ Regarding literature on RED, we break them into two
general does not possess proportional loss between flows aglasses. The first class largely deals with analyzing and
claimed and widely adopted in previous research. We sug- configuring RED, keeping the algorithm intact. The sec-
gest the generalization of PASTA and give proof for TCP ond class considers how to change the original RED to
flows. We also evaluate the performance of the Exponential )6 hetter performance. In fact, there is no distinct borde
Weighted Moving Average (EWMA) algorithm in RED. We between the two class. In respect to analyzing RED, May

find that EWMA in RED is an unbiased estimator of average I d imol IVii del of d
gueue-length, regardless of the weighting value,. Finally, et al[15] proposed a simple analytic model of RED an

we propose the use of Fuzzy EWMA to RED (Fuzzy RED) to concluded (among others) that RED, in certain circum-
alleviate the inflexibility of RED tuning. We use simulations  Stances, provides no better performance than Tail Drop.
to evaluate the performance of Fuzzy RED and compare it Christianseret alevaluated RED with pure web traffic and
with other versions of RED. Our simulations show that, in  concluded that RED offers no clear advantage over Tail
case of high work load, this mechanism can effectively re- prop, at least in terms of delay. The paper also reports that
duce_packet loss Whlle maintaining high link utilization urn- performance is quite sensitive to the setting of RED pa-
der different scenarios. . . L
rameters. Problems with tuning and configuring RED pa-
rameters can also be found in [4],[5],[6]. In respect to new
|. INTRODUCTION modification to RED, we would mention Self-Configuring
Traffic in the Internet is composed of flows with differ-RED in [14] and recently Adaptive RED in [13]. Basically,
ent nature and different characteristics, as more and méig authors propose adapting.z, as a function of aver-
new IP-based applications are brought to existence. Sof#¢ dueue size to achieve specified target average queue
of them are congestion-aware and some are not. As a coige in a wide variety of traffic scenarios. Other modifica-
sequence, end-to-end congestion control algorithms sti@hs to RED can only be found in [7],[8],[9].
as those in TCP are not enough to prevent congestion in thén this paper, we first reexamine some features and per-
Internet, and they must be supplemented by control medbrmance of the RED mechanism. The main observation is
anisms inside the networks. Since routers are the comntbat RED does not in general guarantee proportional loss
places that all flows share and go through, it is reasonakbdeflows as claimed in [12]. We use the generalization of
to detect and control congestion at these places, at ldasisson Arrival See Time Average (PASTA) as suggested
globally. Drop Tail buffer management scheme does littla [15] to study this property for TCP arrivals. Regard-
in this respect. To face this problem, Sally Flogdalin ing RED performance, we find that although choosing the
[12] propose Random Early Detection (RED) scheme thaght value for the weighting parameteny) is difficult and
can efficiently manage the buffer at the router to avoid cosensitive, the Exponential Weighted Moving Average al-
gestion. Basically, RED provides congestion avoidance ggrithm in RED is anunbiasedestimator of the average
controlling the average queue size and dropping incomiggeue-length, regardless of the valwg. Furthermore,
packets at random before the buffer gets full. The averagie propose the use Fuzzy Exponential Average instead of
queue size should be kept low, while fluctuations in the aEWMA in RED to alleviate the inflexibility of fix weight-
tual queue size should be allowed to accommodate bursty value to changing conditions of the system. We find
traffic and transient congestion. RED was claimed [12] that Fuzzy RED has more stable performance than stan-
provide: congestion avoidance, appropriate time scates,dard RED when changing in congestion level is frequent.



The rest of the paper is organized as follows. In Sectid#i/2, then setiV = Wy, and enter Fast Recovery Phase
II, we give detailed analysis of proportional loss in REDB. Upon timer expiration, the algorithm goes into slow
Section Il shows the simulation topology. Section IV disstart: sei?,;, = W/2 setW = 1.
cusses motivation for Fuzzy RED. Section V describes thelLet's consider Phase 2, when the congestion window is
Fuzzy RED Mechanism. Section VI evaluates the perfdialved after sensing duplicate acknowledgements. Dupli-
mance of Fuzzy RED. Finally, Section VII concludes theate ACKs imply dropping of packets at the buffer and that
paper. the buffer at the router is full (for Drop Tail) or potentiall
full (for RED). That is, the future increments ¢f in this
phase iglependentn the past of/. And so, the_AAfalils.
Loosely speaking, proportional loss property means thabnsequently, TCP arrivals do not see time average neither
the fraction of marked packets for each connection is preith RED, nor with Drop Tail gateway, Q.E.D.
portional to that connection’s share of bandwidth. RED Remark 1: A more general condition of ASTA is LBA
is claimed to possess this property [12]. In addition, pr§i8](Lack of Bias Assumption) which only requires that
portional loss is widely adopted in the fairness analysis bf and the conditional intensity;;;, of N, given U, are
RED, [7], [16]. However, M. Mayet al in [15] suggested pointwise uncorrelated. Certainly uncorrelated conditio
that the claim is truenly if the arrival flows are Poissonis weaker that independent condition. However, we can
arrivals. This is based on the PASTA (Poisson Arrival Sestmilarly show that this condition also fails.
Time Average) property of Poisson processes. We makeRemark 2:ASTA, in the absence of Poisson flows, are
one step further. First, notice that PASTA can be general in the networks of quasi-reversible queues, in particu-
ized to ASTA (Arrival See Time Average), [18]. Secondlar, for the M/M/1 queue with feedback. Burke in [17] has
we will examine if TCP arrivals see time average or not. shown that the composite stream of exogenous Poisson ar-
Proposition 1: TCP arrivals do not see time averagevals and feedback customers is not Poisson even though
neither with RED, nor with Drop Talil. this stream sees time average.
Proof. LetN = {N(t),t > 0} be the queue length process Remark 3:It is noteworthy, however, that for quasi-
and A = {A(t),t > 0} be the arrival process. For anreversible queun isolation, LBA implies Poisson arrivals

I[I. PROPORTIONALLOSSREVISITED

arbitrary setB in the value space aV, define [18]
. Remark 4:Let us assume that the service time at the
1 ifN(t)eB . . . : .
U(t) = : router is exponentially distributed (Markovian servich).
0 otherwise

this case, consider the G/M/1 queue. We allow the arrival
If B is the stationary queue-length, theis the event that process to be general. Certainly, the arrivals generally (e
N stays at that state. According to Theorem 1 in [19¢ept Poisson ones) do not see time average, but due to to
the future increments aft should not depend on the pas@uality of M/G/1 and G/M/1, we can explicitly express
of U. Formally, it is theLack of Anticipation Assumptionthese two values by each others [20].
(LAA). That is, for eacht > 0,{A(t + u) — A(t),u > 0}
and{U(s),0 < s > t} are independent. Now, let us con- Ill. SIMULATION TOPOLOGY
sider the mechanism of TCP. For the sake of simplicity, we
take TCP Reno for our analysis. Dendtebe the conges- s
tion window size and¥y;, the threshold value. Notice that 8.0,
if the sender always has data to send then the congestio
window is approximately the number of packets that were .o
sent but not yet acknowledged. The number of packets go- ¢ ROUTER 1 : ROUTER 2 | B« P
ing in forward direction, in stable period, is approximatel PY
half of this value (since the other half are ACKs in back-
ward direction). Consequently, the dynamics of the con-
gestion window reflect the dynamics of the packet flows
feeding a router.
1. After every nonrepeated acknowledgment: Vif <
Wi , setW = W + 1; Slow Start Phaselse setV = Fig. 1. Simulation Topology
W +1/W ; Congestion Avoidance Phase
2. When the duplicate acknowledgments exceed a Figure 1 shows the topology template for all of our sim-
threshold, retransmit next expected packet; seW,;, = ulations throughout this paper. We consider the general




topology of N sendersS, Ss, .., Sy and N access links. when maz, is left unchanged and equal to the default
Thei-th access link is specified by bandwidBy; and de- value (0.1).

lay Dg;. Routerl is the access router. We suppose the

link between Routerl and Router2 is a bottleneck link wil °
bandwidthBgy and delayD gy . We also addV/ receiver s}
at the other end in case we want to generate backward ti |
fic. However, if not further mentioned, we consider th§
bottleneck link is the only sink.
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Packet Lo

—*— Drop Tail
—6— Default RED
—&- "Tuned" RED

IV. MOTIVATION FOR Fuzzy RED

A. Pitfalls in tuning RED parameters

One of the inherent weaknesses of RED is parameter comecton humber
sensitivity. Extensive research has been promoted to this Fig. 2. Loss rates
issue and many publications have set light to various as-
pects of this issue. However the question of how to con-
figure the parameters of RED for optimal performance
still open. Christianseet al in [3] examined the impacts
of tuning RED’s parameters on end-uskslay, and con-
cluded that for links carrying only web traffic, RED queut
management appears to provide no clear advantage ¢ 8ol
Drop-Tail gateway for end-user response time. M. Me%
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et alin [15] use a simple analytic model to evaluate REI* o1, = Doprar
performance in terms dbss rates, link utilization, delay -5 "Tuned’ RED
anddelay variation *%o 50 w m a = %0

In this section, we use simulations to examine the per-
formance of RED and Drop-Tail in various ways. We con-
centrate on three router-based metriogsk utilization, link
loss rateandaverage queuing delayVe believe that these .o,
metrics clearly give us the insight into the performance «
queueing management algorithms at routers because €
user metrics of interest (such as end-user delay) are mai,_

Fig. 3. Average Queueing Delay
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main points. First, RED with fixed, default parameters

—*— Drop Tail

no better than Drop-Tall, at least in terms of the examin¢ 7/ 5 Default RED

—& "Tuned" RED

metrics. Second, there exists a parameter tuning of RED
that it can perform somewhat better than Drop-Tail. Hov ! . - . - - S
ever, this parameter setting does not increase RED periu, Connection Number
mance both in link utilization and average queuing delay Fig. 4. Utilization
simultaneously. Rather, in this case, RED performs better
than Drop-Tail in terms oflobal powey as defined in[12]  Figure 2 shows the impacts of tuning, on link loss
as the ration of throughput to delay. rates. The x-axis shows the number of connections, the y-
For this section, the access links are all 100 Mb/s, witlxis shows loss rates at the bottleneck link. The number
delays range from 10ms {60+ N —1) ms, whereV isthe  of connections are 4, 16, 64, 256. Increasing the number
number of connections (nodes). The bottleneck link bangf connections means increasing the workload feeding the
width is 15 Mb/s, with delay 50 ms. Buffer size at router-}outer at the bottleneck link. We examine differemt set-
is set to 50 packetspiny is set to 10 packetspaz, IS tings with RED: 0.002 (default) and 0.0005. As we can
set to 30 packets. The simulation time is 30 seconds. see in the Figure 2, except far, = 0.0005, Drop-Tail
Connections are TCP connections with packet size gérforms better than the default tuning of RED, at least in
1000 bytes. terms of link loss rates. Howevar, = 0.0005 is chosen
We examine the impacts of tuning the, parameter deliberately according to the recommendation in [13]. We




1100 : ‘ ‘ ‘ ‘ B. Adaptive RED

ol - DefauitRED | Consider the dropping function in RED. We observe that
the adaptation of any parameter will affect the overall sys-
tem performance. We see no clear justification of adapt-
ing only maz, other thanmin,, andmaz,,, as long as
ming, < maxy, < K.

In Sally’s Adaptive RED, the authors proposed the tun-
‘ ‘ ‘ ‘ ‘ ing of w, based on link capacity. However, what we really
” P comectonumber “ 300 consider here isvailablecapacity, what is changing, and
the dynamics of which is yet to be estimated.

Global Power
~
=]
s

Fig. 5. Power
C. Reasons for Fuzzy Extension
set C.1 Theoretical Limits of EWMA in RED
For any fixedw, € [0,1], let atg, be the estimator of
wq =1—exp(—1/Bpn) (1) the average queue length by:

atg, = weq + (1 — wq)aig, 4 (2
where Bgy is the bottleneck link capacity. We observe
that as the number of connections are small and the routdhereg; is the instantaneous queue length at time
trip times are relatively of the same range, then link loss Lemma 1:If {¢;} is stationary withE(g;) = p, then
rates are relatively the same. However, as the numberad; iS an unbiasedestimator ofy,, regardless of the
connections increases, the difference becomes significavgighting valuew,.
The simulation result reveals to us that there exists a pa\We consider this as a well-known fact in statistics.
rameter tuning for RED that produces better performanceNow, let’s consider the variance of this estimator. With-
than Drop-Tail. However, Drop-Tail seems to be more r@ut losing generality, we can suppose that= 0, that
bust than a number of cases with RED, especially whisnthe queue starts from empty. Let be the variance of
mazyy, is far from buffer size anehaz, is high (aggressive {g:}
early detection). Figure 4 shows performance of RED andLemma 2:[1] If g¢;,¢2,... are independent (uncorre-
Drop-Tail in terms of link utilization. We observe that, delated) then the variance of the estimator can be calculated
fault RED is rather aggressive in detection, thus reduciag:
the utilization of link capacity, especially when workload D%(abg,) = o2 wg — we(1 —wy

e : 3
is high (increased connection number). _ _ 2wy
o ) ) From Equation 3, ifw, is small w, ~ 0) then
As expected, the result is different with delay. Figure ﬁQ(aﬁg) ~ 02% ast — oo. Now consider the case
shows that both versions of RED (default and tuned) hav ! 2

smaller average queueing delay than Drop-Talil. Howevd
we have to find the trade-off between average queueing)(q, — Mq)} the covariance function dfg; } at lagk and
delay and I|nI_< ut|I|_zat|on. We examine this by tgmpal o(k) = ~(k)/7(0) the correlation function ofg;} at lag
power as defined in [12], but has not been examined jn

recent RED papers. The power= Link utilization/Link 10SS p,54gition 2: The variance of the estimator can be cal-
rates. We use power to judge the performance of DrOp'TE‘UIated as:

and different parameter settings of RED. Figure 5 shows

)2t72

enqi, qo, .. are correlated. Denote(k) = E|(qi1k —

2t—2

that RED indeed perform better than Drop-Tail in terms of 9/ A oWy — wy(1 —wy)

global power However, this metrics is hardly observable () = o 2 —w,

by the end-user. What we can conclude here is that, fixed, t—2 t—2—k

default RED shows no clear advantage over Drop-Tail in +2) olk) D wi(l—wg)¥ T
a number of crucial performance metrics. However there k=1 j=0

exists a parameter tuning that improve RED performance.This proposition can be easily proved by using induc-
The problem remains here is that, as the conditions dien.
changing, how to adapt the tuning properly to keep robustRemark 5:The coefficient ofo(k) — 575-(1 — wg)"

performance. ast — oo. Interestingly, the correlation functiop(k) in




the expression is also "exponentially weighted” with the V. Fuzzy RED MECHANISM

weighting paramete — w,. We basically keep the RED mechanism intact and only

Remark 6:The additional term contributes to the varimodify the weighting parametew,. When estimating
ance of the estimator. This makes the estimator worsetfie average queue-length at the router, instead of using a
is not so good already, comparing with moving windowfixed weighting parameter, we apply Fuzzy EWMA. De-
since it increases the variance of the estimator. In pragils about Fuzzy EWMA is described in the original paper
tice, empirical and simulation analysis in [11] show thgR1]. Now, we will discuss how Fuzzy EWMA works in
the queue-length process is not only correlated, but evsur case.
self-similar.

A. Construction of Fuzzy Control System

Consider the system with, the queue length at the
buffer at timek, as the state variable. The system can span

a spectrum varying from ’steady’ (stationary) to 'noisy’

Tlhe ds.tanlgggj Exponential We'ggted ]!VIOV'ZQ Aver?tgguon-stationary). Lefj;. be the estimate afj, then obser-
applied in POSSESSES a NUMDET OF good PropertliGs,, 1sise (error) ig; — 4. The variance of system and

It is easy to be implemented and requires small buffer Si(7585ervation noise is the problem. We need to construct a
«;sdictor that can adapt with the changing in system dy-

for the storage of samples. Itis, as proved in previous s?ﬁ
sion, als_o an unbiased gsﬂmat_or of the mean. Howeve ndmics. We consider the Fuzzy EWMA for this purpose.
is inflexible in some points. First, when we average the
gueue-length, we are implicitly choosindime scaleover

which to average it. The problem is then "What should thagseres
time scale be?”. Intuitively, it should match the round- Bxponental Average %ﬁ e \
trip time of a typical TCP connection through the RED
buffer. In practice, however, TCP connections can have ] Esimate

round-trip times which vary by several orders of magni- \ Fuzzy System \

tude. Furthermore, TCP is self-clocking and so already ]

has its own averaging mechanism built-in which automat-

ically averages over a round-trip time. So why should we Fig. 6. Flow diagram

try to average for something that is already doing its own

averaging and when it's simply impossible to get the time The question left is how to define fuzzy rules. We as-
scale right anyway? Second, RED was basically desigrgitime that when the queue stays in its stationary (stable)
to face withtransient congestiofil2] andhighly periodic State, theestimation erroris small. That s, if the dynamics
network traffic, especially TCP traffic. In this respect, thef queue-length in the buffer has little perturbation, then
standard EWMA givedixed weight to past history, thusthe exponential averaging technique will produce a pre-
ignoring transient phases in system dynamics. In [12], tlétor that is usually close to the actual system state (erro
authors proposed an analysis of bounds (or guild-lines) fisrsmall). In this caseyw, should be large. In contrast,
the weight valuew,. The analysis in that paper is onlywhen there is a large variation in queue-length, past his-
for a givenburst size and buffer size. In other words, wéory cannot predict future well (error is high). In this case
need to know these parametergriori in order to find an we setw, low, so that the estimator can tracks the changes
appropriatew, to meet our performance target. A fixedn the system. As the rules of thumb, the changes happen
w, is inflexible in the sense that the EWMA algorithnin linear manner with slope 1. Last, since we do not have a
cannot adopt with the changing condition of the incongood grasp of state dynamics, we only define three grada-
ing traffic. To alleviate this problem, we propose the ugns in the values afy, anderror. In addition, keeping the

of Fuzzy Exponential Averaging [21], [22], which autohumber of gradations minimal reduces overhead comput-
matically determines a 'good’ value af,, and is able to ing time for the algorithm. Thus, we adopt the following
change this value on-line if the system behavior changeentrol rules:

Since RED dropping mechanism is based on the estimasetF error is HIGH THEN w, is LOW

average queue-length, with "good value”, we mean thatlF error is MEDIUM THEN w, is MEDIUM

RED can better keep track with the queue-length variation |F error is Low THEN w, iS HIGH

and in consequence, reduces the number of unnecessarilyinally, we need to define Error Membership function.
dropped packets at the router. For the shake of simplicity, we use the trapazoid form for

C.2 Practical Limits of EWMA in RED




these two fuzzy labels. N is the number of connections (nodes). The bottleneck
link bandwidth is 15 Mb/s, with delay 50 ms. Buffer size
at router-1 is set to 50 packetsin;, is set to 10 packets,
mazy, 1S set to 30 packets. The simulation time is 30 sec-
onds. Connections are TCP connections with packet size
Low MEDIUM HIGH of 1000 bytes. We compare our proposed Fuzzy RED not
only with Drop Tail and default RED, but also with other
Adaptive RED, such as Adaptive RED in [14] (we call it
Adaptive RED-Feng), and Adaptive RED in [13] (we call
m, 1 it Adaptive RED-Sally).

1

Fig. 7. Error Membership Function
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The question left is how to specify the membershi
functions.

0.251-

o
N

A.1 How to Specify membership functions

0.15-

wverage Queueing Delay in sec

—*— Drop Tail
—&- Original Default RED
—4A- Adaptive RED-Feng
—— Adaptive RED-Sally
—8- Fuzzy RED

This question is equivalent to specifye,o, andmy,.
Can be done on-line by neural network training algorithn™ oz,
(such as back propagation), but this is time consuming & o ‘ ‘ ‘ ‘ ‘
lack of simplicity. So we do the training off-line to find ° % 0 Comnecton umber = .
these values. When it is good it can be fixed. Interestingly,
the results for medium value are close to the value propose
by Sally Floydet alin [13].

It should be mentioned that we only apply the sin **®
plified version of Fuzzy EWMA proposed in [21] with- st
out smoothed proportional error because it is very tin s}
consuming and in consequence greatly affects the perfs .|

Fig. 10. Average Queueing Delay

mance. B -
We implement the proposed algorithm in ns-2. Exce™ | | & Ao RED-Sat

the EWMA algorithm part, all other features in RED ar

kept intact. “r

I I I I I
50 100 150 200 250 300
Connection Number

VI. SIMULATION RESULTS

A. Stationary Performance Fig. 11. Utilization

To examine the stationary behavior of Fuzzy RED, we Figures 9.. 12 show comparative performance of Fuzzy
first run the simulation with the same parameter as pre®RED against other versions of RED and Drop Tail. As
ous Sections. That is, the access links are all 100 Mbrisentioned and explained in previous sections, we concen-
with delays range from 10 ms {a0 + N — 1) ms, where trate on router-based performance metrics. We experience



100 ‘ ‘ ‘ e such as voice and multimedia. For these application, other

—*— Drop Tail
—&- Original Default RED

1000 & Adepive FED-Ferg 1 performance metrics are also of importance. For example,
o0or 5~ Fuzey RED 1 for VoIP (Moice over IP) application, not only the average
1 delay but delay variations (jitters) heavily affect the end
user performance. So in case both TCP flows and UDP
flows sharing the router, queue-length variation should be
kept low for the shake of the quality of service (QoS) of

voice applications. We simulate RED and Fuzzy RED with

Global Power
~
=]
s

® W Tm om0 1000 flows (500 TCP flows and 500 UDP flows). TCP
_ flows all have the same round-trip time of 100 ms. Dura-
Fig. 12. Power tion time of the simulation is 180 seconds.

s

H\ \HHHNHW WHHHWM ™
‘ Average Length

from our simulations that under light-weight load (fevs« M\w H "“H
number of connections), there is no significant dn‘feren(fO
e
changing from simulation to simulation. But the situatio’ .l J‘MIH HH 'H ' “ | }”‘ W H\ H ‘ |

is different with heavily loaded incoming traffic (eg. 256 coromomme m o
connections). In most of our simulations, three versions Fig. 13. Queue-length variation with RED

of Adaptive RED perform closely together in all examined

performance metrics. The benefits of Fuzzy RED is mom ]

o e s T

TCP flows, sufficient training data for the Fuzzy Schem:: | “‘ y i WH\”WWW 1

s pelentofrar s i ottt e | HHH g

of TCP connections). Original default RED suffers frons o} \HH”HHHMM HWH HH H HHH ‘l‘ ‘ M }

high loss rate because of fixed parameter setting. These voRorome “0 wo o

fixed default parameters seem to be too aggressive. In  Fig. 14. Queue-length variation with Fuzzy RED

terms of loss rate, RED with fixed default parameters, in

our case, perform even worse than Drop-Tail. We believeFigure 13 and Figure 14 show that although the over-
that, this happens because RED, in this case, unnecessatlljong run average queue-length is quite similar for RED
and too early dropped incoming packets. Packet loss ratéewl Fuzzy RED (around 25 packets), the variation in queue
with versions of Adaptive RED in case of heavy load (25@ngth of RED is significantly higher with RED than with
TCP flows, with different round-trip time setting) osciiat Fuzzy RED. High variation in queue-length results in high
around 5 percent whereas it is far above for Drop Tail anttélay variations (jitters), thus decreasing the quality of
Default RED (6-10 percent). Figure 10 shows the compa#eice services.

ative performance of the queueing management algorithms

in terms of average queueing delay. We experience thaft Performance with Sudden Changes

Drop Tail performs worst because Drop Tail only drops To examine performance of Fuzzy RED with sudden
packets when the queue is full thus keeping the queue phanges, we run the simulation in three parts each with
tentially full all of the time. One more thing to mention idength of 10 seconds. First 10 TCP flows are active. After
that RED with fixed default parameters suffers in our sim-0 seconds, addition 10 TCP flows enter. After 20 sec-
ulations is utilization as shown in Figure 11. Interestingl onds, these 10 flows are terminated. All other parameters
Figure 12 reveals that all versions of RED (default RERre the same as the simulation in stationary case.
included) perform better than Drop-Tail in termsgibbal Figure 15 and 16 show the dynamic of queue-length
poweras mentioned in previous sections. This means thaith RED and Fuzzy RED. After the increase in work-
what we really benefit from RED is not only in low averdoad (additional 10 flows enter), actual queue-length with
age queueing delay but also ttrade-off between delay RED vary widely in the full range between 1..50. Fuzzy
and utilization, at least in terms of global power as defindRED adapt to the sudden change in condition, and do not
in [12]. allow the queue-length to change quickly, keeping the ac-
What we have been discussing so far is only for putaal queue-length in the target of 15..35 packets. After the
TCP traffic. However, as RED routers are also responsililecrease in workload (10 flow leave), it takes around 2 sec-
for directing and managing other flows of different traffionds for both RED and Fuzzy RED to get back to normal
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