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Abstract—The emerging technologies leveraging Data Center
Networks (DCN) and their consequent traffic patterns impose
more necessity for improving Quality of Service (QoS). In this
paper, we propose Sieve, a new distributed SDN framework that
efficiently schedules flows based on the available bandwidth to
improve Flow Completion Time (FCT) of mice flows. In addition,
we propose a lightweight sampling mechanism to sample a
portion of flows. In particular, Sieve schedules the sampled
flows, and it reschedules only elephant flows upon threshold hits.
Furthermore, our framework allocates a portion of the flows to
ECMP, so that the associated overhead can be mitigated in the
control plane and ECMP-related packet collisions are fewer as
well. Mininet has been used to evaluate the proposed solution,
and Sieve provides better FCT up to 50% in comparison to the
existing solutions like ECMP and Hedera.

Index Terms—Mice flow, Elephant flow, SDN, Data center
network, flow scheduling

I. INTRODUCTION

Typically, applications in DCN generate two classes of
flows which are mice and elephant flows. Mice flow is the
smallest and shortest-lived flows, and it is more conservative
to the communication delay. On the other hand, the largest
and longest-lived flows (i.e., elephant flows) are more affected
by the available bandwidth. The elephant flows are fewer than
mice flows, but they carry most (e.g., 80%) of the transferred
data [1] [2] in DCN. Therefore, these classes compete for
network resources. In this context, SDN paradigm provides
opportunities to improve network management and control.
The separated control plane provides an effective resource
handling in comparison with the traditional networks. Besides,
OpenFlow protocol [3] is one of the primary protocols to
provide communication between the SDN controller in
the control plane and the switches in the data plane. In
today’s DCN, SDN plays a vital role in network resource
allocation and traffic monitoring. Hence, the paradigm has
been significantly applied by the research community for
flow scheduling and traffic load balancing [4], [5]. The
process of managing massive data transmissions in real-time
requires an efficient resource and traffic management [6]. The
typical design of DCN represents a multi-rooted tree that has
many different paths between each pair of hosts. Therefore,
the challenge is to identify the suitable path for flows and
avoid the potential traffic congestions as well. In particular,

such kind of congestions would profoundly degrade QoS
of mice flows. Thus, deploying cloud-based applications in
DCNs, which leverage the static hashing based scheduling
such as ECMP, is not an efficient mechanism due to the
probable packets collisions. Furthermore, employing network
devices (e.g., hosts or switches) for flow scheduling is still
challenging since it requires some modifications in the kernel
or sometimes in the hardware. On the other hand, the fully
central flow scheduling model yields overhead on the control
plane.

In this paper, we present Sieve framework which provides
a distributed SDN-based scheduling solution. The key contri-
bution of this paper is proposing a flow scheduling framework
that achieves the following objectives:

1) We designed and implemented a distributed SDN-based
framework for scheduling flows in DCN.

2) Sieve reschedules only elephant flows based on the ports
occupations.

3) Sieve implements a lightweight sampling mechanism to
classify flows.

4) Our framework improves FCT of mice flows in DCN
without dramatically degrading the throughput of ele-
phant flows.

5) Our framework does not require any modification in end-
host kernel nor switch hardware.

This paper is structured as follows: Section 2 surveys the
related works. We present the Sieve framework in Section 3,
and evaluate its performance in Section 4. We conclude our
work in Section 5.

II. RELATED WORK

In this section, we present the literature about SDN-based
solutions for flow scheduling. Most of the current flow
scheduling solutions are either fully central like Hedera [5]
or distributed like CONGA [7]. Furthermore, some works are
intended to involve network devices (e.g., hosts or switches)
in flow scheduling decision. However, these works are still
challenging to be deployed in today’s DCN. For example,
Mahout [4] requires modifications in the kernel of servers to
detect elephant flows, whereas some other works employ end-
host like in [8] to calculate the transmission delay. The works
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Fig. 1. Flow chart of the proposed framework

in [7] and [9] add extra functions to the switches for sampling
and delay calculations.

Hedera [5] reschedules a flow when its consumption exceeds
10% of the link capacity. Besides, Hedera schedules mice
flows by hashing-based ECMP only. Mahout [4] employs
end-hosts in DCN to detect the elephant flows. However,
deploying such a method yields overhead due to the contacting
with the end-hosts. Yazidi et al. [10] propose hot and cold
link detection mechanisms to reschedule elephant flows. This
solution requires to monitor demands of all flows. Tang et al.
[11] propose a flow classification and a scheduling model for
mice and elephant flows. The solution identifies the flows by
tracking their inter-arrival times. The work in [12] presents
a proactive method for flow scheduling by estimating an
alternative path based on the port utilization, but monitoring
every flow results in overhead in the control plane. The work
in [13] proposes a flow scheduling algorithm in SDN-based
DCN where it schedules aggregated elephant flows whose
consumption is more than 10% of the link capacity. However,
this study provides no investigation in terms of FCT of
mice flows. Fu et al. [14] proposes a balancing flow table
scheme to mitigate FCT of mice flows by computing the best
path for each new mice flow, which incurs overhead since
the number of mice flows is big in DCN. Therefore, Sieve
is a new distributed solution, but it does not involve end-
hosts contacting. In addition, Sieve relieves the overhead by
applying its functions on a portion of the flows. Furthermore,
no modifications in kernel nor hardware are required to apply
it.

III. THE PROPOSED FRAMEWORK

In this section, we introduce the architecture and function-
ality of our framework.

A. Framework architecture

The framework architecture is depicted in Fig. 1. Our frame-
work functionalities are distributed in the data and control
planes that different flow tables are used in the data plane for

Fig. 2. Flow entry tables in different layers switches

specific purposes. Besides, the control plane contains modules
for scheduling the sampled packets, polling network statistics,
detecting and rescheduling elephant flows.

Due to the fact that ECMP yields flow collisions as a result
of static hashing, we aim to sample a portion of the network
flows so that our framework will schedule the sampled flows.
ECMP schedules the remaining part of the network flows. In
addition, Sieve improves FCT of mice flows by detecting and
rescheduling only elephant flows upon threshold hits; hence,
it mitigates the ECMP-related flow collisions.

Fig. 2 depicts the flow tables and the types of flow entries
in switches of the three layers. Switches in the edge layer
contain two tables. Table 0 contains proactive flow entries,
which are for forwarding the packets destined to the directly
connected hosts and for sampling packets, as presented in
Table I. In addition, Table 0 contains flow entries for polling
and scheduling sampled flows, which are re-actively installed
by the framework in Table 0 of all switches along the chosen
path. On the other hand, Table ECMP is the second flow
table, in the edge switches, pipelined from Table 0 in case of
selecting the second bucket of Sampling group entry of Table
0. As well as, switches in core and aggregate layers contain
proactive flow entries for the directly connected subnets.
Besides, ECMP-related scheduling is applied to the flows
forwarded to an upper layer as shown in Table ECMP and
Table 0 of edge and aggregate layers, respectively. Table II
presents the structure of ECMP-related scheduling, which is
a proactive group entry contains equally weighted buckets to
apply ECMP logic. Furthermore, each flow entry type has a
specific priority value matches the preference presented in Fig.
2.

Sieve employs an equally weighted bucket group of Open-
Flow protocol to sample a portion of flows. In particular, the
first bucket of the sampling group entry, presented in Table I,
is for sending packet samples to the controller and the second
one for applying ECMP. The first packet of a flow, arrived at
an edge layer switch from a directly connected end-host, will
match sampling group entry, so it is either forwarded based on
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TABLE I
SAMPLING GROUP ENTRY

group id group type bucket action

group id=1 select bucket=weight:50,actions=CONTROLLER,
bucket=weight:50,actions=GOTO TABLE:ECMP

TABLE II
GROUP ENTRY OF ECMP-BASED FORWARDING

group id group type matching criteria bucket action

group id=1 select dst subnet ip bucket=weight:50,actions=OUTPORT:1
bucket=weight:50,actions=OUTPORT:2

ECMP or sent to the controller by sending packet-in message.
As a result, ECMP schedules a portion of flows, and Sieve
will schedule the remaining part of the flows.

Then, Sieve starts to compute the shortest four paths be-
tween the source and the destination then adopts the path
whose bottleneck link is the maximum. For that sake, Sieve
inspects the network graph representing the network topology
and the available bandwidth. Finally, Sieve installs a new
polling flow entry for the best path into switches along it for
the subsequent packets. In particular, the installed polling flow
entries contain source IP, destination IP, source transport port,
and destination transport port fields. Sieve assigns incremental
priority for the installed polling flow entries provided the order
presented in Fig. 2 is maintained. Specifically, our framework
schedules the sampled flows similarly regardless they are
elephant or mice flows.

Besides, Sieve periodically probes port statistics from all
switches, and it maps the information on the network graph.
Whenever, the occupied bandwidth on an edge switch port hits
the threshold, which is 25% of the link capacity, Sieve starts
to reschedule some or all elephant flows on the edge switch.
Hence, it starts to detect the elephant flows forwarding out
of this port. Sieve detects elephant flows based on the bytes
count of the polling flow entries installed into the edge switch.
Specifically, Sieve fetches all polling flow entries whose bytes
count is more than 50KB. In this context, we consider the flow
size as the classification principle in conformity with the study
in [1]. Then, our framework finds the bottleneck of the possible
new paths, and it examines if the alternative paths have greater
available bandwidth than the original one. In addition, Sieve
tries to find a new path that the original edge switch port
is not a part of it. The framework reschedules a number of
elephant flows proportional to the available bandwidth on both
the original port and the bottleneck of the new path. However,
in case there is only one elephant flow on an edge switch port
upon threshold hits, Sieve will try to reschedule it to a better
path. As a result, Sieve considers the potential ECMP-related
collisions by tracking port statistics. Upon threshold hits, it
provides more bandwidth for mice flows by rescheduling
elephant flows.

B. Flows distribution

We implement Select type of the Openflow group feature
with two equal weighted buckets. In particular, in case a packet

Fig. 3. K-4 Fat-tree DCN topology

matched the sampling group entry on an edge switch, the
hashing value will be computed based on the packet header
and the bucket weight value. Then, the corresponding action of
the chosen bucket will be executed. To illustrate the hashing
based packet allocation, we apply SUHA (Simple Uniform
Hashing Assumption) on the proposed sampling mechanism.
This claim can be achieved under two conditions:

1) The probability of placing any new item to the available
buckets is equal.

2) The process of bucket-based hashing is independent.
These conditions can be implemented on our sampling

technique. Assuming the incoming flows x and y will have dif-
ferent hashing values f(x) and f(y) depending on the packet
header values and values of the bucket weights. However, the
probability of allocating the flow to the first or the second
bucket is equal. As a result, a flow can not be allocated to
both buckets at the same time. Eq. 1 presents the probability
of the hashing function.

Pr(h(x) = i) =
1

n
(1)

h(x) is the hashing function, i is the index value (i ∈
[0, n− 1]), and n is the hashing locations (i.e., in our case
n = 2). Therefore, the upper bound of the flows allocated to
ECMP bucket can be calculated as in Eq. 2 using Boole’s
inequality.

Pr(ECMP receives ≥ k flows) ≤
(
n

k

)
1

nk
(2)

The binomial combination
(
n
k

)
represents the subset of the

hashed flows where every flow from k will be sent to the
ECMP bucket with the probability of 1

nk , as proven in [18] for
the Balls-and-Bins model. Therefore, the flows will be evenly
distributed.

C. Framework implementation

We integrated the framework modules with Ryu SDN con-
troller [16]. In addition, we leveraged OpenFlow 1.3.1 and
Mininet 2.2.2d as the testbed environment to evaluate our
framework in 4-ary Fat-tree DCN topology, as shown in Fig.
3 [17]. We used Intel Core i5-8400 3.20 GHz, 16 GB RAM,
Ubuntu 16.04.
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IV. EXPERIMENTAL RESULTS

We compared the performance of our framework to that of
Hedera and ECMP since Hedera is the mainstream scheduling
and detection framework for DCN, and ECMP acts as a
commonly used scheduler in academic and business sectors.
For that sake, we employed k-4 Fat-Tree topology in which
core layer connects to aggregation layer with 100 Mbps
bandwidth and 250 µs one-way propagation delay links, 20
Mbps and 1 ms one-way propagation delay for links connect
aggregation and edge layers, and 10 Mbps and 2 ms one-way
propagation delay for links connect edge layer and end-hosts.

We conducted two scenario groups. Firstly, we evaluated
the performance of Sieve under three different 300 seconds
scenarios. In the first scenario, called as Concentrated Traffic
(CT), elephant and mice flows follow many-to-one patterns,
in which twelve servers send data to three servers on different
pods than the sources. The second one is the uniform pattern,
called as Uniform Traffic (UT), where all servers are employed
to generate the traffic, and each source has a different desti-
nation. Finally, the third scenario called as Multi Destinations
(MD), we generated traffic from two servers, connected to the
same edge switch, to ten different servers on the other pods
(i.e., five destinations for each source).

We employed iperf for generating elephant flows, and
Apache server [18] for generating mice flows by repeatedly
requesting a web page file of 10 KB in size at the tenth
second of the simulation lifespan. As a result, for this group
of scenarios, our framework will be examined in a situation
where mice flows are synchronized to generate burstiness, and
elephant flows exist to evaluate the framework under high
load. We repeated the experiment 10 rounds for each different
scenario. In addition, we employed high elephant flows share
of 1:1 (i.e., mice to elephant ratio) to investigate the impact
of the framework under a high volume of elephant traffic.
Besides, we simulated a mice to elephant ratio of 3:1 as the
ratio reported in [1]. Basically, we followed the evaluation
model in [19] to evaluate the Sieve performance in terms of
FCT of mice flows and goodput of elephant flows. Besides, we
compared our framework performance under the traffic pattern
employed in [5] in terms of loss rate and delay.

A. FCT of Mice flows and goodput of Elephant flows

We compared FCT of each algorithm since FCT is the most
essential performance metric for mice flows. Basically, we
present the average value of FCT and goodput as well as 99%
percentile values of them to present the major value ranges.
As shown in Fig. 4 and Fig. 6, Sieve outperforms Hedera and
ECMP, specifically under CT traffic pattern. Our framework
provides less delay for mice flows by rescheduling elephant
flows. On the other hand, ECMP provides no distinction be-
tween elephant and mice flows, and it may yield collisions due
to static hashing. Similarly, Hedera reschedules elephant flows
based on their consumption only. Therefore, some congestions
may occur without any reaction as long as elephant flows
consumption under 10% of the link capacity. Similarly, FCT
of mice flows under our framework is less than that under

Fig. 4. 99% FCT of mice flows

Fig. 5. 99% Goodput of elephant flows

Hedera and ECMP in case of UT scenario, as shown in Fig. 4
and Fig. 6. Since the number of the sources and destinations
are same, Sieve finds more opportunity to reschedule elephant
flows to better paths upon threshold hits. Finally, in the case of
MD scenario, all algorithms provide the same performance in
most cases, since there are only two sources connected to the
same edge switch. Therefore, the possibility of rescheduling
elephant flows to better paths is limited.

Furthermore, we compared the goodput of elephant flows
in all scenarios, as shown in Fig. 5 and Fig. 7. Sieve provides
goodput for elephant flows close to that of Hedera and ECMP
under the most scenarios. In particular, under the ratio of
3:1, which is close to the real ratio in DCN. Table III & IV
present the 95% confidence intervals of mice flows FCT and
elephant flows goodput. From Table III, we observe that Sieve
always had the best FCT among all algorithms in different
scenarios. In addition, Sieve provides so close goodput values
in comparison to other algorithms, as shown in Table IV.

B. Packet Loss and Network Delay

We conducted a second scenario group to investigate our
framework performance in terms of loss rate and delay in
the same topology shown in Fig. 3. We generated ping echo

54



Fig. 6. Mean FCT of mice flows

Fig. 7. Mean Goodput of elephant flows

TABLE III
GOODPUT WITH 95% CONFIDENCE INTERVAL

Scenario Hedera ECMP Sieve
CT 3-1 1.11 ± 0.11 1.09 ± 0.12 1.08 ± 0.12
UT 3-1 2.9 ± 0.2 2.92 ± 0.21 2.73 ± 0.26
MD 3-1 0.57 ± 0.04 0.57 ± 0.04 0.57 ± 0.04
CT 1-1 0.61 ± 0.05 0.59 ± 0.04 0.54 ± 0.07
UT 1-1 2.5 ± 0.18 2.53 ± 0.17 2.2 ± 0.23
MD 1-1 0.49 ± 0.04 0.49 ± 0.04 0.48 ± 0.04

TABLE IV
FCT WITH 95% CONFIDENCE INTERVAL

Scenario Hedera ECMP Sieve
CT 3-1 1.83 ± 0.03 2 ± 0.03 1.59 ± 0.05
UT 3-1 1.96 ± 0.24 1.94 ± 0.23 1.38 ± 0.19
MD 3-1 0.8 ± 0.14 0.81 ± 0.15 0.8 ± 0.14
CT 1-1 2.33 ± 0.24 2 ± 0.23 1.71 ± 0.2
UT 1-1 2.11 ± 0.35 2.17 ± 0.35 0.93 ± 0.23
MD 1-1 1 ± 0.2 1.15 ± 0.21 0.92 ± 0.19

Fig. 8. Average first packet loss

Fig. 9. Average successive packets loss

messages between the end-hosts according to the following
traffic patterns:

1) Random: each end-host sends traffic to other hosts in
the network according to uniform distribution.

2) Staggered probability (Edge p, Pod p): each end-host
sends traffic to another one connected to the same edge
switch with probability (Edge p), to the same pod with
probability (Pod p), and to other pods in the network
with probability (1− Edge p− Pod p).

Fig. 10. Average round trip delay for the first packet
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Fig. 11. Average round trip delay for the successive packets

Basically, the traffic pattern presented in [5] has been
adopted. We aimed to overwhelm all links by involving all
end-hosts in traffic generation by initiating one TCP elephant
flow generated by iperf for 60 seconds from each end-host.
Besides, each end-host sent 600 ping echo messages to another
end-host according to the traffic pattern. We repeated the
experiment 20 rounds for each solution, and we averaged the
results. We compared the results of the average first packet
loss and the average successive packets loss reported by ping
as shown in Fig. 8 and Fig. 9, respectively. Sieve outperforms
Hedera and ECMP in case of connections spanned all DCN
topology layers (e.g., Stag0.1 0.2, Stag0.2 0.3) as shown in
Fig. 8 and Fig. 9. In case high (1−Edge p− Pod p) value,
Sieve can utilize DCN topology to reschedule elephant flows to
better paths and minimize the loss rate as a result. On contrary,
in case of connections on a same pod, Sieve can not find many
alternative paths between the source and the destination. In
case of connections between end-hosts connected to the same
edge switch, Sieve has no effect as directly connected flow
entries will be matched.

Furthermore, we illustrate RTT values reported by ping
in Fig. 10 and Fig. 11 in case of the average first packet
delay and the average successive packets delay respectively.
These figures reveal that Sieve provides connections with delay
values so similar to that of Hedera and ECMP. In this scenario
group, the network is overwhelmed with elephant flows so that
it represents the worst case scenario.

V. CONCLUSION

In this paper, we presented a flow scheduling framework
is called Sieve in DCN to improve FCT of mice flows. Our
framework has distributed functions among the data and con-
trol planes. In addition, it has partial flow visibility to mitigate
the overhead in the control plane and to avoid the ECMP-
related collisions. Sieve employs group feature of OpenFlow
protocol to provide flow sampling, and it probes installed
flow entries to identify elephant flows. We compared FCT of
mice flows under Sieve to the existing solutions, Hedera and
ECMP. We showed that Sieve provides better FCT for mice
flows up to 50% in case of uniform traffic distribution without
impairing the throughput of elephant flows. We also conducted
a second scenario group with a different traffic pattern for

further analysis of its impacts in an overwhelmed network in
terms of packet loss and delay. We found that Sieve provides
better loss rate in case of the connections spanned the three
layers of DCN, and it has similar delay to other solutions in
term of delay. Moreover, asymmetric DCN is common in today
data center, so our future work will cover evaluating Sieve in
such an environment.
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