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Abstract— One of the most promising active queue man-
agement schemes being proposed for deployment in the In-
ternet is RED. However, research results on RED perfor-
mance are highly mixed, especially in the field of tuning its
parameters. In this paper, we revisit some features in RED
and study them in greater details. We point out that RED in
general does not possess proportional loss between flows as
claimed and widely adopted in previous research. We sug-
gest the generalization of PASTA and give proof for TCP
flows. We also evaluate the performance of the Exponential
Weighted Moving Average (EWMA) algorithm in RED. We
find that EWMA in RED is an unbiased estimator of average
queue-length, regardless of the weighting valuewq . Finally,
we propose the use of Fuzzy EWMA to RED (Fuzzy RED) to
alleviate the inflexibility of RED tuning. We use simulations
to evaluate the performance of Fuzzy RED and compare it
with other versions of RED. Our simulations show that, in
case of high work load, this mechanism can effectively re-
duce packet loss while maintaining high link utilization un-
der different scenarios.

I. INTRODUCTION

Traffic in the Internet is composed of flows with differ-
ent nature and different characteristics, as more and more
new IP-based applications are brought to existence. Some
of them are congestion-aware and some are not. As a con-
sequence, end-to-end congestion control algorithms such
as those in TCP are not enough to prevent congestion in the
Internet, and they must be supplemented by control mech-
anisms inside the networks. Since routers are the common
places that all flows share and go through, it is reasonable
to detect and control congestion at these places, at least
globally. Drop Tail buffer management scheme does little
in this respect. To face this problem, Sally Floydet al in
[12] propose Random Early Detection (RED) scheme that
can efficiently manage the buffer at the router to avoid con-
gestion. Basically, RED provides congestion avoidance by
controlling the average queue size and dropping incoming
packets at random before the buffer gets full. The average
queue size should be kept low, while fluctuations in the ac-
tual queue size should be allowed to accommodate bursty
traffic and transient congestion. RED was claimed [12] to
provide: congestion avoidance, appropriate time scales, no

global synchronization, maximizing global power and fair-
ness. However, RED has some problems to face. First, it
is not a thoroughly understood scheme [2]. Second, it has
many parameters, and in consequence, is hard to tune [3].

Regarding literature on RED, we break them into two
classes. The first class largely deals with analyzing and
configuring RED, keeping the algorithm intact. The sec-
ond class considers how to change the original RED to
have better performance. In fact, there is no distinct border
between the two class. In respect to analyzing RED, May
et al [15] proposed a simple analytic model of RED and
concluded (among others) that RED, in certain circum-
stances, provides no better performance than Tail Drop.
Christiansenet alevaluated RED with pure web traffic and
concluded that RED offers no clear advantage over Tail
Drop, at least in terms of delay. The paper also reports that
performance is quite sensitive to the setting of RED pa-
rameters. Problems with tuning and configuring RED pa-
rameters can also be found in [4],[5],[6]. In respect to new
modification to RED, we would mention Self-Configuring
RED in [14] and recently Adaptive RED in [13]. Basically,
the authors propose adaptingmaxp as a function of aver-
age queue size to achieve specified target average queue
size in a wide variety of traffic scenarios. Other modifica-
tions to RED can only be found in [7],[8],[9].

In this paper, we first reexamine some features and per-
formance of the RED mechanism. The main observation is
that RED does not in general guarantee proportional loss
to flows as claimed in [12]. We use the generalization of
Poisson Arrival See Time Average (PASTA) as suggested
in [15] to study this property for TCP arrivals. Regard-
ing RED performance, we find that although choosing the
right value for the weighting parameter (wq) is difficult and
sensitive, the Exponential Weighted Moving Average al-
gorithm in RED is anunbiasedestimator of the average
queue-length, regardless of the valuewq. Furthermore,
we propose the use Fuzzy Exponential Average instead of
EWMA in RED to alleviate the inflexibility of fix weight-
ing value to changing conditions of the system. We find
that Fuzzy RED has more stable performance than stan-
dard RED when changing in congestion level is frequent.



The rest of the paper is organized as follows. In Section
II, we give detailed analysis of proportional loss in RED.
Section III shows the simulation topology. Section IV dis-
cusses motivation for Fuzzy RED. Section V describes the
Fuzzy RED Mechanism. Section VI evaluates the perfor-
mance of Fuzzy RED. Finally, Section VII concludes the
paper.

II. PROPORTIONALLOSSREVISITED

Loosely speaking, proportional loss property means that
the fraction of marked packets for each connection is pro-
portional to that connection’s share of bandwidth. RED
is claimed to possess this property [12]. In addition, pro-
portional loss is widely adopted in the fairness analysis of
RED, [7], [16]. However, M. Mayet al in [15] suggested
that the claim is trueonly if the arrival flows are Poisson
arrivals. This is based on the PASTA (Poisson Arrival See
Time Average) property of Poisson processes. We make
one step further. First, notice that PASTA can be general-
ized to ASTA (Arrival See Time Average), [18]. Second,
we will examine if TCP arrivals see time average or not.

Proposition 1: TCP arrivals do not see time average
neither with RED, nor with Drop Tail.
Proof. LetN � fN(t); t � 0g be the queue length process
andA � fA(t); t � 0g be the arrival process. For an
arbitrary setB in the value space ofN , defineU(t) = � 1 if N(t) 2 B0 otherwise

If B is the stationary queue-length, theU is the event thatN stays at that state. According to Theorem 1 in [19],
the future increments ofA should not depend on the past
of U . Formally, it is theLack of Anticipation Assumption
(LAA). That is, for eacht � 0; fA(t + u) � A(t); u � 0g
andfU(s); 0 � s � tg are independent. Now, let us con-
sider the mechanism of TCP. For the sake of simplicity, we
take TCP Reno for our analysis. DenoteW be the conges-
tion window size andWth the threshold value. Notice that
if the sender always has data to send then the congestion
window is approximately the number of packets that were
sent but not yet acknowledged. The number of packets go-
ing in forward direction, in stable period, is approximately
half of this value (since the other half are ACKs in back-
ward direction). Consequently, the dynamics of the con-
gestion window reflect the dynamics of the packet flows
feeding a router.
1. After every nonrepeated acknowledgment: ifW <Wth , setW = W + 1; Slow Start Phaseelse setW =W + 1=W ; Congestion Avoidance Phase
2. When the duplicate acknowledgments exceed a
threshold, retransmit next expected packet; setWth =

W=2, then setW = Wth and enterFast Recovery Phase
3. Upon timer expiration, the algorithm goes into slow
start: setWth = W=2 setW = 1.

Let’s consider Phase 2, when the congestion window is
halved after sensing duplicate acknowledgements. Dupli-
cate ACKs imply dropping of packets at the buffer and that
the buffer at the router is full (for Drop Tail) or potentially
full (for RED). That is, the future increments ofA in this
phase isdependenton the past ofU . And so, theLAA fails.
Consequently, TCP arrivals do not see time average neither
with RED, nor with Drop Tail gateway, Q.E.D.

Remark 1:A more general condition of ASTA is LBA
[18](Lack of Bias Assumption) which only requires thatU and the conditional intensity,�U , of N , givenU , are
pointwise uncorrelated. Certainly uncorrelated condition
is weaker that independent condition. However, we can
similarly show that this condition also fails.

Remark 2:ASTA, in the absence of Poisson flows, are
all in the networks of quasi-reversible queues, in particu-
lar, for the M/M/1 queue with feedback. Burke in [17] has
shown that the composite stream of exogenous Poisson ar-
rivals and feedback customers is not Poisson even though
this stream sees time average.

Remark 3: It is noteworthy, however, that for quasi-
reversible queuein isolation, LBA implies Poisson arrivals
[18]

Remark 4:Let us assume that the service time at the
router is exponentially distributed (Markovian service).In
this case, consider the G/M/1 queue. We allow the arrival
process to be general. Certainly, the arrivals generally (ex-
cept Poisson ones) do not see time average, but due to to
duality of M/G/1 and G/M/1, we can explicitly express
these two values by each others [20].

III. SIMULATION TOPOLOGY
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Fig. 1. Simulation Topology

Figure 1 shows the topology template for all of our sim-
ulations throughout this paper. We consider the general



topology ofN sendersS1; S2; ::; SN andN access links.
Thei-th access link is specified by bandwidthBSi and de-
lay DSi. Router1 is the access router. We suppose the
link between Router1 and Router2 is a bottleneck link with
bandwidthBBN and delayDBN . We also addM receiver
at the other end in case we want to generate backward traf-
fic. However, if not further mentioned, we consider the
bottleneck link is the only sink.

IV. M OTIVATION FOR FUZZY RED

A. Pitfalls in tuning RED parameters

One of the inherent weaknesses of RED is parameter
sensitivity. Extensive research has been promoted to this
issue and many publications have set light to various as-
pects of this issue. However the question of how to con-
figure the parameters of RED for optimal performance is
still open. Christiansenet al in [3] examined the impacts
of tuning RED’s parameters on end-userdelay, and con-
cluded that for links carrying only web traffic, RED queue
management appears to provide no clear advantage over
Drop-Tail gateway for end-user response time. M. May
et al in [15] use a simple analytic model to evaluate RED
performance in terms ofloss rates, link utilization, delay
anddelay variation.

In this section, we use simulations to examine the per-
formance of RED and Drop-Tail in various ways. We con-
centrate on three router-based metrics:link utilization, link
loss rateandaverage queuing delay. We believe that these
metrics clearly give us the insight into the performance of
queueing management algorithms at routers because end-
user metrics of interest (such as end-user delay) are mainly
dependent on these metrics. Our simulations reveal two
main points. First, RED with fixed, default parameters is
no better than Drop-Tail, at least in terms of the examined
metrics. Second, there exists a parameter tuning of RED so
that it can perform somewhat better than Drop-Tail. How-
ever, this parameter setting does not increase RED perfor-
mance both in link utilization and average queuing delay
simultaneously. Rather, in this case, RED performs better
than Drop-Tail in terms ofglobal power, as defined in [12]
as the ration of throughput to delay.

For this section, the access links are all 100 Mb/s, with
delays range from 10ms to(10+N�1) ms, whereN is the
number of connections (nodes). The bottleneck link band-
width is 15 Mb/s, with delay 50 ms. Buffer size at router-1
is set to 50 packets,minth is set to 10 packets,maxth is
set to 30 packets. The simulation time is 30 seconds.

Connections are TCP connections with packet size of
1000 bytes.

We examine the impacts of tuning thewq parameter

when maxp is left unchanged and equal to the default
value (0.1).
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Fig. 2. Loss rates
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Fig. 3. Average Queueing Delay
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Fig. 4. Utilization

Figure 2 shows the impacts of tuningwq on link loss
rates. The x-axis shows the number of connections, the y-
axis shows loss rates at the bottleneck link. The number
of connections are 4, 16, 64, 256. Increasing the number
of connections means increasing the workload feeding the
router at the bottleneck link. We examine differentwq set-
tings with RED: 0.002 (default) and 0.0005. As we can
see in the Figure 2, except forwq = 0:0005, Drop-Tail
performs better than the default tuning of RED, at least in
terms of link loss rates. However,wq = 0:0005 is chosen
deliberately according to the recommendation in [13]. We
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Fig. 5. Power

set wq = 1� exp(�1=BBN ) (1)

whereBBN is the bottleneck link capacity. We observe
that as the number of connections are small and the round-
trip times are relatively of the same range, then link loss
rates are relatively the same. However, as the number of
connections increases, the difference becomes significant.
The simulation result reveals to us that there exists a pa-
rameter tuning for RED that produces better performance
than Drop-Tail. However, Drop-Tail seems to be more ro-
bust than a number of cases with RED, especially whenmaxth is far from buffer size andmaxp is high (aggressive
early detection). Figure 4 shows performance of RED and
Drop-Tail in terms of link utilization. We observe that, de-
fault RED is rather aggressive in detection, thus reducing
the utilization of link capacity, especially when workload
is high (increased connection number).

As expected, the result is different with delay. Figure 3
shows that both versions of RED (default and tuned) have
smaller average queueing delay than Drop-Tail. However
we have to find the trade-off between average queueing
delay and link utilization. We examine this by theglobal
power as defined in [12], but has not been examined in
recent RED papers. The power= Link utilization/Link loss
rates. We use power to judge the performance of Drop-Tail
and different parameter settings of RED. Figure 5 shows
that RED indeed perform better than Drop-Tail in terms of
global power. However, this metrics is hardly observable
by the end-user. What we can conclude here is that, fixed,
default RED shows no clear advantage over Drop-Tail in
a number of crucial performance metrics. However there
exists a parameter tuning that improve RED performance.
The problem remains here is that, as the conditions are
changing, how to adapt the tuning properly to keep robust
performance.

B. Adaptive RED

Consider the dropping function in RED. We observe that
the adaptation of any parameter will affect the overall sys-
tem performance. We see no clear justification of adapt-
ing only maxp other thanminth andmaxth, as long asminth < maxth < K.

In Sally’s Adaptive RED, the authors proposed the tun-
ing ofwq based on link capacity. However, what we really
consider here isavailablecapacity, what is changing, and
the dynamics of which is yet to be estimated.

C. Reasons for Fuzzy Extension

C.1 Theoretical Limits of EWMA in RED

For any fixedwq 2 [0; 1℄, let ^avgt be the estimator of
the average queue length by:^avgt = wqqt + (1� wq) ^avgt�1 (2)

whereqt is the instantaneous queue length at timet.
Lemma 1:If fqtg is stationary withE(qt) = �q then^avgt is an unbiasedestimator of�q, regardless of the

weighting valuewq.
We consider this as a well-known fact in statistics.
Now, let’s consider the variance of this estimator. With-

out losing generality, we can suppose thatq1 = 0, that
is the queue starts from empty. Let�2 be the variance offqtg.

Lemma 2:[1] If q1; q2; ::: are independent (uncorre-
lated) then the variance of the estimator can be calculated
as: D2( ^avgt) = �2wq � wq(1� wq)2t�22� wq (3)

From Equation 3, ifwq is small (wq � 0) thenD2( ^avgt) � �2wq2 as t ! 1. Now consider the case

whenq1; q2; :: are correlated. Denote
(k) = Eh(qt+k ��q)(qt � �q)i the covariance function offqtg at lagk and%(k) = 
(k)=
(0) the correlation function offqtg at lagk.
Proposition 2: The variance of the estimator can be cal-

culated as:D2(m̂t) = �2wq � wq(1� wq)2t�22� wq+ 2 t�2Xk=1 %(k) t�2�kXj=0 w2q(1� wq)2j+k
This proposition can be easily proved by using induc-

tion.
Remark 5:The coefficient of%(k) ! wq2�wq (1 � wq)k

ast ! 1. Interestingly, the correlation function%(k) in



the expression is also ”exponentially weighted” with the
weighting parameter1� wq.

Remark 6:The additional term contributes to the vari-
ance of the estimator. This makes the estimator worse (it
is not so good already, comparing with moving window),
since it increases the variance of the estimator. In prac-
tice, empirical and simulation analysis in [11] show that
the queue-length process is not only correlated, but even
self-similar.

C.2 Practical Limits of EWMA in RED

The standard Exponential Weighted Moving Average
applied in RED possesses a number of good properties.
It is easy to be implemented and requires small buffer size
for the storage of samples. It is, as proved in previous ses-
sion, also an unbiased estimator of the mean. However, it
is inflexible in some points. First, when we average the
queue-length, we are implicitly choosing atime scaleover
which to average it. The problem is then ”What should that
time scale be?”. Intuitively, it should match the round-
trip time of a typical TCP connection through the RED
buffer. In practice, however, TCP connections can have
round-trip times which vary by several orders of magni-
tude. Furthermore, TCP is self-clocking and so already
has its own averaging mechanism built-in which automat-
ically averages over a round-trip time. So why should we
try to average for something that is already doing its own
averaging and when it’s simply impossible to get the time
scale right anyway? Second, RED was basically designed
to face withtransient congestion[12] andhighly periodic
network traffic, especially TCP traffic. In this respect, the
standard EWMA givesfixed weight to past history, thus
ignoring transient phases in system dynamics. In [12], the
authors proposed an analysis of bounds (or guild-lines) for
the weight valuewq. The analysis in that paper is only
for a givenburst size and buffer size. In other words, we
need to know these parametersa priori in order to find an
appropriatewq to meet our performance target. A fixedwq is inflexible in the sense that the EWMA algorithm
cannot adopt with the changing condition of the incom-
ing traffic. To alleviate this problem, we propose the use
of Fuzzy Exponential Averaging [21], [22], which auto-
matically determines a ’good’ value ofwq, and is able to
change this value on-line if the system behavior changes.
Since RED dropping mechanism is based on the estimated
average queue-length, with ”good value”, we mean that
RED can better keep track with the queue-length variation,
and in consequence, reduces the number of unnecessarily
dropped packets at the router.

V. FUZZY RED MECHANISM

We basically keep the RED mechanism intact and only
modify the weighting parameterwq. When estimating
the average queue-length at the router, instead of using a
fixed weighting parameter, we apply Fuzzy EWMA. De-
tails about Fuzzy EWMA is described in the original paper
[21]. Now, we will discuss how Fuzzy EWMA works in
our case.

A. Construction of Fuzzy Control System

Consider the system withqk, the queue length at the
buffer at timek, as the state variable. The system can span
a spectrum varying from ’steady’ (stationary) to ’noisy’
(non-stationary). Let̂qk be the estimate ofqk, then obser-
vation noise (error) isqk� q̂k. The variance of system and
observation noise is the problem. We need to construct a
predictor that can adapt with the changing in system dy-
namics. We consider the Fuzzy EWMA for this purpose.

Exponential Average


Fuzzy System


1/z


Estimate


Observed


alpha


Fig. 6. Flow diagram

The question left is how to define fuzzy rules. We as-
sume that when the queue stays in its stationary (stable)
state, theestimation erroris small. That is, if the dynamics
of queue-length in the buffer has little perturbation, then
the exponential averaging technique will produce a pre-
dictor that is usually close to the actual system state (error
is small). In this case,wq should be large. In contrast,
when there is a large variation in queue-length, past his-
tory cannot predict future well (error is high). In this case,
we setwq low, so that the estimator can tracks the changes
in the system. As the rules of thumb, the changes happen
in linear manner with slope 1. Last, since we do not have a
good grasp of state dynamics, we only define three grada-
tions in the values ofwq anderror. In addition, keeping the
number of gradations minimal reduces overhead comput-
ing time for the algorithm. Thus, we adopt the following
control rules:� IF error is HIGH THENwq is LOW� IF error is MEDIUM THENwq is MEDIUM� IF error is LOW THENwq is HIGH

Finally, we need to define Error Membership function.
For the shake of simplicity, we use the trapazoid form for



these two fuzzy labels.
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The question left is how to specify the membership
functions.

A.1 How to Specify membership functions

This question is equivalent to specifymerror andmwq .
Can be done on-line by neural network training algorithms
(such as back propagation), but this is time consuming and
lack of simplicity. So we do the training off-line to find
these values. When it is good it can be fixed. Interestingly,
the results for medium value are close to the value propose
by Sally Floydet al in [13].

It should be mentioned that we only apply the sim-
plified version of Fuzzy EWMA proposed in [21] with-
out smoothed proportional error because it is very time
consuming and in consequence greatly affects the perfor-
mance.

We implement the proposed algorithm in ns-2. Except
the EWMA algorithm part, all other features in RED are
kept intact.

VI. SIMULATION RESULTS

A. Stationary Performance

To examine the stationary behavior of Fuzzy RED, we
first run the simulation with the same parameter as previ-
ous Sections. That is, the access links are all 100 Mb/s,
with delays range from 10 ms to(10 +N � 1) ms, where

N is the number of connections (nodes). The bottleneck
link bandwidth is 15 Mb/s, with delay 50 ms. Buffer size
at router-1 is set to 50 packets,minth is set to 10 packets,maxth is set to 30 packets. The simulation time is 30 sec-
onds. Connections are TCP connections with packet size
of 1000 bytes. We compare our proposed Fuzzy RED not
only with Drop Tail and default RED, but also with other
Adaptive RED, such as Adaptive RED in [14] (we call it
Adaptive RED-Feng), and Adaptive RED in [13] (we call
it Adaptive RED-Sally).
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Fig. 9. Loss rates
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Fig. 10. Average Queueing Delay
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Fig. 11. Utilization

Figures 9.. 12 show comparative performance of Fuzzy
RED against other versions of RED and Drop Tail. As
mentioned and explained in previous sections, we concen-
trate on router-based performance metrics. We experience



0 50 100 150 200 250 300
300

400

500

600

700

800

900

1000

1100

Connection Number

G
lo

ba
l P

ow
er

Drop Tail           
Original Default RED
Adaptive RED−Feng   
Adaptive RED−Sally  
Fuzzy RED           

Fig. 12. Power

from our simulations that under light-weight load (few
number of connections), there is no significant difference
between versions of RED and Drop Tail, and the orders are
changing from simulation to simulation. But the situation
is different with heavily loaded incoming traffic (eg. 256
connections). In most of our simulations, three versions
of Adaptive RED perform closely together in all examined
performance metrics. The benefits of Fuzzy RED is more
visible when the work load is high (ie. there are many
TCP flows, sufficient training data for the Fuzzy Scheme)
and the level of variation is high (different round-trip times
of TCP connections). Original default RED suffers from
high loss rate because of fixed parameter setting. These
fixed default parameters seem to be too aggressive. In
terms of loss rate, RED with fixed default parameters, in
our case, perform even worse than Drop-Tail. We believe
that, this happens because RED, in this case, unnecessarily
and too early dropped incoming packets. Packet loss rates
with versions of Adaptive RED in case of heavy load (256
TCP flows, with different round-trip time setting) oscillate
around 5 percent whereas it is far above for Drop Tail and
Default RED (6-10 percent). Figure 10 shows the compar-
ative performance of the queueing management algorithms
in terms of average queueing delay. We experience that
Drop Tail performs worst because Drop Tail only drops
packets when the queue is full thus keeping the queue po-
tentially full all of the time. One more thing to mention is
that RED with fixed default parameters suffers in our sim-
ulations is utilization as shown in Figure 11. Interestingly,
Figure 12 reveals that all versions of RED (default RED
included) perform better than Drop-Tail in terms ofglobal
poweras mentioned in previous sections. This means that
what we really benefit from RED is not only in low aver-
age queueing delay but also thetrade-off between delay
and utilization, at least in terms of global power as defined
in [12].

What we have been discussing so far is only for pure
TCP traffic. However, as RED routers are also responsible
for directing and managing other flows of different traffic

such as voice and multimedia. For these application, other
performance metrics are also of importance. For example,
for VoIP (Voice over IP) application, not only the average
delay but delay variations (jitters) heavily affect the end-
user performance. So in case both TCP flows and UDP
flows sharing the router, queue-length variation should be
kept low for the shake of the quality of service (QoS) of
voice applications. We simulate RED and Fuzzy RED with
1000 flows (500 TCP flows and 500 UDP flows). TCP
flows all have the same round-trip time of 100 ms. Dura-
tion time of the simulation is 180 seconds.
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Fig. 13. Queue-length variation with RED
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Fig. 14. Queue-length variation with Fuzzy RED

Figure 13 and Figure 14 show that although the over-
all long run average queue-length is quite similar for RED
and Fuzzy RED (around 25 packets), the variation in queue
length of RED is significantly higher with RED than with
Fuzzy RED. High variation in queue-length results in high
delay variations (jitters), thus decreasing the quality of
voice services.

A.1 Performance with Sudden Changes

To examine performance of Fuzzy RED with sudden
changes, we run the simulation in three parts each with
length of 10 seconds. First 10 TCP flows are active. After
10 seconds, addition 10 TCP flows enter. After 20 sec-
onds, these 10 flows are terminated. All other parameters
are the same as the simulation in stationary case.

Figure 15 and 16 show the dynamic of queue-length
with RED and Fuzzy RED. After the increase in work-
load (additional 10 flows enter), actual queue-length with
RED vary widely in the full range between 1..50. Fuzzy
RED adapt to the sudden change in condition, and do not
allow the queue-length to change quickly, keeping the ac-
tual queue-length in the target of 15..35 packets. After the
decrease in workload (10 flow leave), it takes around 2 sec-
onds for both RED and Fuzzy RED to get back to normal
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Fig. 15. RED
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Fig. 16. Fuzzy RED

condition, but Fuzzy RED produce somewhat smaller both
in average queue-length and queue-length variation.

VII. CONCLUSION

We have demonstrated that RED in general does not
guarantee proportional loss to flows and gave proof for
TCP cases. We also analytically evaluated the perfor-
mance of EWMA algorithm in RED. We found that the
EWMA algorithm in RED is an unbiased estimator of av-
erage queue-length, regardless of the weighting valuewq.
We proposed the use of Fuzzy EWMA to RED (Fuzzy
RED). Simulation results show that our proposed Fuzzy
RED has some advantages over the original RED in case
of frequent changing congestion. Analytically evaluating
Fuzzy RED is a subtle and difficult task, which is left as
our future work.
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