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Abstract-Based on a general multifractal queueing approxima-
tion some results on multiscale queueing analysis are presented.
The results include the well-known Weibullian tail for the impor-
tant case of the monofractal fractional Brownian motion (fBm)
input traffic. It also provides the basics for a new practical
method for queueing performance evaluation of multifractal traf-
fic. In addition, several impacts of multifractality on queueing
performance are investigated and presented using the estimation
method. The results are validated by queueing simulation of mea-
sured network traffic.

I. I NTRODUCTION

A basic finding of the LAN/WAN traffic analysis is that
the packet traffic has the high variability and burstiness na-
ture in a wide range of network environments. One of the re-
markable characteristics is thefractal nature of the investigated
LAN/WAN traffic [1], [2], [3], [4], [5], [6], [7], [8]. This is in
close relationship to traffic burstiness because bursts should be
defined in terms of time scales over which clustering activities
occur [1].

In this frameworklong-range dependence(LRD) and self-
similarity have been detected and a group of studies is con-
centrated on how to detect accurately the LRD property and
how to estimate the Hurst parameter [9], [10]. A large group
of traffic models (fractional Brownian motion (fBm) models,
FARIMA models, Cox’s M/G/1 models, on/off models, etc.)
to capture LRD and self-similar properties have also been de-
veloped [1], [11], [12], [8]. Among these models the fBm [13]
was found to be a popular parsimonious and tractable model
of traffic aggregation. It was shown that the fBm is an accu-
rate model if the traffic is aggregated from a large number of
independent users whose peak rates are small relative to link
capacity and the flow control has no significant impact, see
[14], [15], [16], [17] for more details.

The performance implications of the fractal property are
also addressed in a series of studies [18], [19]. A collection
of studies has proven that the fBm based models have a tail
queue distribution that decays asymptotically like a Weibul-
lian law [1], i.e., P[Q > b] ' exp(�Æb2�2H), whereÆ is a
positive constant that depends on the service rate of the queue
[13], [20]. This important result shows that queues with fBm
input (H > 1=2) have a much slower decay than that of the
exponential.

Recent measurements and researches of wide-area network
traffic, however, also discovered that the LAN/WAN traffic has
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a more complex scaling behaviour which cannot be explained
in a self-similar framework [3], [21], [4]. More precisely, it
has been found that aggregate network traffic is asymptoti-
cally self-similar over time scales on the order of few hundreds
of milliseconds and above but it exhibitsmultifractal scaling
below this time scale. It has been also pointed out that the
transition from the multifractal to self-similar scaling occurs
around time scales of a typical packet round-trip time in the
network [22], [4]. However, some studies showed that mul-
tifractal scaling can also be present even at large time scales
[23]. Therefore multifractal traffic models with a much more
flexible rule for the scaling law seem to be needed, especially
for some WAN environments. The physical explanations and
engineering implications are also addressed in several papers
[4], [7].

There is a lack of queueing results available in the cases
when the input traffic has a more complex scaling behaviour.
Especially, queueing systems with multifractal input are an
undiscovered field and only a few results published in the lit-
erature. Véhelet al. [24] suggested a cascade model for TCP
traffic based on the retransmission and congestion avoidance
mechanisms with no performance analysis. Riediet al. [6]
developed a multiscale queueing analysis in the case of tree-
based multiscale input models. Gaoet al. simulated queues fed
by multiplicative multifractal processes in [25] but provided
no analytical results. In contrast to these results we consider
general multifractal processwithout any restrictions and derive
ananalytical approximation for the queue tail asymptotics.

The aim of this paper is to contribute to the queueing theory
of multifractal queues and also to the traffic engineering im-
plications. We present a novel analysis of multifractal queues.
First an approximation formula is given for the tail of the
queue with multifractal traffic input. The formula results in
the asymptotically Weibullian decay for the special monofrac-
tal case of fractional Brownian motion input process which
is consistent with the previously mentioned results [13], [20].
In this framework we show that any Gaussian process with
scaling properties is in the class of monofractal processes and
derive the related characterization functions. Practical appli-
cations of the results are also included in the paper. This paper
also addresses some implications of multifractality on queue-
ing performance. A comparison study between the queue-
ing performance of the monofractal and multifractal processes
are presented. We present a detailed queueing analysis for
some measured WAN traffic which justifies the practical use
of our formula. Our hope is that these results contribute as
first steps to get the full understanding of multifractal queue-



ing behaviour.
The rest of the paper is organized as follows. Section II in-

troduces our queueing system under investigation and presents
our main result, i.e., the approximation for queue tails with the
proofs. Section III discusses the important applications of the
result. The brief description of measured data traffic and our
queueing analysis is given in Section IV. Finally, Section V
concludes the paper and presents our targets for future research
directions.

II. QUEUEING ESTIMATION OF MULTIFRACTAL TRAFFIC

We consider a simple queueing model: a single server queue
in continuous time, the serving principle for offered work is
defined to be FIFO (First In, First Out), the queue has infinite
buffer and constant service rates. Denote byX(t) the total
size of work arriving to the queue from time instant�t in the
past up to this moment, time instant0. The so calledworkload
processW (t) is the total amount of work stored in the buffer in
time interval(�t; 0), i.e.,

W (t) = X(t)� st (1)

Our interest, however, is the current buffer length of the
queue, denoted byQ. This is the queue length in the equilib-
rium state of the queue when the system has been running for a
long time and the initial queue length has no influence. If this
state of the system does exist, i.e., stationarity and ergodicity
of the workload process hold, and the stability condition for
the system is also satisfied, i.e.,lim supt E[X(t)]=t < s, then:

Q = sup
t�0

W (t); (2)

whereW (0) is assumed to be0. This equation is also referred
to asLindley’s equation.

The input processX(t) is considered as a generally defined
multifractal process by Mandelbrotet al. in [26]. The def-
inition presents multifractal processes in terms of moments
which leads to a more intuitive understanding of multifractal-
ity.

Definition 1: A stochastic processX(t) is called multifractal if it
has stationary increments and satisfies

E [jX(t)jq ] = c(q)t�(q)+1 (3)

for some positiveq 2 Q; [0; 1] � Q, where�(q) is called the scaling
function and the moment factorc(q) is independent oft.
A simple consequence of the definition it that the scaling func-
tion �(q) is a concave function. If�(q) is a linear function of
q the process is called uniscaling ormonofractal, otherwise it is
called multiscaling or multifractal. The definition is very gen-
eral and it covers a very large class of processes. Multifractal
processes are also called processes withscaling property.

Note that an alternative approach to multifractal processes,
also found in literature, is based on the study of the local er-
ratic behaviour of the process by means of its local H¨older
exponents. For details on this approach see [27] and refer-
ences therein. The most obvious examples of multifractals are
self-similar and multiplicative processes.

The following Proposition provides our queue tail approxi-
mation for the presented queueing system:

Proposition 1: The probabilities for the queue tail asymptotic of
a single queueing model with general multifractal input is accurately
approximated by:

log(P[Q > b]) � min
q>0

log

8><
>:c(q)

h
b �0(q)

s(q��0(q))

i�0(q)
h

b q

q��0(q)

iq
9>=
>; ; b large

(4)
where�0(q) := �(q)+ 1. The scaling function� (q) andc(q) are the
functions which define the multifractal input process.

The proof of this Proposition is provided in Appendix VI-A.
For positive multifractal processes, i.e.X(t) > 0, Eq. (11)

is an equality. In addition, the approximation in Eq. (16) and
the inequality in Eq. (12) turn to be more accurate approxima-
tions asb tends to infinity. Thus the presented approximation
is supposed to be asymptotically tight. The tightness and accu-
racy of the approximation is also experimentally investigated
in Section IV.

Considering the formula in Eq. (4) we see that it has an
implicit form and just the given form of the functionsc(q) and
�(q) can provide the final result. The reason behind this is that
the definition for the class of multifractal processes gives no
restrictions for the functionsc(q) and� (q) (beyond that�(q) is
concave).Our conjecture is that the analysis of queueing systems
with general multifractal input may produce some similar general
results. It means that there is no general queueing behaviour for
these systems as the Weibullian decay in the case of Gaussian
self-similar processes [13]. An actual multifractal model will
determine, for example, the queue length probabilities of the
system.

III. A PPLICATIONS

A. Fractional Brownian motion

As a simple application first we consider a monofractal
Gaussian process, called fractional Brownian motion (fBm).
The fBm is self-similar which is a simple case of monofractal-
ity and it is also Gaussian. The increment process of fBm is
called fractional Gaussian noise (fGn). Queueing analysis of a
single queue with fBm input is first presented by Norros [13]
which showed the Weibullian decay for the asymptotic tail be-
haviour, i.e.,P[X > x] � exp(�x�) with � � 1. This result is
also justified by Large Deviation techniques in [20]. Applying
this input process model to our formula should show its use
and robustness when comparing to these available results.

First we prove that any Gaussian process with scaling prop-
erty is in the class of monofractal processes. Furthermore we
give the explicit forms for� (q) andc(q).

Consider the following lemma:
Lemma 1: A Gaussian process with scaling property is monofrac-

tal with parameters

(
�(q) = q

2
[� (2) + 1]� 1

c(q) =
[2c(2)]q=2p

�
�
�
q+1

2

�
;

where�(�) denotes the Gamma function,
�(z) =

R +1
0

xz�1 exp�x dx; z > 0:

The proof of this Lemma is provided in Appendix VI-B.



Turning back to our case of fBm withc(2) = 1 and�(2) =
2H� 1 whereH is referred to as the Hurst parameter, we have(

�(q) = qH � 1

c(q) = 2q=2p
�
�
�
q+1

2

�
:

Insert these two functions into our formula in Eq. (4) we get

log(P[Q > b]) � log

0
B@min

q>0

8><
>:
2q=2p
�
�

�
q + 1

2

� � bH
s(1�H)

�qH
�

b
1�H

�q
9>=
>;
1
CA

=: log(min
q>o

g(q)):

The minimum value of theg(q) for q > 0 function can be
easily determined by taking its derivatives. The result is the
following:

log(P[Q > b]) � log(min
q>o

g(q)) = log

 
1p
�

�
�
	�1 (logK)

�
K	�1(logK)�1=2

!

=: log(TfBm(H; s; b));

whereK = K(H; s; b) = 1
2
b2(1�H)s2H(1 � H)�2(1�H)H�2H ,

	(�) is thedigammafunction,	(x) = d
dx

log �(x) = �0(x)

�(x)
, and

	�1(�) denotes the inverse function of	(�).

 

log[-logTFBM(b)] 

log(b) 

s=1 
H=0.8 

Fig. 1. By setting fixed values for H and s, the line in the log-log
plot of � log TfBm(b) versus b clearly shows the Weibullian decay for
TfBm(H; s; b).
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Fig. 2. Our approximation compared to the Large Deviation technique result:
the two plots almost coincide for all values of queue size.

The TfBm(H; s; b) function is quite complex with the pres-
ence of Gamma, digamma, and its inverse function. However,
we have quite a good approximation of T fBm(H; s; b):

Proposition 2: The approximation

1p
�

�
�
	�1 (log x)

�
x	

�1(log x)�1=2
� exp(�x) (5)

holds for large x, x > 0.
The proof and the precise sense of this approximation can be
found in [28].

Applying this approximation we find that the queue tail for
the fBm case satisfies:

log (TfBm(H; s; b)) �

� �1

2
b2(1�H)s2H(1�H)

�2(1�H)H�2H ; b large: (6)

Eq. (6) shows the Weibullian decay of this queue which was
first recognized and proven by Norros [13]. Numerical evalu-
ations of the result are presented in Fig. 1 and Fig. 2. In Fig. 1
we fix the values ofH and s and then calculate the values of the
queue tail approximation TfBm(H; s; b) versus the queue size
b and then plot it in the log-log scale. The linearity of the plot
also demonstrates the Weibullian decay. In addition, the right
hand side of Eq. (6) is exactly the result provided by Duffield
and O’Connell in [20]. This asymptotic formula was proven
using the Large Deviation technique. The accuracy of the ap-
proximation is depicted in Fig. 2. We can see that the plots
almost coincide for all calculated values of the queue size.

Our conclusions can be summarized in two main points:
(i) the asymptotic tail approximation for the case of fBm has
Weibullian decay; (ii) this result is also consistent with the
formula presented by Norros [13] and by Duffield et al. with
Large Deviation technique [20].

In the case of H = 1=2 (Brownian motion) the above for-
mula results in logP[Q > b] � �2sb=�2 where �2 denotes
the variance of the process, which is in agreement with the
queueing formula known from the theory of Gaussian pro-
cesses [29], [20].

B. Practical solutions

We show here the practical use of the formula. Assume that
we are interested in the behaviour of the tail of the steady-state
buffer occupancy (queue length) distribution at a specific mul-
tiplexer in our network. The first step should be the fine res-
olution measurements of the input process. We also assume
that the input process exhibits multifractal scaling properties.
Then the scaling function � (q) and the function c(q) can be
estimated from the collected data for some available parame-
ters q > 0. We emphasize the importance of the function c(q) as
the quantity factor of multifractal processes which is sometimes ne-
glected in a number of studies dealing with multiscaling properties of
the high-speed network traffic. The scaling function � (q) defines only
the quality of multiscaling and it is not enough for the description of a
multifractal model and therefore for the analysis of queueing models
with multifractal input processes.

Now we suggest two practical methods for the approxima-
tion of the queue tail distribution:

1. Given the service rate s and the two sets fc(q)g and
f�(q)g, using Eq. (4) the approximation of log(P[Q > b])

can be computed for each value of b. This method is very



simple but it is the more useful from network planning
and capacity dimensioning point of view since we are
only interested in some values of the tail probabilities.
We mainly focus on the practical use of this method in
this study.

2. The input process is fitted to a multifractal model. The
two measured sets of c(q) and �(q) are fitted by ~c(q) and
~�(q). Then the analysis of the Eq. (4) with these functions
can result in simple closed form of the queue tail proba-
bilities. We use this method when studying the queue tail
behaviour of a multifractal model. However, characteris-
tic functions of multiscaling processes are often complex,
thus it is difficult to give a closed queueing form for these
cases. The more details on this topic is in focus of future
work.

C. The impacts of multifractality

As discussed, the tail behaviour of a queueing system de-
pends on both the scaling function and the moment factor of
the multifractal traffic input. Applying the estimation method
presented above we show in this section a deeper study on
these effects through some typical numerical examples.

1) Multifractal versus monofractal: Consider a multiplica-
tive multifractal process with symmetric Beta(�; �) distributed
multiplier (see more details in [30]). For this multifractal we
can exactly calculate the characteristic functions at a certain
cascade level, i.e.,(

�0(q) = log2
�(�)�(2�+q)

�(�+q)�(2�)

c(q) = 2
N
�
q�log2

�(�)�(2�+q)

�(�+q)�(2�)

�
:

Note that at all stages the generated multiplicative set is nor-
malized to have unit mean. The scaling function of a mul-
tiplicative cascade with � = 15, level N = 20 is presented
in Figure 3. Assume that there exists a (mono)scaling pro-
cess with exactly the same moment factor c(q) as of the men-
tioned multifractal but it has the uniscaling fractal structure
�0(q) = qH (also see in Figure 3 with H = 0:8 and H = 0:9).
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Fig. 3. The scaling functions of the examined fractal processes.

With the knowledge of the characteristic functions of these
scaling processes we can calculate the estimation for the tail
probabilities of the queueing system for large queue sizes (the
service rate is set to be s = 2:0) by using our numerical
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Fig. 4. Queue tail approximation of the examined fractal processes.

method. The results are presented in Figure 4. We observe
that the approximated queue tail probabilities of the multifrac-
tal case are noticeably greater than the monofractal cases. This
result clearly indicates that in the same queueing environment
with the same moment function for the input process incre-
ments and with scaling functions which are not far from each
others in “value” (see Figure 3) the queueing behaviour of the
multifractal case is considerably worse than of the monofractal
case.

2) The impact of the moment factor: We also examine the
impacts of the moment factor of the multifractal input process
with the similar consideration. Given a known scaling process
fBm with �0(q) = qH;H = 0:8 and c(q) = 2q=2p

�
�
�
q+1

2

�
we

make some modification on the moment factor, thus create a
new theoretical scaling process with only differences in the
absolute moments of the increments. Assume the following
fractal process with the characteristic functions:8><
>:

�0(q) = qH; H = 0:8

c(q) =

(
2q=2p
�
�
�
q+1

2

�
if 0 � q � 2

a(q � 2)(q + b) if q > 2

We denote the process with the setting fa = 0:037; b = 15:51g
and fa = 0:031; b = 15:51g up-mod and down-mod, respec-
tively. With these modifications the concerned process incre-
ments have the same moments up to the moment order q = 2,
thus they have the same mean and variance. The difference
between the moment factors is seen in Figure 5.

In the performance study of these processes, presented in
Figure 6, we can observe the effects of these slight modifica-
tions of the moment factor. The change of higher order mo-
ments has a clear impact on the queueing behaviour of the
process. The up-mod scaling process gives rise to the worse
queueing performance and the down-mod process courses the
better behaviour in the same system setting as compared to the
original fBm process.

In summary, despite the fact that we should deal care-
fully with the presented results because they are based on
queueing performance approximation we can conclude that
the monofractal processes have a better queueing behaviour
compared to the multifractal processes and the moment factor
also exerts influence on the queueing performance. These im-
portant observations should be considered in traffic modeling
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Fig. 6. Queue tail approximation of the examined fractal processes.

and queueing study of the scaling processes.

IV. QUEUEING ANALYSIS

In this section we show the validation for the mentioned
practical solution presented above by the queueing analysis of
some real traffic traces. We also provide a simple method for
estimation of multiscaling functions c(q) and �(q).

A. Data traces

Three data traces were considered in our analysis which are
freely available at the Internet Traffic Archive [31]. These
traces contain an hour’s worth of all wide-area traffic each
between Digital Equipment Corporation and the rest of the
world. The traces, denoted by DEC-PKT-1, DEC-PKT-2, and
DEC-PKT-3, were gathered at Digital’s primary Internet ac-
cess point, which is an Ethernet DMZ network operated by
Digital’s Palo Alto research groups. The raw traces were made
using tcpdump on a DEC Alpha running Digital’s OSF/1 op-
erating system, which includes a kernel filter with capabil-
ities comparable to those of BPF. Tcpdump captured all IP
packet header information with millisecond precision times-
tamps. Each trace contains more than 3 million packet head-
ers.

We constructed the packet arrival counts traces of time sam-
ple of 3 milliseconds from the raw data. Preliminary analysis
of these traces exhibits scaling properties, we therefore use
them as the inputs of the queue system under investigation.

Data set Number of arrivals Mean Variance

DEC-PKT-1 3 027 907 2.5232 4.4153
DEC-PKT-2 3 987 942 3.3234 5.2416
DEC-PKT-3 4 518 090 3.7652 5.9968

TABLE I
SUMMARY OF THE INVESTIGATED DATA SETS.

B. Simple method for multiscaling functions estimation

The full description of a multifractal model involves both
c(q) and the scaling function � (q). We present here a simple
method for testing of scaling properties and also for the esti-
mation of these functions.

log(m) 

lo
g(

E
[|Z

(m
) |q ])

 

0 

log[c(q)] 

τ0(q) 

Fig. 7. A simple method for scaling test and the estimation of c(q) and the
scaling function �(q).

The definition of multifractal processes (Def. 1) claims the
stationarity condition for the increments. Therefore it is easy
to verify the following relation for the moments of the incre-
ments:

E[jZ(4t)jq ] = c(q)(4t)�(q)+1
= c(q)(4t)�0(q); q > 0; (7)

where Z(4t) denotes the increment process of time sample4t.
Thus this equality also holds for m = 1; 2; : : :

E[jZ(m4t)jq ] = c(q)(m4t)�0(q); q > 0: (8)

Choose 4t as the time unit, then

log E[jZ(m)jq] = �0(q) logm+ log c(q); q > 0: (9)

Based on this property, the method is the following: given a
data series of a process increments Z1; Z2; : : : ; Zn. We denote
its corresponding real aggregated sequence of the aggregation
level m by fZ(m); Z

(m)

k =
Pkm

i=(k�1)m+1
Zi; k = 1; 2; : : :g,

m = 1; 2; : : : If the sequence fZkg has scaling property then
the plot of absolute moments E[jZ (m) jq] versus m on a log-log
plot should be a straight line due to Eq. (9). The slope of the
straight line provides the estimate of �0(q) and the intercept is
the value for log c(q). The illustration of the method can be
seen in Fig. 7.

Note that we have no need to estimate c(q) and �0(q) for all
positive value of q, which is an impossible task. In fact, the
largest value of q we should considered depends on the inter-
ested finite queue length of the involved queue length proba-
bility, see below.



C. Analysis of theoretical and simulation results

We present here our analysis results of the mentioned data
sets. We validate the use of our approximation in a single
queue with constant service rate and general multifractal in-
put. Two typical cases are discussed in this Section.
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Fig. 8. Analysis results of the DEC-PKT-3 data set: (a) and (b) estimated
form of �0(q) and log[c(q)], respectively; the concavity of �0(q) shows the
multiscaling nature of the data set, (d) queueing simulation compared with the
theoretical tail probabilities.

After applying the estimation method presented in the pre-
vious subsection we get the two sets of estimated characteristic
functions �0(q) and c(q) of the data set DEC-PKT-3. The re-
sults are given in Fig. 8(b) and Fig. 8(c) (we estimate log c(q)

instead of c(q)). As observed in the figure the plot of the func-
tion �0(q) = �(q) + 1 is a concave curve which suggests the
multifractal property of DEC-PKT-3. We then make a compar-
ison between our approximation and the queueing simulation
of real data traces to validate the use of the formula in practice.

The approximation for probabilities of queue tail presented in
Proposition 1 can be rewritten in the form

log P[Q > b] �

� min
q>0

�
log c(q) + �0(q) log

b�0(q)

s(q � �0(q))
� q log

bq

q � �0(q)

�
=: min

q>0
flog T �(s; b)g = T (s; b): (10)

For the sake of calculation simplicity we choose the service
rate such that s = 1. The lower curve in Fig. 8(d) shows the
simulation result of the DEC-PFT-3 data set. Using Eq. (10)
the value of the logarithmic tail probability at each concerned
value of queue size b is taken by the numerical minimization
of log T �(s; b) with the estimated sets fc(q)g and f�0(q)g. An
example is shown in Fig. 9. In addition, we do not need to
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s=1 
b=500 

T(s,b) 

Fig. 9. Theoretical queue tail probability at each value of queue size b is the
minimum of logT�(s; b), for example DEC-PKT-1, s = 1; b = 500.

plot log T �(s; b) at each value of q to find its minimum. A
simple program routine can do it for all concerned value of b at
once. Our theoretical tail probabilities are on the upper curve
in Fig. 8. As comparing with the simulation result which is
seen in the same figure we found that it has the similar shape
and becomes tight as b increases. This validates our result.

Similar analysis has been performed with the DEC-PKT-
2 data set. The results are shown in Fig. 10. In this case it
is found that the data trace has the exact monofractal struc-
ture and can be well modelled by statistical self-similarity with
Hurst parameter H = 0:8, see Fig. 10(a). Our queueing model
deals with general multifractal input so it also involves the case
of monofractal processes. Therefore the experimental queue-
ing analysis also provides the correct queueing results which
can be seen in Fig. 10(b).

V. CONCLUSION

In this paper the queueing performance of a single server
infinite capacity queue with a constant service rate fed by gen-
eral multifractal input process was investigated. An asymp-
totic approximation was derived for the steady-state queue
length probabilities. It has been shown that the queueing for-
mula gives the well-known Weibullian queue tail in case of the
monofractal fractional Brownian motion input process. It was
also proven that the class of Gaussian processes with scaling
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Fig. 10. Analysis results of the DEC-PKT-2 data set: (a) estimated form of
�0(q) which shows the data set can be modelled by statistical self-similarity
with H = 0:8, (d) queueing simulation compared with the theoretical tail
probabilities.

properties is limited to monofractal processes and the charac-
teristic functions were derived. We have introduced a numeri-
cal calculation method for estimation of multifractal queueing
performance. Some impacts of multifractality were investi-
gated and presented. We have also shown that our formula
gives the correct result in analysis of both multifractal and
monofractal network traffic cases.

There are several interesting topics for further research.
Based on the multifractal process characterization one of our
goal is to build a multifractal traffic model parameterized by
the multifractal functions. We also intend to carry out more
multifractal analyses of measured LAN/WAN traffic with cor-
responding performance analysis.

VI. APPENDICES

A. Proof of Proposition 1

Using Lindley’s equation the tail probabilities of queue
length can be rewritten of the form: P[Q > b] =

P[supt�0W (t) > b]. First let consider the quantity P[W (t) >

b]:
Replacing W (t) by Eq. (1) we have

P[W (t) > b] = P[X(t)� st > b]

� P[jX(t)j > b+ st] (11)

= P[jX(t)jq > (b+ st)q]; for any q > 0

� E[X(t)q]

(b+ st)q
; (12)

The last inequality is applied using Markov’s inequality.
Since the input process is multifractal defined by Def. 1

then:

P[W (t) > b] � c(q)t�0(q)

(b+ st)q

) sup
t�0

P[W (t) > b] � sup
t�0

c(q)t�0(q)

(b+ st)q
=: sup

t�0
f(t): (13)

By straightforward calculation it is easy to see that that deriva-
tive of f(t) equals zero when

t0 =
b�0(q)

s[q � �0(q)]
> 0:

The second derivative of f(t) at this point is

f 00(t0) = c(q)t
�0(q)�1
0 (b+ st0)

�q�1s[�0(q)� q] < 0;

thus f(t) has its maximal value at t = t0. Note that we have
assumed that q > �0(q), this is justified by the fact that in the
monofractal case we have �0(q) = qH < q and by the concav-
ity of � (q).

Therefore

sup
t�0

P[W (t) > b] � sup
t�0

f(t) = c(q)

h
b �0(q)

s(q��0(q))

i�0(q)
h

b q

q��0(q)

iq

log

�
sup
t�0

P[W (t) > b]

�
� log

0
B@c(q)

h
b �0(q)

s(q��0(q))

i�0(q)
h

b q

q��0(q)

iq
1
CA ;

log

�
sup
t�0

P[W (t) > b]

�
� min

q>0
log

0
B@c(q)

h
b �0(q)

s(q��0(q))

i�0(q)
h

b q

q��0(q)

iq
1
CA : (14)

For a large class of stochastic processes (including fBm) the
following limit holds [32]:

lim
b!1

log(P[Q > b])

log(supt�0 P[W (t) > b])
= 1: (15)

In addition,

log(P[Q > b]) � log(sup
t�0

P[W (t) > b]); (16)

then the right-hand side of Eq. (14) is a upper bound of a lower
bound on log(P[Q > b]). The used inequalities in Eq. (16) and
Eq. (12) become tight for finite large b. Thus our approxima-
tion for the queue tail asymptotics is the following:

log(P[Q > b]) � min
q>0

log

0
B@c(q)

h
b �0(q)

s(q��0(q))

i�0(q)
h

b q

q��0(q)

iq
1
CA ; b large:

�

B. Proof of Lemma 1

Denote by X(t) the Gaussian process. Since X(t) has scal-
ing property it satisfies the general definition for multifractal
process, i.e., E[jX(t)jq ] = c(q)t�(q)+1. Thus the variance of the



X(t) process should be �2
t = c(2)t�(2)+1. The Gaussian pro-

cess X(t) � N
�
0; c(2)t�(2)+1

�
has the normal distribution and

we have

f(x) =
1p

2�c(2)t�(2)+1
exp

�
� x2

2c(2)t�(2)+1

�
:

The qth moment of X(t) can be calculated by the definition:

E[jX(t)jq ] =

Z +1

�1
jxjqf(x)dx

= 2

Z +1

0

xq
1p

2�c(2)t�(2)+1
:

: exp

�
� x2

2c(2)t�(2)+1

�
dx:

Introduce y := x2

2c(2)t�(2)+1
. The formula above can be

rewritten as follows:

E[jX(t)jq ] =
2q=2p
�

h
c(2)t�(2)+1

iq=2 Z +1

0

y
q�1
2 exp(�y)dy

=
[2c(2)]q=2p

�
�

�
q + 1

2

�
t
q

2
[�(2)+1]; (17)

which concludes our proof. �
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