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Abstract—HTTP has been the protocol for transferring web
traffic over the Internet since the 90s. However, over the past
20 years websites have evolved so much that today this protocol
does not provide optimal delivery over the Internet and became
a bottleneck in decreasing page load times. Google is pioneering
in finding better solutions for downloading web pages and they
implemented two new protocols: SPDY in 2009 and QUIC in
2013. Since the wide range deployment of SPDY clients and
servers it has been revealed that in some scenarios SPDY can
negatively affect the page transfer time mainly due to the fact
that the protocol is working over TCP. To tackle these obstacles
QUIC uses its own congestion control and based on UDP in
the transport layer. Since QUIC is a very recent protocol,
this paper could help further understand its operation and
performance in a wide range of network scenarios. We present
a comprehensive study about the performance of QUIC, SPDY
and HTTP particularly about how they affect page load time.
We found that none of these protocols is clearly better than the
other two and the actual network conditions determine which
protocol performs the best.

I. INTRODUCTION

Regarding today’s Internet, one of the most widely used
protocols is the Hypertext Transfer Protocol (HTTP) which is
responsible for delivering news, video, and countless other
web applications to billions of devices of all sizes, from
desktop computers to smartphones. However, our websites
have changed significantly since the publication of HTTP 1.1
in RFC 2616. As web pages and web applications continue
to evolve and the Internet traffic increases rapidly, it becomes
necessary to search for improvements and new technologies.
Moreover, Page Load Time (PLT) has become a crucial aspect
of web performance since it is directly correlated with page
abandonment. As a result, web service providers are constantly
working on finding better solutions for web page transfers.

Google started to develop a new web transfer protocol called
SPDY in 2009 [1]. Today, SPDY is implemented not only
on the servers of Google and in the Chrome browser, but on
popular sites such as Facebook and Twitter, and the protocol is
also supported by the newest versions of Firefox and Internet
Explorer. The new HTTP/2 which is being developed by the
Internet Engineering Task Force (IETF) and is now a proposed
standard, is largely based on SPDY [2].

However, it is not just HTTP 1.1 that has its shortcomings
and limitations. In the transport layer, TCP (Transmission
Control Protocol) which delivered remarkable results in the
past, also has some issues to deal with. Google has sound
observations on TCP performance in recent networks since
about 20-25% of all Internet traffic goes through their servers,
and Chrome is the market leader web browser with 40%
market share. Based on the these experiences Google started

to develop a new protocol called QUIC (Quick UDP Internet
Connections) [3] in 2013 which uses UDP (User Datagram
Protocol) protocol in the transport layer instead of the tradi-
tional TCP.

Since QUIC is a very recent protocol, little is known about
its performance in comparison with the two aforementioned
protocols. The main goal of this paper is to contribute to the
better understanding of the performance of QUIC comparing
it with the traditional HTTP 1.1 and SPDY.

This paper is organized as follows. Section II describes the
background of SPDY and QUIC and also presents the related
work. In Section III we give details about the measurement
environment we used to test the performance of the QUIC,
SPDY and HTTP protocols. Section IV presents the results of
our measurements. Finally, in Section V we summarize our
work.

II. BACKGROUND AND RELATED WORK

A. HTTP 1.1 Limitations
HTTP 1.1 is a request-response based protocol, designed

in the 1990’s when web pages were much simpler than they
are nowadays. Developers and users are now demanding near-
real-time responsiveness which HTTP 1.1 cannot meet mainly
due to the following limitations.

One of the bottlenecks of HTTP performance is the opening
of too many TCP connections to achieve concurrency. A large
portion of HTTP data flows consist of small (less than 15KB),
bursty data transfers over dozens of distinct TCP connections
as presented in Fig 1. However, TCP is optimized for long-
lived connections and network Round-Trip Time (RTT) is
also a limiting factor in the speed of the new connections
due to TCP congestion control mechanisms. If HTTP tries to
improve performance by opening more TCP connections and
the number of the connections is too large, network congestion
can occur, resulting in high packet loss and ultimately worse
performance. The number of connections becomes even higher
if web objects are being delivered from multiple domains.
A workaround of this problem was introduced with HTTP
pipelining but it effectively failed due to deployment issues [4].

Another limitation is that HTTP based web transfers are
strictly initiated by the client. This presents a serious problem
because it hurts performance significantly in the case of
loading embedded objects. The servers have to wait for an
explicit request from the client which can only be sent after
the client processed the parent page.

Moreover, as a TCP segment cannot carry more than one
HTTP request or response, clients are sending a considerable
amount of redundant data in the form of HTTP headers.
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Fig. 1: Streams in HTTP, SPDY and QUIC protocols

This overhead is especially large if there are many small
embedded objects on a page so the requests and responses are
small. For modems or ADSL (Asymmetric Digital Subscriber
Line) connections in which the uplink bandwidth is fairly
low the latency caused by this overhead can be significant.
The developer community used to try to minimize this effect
by concatenating small files with the same type creating
larger bundles and in some cases files are inlined in the
HTML (HyperText Markup Language) document to avoid
the request entirely. These workarounds can backfire though,
as concatenating has a negative impact on caching and the
common method to concatenate Cascading Style Sheets (CSS)
and JavaScript files delays processing [4].

B. SPDY

SPDY1 protocol is designed to fix the aforementioned issues
of HTTP [1]. The protocol operates in the application layer
on top of TCP. The framing layer of SPDY is optimized for
HTTP-like response-request streams enabling web applications
that run on HTTP to run on SPDY with little or no modifica-
tions. The key improvements offered by SPDY are described
below.

SPDY uses multiplexed requests and opens a single TCP
connection to a domain as shown in Fig. 1. There is no limit
to the requests that can be handled concurrently within the
same SPDY connection (called SPDY session). These requests
create streams in the session which are bidirectional flows of
data. This multiplexing is a much more fine-tuned solution
than HTTP pipelining. It helps with reducing SSL (Secure
Sockets Layer) overhead, avoiding network congestion and
improves server efficiency. Streams can be created on either

1SPDY is pronounced speedy and is not an acronym.

the server- or the client side and can concurrently send data
interleaved with other streams [1].

SPDY also introduces request prioritization. The client is
allowed to specify a priority level for each object and the
server then schedules the transfer of the objects accordingly.
This helps avoiding the problem when the network channel
is congested with non-critical resources and high-priority
requests (e.g., JavaScript code modules) are pending.

Server push mechanism is also included in SPDY thus
servers can send data before the explicit request from the
client. Without this feature, the client must first download the
primary document, and only after it can request the secondary
resources. Server push is designed to improve latency when
loading embedded objects but it can also reduce the efficiency
of caching in a case where the objects are already cached on
the clients side thus the optimization of this mechanism is still
in progress.

Furthermore, clients today send a significant amount of data
in the form of redundant HTTP headers if a web page requires
many subrequests. SPDY presents a solution to this issue by
introducing header compression. The result is fewer packets
and bytes transmitted, and this could improve the serialization
latency to send requests.

SPDY’s performance still to this day is not perfectly under-
stood since conflicting results can be found in the literature.
Google [5] and Microsoft [6] reported significant performance
increase (up to 60% speedup in PLT) for SPDY compared
to HTTP, whereas results by Akamai [7] and Cable Labs
[8] showed only modest performance gain or even slight
performance loss in some scenarios. [9] and [10] also reported
small gain in high RTT scenarios (e.g., satellite connections)
but another study [11] showed that this gain is lost over 3G
network due to the structure of cellular networks.

[12] and [13] are two very recent studies about SPDY
with comprehensive sweep of the network parameter space
over a controlled and isolated testbed. Both papers showed
similar results: i) SPDY has better performance than HTTP
in case of high object number or high RTT mainly due to
its multiplexing and header compression features, ii) SPDY’s
gain is larger when the bandwidth is low, in high bandwidth
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scenarios the results are comparable to HTTP, iii) HTTP
performs batter in high packet loss environments where the
performance of SPDY is greatly decreases due to head-of-line
blocking (HOL blocking). Our study strengthen these results
related to the performance of SPDY vs. HTTP. However,
we also compare QUIC to the these protocols, presenting
performance comparisons between QUIC vs. HTTP and QUIC
vs. SPDY.

C. TCP Limitations
SPDY successfully addressed many shortcomings of HTTP,

but some issues that are hindering performance improvement
on today’s Internet stem from the use of TCP in the transport
layer. One of the most important features in TCP is the con-
gestion control mechanism used to avoid congestion collapse
by adjusting sending rates. Numerous new TCP versions were
suggested (e.g., [14], [15]) and research groups also proposed
new alternative transport layer protocols to make the Internet
faster. However, these processes are very slow to evolve and
especially slow to deploy. It not only needs to be deployed
to servers and clients but also to middle boxes throughout the
Internet thus this means that improvements in the protocol can
easily take ten or even more years to spread.

Bandwidth is becoming less and less of a bottleneck re-
garding web performance as broadband Internet connections’
throughput continue to grow and residential fiber solutions
are gaining popularity. However, latency is often forgotten.
Network RTT is the limiting factor in throughput of new TCP
connections and is mainly governed by the speed of light,
thus reducing the number of round-trips is the only way we
can significantly lower these latencies. As presented in Fig.
2 TCP needs one round-trip to open the connection before
the actual web request can be made with HTTP or SPDY.
This number even increases when we use TLS encryption; at
least one round-trip is added for TLS key exchange and in
case of the first contact between the client and the server an
authentication phase is also added which adds one more extra
round-trip.

Another important issue with using TCP for transport is
the occurrence of HOL blocking. TCP provides reliable data
transfer and ordered delivery, thus this means that if one packet
is lost, all data transfer needs to wait for the retransmission.
In [12] and [13] authors of both papers showed that in net-
work environments with high loss, HTTP outperforms SPDY
because with SPDY there is only one TCP connection to a
domain and HOL blocking causes all streams to wait, while
HTTP opens many TCP connections and therefore it is much
less affected by this problem.

D. QUIC
One of the most important goals of QUIC [16] is to

reduce latency of web traffic by experimenting with the
usage of UDP for downloading web applications instead of
the traditional TCP solution. QUIC also implements a new
encryption mechanism which replaces SSL/TLS, supports the
reducing of round trips between client and server during
connection establishment, while its safety remains comparable
to TLS [16].

Since QUIC is working over UDP, the protocol does not
force in-order delivery of packets thus QUIC avoids HOL
blocking. Moreover, a client can achieve 0-RTT connection
cost when connecting to a server if there was a connection
established between the two before (see Fig. 2). This is
achieved by including a connection ID in every packet which
replaces the traditional IP fourtuple (source and destination
address and port pairs). The extra round-trip in TLS is not an
actual requirement of security and privacy reasons but only
comes from the implementation of the handshake procedure.
The encryption introduced in QUIC aims to change this and its
design resembles DTLS (Datagram Transport Layer Security)
according to the QUIC Design Document and Specification
Rationale [16].

As shown in Fig. 1 QUIC also uses Forward Error Correc-
tion (FEC) codes in order to reduce retransmissions latency
after packet loss. This means that QUIC is willing to sacrifice
bandwidth for decreased latency by doing proactive specula-
tive retransmission of critical packets, such as the connection
establishment UDP packet. According to Google, 5% extra
bandwidth used for sending FEC packets results in 8% less
retransmissions [17].

The default congestion control algorithm in QUIC is TCP-
Cubic, but TCP-Reno can also be used as an alternative.
The protocol also implements a variety of TCP loss recovery
mechanisms [18]. Furthermore, QUIC includes a feature called
packet pacing which is under constant optimization. In order
to make packet pacing effective, QUIC monitors inter-packet
spacing and uses this to estimate available bandwidth and
control packet pacing. Early measurements presented that
packet pacing can reduce congestion related packet loss [17]
but also that it can hinder performance significantly in a low-
loss network environment [19].

With mobile web traffic at an inflexion point, making
mobile connections faster is one of the highest priorities of
today’s research. As TCP relies on IP fourtuples to identify
connections, when a mobile client changes network interface
(IP address) the TCP connection will be automatically broken.
Since QUIC uses a connection ID instead of the IP fourtuple,
if the client changes networks interface it can still continue
communicating with the server afterward. For example, when
a mobile client uses a campus Wi-Fi connection to download
a YouTube video and then walks out to the street and switches
to cellular network connection, with QUIC the transition
becomes smooth and the downloading proceeds. If the client
were using TCP then a new connection has to be built up.
Also, if for some reason, the UDP connection gets torn down,
QUIC has the 0-RTT reconnection to fall back on.

Given that QUIC is a very recent protocol there are only
a few studies examining its performance. Google presented
some early research results in [16] and [17] and some sce-
narios are also presented in [19], but these studied completely
lack of methodology descriptions. [20] concluded that QUIC
outperforms SPDY in case of a lossy channel and that the
FEC module, if enabled, worsens the performance of QUIC.
[21] found that QUIC is faster than its predecessors over low
bandwidth and high-delay links by 10-60%. The latter two
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studies used isolated testbeds and a prototype QUIC server
made public [22] by Google. This makes the measurements
completely repeatable but it can also endanger the accuracy
of the results thus we used a different approach described in
Sec. 3. Due to our knowledge, we are the first to present the
performance of QUIC in wide range of live network scenarios.

III. MEASUREMENT ENVIRONMENT

In this section we provide insights to the methodology
we used to compare the performance of QUIC, SPDY and
HTTP. Fig. 3 sketches our assembled test environment. We
used a regular laptop2 with Chrome browser to download
the context of websites and Chrome HAR capturer [23] to
automate this process and generate log files in HTTP ARchive
(HAR) format. HAR files contain every necessary information
to extract page load times from the measurements. Also,
browser caching was turned off during the process.

On the server side we installed four different simple pages
on Google Sites. We chose this approach since the deployment
of QUIC capable web servers is in a very early stage. QUIC
works on most of the Google servers (including web services
such as Gmail, YouTube and Google Translate) but other then
these servers only a basic server module is available to test
the protocol implementation [22]. Previous work with SPDY
([12], [13]) and QUIC ([20], [21]) used isolated testbeds in a
controlled environment using Apache web server with SPDY
module. However, since our measurements were conducted in
our campus site where the Google AS is very close, we found
very little variances of bandwidth and RTT values. Thus we
believe that this approach has less influence on the results as
if we had used the basic QUIC web server against Apache for
HTTP and SPDY.

Since both QUIC and SPDY are multiplexing protocols,
the gain of their usage would apply in case of websites with
large number of objects. Regarding these, the four web pages
we installed to Google Sites are containing either small sized
(400B-8KB) or large sized (128KB) and either small number
(5) or large number (50) of objects. The objects themselves
are pictures: the small pictures are national flags whereas the
large pictures are high resolution photos3.

Moreover, we installed a shaper server between the client
and the Google Sites server in order to emulate different
network conditions. We used the Netem function of the TC
(Traffic Control) package to manipulate the bandwidth, the
packet loss and the delay of the connection. For bandwidth

2Intel Core i5 CPU with 4 GB RAM using Ubutu 14.04 (64 bit). Chrome
version was 37.0.2062.94, Linux kernel version was 3.13.0-37

3Google Sites automatically resize large photos to 128KB. The original
sized photos only available after clicking on the resized picture.

TABLE I: The parameter space of the measurements

Category Parameter Values

Network
Bandwidth 2 Mbps, 10 Mbps, 50 Mbps

RTT 18 ms, 218 ms

Packet loss 0%, 2%

Web page
Object number 5, 50

Object size 400 B - 8 KB, 128 KB

we defined the values for small, medium and large access
speed as 2 Mbps, 10 Mbps and 50 Mbps, respectively. In
case of loss, we investigated two cases: low loss when we
do not add any extra loss to the network and high loss when
we set TC to randomly drop 2% of the packets in both
upstream and downstream directions. Also, for delay in one
case we do not add any extra delay to the network (thus the
average RTT remained 18 ms) whereas for emulating high
RTT scenarios we used TC to add an extra 100 ms for both
up- and downstream directions, making the average RTT to
218 ms.

Finally, in Table I we summarized the five-dimension
parameter space. These values define 48 distinct network
scenarios and we completed the page downloads for all the
three protocols at least a hundred times.

IV. MEASUREMENT RESULTS

In this section we present the comparison of QUIC, SPDY
and HTTP regarding how fast they can download the previ-
ously installed pages from the Google Sites server. Due to
paper size limitation we do not present all the 48 different
scenarios, but we emphasize some selected results which can
capture the main advantages and disadvantages of the three
protocols.

Fig. 4 presents the Cumulative Distribution Function (CDF)
of the Page Load Times (PLT) in six different cases. In
Fig. 4a and Fig. 4b the performance of the three protocols are
comparable. Although, there are minor differences between
the average values, the deviation of the curves are larger than
this difference thus we can not state that one protocol is
clearly better than the other two. Results were very similar
using the pages with high number of small objects and low
number of large objects. Thus we identified that the three
protocols perform similarly under good network conditions
(high bandwith, low RTT and low packet loss) downloading
from websites with both small and medium size pages.

In case of large websites the difference between the proto-
cols’ performance shows larger deviation. Fig. 4c and Fig. 4d
plot the values for the measurements with low packet loss
and low RTT downloading the page with high number of
large objects using 10 Mbps and 50 Mbps as a bottleneck,
respectively. When the bandwidth is set to 10 Mbps (Fig. 4c)
the page load times are again comparable, but in the 50
Mbps scenario (Fig. 4d) QUIC performs significantly worse
than SPDY and HTTP. In this case the average PLT with
QUIC is more than three times larger than for the other two
protocols. The main reason for this behavior is the packet
pacing mechanism in QUIC: the goodput of the multiplexed
QUIC stream cannot reach the maximum capacity of such
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Fig. 4: Distribution of Page Load Times in various network conditions. One can investigate that none of the three protocols is
better than the other two, the network conditions determine which one is the fastest.

high speed link. Since this behavior didn’t occur nor in the
10 Mbps case neither for the smaller page types, we identified
that QUIC only performs very poorly when facing with very
high speed links and large amount of download data.

Fig. 4e and Fig. 4f and depicts the results for similar
scenarios that are presented in Fig. 4d and Fig. 4c, respectively
but with the addition of extra packet loss to the network.
In this case SPDY performed very badly: the average PLT
increased multiple times for SPDY after adding 2% of packet
loss to the network. This phenomenon that HOL blocking can
cause significant performance loss in SPDY’s performance was
already showed in previous publications [12], [13]. However,
such amount of performance drop was not presented in those
papers since authors didn’t investigate such high speed access
links. We also emphasize that this scenario corroborate to the
idea of QUIC’s proactive error correction mechanism since
compared to the lossless case the PLT for QUIC only increased
by 20% whereas for HTTP the average PLT roughly doubled.

Fig. 5 presents the measurement results for three cases
where QUIC clearly outperforms the other two protocols.
The common parameters in these cases were high RTT and
downloaded high number of small objects. In Fig. 5a and Fig.
5b the bandwidth was 10 Mbps and 2 Mbps, respectively and
there was no additional loss on the channel, whereas in Fig. 5c
we added 2% of loss with a bandwidth of 2 Mbps. Typically,
one would expect that the gain from the multiplexing nature
of QUIC and SPDY comes forward in case of high number of
small objects and our results confirm this expectation. In this
case the 0-RTT connection time of QUIC is also proven to
work well: QUIC is by far the fastest protocol being roughly
25-30% faster than SPDY and 35-40% faster than HTTP. We
also want to point out that the difference between SPDY and
HTTP is about 7-12%, which also strengthens the finding in

SPDY’s literature about being only slightly faster than HTTP.
Furthermore, we summarize our measurement results in Fig.

6 where we present a decision tree for all the scenarios in the
parameter space. We consider a protocol better than another if
at least in the 70% of the measurement cases performed at least
10% faster than the other protocol’s average PLT. If two of the
protocols are fulfilling this condition against the third one but
not against each other we marked both of them. In case of this
condition doesn’t stand between any of the three protocols we
marked them as equal. Finally, based on the decision tree and
the entire measurement database we concluded the following:

• QUIC performs poorly under very high bandwidth when
large amount of data needs to be downloaded

• On the other hand, QUIC performs very good compared
to the other two protocols under high RTT values espe-
cially when the bandwidth is low

• The Forward Error Correction of QUIC works well under
high packet loss scenarios since those cases the Page
Load Times of QUIC only increase acceptably whereas
for the TCP based HTTP and SPDY the performance
drops significantly

• SPDY performs very poorly in high loss environments
due to HOL blocking

• Small object size favors QUIC and SPDY against HTTP
due to multiplexing

• HTTP is the fastest protocol in case of high speed, high
packet loss and high number of large objects.

V. CONCLUSION

QUIC (Quick UDP Internet Connections) is a very recent
protocol developed by Google in 2013 for efficient transfer of
web pages. QUIC aims to improve performance compared to
SPDY and HTTP by multiplexing web objects in one stream
over UDP protocol instead of traditional TCP. In this study, we
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Fig. 5: Distribution of Page Load Times in such network conditions when QUIC clearly outperforms the other two protocols.
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presented a comparative analysis of QUIC, SPDY and HTTP,
and identified the bottlenecks of their performance. We built a
simple test environment using a laptop to download different
web pages from Google Sites and used a shaper server to
emulate different network conditions.

In more than 40% of the scenarios the experimental QUIC
protocol improved page load time significantly, but our results
also showed that HTTP can perform better than the two
multiplexed protocols when downloading large objects. The
tests also confirmed previous publications’ results ( [12], [13])
which said that a lossy network environment has a large
negative impact on the performance of SPDY.

High round-trip time proved to be the condition, where
QUIC could help the most. Due to mobile Internet connections
(especially 3G) having large round-trip delay, we recommend
that when the protocol exits the experimental status, it shall
be implemented on servers of web pages with high mobile
traffic and also be enabled by default in Google Chrome for
Android.

High bandwidth is the only bottleneck that we could identify
in QUIC’s operation. This is mainly caused by the packet pac-
ing mechanism implemented in the protocol: the goodput of
a QUIC stream cannot reach the capacity of high speed links.
Some network operators may also rate-limit UDP traffic based
on security concerns and this could hurt QUIC’s performance.
The effective differentiation of web traffic over QUIC and
potentially dangerous UDP traffic is a crucial task of the near
future for both protocol developers and network operators.

Our future plan is to continue the performance evaluation
study for more case studies and also following the upcoming
new versions of QUIC.
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