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Abstract—As micro traffic is dominant in data center networks,
many conditions must be satisfied to guarantee a very short
delay. In this context, the flexibility provided by software defined
networks (SDN) represents an opportunity for proposing new
quality of service (QoS) based solutions. In this paper, we propose
a new SDN-based framework to utilize QoS mechanisms in
providing better conditions for data center networks to deliver
micro flows efficiently. We present a Micro-flow framework
which deals with queue length as a sign to avoid congestion
events so that the flow completion time of micro flows can
be improved by adapting the data rate of background flows
without any intervention of source end hosts for rapid reaction.
By creating queues match the network topology, our framework
probes the length of queues dedicated for micro flows such that
the data rate of background flows on upstream switches can
be updated proportionally to the length of the micro queue on
the downstream switch. We evaluated our solution by Mininet in
different scenarios. The experiments demonstrate that Cubic and
New Reno with our framework give better completion time for
micro flows compared to that when DropTail is used by Cubic
and New Reno, mitigate the probability of congestion events and
do not severely throttle the data rate of background flows.

Index Terms—Micro flow, Software Defined Networks, Quality
of Service, SDN controller, Data Center Networks, OpenFlow,
Network congestion

I. INTRODUCTION

Since networks have limited resources, specifically buffer
size, network congestion might decrease the performance of
the network since it has a strong influence on the quality
of service. In this context, there are many solutions for the
congestion which can be classified into two categories: i) in-
network solutions, ii) end-host solutions [1]. The first category
encompasses solutions rely on scheduling [2], rerouting [3]
or change TCP parameters [4] [5] which mainly intend to
mitigate or avoid the congestion, where network nodes like
switches and routers hold mechanisms to deal with the conges-
tion. In contrast, the solutions belong to the second category
define a direct reaction at end-hosts based on the network sit-
uation [6] [7]. However, all end-hosts solutions are performed
by TCP protocol which provides congestion control algorithms
for adapting the data rate according to network conditions by
tuning the size of the congestion window based on the network
feedback. Many-to-one data transmission pattern is a reason
of the network congestion problem, especially in data center
networks [8] and cluster-based storage systems [9] where it is

a result of a simultaneous data sending from many senders to
one receiver. As a result, TCP re-transmissions after timeouts
can degrade the overall throughput [10].

End-to-end delay is the summation of processing, trans-
mission, propagation, and queueing delays where processing
delay can be neglected, and propagation delay can be com-
puted based on network characteristics, so the summation of
transmission and queueing delays over a route makes up the
upper bound total end-to-end delay [11]. However, queueing
delay depends on the scheduling mechanism at egress ports
along the route. As a result, each link in the network can
provide a unique level of QoS based on the output queue
situation. In this context, the introduction of SDN enables us
to implement the principles of quality of service such that we
can avoid and mitigate the congestion by allocating network
resources centrally [12]. In this regard, SDN provides valuable
capabilities to deal with congestion events such as central
monitoring and controlling so that proposing new solutions
will be more flexible. Therefore, the categories of congestion
solutions can be implemented by SDN since southbound APIs
like OpenFlow can be employed by SDN controllers to inspect
the network situation where SDN provides a fine-granular way
to handle flows based on many packet fields and parameters
collected from the data plane.

The main contribution of this paper is proposing a frame-
work to improve the flow completion time of micro flows in
data center networks by leveraging of SDN paradigm without
dramatically degrading the throughput of background flows.
Furthermore, our framework can provide better service for
micro flows by eliminating the delay resulted from contacting
the end-hosts upon congestion events. Besides, our framework
does not require any modification in TCP stack nor switch
hardware.

This paper is structured as follows. Section 2 presents
related works. We discuss our framework in Section 3 and
evaluate its performance under congestion scenarios in Section
4. We conclude our work in Section 5.

II. RELATED WORKS

In this section, we present the literature about SDN based
solutions for the congestion problem. The researches related to
this problem can be classified into three main categories. The



first category is QoS based rerouting solutions. The second
category contains solutions which modify TCP fields in IP
packets. The last category contains QoS queue based solutions.
Regarding the last category, the solution presented in [13] can
avoid the congestion in private campus networks by creating
many queues on switch ports and finding paths based on SDN
paradigm such that satisfying the bandwidth requirements
without exceeding the capacity of the links. Authors in [14]
define QoS requirements for all applications in data center
network to create prioritized queues on switch ports such
that packets are dequeued out of ports based on their priority
without exceeding the bandwidth of the ports to avoid the
congestion. A dynamic routing and rate limit system has been
proposed in [15] to find non-congested routes and dynamically
reroute flows upon detection the congestion on any switch port
based on SDN paradigm as well as to define prioritized rate
limits. Other SDN based solutions fulfill QoS requirements by
setting data rates [16] [17]. However, no distinction between
micro and background flows has been proposed in the previous
solutions.

Our framework stems from the fact that end-to-end solutions
that rely on window management can be far from effective,
requiring many round trip times (RTTs) to react properly to
congestion by end hosts. Also, the solutions rely on rerouting
do not provide the satisfied guarantee for micro flows. Finally,
some solutions in the last category require modifications to
TCP stack and need time for a proper response more than the
lifespan of micro flows in data center networks.

III. MICRO-FLOW FRAMEWORK

In this section, we introduce the architecture and functional-
ity of our framework. The terminologies and variables used by
Micro-flow framework are presented and described in Table I
and Table II respectively.

A. Framework Architecture

Micro-flow framework aims to guarantee the required band-
width for micro flows by reducing the data rate of background
flows under high load epochs so that micro flows will be
served with less delay. To control the data rate of background
flows, queues have been created on each switch port, dedicated
for background flows, as many as egress ports a downstream
switch has as well as one more queue has been created on
each port dedicated for micro flows. Background flows in an
upstream switch will be mapped to one of background queues
based on their destination and all micro flows will be mapped
to the micro queue. Fig. 1 shows flows forwarded out of an
egress port on the upstream switch to a port on the downstream
switch. As a result, the data rate of the flows will have a direct
impact on the queue length of egress ports on the downstream
switch.

Micro-flow framework checks the length of micro queues
so that the data rate of background flows forwarded through
the corresponded mapped queues on upstream switches
will be adapted accordingly. The architecture of Micro-flow
framework is shown in Fig. 2. We can see that Micro-flow

Fig. 1 Connected switches

framework employs an SDN controller, where the control
plane of SDN paradigm comprises the queue monitoring
module, background flow selection module, and data rate
control module. By using the SDN paradigm, the previous
modules can control and monitor the data plane. Micro-Flow
framework considers the main idea which is that the delay
of micro flows in data center networks is yielded by the
existence of background flows. Therefore, our framework
proposes a new approach to deal with this problem by
applying QoS based solution on upstream switches instead
of notifying data sources due to the fact that such kind of
notifications takes time longer than the lifespan of micro
flows. For the sake of immediate reaction to any probable
degradation in flow completion time (FCT) of micro flows,
our framework updates the data rate of the corresponding
background queues on upstream switches commensurate with
the length of micro queues on downstream switches.

B. Queue monitoring

Centrally in the control plane of SDN paradigm, Queue
monitor module periodically probes the length of queues over

TABLE I

TERMINOLOGIES

Terminology Description

Upstream Switch
a switch from which a traffic flow

is forwarded to its downstream
switch

Downstream Switch a switch receives a traffic flow
from its upstream switch

Egress Port
any switch port out of which the

arrived traffic on another port will
be forwarded

micro queue a queue dedicated for micro flows

background queue

a queue dedicated for background
flows forwarded to a specific
egress port on a downstream

switch



Fig. 2 Architecture of Micro-flow framework

a varied interval. Queue monitor module is based on the ob-
servation that more than 80% of flows in data center networks
are micro flows, and their size less than 10KB [18]. According
to this fact, we have defined the congestion threshold as
a function of the number of egress ports. To mitigate the
overhead, queue monitor module probes the length of the
micro queue on switch ports over intervals proportionally vary
to the length of micro queue such that the probing interval will
be longer as the length of micro queue gets shorter. Algorithm
1 shows the steps of the queue monitor module.

Algorithm 1 Framework Applications
initial: ql = 0, p = k, pkt = 1500B, qc = BDP, interval = 0, bgt size =
10KB, timeout = 100ms

1 Function Queue Monitor( )
2 repeat per interval:
3 TH = (qcsj−ethn - (p - 1) * pkt)
4 if (qlsj−ethn (t) > TH)
5 Datarate Update (si- ethx, qlsj−ethn )
6 endif

7 interval =
TH

qlsj−ethn

∗RTT

8 Function Find BGT( )
9 if (flow size > bgt size):
10 bgt flows = requests.get(s-eth)
11 for m in bgt flows
12 bgt list[m] = (ip src, ip dst, port src, port dst)
13 map bgt list[m] to a queue
14 for m in bgt flows
15 if bgt list[m] NOT IN bgt flows:
16 del (bgt list[m])
17 Function Datarate Update(si-ethx, qlsj−ethn )

18 α =
qlsj−ethn (t) − TH

qcsj−ethn − TH
19 if (qlsi−ethx < TH ):

20 β =
qcsi−ethx − qlsi−ethx

qcsi−ethx

21 else:
22 exit

23 TR = BWsj−ethn × (1 −
α× β

2
)

24 change TR on si-ethx for timeout

C. Background flow selection

Our background flow selection module leverages sFlow
[19] to identify background flows. In addition, this module
maintains an active background flows table that includes all
active background flows forwarded out a specific port. Since
our framework needs to maintain the required information to
define background flows uniquely, each table entry comprises
of src ip, dst ip, src port, dst port, port. Background flow
selection module adds a new entry to the table when the flow
volume is larger than 10 KB. When the length of the micro
queue is longer than the threshold, this module will retrieve
all entries for background flows forwarded out a specific port.
Whenever the length of the micro queue is less than the
threshold, all entries associated with that port will be deleted.
Furthermore, to maintain active background flows only in the
table, all entries of idle flows will be deleted whenever their
connections end. Algorithm 1 presents background flow entry
insertion and deletion operations.

D. Data rate control

After adding entries into the active background flow table,
data rate control module employs QoS capabilities of the SDN
controller to regulates the data rate of background queues
on the upstream switches in accordance with the length of
background queues and that of the micro queue on an egress
port in a downstream switch. More specifically, a switch port
is overloaded if the received traffic rate is more than its link
bandwidth. As a result, its queue will grow proportionally
to the difference between the received traffic rate and link
bandwidth. Therefore, Micro-flow framework mitigates the
received traffic rate on a port by reducing the data rate of
background queues on upstream switches to guarantee fast
transmission for micro flows. Therefore, background flows will
be forwarded out of an egress port on an upstream switch by
a rate directly proportional to the length of its background
queue and inversely proportional to the length of the micro
queue on the egress port of the downstream switch. The
data rate of background queue on upstream switch port is
computed as presented in Algorithm 1 where α and β are
control parameters proportional to the length of the micro
queue on the downstream switch and that of the background
queue on the upstream switch port, respectively. Consequently,
the data rate of background queues on ports of upstream
switches will be mitigated up to 50% when the length of
the micro queue on egress port of the downstream switch is
about to have congestion event as well as no backlog in the
background queue on upstream switches. In contrast, it cannot
be mitigated when the length of a background queue is larger
than or equal to the threshold. Fig. 3 illustrates the work-flow
of the framework. Micro-flow framework was implemented in
python to run along with any SDN controller can provide Rest
API. We integrate our framework with Ryu controller [20].

IV. EXPERIMENTAL RESULTS

We evaluated the performance of Micro-flow framework
via Mininet 2.3.0. In this section, we present the results of



TABLE II

VARIABLES USED BY MICRO-FLOW FRAMEWORK

Variable Description
ql Queue occupation
p Number of switch ports
k The scale of Fat-tree topology
qc Queue capacity

BDP Bandwidth delay product
interval Probing queue length frequency

bgt size The threshold to identify
background traffic

timeout The maximum time of applying
updated data rate

sa − ethb
The Ethernet port number b on

switch a
s-eth Any Ethernet port on any switch
pkt The packet size

TH The threshold of micro queue
occupation

flow size The size of a flow

bgt flows The set of all identified
background flows

bgt list The active background flows table

α
the control parameter of micro
queue length on downstream

switch

β
the control parameter of

background mapped queue length
on upstream switch

TR The data rate of background
mapped queue on upstream switch

BW Bandwidth of egress port on a
downstream switch

Fig. 3 Micro-flow Framework workflow

the experimental evaluation of Micro-framework where we
compared the performance of TCP new Reno and TCP Cubic
with drop tail Active Queue Management (AQM) enabled to
that with Micro-flow framework. However, TCP Cubic and
TCP new Reno use packet loss to detect network congestion,
but TCP Cubic is less aggressive than new Reno and it is
used by default in Linux kernels. For proper configuration, we
enabled Selective Acknowledgment (SACK) for all scenarios,
we set minimum Retransmission Timeout (RTO) to the default
value of Linux which is 200ms, IP packet size to 1500 Bytes,
and the buffer size to 36 packets (54 KB). We used fat-tree
topology whose scale k=4 similar to the one proposed in
[21]. Each core switch connects to four aggregation switches
with 100 Mbps bandwidth and 250 µs one-way propagation
delay links, 10 Mbps and 2 ms one-way propagation delay
for links connect aggregation and edge layers, and 5 Mbps
and 5 ms one-way propagation delay for links connect edge
switches and end-hosts where each edge switch has two
servers. Therefore, the over-subscription ratio is 1:1 at edge
level. We evaluate the performance of the framework by run
10 seconds simulations for three different scenarios contain
a mix of 128 micro and background flows. In all scenarios,
background and micro flows follow two patterns, the first
for generating connections span all topology layers, and the
second for connections span the edge and aggregation layers
where all servers in all racks have been employed to generate
the traffic volume for each scenario. We employed iperf for
generating unlimited background traffic during the whole
simulation period and Apache server [22] for generating
micro flows by repeatedly requesting ”index.html” webpage
of size 10 KB as reported in [18] at the beginning of each two
seconds during the simulation period. Therefore, Micro-flow
framework will be examined in a situation where micro flows
are synchronized to generate burstiness, and background flows
exist to evaluate the framework under high load. We repeated
the experiment 50 rounds for three different scenarios and the
average throughput of background flows has been computed
for each round while the average flow completion time
of micro flows has been computed for each two seconds
epoch. The details of three scenarios are as follows, in the
first scenario, we simulated a background-to-micro ratio
of 1:3,i.e., 32 background and 96 micro flows as the ratio
reported in [18] [10]. In the second scenario, we employed
higher background flows share of 3:1 to investigate the impact
of Micro-flow framework under a high volume of background
traffic. In the third scenario, we run a ratio of 1:1. For micro
flows, we present Cumulative Distribution Function (CDF) of
average FCT. These results are shown in Fig. 4 for the 1:3
scenario, Fig. 5 for the 3:1 scenario, and Fig. 6 for the 1:1
scenario. For background flows, we essentially present CDF
of the average throughput.

In 1:3 scenario, Fig. 4a shows that Micro-flow framework
can improve FCT of micro flows under high load of micro
flows compared to both Cubic Drop Tail and New Reno Drop
Tail. This mainly due to the fact that a high load of micro flows
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Fig. 4: Performance of Micro-flow framework for TCP Cubic and TCP New Reno in 1:3 ratio scenario

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Average Response Time (s)

0

0.2

0.4

0.6

0.8

1

C
D

F

Cubic-Drop Tail

Cubic-MF

New Reno-MF

New Reno-Drop Tail

(a) Average FCT for micro flows

0 0.5 1 1.5 2 2.5 3

Average Throughput (Mb/s)

0

0.2

0.4

0.6

0.8

1

C
D

F
Cubic-Drop Tail

Cubic-MF

New Reno-MF

New Reno-Drop Tail

(b) Average throughput for background flows

Fig. 5: Performance of Micro-flow framework for TCP Cubic and TCP New Reno in 3:1 ratio scenario
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Fig. 6: Performance of Micro-flow framework for TCP Cubic and TCP New Reno in 1:1 ratio scenario



bloats the buffers which worsens their completion time. Fig. 4b
shows that Micro-flow framework nearly does not aggressively
impact on the throughput of background flows under the high
ratio of micro flows due to the fact that when threshold hits,
there is not a high load of background flows; therefore, the
data rate of background flows will be proportionally reduced.
In 3:1 scenario, Fig. 5a shows similar results to the previous
scenario under high ratio of background flows compared to
both Cubic Drop Tail and New Reno Drop Tail because of
buffers bloating which worsens the completion time of micro
flows. Also, Fig. 5b shows that Micro-flow framework does not
degrade the throughput of background flows due to that there
are not so many threshold hits during this scenario. Finally,
similarly Fig. 6a shows that Micro-flow framework improved
FCT of micro flows under the balanced ratio. Furthermore,
Fig. 6b shows the same results as before. As a result, Micro-
flow framework maintains a low impact on the throughput of
background flows because it temporarily mitigates the data
rate of background flows which will be restored after a very
short period equals at most to the transmission time of micro
flow.

V. CONCLUSION

In this paper, we presented an SDN-based QoS congestion
control framework to improve the flow completion time of
micro flows in data center networks. Our framework relies
on monitoring of queue length by employing the capabili-
ties of SDN paradigm to reduce the probability of service
degradation of micro flows that might take place due to the
coexistence of high volume of micro and background flows.
Our framework creates queues on each switch port employing
one for micro flows and the others for background flows
based on their destinations. Micro-flow framework mitigates
the data rate of background flows when the micro queue
occupation on a downstream switch hits the predefined thresh-
old. Our framework showed mitigation in flow completion
time of micro flows up to 400 ms without impairing the
throughput of background flows by comparing its performance
to the performance of Cubic and New Reno with DropTail
AQM. It is worth to mention that Micro-flow framework
can provide instant reaction to probable congestion events
without contacting the data sources to mitigate the delay of
reaction especially in an environment like data center network
where the majority of the traffic is micro flows which need
more rapid reactions than that in the literature. However,
further performance evaluation of Micro-flows framework in
real production data center networks with realistic conditions
should be conducted.
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