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Chapter 1

Introduction

We are experiencing a major paradigm-shift in the telecommunications industry. People are
increasingly making use of data applications in addition to the traditional telephony service. A
number of popular applications have emerged like email, the World Wide Web and so on, mostly
relying on the TPC/IP family of protocols today. Traffic volume of these new data applications
is increasing at a much faster rate than traffic volume of telephony. In many places data traffic
has already exceeded telephony traffic. It is expected that in the near future data traffic will
dominate communication networks in general.

From a technology point of view, this has the consequence that communication devices,
architectures and protocols optimized for traditional services like telephony are increasingly being
replaced by those optimized for data traffic. In this dissertation we contribute to this shift in
technology.

Traffic generated by data applications has basically different characteristics from traffic gen-
erated by telephony. Voice calls in traditional systems produce static traffic load for the duration
of a call. In contrast, data traffic is dynamic, depending on the nature of the application. Tele-
phony system dimensioning techniques developed by Erlang (see e.g., [49]) do not apply in a data
networking context [74]. It has been observed that data traffic exhibits burstiness over many time
scales [53].

In Chapter 2, we investigate the dynamic nature of data traffic and propose a means of char-
acterizing its variability. For this, we consider a measure called peakedness that was introduced
in the context of telephony network dimensioning. However, this measure can be generalized and
extended so that we can use it for data traffic characterization as well. We show how peakedness
can be used in discrete time, discuss a number of practical considerations and apply the peaked-
ness measure to a number of traces taken from measurements. In addition, we also provide a
technique that gives a Markovian traffic model to fit the peakedness of the measured traffic. We
show examples when such a model can capture the peakedness of the traffic over many time
scales. But we also observe that in some cases we can fit a model at a given time scale only, and
not capturing long range dependence in the traffic.

In the rest of the dissertation, we consider different design aspects of mobile data network-
ing architectures. The shift towards mobile networking represents another paradigm-shift in the
communications industry. Designers of mobile data networks must face with a number of con-
flicting requirements. On the one hand, the mobile network must support the prevailing network
and upper layer protocols that are in use. Today this implies the support of the TCP/IP family
of protocols [44, 85]. However, the TCP/IP protocols and most of the applications for these
protocols were designed with a fixed network in mind. The designer of the mobile data network
therefore has to facilitate a smooth migration of the TCP/IP protocols from a fixed infrastructure
to the mobile system. To enable this migration, the designer of the mobile system seeks to hide

1
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Figure 1.1: Cellular architecture in a wireless LAN

the effects and specifics of the mobile architecture from the upper layers as much as possible.
On the other hand, the mobile network imposes a number of specific requirements and con-

straints not present in fixed networks. These include the support of user mobility and the fact
that wireless transmission links have fundamentally different performance characteristics than
wireline transmission links. These considerations call for a set of mechanisms and protocols that
are tailor-made for the characteristics of the mobile data networks.

In Chapters 3-5 we address some of these design questions within the context of cellular
networks. This is the architecture used by most of today’s commercial and proposed standards:
first generation mobile systems (including NMT, Nordic Mobile Telephone), second generation
mobile systems (including GSM, Global System for Mobile communications), and third generation
mobile systems (UMTS, Universal Mobile Telecommunication System) [77]. Wireless Local Area
Networks (WLANs) can also make use of the cellular architecture. Figure 1.1 shows an example
of a cellular architecture for a WLAN. Each cell is controlled by a base station referred to as an
Access Point (AP). These APs are connected by a fixed backbone network. Mobile Terminals
(MTs) communicate with the APs over the air interface. Each MT is associated with a single
AP that it communicates with. MTs are free to move within the coverage area of the APs.

The architecture immediately poses a number of problems not present in fixed networks.
Mobility implies that a set of mechanism must be provided to route data packets to the current
location of the MT. As part of this mechanism, the MT also has to change its AP association
when it leaves its cell (handoff). We refer to [92] for an extensive treatment and analysis of these
questions.

In the dissertation we look at some of the issues that arise in cellular networks concerning
the adaptation to the special properties of the wireless links. We take the example of a wireless
LAN system, although the proposed solutions can be extended to other systems as well. The
presented mechanisms could be applied in public mobile networks as well as private networks,
although this dissertation does not investigate the specific aspects of public networks such as
charging, service level agreements, etc.

Chapters 3-5 consider specific link layer design issues. In Chapter 3 we investigate the question
of link-layer automatic retransmission (ARQ) protocol. Dynamic traffic patterns and quickly
changing error characteristics require that this protocol has to be dynamic as well. We propose
a new solution in the HIPERLAN/2 wireless LAN architecture. The proposal is novel due to its
dynamic nature: it can adapt the amount of ARQ feedback and the actual content of the ARQ
messages based on the traffic and error patterns. Simulation results indicate that the dynamic
solution yields higher performance than static solutions.

In Chapter 4 we analyze the performance trade-offs in the resource allocation of a wireless
base station. Since traffic patterns cannot be predicted, the base station has to make resource
decisions in real-time. The wireless channel however makes the problem fundamentally different
from that of resource allocation in a fixed network. The amount of service allocated to a user may
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be different from the amount of service that the user actually gets because of location-dependent
channel errors that are typical for an air interface. We can compensate for the channel errors,
but this affects both the total channel utilization and fairness between the users. We introduce a
simple compensation mechanism at the base station, and analyze this trade-off, also taking into
account the effect of transport layer (TCP) mechanisms and link layer retransmissions.

In Chapter 5, we extend the analysis of Chapter 4 into a practical scheme. Besides using the
compensation for the errors at the wireless channel, we also take into account the properties of
the wireless channel to avoid errors. We propose a distributed modular architecture where the
wireless channel is monitored by the user terminals that make a decision of their own regarding
the use of the channel. The scheduler at the base station is such that it encourages the users
to make an efficient use of the resources. We propose a master scheduler and a possible user
behaviour algorithm and show by simulation and analysis that the proposed scheme can improve
both system utilization and fairness. The architecture requires the co-operation of number of
adaptive schemes to work in an environment with dynamic traffic patterns and channel errors: the
transport layer adapts to the available capacity; the link layer performs automatic retransmissions
in a dynamic fashion, and the resource allocation adapts to channel errors and user behaviour,
and uses an adaptive scheme to maximize efficiency.

Finally in Chapter 6 we investigate another type of dynamic environment: we consider an ad
hoc network where all nodes may be mobile. We propose a new solution that enables the use of
frequency hopping spread spectrum in an ad hoc networking context. For this, devices may need
to dynamically switch between different frequency hopping channels. We present an analytic and
simulation-based performance analysis of different channel configurations.

We conclude the dissertation in Chapter 7 with a summary of the contributions of the thesis
and proposals for future research. In Appendix A we provide the derivations for the formulae in
Chapter 2.

1.1 Research Objectives

Traditional telecommunication networks were often designed to satisfy a well-determined set of
application requirements. In the case of modern mobile packet data communication networks
however, application needs are hard to predict, and traffic patterns are bursty and unpredictable.
These make it necessary to use dynamic adaptive schemes. The objective of the dissertation is
to design and analyze new control mechanisms to support this technological trend.

Specifically, it is the objective of this dissertation to

• investigate methods that characterize the dynamic (bursty) nature of traffic;

• develop solutions that support the efficient transmission of dynamic (bursty) traffic over a
wireless channel;

• analyze the trade-off in the resource allocation of a wireless base station with regard to the
errors that occur over the air interface;

• design and analyze new resource allocation mechanisms that can maintain control over
the trade-off between fairness and utilization, and at the same time support a practical
implementation;

• design and analyze new mechanisms that facilitate mobile ad hoc networking using existing
radio technology.
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Chapter 2

Peakedness Characterisation of
Bursty Traffic

2.1 Introduction

An important experience from measurement studies (including Ethernet, ATM LAN/WAN net-
works [53, 68, 74]) regarding the nature of data traffic is that traffic exhibits bursty properties
over many time scales.

One of the key concepts for capturing the bursty character of data traffic is the scale invari-
ance which is often exhibited by self-similarity. The issue resulted in active research on fractal
characterization [53, 68]. So far it is not clear how successfully we can utilise self-similarity from
a practical traffic engineering point of view but one thing is for sure: burstiness seems to be the
most important yet poorly understood characteristic of traffic in high-speed networks. Our work
is motivated by this need. In this chapter we focus on peakedness as one of the most promising
candidate measures of traffic burstiness.

The simplest burstiness measures take only the first-order properties of the traffic into account.
A set of candidates are the moments of the inter-arrival time distribution. In practice the peak
to mean ratio and the squared coefficient of variation are the most frequently used first-order
measures [72, C1].

Measures expressing second-order properties of the traffic are more complex. The autocorre-
lation function, the indices of dispersion [83, 36] and the generalized peakedness [19, 20] are the
most well known measures from this class.

Moreover, there are a number of burstiness measures based on different concepts, e.g. we can
use burst length measures [72, 84] or parameters of a leaky bucket for burstiness characterization
[67]. By the concept of self-similarity the Hurst parameter and other fractal parameters are also
candidates for burstiness measures [68, 53].

In this chapter we review the theory of generalized peakedness (Section 2.2) and further
develop the basic concept by introducing the generalized peakedness in discrete time. The ad-
vantage of this approach is that it allows us to apply the general framework of peakedness for
traffic engineering. We provide the computation of peakedness for a number of important discrete
time models including the Markov Modulated Batch Bernoulli Process (MMBBP) and the batch
renewal process. The relationship between IDC and peakedness is also presented. We discuss
the challenges of measuring peakedness in practice. Moreover, we show a technique how Markov
modulated traffic models can be fitted to a measured peakedness curve. The practical applicabil-
ity of peakedness and our modelling technique are demonstrated by examples based on measured
MPEG video, aggregated ATM and Ethernet traffic in Section 2.3. The chapter is summarized
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in Section 2.4. Derivations for the peakedness formulae are elaborated in Appendix A.

2.2 Peakedness Measures

Peakedness of a traffic stream has been found a useful characterization tool in blocking approx-
imations and in trunking theory [40]. It has been defined as the variance to mean ratio of the
number of busy servers in an infinite hypothetical group of servers to which the traffic is of-
fered, where the service times of the servers are independent and exponentially distributed with
a common parameter.

2.2.1 Generalized Peakedness

Eckberg [19] extended this definition by allowing arbitrary service time distribution and defined
generalized peakedness as a functional which maps holding time distributions into peakedness
values. For a given complementary holding time distribution F c(x) = P {holding time > x},
Eckberg defines the peakedness functional z{F c} as the variance to mean ratio of the number of
busy servers in a hypothetical infinite group of servers with independent holding times distributed
according to F c. The general definition provides a way to characterize the variability of an arrival
stream with respect to a given service system.

Let us have a stationary arrival process S in continuous time with counting function N(t) =
the number of arrivals in (0, t] for t ≥ 0. The mean arrival intensity is denoted bym = E {N(t)} /t,
which is independent of t due to the stationarity of S.

Arrivals are allowed to come in batches of random size B. We define the batchiness parameter
as b = E

{
B2
}
/E {B} which can be shown to be the mean size of a batch that an arbitrary arrival

finds itself in. The differential process [17] ∆N(t) is defined for a fixed ∆t as the number of arrivals
in (t, t+ ∆t], that is, N(t+ ∆t) −N(t). We define the covariance density of the arrival process
k(s) for s > 0 as the covariance of the differential process as ∆t goes to zero:

k(s) = lim
∆t→0

Cov {∆N(t),∆N(t+ s)}
(∆t)2

(2.1)

which is independent of t due to the stationarity of S. For s < 0 we let k(s) = k(−s).
We offer the arrival process S to an infinite server group where the service times are indepen-

dent and have a complementary holding time distribution of F c(x) (x ≥ 0; for x < 0, we define
F c(x) = 0), mean holding time of

1/µ =
∫ ∞

−∞
F c(x)dx (2.2)

where µ is the service rate, and finally the autocorrelation of F c is

ρF c(x) =
∫ ∞

−∞
F c(s)F c(s+ x)ds. (2.3)

Denoting the number of busy servers at time t by L(t), the generalized peakedness functional
is defined as

z{F c} =
Var {L(t)}
E {L(t)} . (2.4)

If the arrival stream is defined for the whole time axis (−∞,∞), it is independent of t due to
the stationarity of S. In practice, we never have an arrival process for an infinitely long time;
in this case, we have to define the peakedness for a time period t which is large enough for
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the initial transient period in the service system to be negligible. (More precisely, z{F c} =
limt→∞ Var {L(t)}/E {L(t)}.)

With the notation introduced above, the peakedness of the arrival stream can be expressed
in terms of the covariance density function as [19]

z{F c} = 1 +
µ

m

∫ ∞

−∞
(k(s)−mδ(s))ρF c(s)ds (2.5)

where δ(s) is the Dirac delta function.
The important case of exponential service time simplifies to

zexp(µ) =
b+ 1

2
+

1
m
k∗(µ) (2.6)

where k∗(µ) =
∫∞
0+ k(s)e

−µsds, the Laplace transform of the covariance density function. Here
we have the peakedness of a given arrival stream as a function of the service rate µ.

It is shown [19] (and is suggested by eq. (2.6)) that the peakedness function zexp(µ) together
with m determines k(s) and therefore the pair (zexp(µ),m) is a complete second order character-
ization of the arrival process.

The peakedness function zexp(µ) can be used to compute the peakedness functional for a
large class of holding time distributions as shown in [19]. The method is elaborated in [66]
to give the peakedness functional for Coxian holding time distributions. The importance of
Coxian holding times lies in the fact that any holding time distribution can be approximated
with arbitrary accuracy by Coxian distributions. Eckberg also investigated the application of
generalized peakedness in delay systems [20]. Eckberg’s definition of generalized peakedness for
point processes has been extended in [62, 63] to allow fluid flow models given by a rate function.

2.2.2 Peakedness in Discrete Time

In order to use the peakedness measures in a data networking framework, we now extend the
peakedness concept for discrete time arrival streams.

We use the following notation: for all i = . . . ,−1, 0, 1, . . ., the number of arrivals at epoch i
is w[i]. We assume the stationarity of w[i]. The first and second moments of w[t] (independent
of t) are denoted by m1 and m2. The covariance density of continuous time is replaced here by
the autocovariance function k[s] = Cov {w[i], w[i+ s]} = k[−s]. (It is seen that k[0] = m2−m2

1.)
The service time random variable T is also discrete and has the distribution t[1], t[2], . . . on

positive integers. (It cannot take on zero value.) µ = 1/E {T } is again the service rate, and it is
easily shown that

1/µ = E {T } =
∞∑

s=−∞
F c[s] (2.7)

where F c[x] is the complementary holding time distribution function: F c[x] =
∑∞

u=x+1 t[u] =
P {T > x} if x ≥ 0 and F c[x] = 0 if x < 0. The autocorrelation function is now

ρF c [x] =
∞∑

s=−∞
F c[s]F c[s+ x]. (2.8)

It is seen that ρF c [0] =
∑∞

s=−∞(F c)2[s].
The traffic is offered to an infinite group of servers with independent identically distributed

service times determined by F c[x]. Each arrival takes a separate server. The peakedness of the
arrival stream is defined as the variance to mean ratio of the number of busy servers in the infinite
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server group:

z{F c} =
Var {L[t]}
E {L[t]} (2.9)

where L[t] is the number of busy servers at time epoch t.
An important modification of the definition is to let the service time depend on the arrival

epoch only (have a common service time for all w[t] arrivals at epoch t). We call (in accordance
with [63]) the peakedness value defined in this way the modified peakedness z̃{F c}. As shown in
Section A.3,

z̃{F c} − z{F c} =
(
m2

m1
− 1
)

(1− ρF c [0]µ). (2.10)

that is, their difference is constant (cf. (35) in [63]). The first factor in the difference is zero if
and only if the arrival stream has no simultaneous arrivals, the second factor is zero if and only
if the holding time distribution is deterministic.

The importance of this modified definition lies in the fact that it gives a way to handle a whole
batch of arrivals together, which can save a lot of computational effort in the case of measuring
the peakedness for a general holding time distribution. However, in the case of geometric service
times, the original definition of peakedness is easier to measure as shown in Section 2.3.1. We
will use the original definition of peakedness (eq. (2.9)) below.

We can express peakedness in terms of the autocovariance function k[s] similarly to eq. (2.5)
as

z{F c} = 1 +
µ

m1

∞∑
s=−∞

ρF c [s](k[s]−m1δ[s]). (2.11)

The most important case in discrete time is the case of geometrically distributed holding
times: t[i] = µ(1− µ)i−1, 0 < µ < 1 (with E {T } = 1/µ which justifies the notation).

In order to simplify the formulas, let us introduce the notation

K[s] =
{ 2

m1
k[s] if s > 0

1
m1
k[0] if s = 0

and let its z-transform be K∗(ω) =
∑∞

s=0K[s]ωs.
The peakedness function of the arrival stream with respect to geometric holding time distri-

bution, as derived in Section A.4 is given by

zgeo(µ) = 1 +
K∗(1 − µ)− 1

2− µ (2.12)

2.2.3 Peakedness and Index of Dispersion for Counts

The widely used measure to characterize the variability of an arrival stream on different time
scales is the index of dispersion for counts (IDC). It is defined as

I[t] =
V [t]
E[t]

=
V [t]
m1t

(2.13)

where E[t] and V [t] are the mean and variance of the number of arrivals in t consecutive epochs
(t = 1, 2, . . .).

The connection of IDC and peakedness for geometric holding times is (see Section A.5)

zgeo(µ) = 1−
µ2 dI∗(1−µ)

dµ + 1

2− µ (2.14)
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where I∗(ω) is the z-transform of I[t].
We can use eq. (2.14) to get asymptotic results which connect them: (see Section A.5):

zgeo(0) =
lims→∞ I[s] + 1

2
(2.15)

zgeo(1) = I[1] =
Var {w[i]}
E {w[i]} (2.16)

where the first equation is derived using the final value theorem and the L’Hospital rule (assuming
that lims→∞ I[s] exists and is non-zero), whereas the second equation is derived by the initial
value theorem for d

dω I
∗(ω).

2.2.4 Peakedness of Traffic Models

Next, we present the peakedness results for important traffic models. We consider discrete time
models for the number of arrivals in consecutive epochs.

Batch Bernoulli Process

A very simple type of arrival stream model is the model with the number of arrivals in a time
epoch be independent identically and generally distributed with mean m1 and second moment
m2 (Batch Bernoulli Process, BBP).

In this case, k[i] = 0 for all i > 0. Thus,

K∗(1− µ) = K[0] =
Var {w[i]}
E {w[i]} (2.17)

and

zgeo(µ) = 1 +

Var{w[i]}
E{w[i]} − 1

2− µ (2.18)

For the special case of Poisson batch arrivals, the distribution of arrivals in an epoch is Poissonian,
thus

Var {w[i]}
E {w[i]} = 1 (2.19)

which gives zgeo(µ) = 1.
The Poisson process can be considered as a reference process with respect to peakedness

characterization. Batch arrival processes that are more bursty than the Poisson process have
higher peakedness values, smoother processes have lower peakedness. (In the case of deterministic
traffic, zgeo(µ) = 1− 1

2−µ .)

Markov Modulated Batch Bernoulli Process

A very general Markovian process is the Markov Modulated Batch Bernoulli Process (MMBBP).
In this model, we have a discrete time Markov process as a modulating process. In each state of
the modulating Markov-process, batch arrivals are generated according to a general distribution
corresponding to the state.

Let P and D denote the transition probability matrix and the steady-state distribution vector
of the modulating Markov process, respectively (DP=D). Let M1 and M2 be diagonal matrices
corresponding to the first and second moments of the number of arrivals in the corresponding
states. Let e be a vector of all ones and let I be the identity matrix.
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We can express the mean number of arrivals as m1 = DM1e and the second moment as m2 =
DM2e. The autocovariance function of the arrival process is given by k(i) = DM1PiM1e−m2

1.
Using eq. (2.12) we have derived the peakedness function (see Section A.6) as

zgeo(µ) = 1 +
1

2− µ

(
2(1− µ)DM1P(I− (1− µ)P)−1M1e + m2

m1
− 1

)
− m1

µ
(2.20)

A very important case of MMBBP is the Markov Modulated Bernoulli Process (MMBP); its
peakedness curve is the special case of eq. (2.20).

Markov Modulated Bernoulli Process

As a special case of MMBBP, when the arrival process is Bernoulli in each state, we have a
Markov Modulated Bernoulli Process (MMBP). If the parameter of the Bernoulli process is pi in
state i, we have M1 = diag(p1, p2, . . . ...) and M2 = M1.

The peakedness curve for geometrical holding times in this case is

zgeo(µ) = 1 + 2
(1− µ)DM1P(I− (1 − µ)P)−1M1e

(2− µ)m1
− m1

µ
(2.21)

Switched Batch Bernoulli Process

Another important special case of MMBBP is the 2-state MMBBP (SBBP, Switched Batch
Bernoulli Process). Let us use the following notation: the transition matrix is

P =
[

1− α1 α1

α2 1− α2

]
(2.22)

and the steady state distribution is thus

D =
1

α1 + α2
(α2 α1). (2.23)

Denote γ = 1− α1 − α2. In state 1, the first and second moments of the number of arrivals
are m1,(1) and m1,(2), respectively; in state 2, the moments are m2,(1) and m2,(2).

The first and second moments of the number of arrivals are given by

m1 =
1

α1 + α2
(α2m1,(1) + α1m2,(1)), (2.24)

m2 =
1

α1 + α2
(α2m1,(2) + α1m2,(2)). (2.25)

Let us also introduce the notation

m∗ =
1

α1 + α2
(α2m

2
1,(1) + α1m

2
2,(1)). (2.26)

Note that if the distribution of the batch size in a given state is deterministic, or if it is geometric
or Bernoulli, we have m2

i,(1) = mi,(2) (i = 1, 2) and thus m∗ = m2. If the batch distribution is
Poisson, we have m∗ +m1 = m2.

Using eq. (2.20) and the possibility to explicitly compute the inverse of I − (1 − µ)P in the
2-state case, we get

zgeo(µ) = 1 +
1

2− µ

(
2

m1

(1− µ)

µ

[
m∗ − (m∗ −m2

1)(1− γ)

1− γ(1− µ)

]
+

m2

m1
− 1

)
− m1

µ
(2.27)
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and by eq. (2.12) we get the peakedness curve.
It is interesting and important to note that the peakedness curve depends on the SBBP

parameters only through m1,m2,m∗, γ. Therefore, we can get identical peakedness values for
different SBBPs if these four parameters coincide.

Batch Renewal Process

The batch renewal process is important to consider because of its ability to model the correlation
structure of traffic [51]. The discrete time batch renewal process is made up of batches of arrivals,
where the intervals between batches are independent and identically distributed random numbers,
and the batch sizes are also independent and identically distributed, furthermore, the batch sizes
are independent from the intervals between batches.

We use the following notation for the discrete time batch renewal process: a and b are the mean
length of intervals between batches and the mean batch size, respectively. The first and second
moments of the number of arrivals in an epoch is given by m1 = b/a, and m2 = m1b(C2

b + 1)
where C2

b is the squared coefficient of variation (variance to mean square ratio) of the batch size.
The probability generating function of the distribution of time between batches is denoted by
A∗(ω). (A∗(ω) =

∑∞
s=1 a[s]ω

s where a[s] is the probability that the time between two consecutive
batches is s.)

The peakedness for geometric holding times is given by

zgeo(µ) = 1 +
1

2− µ
(

1 +A∗(1− µ)
1−A∗(1− µ)

− b+
m2

m1
− 1
)
− m1

µ
. (2.28)

If the distribution of time between batches follows a shifted generalized geometric distribution
[51], that is, a[t] = 1 − σ if t = 1 and a[t] = στ(1 − τ)t−2 if t = 2, 3, . . . , then its probability
generating function is:

A∗(ω) = ω

(
1− σ +

στω

1− (1 − τ)ω
)

(2.29)

which makes the peakedness values easily computable.

2.2.5 Fitting Traffic Models to Peakedness Curves

The peakedness shows the variability of the arrival stream with respect to different service holding
times. It is of interest to investigate whether we can fit traffic models to peakedness curves based
on measurements.

We outline here a fitting procedure based on the mean rate m1 of the arrival traffic, the
peakedness value at µ = 1 and at three other points, µ1, µ2, µ3. The model we fit to the peaked-
ness curve is an Interrupted Batch Bernoulli Process (IBBP): in one state of the modulating
Markov process, the arrival number has a general distribution, in the other state, there are no
arrivals. The fitting is done by reversing the peakedness function of the Markov Modulated Batch
Bernoulli Process of Section 2.2.4.

First, by z(1) = m2/m1 −m1, we get m2. Introducing ω = 1 − µ, ωi = 1− µi and using the
notations of Section 2.2.4, we can compute (using the values K∗(ωi) = (zgeo(µi)− 1)(ωi +1)+1)

Yi = Y (ωi) = m1
1− ωi

2ωi

(
K∗(ωi) +m1

1 + ωi

1− ωi
− m2

m1

)
(2.30)

Using eq. (2.27),

Y (ω) = m∗ − (m∗ −m2
1)(1− γ)

1− γω . (2.31)
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Let us denote
Ỹ =

Y1 − Y2

Y2 − Y3
(2.32)

which evaluates to

Ỹ =
(
ω2 − ω1

ω3 − ω2

)(
1− γω3

1− γω1

)
(2.33)

and we get

γ =
Ỹ ω3−ω2

ω2−ω1
− 1

Ỹ ω3−ω2
ω2−ω1

ω1 − ω3

(2.34)

Once we have γ, we can obtain an estimation for m∗ as

m∗ =
1
3

3∑
i=1

Yi − m2
1(1−γ)
1−γωi

1− 1−γ
1−γωi

(2.35)

where we have on the right hand side an average for the known values ωi, Yi.
Then it is possible to fit an IBBP as follows:

m1,(1) =
m∗
m1

, α2 =
m1(1− γ)
m1,(1)

, α1 = 1− γ − α2,m1,(2) = m2
α1 + α2

α2
. (2.36)

Given the first and second moments of the number of arrivals in state 1, we can use for example a
generalized geometric distribution for modelling the batch size distribution. In this case, there are
no arrivals with probability 1−ϕ, and there is a batch of arrivals with geometrically distributed
size of parameter ψ. The moments are given by

m1,(1) = ϕ/ψ, (2.37)

m1,(2) = ϕ/ψ2 (2.38)

by which we can get ϕ, ψ for the model.
If it is possible to exactly fit an IBBP to the µi, zgeo(µi) pairs, the values that are summed

in the equation for m∗ are identical. If there is no IBBP that exactly fits the given peakedness
values, m∗ gives an estimation and the peakedness curve of the fitted IBBP model approximates
the µi, zgeo(µi) pairs.

2.3 Generalized Peakedness of Real Traffic

2.3.1 Measuring Peakedness

To measure the generalized peakedness of a traffic with a given holding time distribution, one
can simulate the infinite server group. In discrete time, one can keep track of the first and second
moments of the number of busy servers and compute the variance to mean ratio from them. The
following points should be made about the estimation.

• We should take care of the initial phase of the simulation. If we have no prior knowledge
about the traffic, we do not know what the mean number of busy servers will be. In this
case, we can start from an empty system. The initial transient in the number of busy
servers should be excluded from measurements.

• According to the definition, we should assign a server to each arrival, that is, assign a
random holding time variable to every arrival in an epoch, which could involve a huge
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amount of computational effort. However, using the modified definition of peakedness and
eq. (2.10), we can reduce the computational effort by assigning only one random service
time variable to all arrivals in an epoch.

• When the service time is geometric, we can minimize the computational effort by making
use of the memoryless property. If at epoch t we have L[t] busy servers, then at the next
epoch we have L[t+1] = L[t]+w[t+1]−D[t] where D[t] is the number of departures from
the service system at epoch t.

The distribution of D[t] is known to be binomial with parameters L[t] and µ because each
of the L[t] servers finish service with probability µ. Therefore, in the measurement, it is
enough to keep track of L[t] together with the first and second moments of the previous
L[i], i ≤ t values.

This gives us the following procedure for computing the peakedness value for geometric
holding time distribution with parameter µ:

1. Reset L1 = 0, L2 = 0, Lold =initial value (see comments below);

2. Set Lnew = Lold+wnew−d where d is a random number of distribution binom(Lold, µ)
and wnew is the number of new arrivals in the next epoch;

3. Set L1 = L1 + Lnew, L2 = L2 + L2
new;

4. Set Lold = Lnew and loop back to 2 unless the measurement is over;

5. Compute l1 = L1/T, l2 = L2/T, z = l2/l1 − l1 where T is the length of the total
measurement time.

The setting of the initial value of Lold depends on the amount of a priori information that
we have about the traffic. If we know the mean rate, we can set the initial Lold to its mean
value determined by Little formula as m1/µ. If we do not know the mean rate, we have
to start from an empty system (initial Lold = 0) and simulate the service system without
actually measuring (executing step 3) until the initial transient is over.

• An important advantage of using peakedness characterization is that we can measure
peakedness by going through the traffic trace in only one sequence. This gives us the
possibility of measuring peakedness for real-time traffic on the fly.

Computing peakedness for one value of µ involves N cycles of the above procedure (where
N is the total length of the measured traffic); if we want to measure peakedness at several
µ values, we can easily implement the parallel execution of the procedure. In each cycle,
we only have to compute a small number of additions and multiplications, and generate
one binomially distributed random variable. Therefore, the complexity of the measure-
ment is O(N). The most time-consuming step in the measurement is the generation of the
binomially distributed random number. We can reduce the computational cost of the mea-
surement tremendously by approximating it with a normally distributed random number,
for which pre-computed look-up tables can be used.

• It is interesting to note that the measurement of peakedness involves randomness due to
the simulation of servers, which means that for one sequence of traffic we could get different
peakedness values. Experiments show that the peakedness measurements do not change
significantly if we compute them more than once.

• The advantage of our approach compared to Eckberg’s method for estimating peakedness
for exponential holding times (cf. [20, 63]) is that our method does not neglect a lot of
arrivals in the computation due to the selection of an arbitrary arrival.
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2.3.2 Peakedness of Video Traffic

Video traffic is a very important example of variable rate traffic. We investigated the application
of peakedness measure for the characterization of variability of MPEG video traces [79].

In the MPEG coding scheme, the sequence of frames are divided into Groups of Picture
(GOP), where each GOP is made up of so-called I, P and B frames. I frames are the largest
because no prediction is used for coding them; P and B frames are smaller because one and two-
directional prediction decreases the amount of information to be coded. The MPEG sequences
that we considered had a GOP (Group of Pictures) length of 12 frames, a GOP pattern of
IBBPBBPBBPBB, and frames capture frequency of 25 frames per second.

Figure 2.1 shows the peakedness curve of an MPEG video trace of a movie (MrBean) as a
function of the service rate µ. The mean service time of a server is therefore 1/µ time epochs,
where one time epoch is now 40ms. The solid curve is the peakedness function for the frame
sequence (one frame corresponds to one epoch), whereas the dashed curve is the peakedness
function for the GOP sequence (one GOP corresponds to 12 epoch so that is has the same time-
length as the frame sequence) The scaling in the vertical axis is such that one arrival corresponds
to one bit.
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Figure 2.1: Peakedness of the frame (solid) and GOP (dashed) sequence of MPEG video trace
(MrBean).

By decreasing the service rate, the service times become longer, and the number of busy
servers in the infinite server group depends on the traffic properties on longer time scales. In this
way, the peakedness curves show the variability of the traffic on different time scales, i.e. on the
time scale of 1/µ.

Figure 2.1 shows that on short time scales, the variability of the frame sequence is much
greater compared to the GOP sequence. But as we go to longer and longer time scales, the
variability of the two sequences converge. What we can learn from this is that on longer time
scales (for example, when dimensioning larger buffers), the statistical characteristics of GOP
structure is less significant, and it is enough to consider the GOP sequence.

Figure 2.2 shows the peakedness curves for geometric service time distributions for five MPEG
video GOP size traces. It gives us a relative comparison of the variability of different kinds of
video sequences. (In this figure, one time epoch is set to one GOP which introduces a scaling
compared to Figure 2.1.) The highest values of peakedness are exhibited by the MTV sequence,
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which is known to have lots of scene changes. Movie sequences show lower peakedness compared
to the MTV sequence. The peakedness of a video conference sequence is found to be the smallest
by orders of magnitude.
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Figure 2.2: Peakedness of MPEG GOP video sequences. From the uppermost downwards, the
sequences are from: TV (MTV), movie (MrBean), TV (News), movie (StarWars), video confer-
ence.

Figure 2.3 shows an IBBP fitted to an MPEG movie trace (MrBean, [79]). The solid line is
the peakedness curve of the GOP sequence, the dashed line shows the peakedness curve of the
fitted model. The circles show the peakedness values where the fitting was made. The points
were chosen to represent the variability of the traffic on a long time scale (corresponding to the
time scale of 1/0.01=100 epoch, here one epoch corresponds to 0.48 sec). As we can see, the
model is able to capture the variability of the arrival stream on the investigated time scales.

2.3.3 Peakedness of Aggregated ATM Traffic

We analysed the peakedness curve of an aggregated ATM traffic trace taken from the Finnish
University and Research ATM WAN network (FUNET) [68]. The trace was approximately one
hour long and consisted of the number of cell arrivals in each second. Figure 2.4 shows the
peakedness curve of the measurement and two IBBPs fitted to it. The IBBP that was fitted at
short time scale fits the measured peakedness curve well for shorter time scales, but it gives lower
peakedness values for time scales longer than 1/0.05 = 20sec. The other IBBP was fitted at a
longer time scale; this model gives lower peakedness values for time scales shorter than 20sec.

2.3.4 Peakedness of Ethernet Traffic

Figure 2.5 and Figure 2.6 show the peakedness curve of an Ethernet traffic taken from the Bellcore
measurements [53]. The measurement covers 1 million arrivals (approx. one hour). Figure 2.5
depicts peakedness on a lin-lin plot, Figure 2.6 is a log-log plot. We can investigate 5 different
time scales in Figure 2.6. The interesting finding is that the peakedness increases linearly on the
log-log plot as we decrease the rate (go to long time scales). Due to eq. (2.15) and knowing that
lims→∞ I[s] =∞ if there is long range dependence (LRD) in the traffic, the peakedness diverges
as the rate goes to zero. This observation of monotonicity in Figure 2.6 supports the presence
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Figure 2.3: Peakedness curves of MPEG GOP movie trace (MrBean, solid) and its IBBP model
(dashed).

of LRD assuming that the traffic stationarity assumption holds. It is important to note that the
peakedness curve can be used as an indicator of LRD.

At different time scales we fitted simple Markovian models (IBBPs) to capture the peakedness
curves in Figure 2.6. We can see that the burstiness scaling property of these models are not
appropriate i.e. these models can cover a shorter range of time scales in burstiness than it would
be necessary to follow the burstiness of the real traffic over all the investigated time scales.

Our investigations of the aggregated ATM and Ethernet traffic indicate that simple Markovian
models are not able to capture the burstiness characteristic of traffic over many time scales. For
this case fractal traffic models seem to be more appropriate [68, 53]. However, for several practical
cases we do not need to focus on all time scales but only on our working time scales (e.g. time
scales of queuing) which can be efficiently modelled by Markovian models, too.

2.4 Summary

We have shown that peakedness can be used to characterize the bursty nature of traffic. Peaked-
ness curves show the variability of traffic on different time scales and can be efficiently computed
for real time traffic. We have extended the peakedness theory to discrete time and applied the
peakedness characterization to variable rate video traffic, Ethernet traffic and aggregated ATM
traffic as well as to the most important traffic models. We have shown that generalized peaked-
ness can also be used for detecting long range dependence. We have also presented a new model
fitting technique based on the concept of peakedness.

The basic idea of peakedness characterization is that we characterize traffic by its interac-
tions with the service system. Although the traffic is usually offered to more complicated queuing
systems, it is difficult to use complicated systems for characterization because it is very hard to
handle them analytically. The infinite server group may be regarded as a compromise between
generality and analytical tractability. Its generality is shown by the observation that peaked-
ness gives a complete second order characterization, i.e. it contains all information about the
correlation structure of the traffic.
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Figure 2.4: Peakedness of aggregated ATM traffic (solid) and IBBP models (dotted) fitted to it.
The two IBBPs are fitted at short (stars) and long (circles) time scales.
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Figure 2.5: Peakedness of Ethernet trace (solid) and IBBP models (dotted) fitted to it. The two
IBBPs are fitted at short (stars) and long (circles) time scales.
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Figure 2.6: Peakedness of Ethernet trace (solid) in log-log plot. On five time scales (separated
by vertical lines) IBBP models are fitted (dashed).
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Chapter 3

Design of a New Dynamic
Retransmission Protocol

3.1 Introduction

Mobile networks have to cope with the special properties of the wireless links between a terminal
and the base station. Wireless links have typically a much higher error rate than fixed links. In
addition, the error patterns and other performance characteristics such as the capacity of the
link can change dynamically over time. To cope with these problems, the wireless network has
to use a set of dynamic error control mechanisms to compensate the performance effects of the
wireless links.

This chapter discusses this issue, namely the dynamic error control in the communication
between the AP (Access Point) and MT (Mobile Terminal) (as shown earlier in Figure 1.1). We
will address this question within the context of the HIPERLAN/2 wireless LAN system, but the
presented solutions can be applied to other architectures as well.

The chapter is organized as follows. We first give a brief description of the HIPERLAN/2
architecture. We review related work on retransmission (ARQ) protocols and show how they
could be applied in the error control mechanism of HIPERLAN/2 in Section 3.3. We then
discuss a new dynamic ARQ protocol for dynamic error control in Section 3.4. The chapter is
summarized in Section 3.5.

3.2 The HIPERLAN/2 Architecture

HIPERLAN/2 stands for HIgh PErformance Radio LAN type 2 [37, 45, 47, 46], a Wireless Local
Area Network (WLAN) system standardized by ETSI/BRAN (European Telecommunication
Standards Institute Broadband Radio Access Networks project, [28]). Wireless LANs provide
high-speed wireless packet-oriented connectivity in a local coverage area [33]. Below we give
a brief overview of the HIPERLAN/2 standard, which will help in understanding the ARQ
protocols later in this chapter, and also in understanding the subsequent chapters. However, the
deep understanding of the HIPERLAN/2 system details is not essential for the purposes of this
dissertation.

The HIPERLAN/2 standard uses a cellular architecture (see Figure 1.1) and operates in the
5GHz band. It enables users to access Ethernet, IP, UMTS, ATM or other types of backbone
networks with high data rate (up to 54Mbps) and can provide different levels of QoS. The
standard covers the physical and data link layer, which we briefly summarize below.
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Mode Modulation Code rate Physical layer bit rate
1 BPSK 1/2 6 Mbps
2 BPSK 3/4 9 Mbps
3 QPSK 1/2 12 Mbps
4 QPSK 3/4 18 Mbps
5 16QAM 9/16 27 Mbps
6 16QAM 3/4 36 Mbps
7 64QAM 3/4 54 Mbps

Table 3.1: Physical layer modes of HIPERLAN/2
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Figure 3.1: Basic MAC frame structure in HIPERLAN/2

In the physical layer of HIPERLAN/2, a transmission scheme called Orthogonal Frequency
Division Multiplexing (OFDM) has been selected due to its excellent performance in an indoor
environment with multiple paths and reflections present between the transmitter and receiver
[48]. A key feature of the physical layer is to provide several modes with different coding and
modulation schemes (see table 3.1), which are selected adaptively by a link adaptation algorithm
based on measurements of the channel [88]. Choosing the appropriate link adaptation algorithm
enables the system to match the physical layer mode to the required radio link quality in order
to reach the desired quality of service (e.g., maximum throughput or low delay).

The physical layer implements another adaptation mechanism, namely dynamic frequency
selection (DFS) [88]. This adaptation works on a long time scale so that it does not react to
quick changes in the traffic or error pattern. The DFS mechanism provides an automatic way
for each base station to allocate the frequency used in its cell. Manual frequency planning is
therefore avoided, and the system can automatically react to the installation or uninstallation of
other base stations, or to the appearance or disappearance of other interferers in the vicinity.

In the data link control (DLC) layer, a new level of adaptation is possible by dynamically
scheduling traffic based on the current traffic demand. This is made possible by the air interface
that is based on dynamic time division multiple access (TDMA) time division duplex (TDD)
MAC (Medium Access Control) frame structure. In order to achieve a high utilization of radio
channel capacity, the access points (APs) and mobile terminals (MTs) in the system dynamically
share the transmission capacity.

The dynamic sharing of capacity is achieved by a MAC frame structure that is controlled by
a scheduling algorithm in the AP and adapts to traffic demands. The MAC frame appears with
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a period of 2 ms and has the following basic structure (Figure 3.1). At the beginning of a MAC
frame there is a broadcast channel (BCH, sent by the AP) that conveys information concerning
the whole cell and indicates the start point and the length of some elements of the MAC frame,
e.g., location of random access channels (RCHs). The frame channel (FCH, sent by the AP)
contains an exact description of how resource has been allocated within the MAC frame in the
downlink (from AP to MT) and uplink (from MT to AP) phase. The access feedback channel
(ACH, sent by the AP) conveys information on previous access attempts made in the RCH. The
ACH is followed by the downlink and uplink phases, where the border between downlink and
uplink can dynamically change from frame to frame. The downlink and uplink phases consist of
PDU trains to and from MTs. A PDU train comprises user PDUs (U-PDUs of 54 bytes with 48
bytes of payload) and control PDUs (C-PDUs of 9 bytes) to be transmitted or received by one
MT. There is one PDU train per MT (if resource has been granted in the FCH). As can be seen
in Figure 3.1, a MT can have traffic over multiple DLC connections in one PDU train. Each DLC
connection corresponds to a specific QoS support on the DLC layer. The scheduler in the AP
is responsible for sharing transmission capacity between MTs and AP in uplink and downlink
based on the needed QoS. At the end of the frame, the RCH provides a contention period that
can be used by the MTs to request transmission resources for the uplink phase in upcoming
MAC frames, and to convey some radio link control signalling messages. The access to RCHs is
controlled with a contention window maintained by each MT. The number of RCH slots can be
varied from frame to frame based on traffic load. (See [80] for a discussion on the efficiency of
different adaptation mechanisms used in the RCH.) To get transmission opportunities the MTs
have to provide resource requests (number of U-PDUs to be transmitted) to the AP scheduler.
These are made either in the RCH, or the scheduler can directly acquire the resource requests
from the MTs by a polling mechanism.

The data link layer also provides error control capabilities. To detect transmission error in
protocol data units (PDU), binary Cyclic Redundancy Check (CRC) codes are used. The data is
segmented to PDUs and protected by a 24-bit CRC code. Based on the results of error detection
with the CRC codes the receiver notifies the transmitter with an Automatic Repeat Request
(ARQ) feedback whether the transmitted PDUs have been successfully received or not. The
erroneous PDUs are retransmitted. Next we discuss this mechanism.

3.3 Related Work and Their Application in HIPERLAN/2

A number of static ARQ schemes are known. We first discuss how three basic retransmission
mechanisms, Stop-and-Wait ARQ, Go-back-N ARQ [86] and PRIME [71] can be applied to
HIPERLAN/2. We then discuss our dynamic proposal in Section 3.4.

The ARQ scheme works in a frame by frame basis in HIPERLAN/2 as shown in Figure 3.2.
The transmitter sends a number of data PDUs grouped together in a frame. The receiver makes
one ARQ response within a frame, which contains the cumulative response to the received PDUs.
The transmitter gets the ARQ feedback, and retransmits missing PDUs based on the ARQ
information in the subsequent frames.

Stop-and-Wait ARQ means that the transmitter retransmits the last PDU until a positive
acknowledgement arrives in response. The next PDU is transmitted only after the acknowledge-
ment to the last transmitted PDU. This concept is illustrated in Figure 3.3. The transmitter and
the receiver take turns to transmit the data and the acknowledgement packets.

The application of Stop-and-Wait ARQ is illustrated in Figure 3.4 in a sequence number
diagram which plots the development of the ARQ protocol behaviour on a frame by frame
basis. A packet of sequence number s is shown as a circle. If it is successfully received, an
acknowledgement with a sequence number of s + 1 is sent back, shown as a triangle; otherwise
an acknowledgement with a sequence number of s is sent.
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Figure 3.2: ARQ in the HIPERLAN/2 MAC frame structure (illustrated without ARQ processing
delay).

The figure shows that this scheme is inefficient to apply to HIPERLAN/2 because the high
capacity of the system is not utilized. The system has the capacity to send many PDUs per
frame, but can only accommodate a single ARQ feedback message and therefore only one data
PDU can be sent; this is why Stop-and-Wait cannot utilize the system resources.

Ack 0 Ack 1 Ack 2 Ack 3

2 2 3

Nack 2

Transmitter

Receiver

0 1

Figure 3.3: Stop-and-Wait ARQ example

With Go-back-N the receiver signals the first missing PDU, and the transmitter retransmits it
(if there is a need for retransmission) as well as all consecutive PDUs. This concept is illustrated
in Figure 3.5. The figure shows the transmitted PDU sequence numbers, and the receiver’s cu-
mulative acknowledgement, which gives the first missing PDU and hence implicitly acknowledges
all previous PDUs. We can see that this scheme allows many data PDUs to be sent for each ac-
knowledgement, but it may often happen that a PDU is retransmitted unnecessarily. Figure 3.6
shows the application of the protocol in the case of HIPERLAN/2. Again, one acknowledge-
ment is sent per frame. The Go-back-N scheme provides a simple retransmission protocol, but a
number of correctly received PDUs are also retransmitted, which decreases the performance.

To alleviate the inefficiency caused by retransmitting correctly received PDUs, a proposal
called PRIME ARQ [71] (Partial selective Repeat superIMposEd on go-back-n) makes a compro-
mise between Go-back-N and Selective Repeat ARQ. See Figure 3.7 for the illustration of this
ARQ concept. In this proposal the receiver signals the first M missing PDU numbers, where M
is a parameter of the protocol. The transmitter retransmits the indicated PDUs, and all consec-
utive PDUs above the highest of the M indicated PDU numbers. PRIME selectively retransmits
only the missing PDUs if their number is less than M . (In contrast, the Go-Back-N scheme is a
special case of PRIME when M = 1; if M goes to infinity, PRIME works as a selective repeat
scheme, as described below.)

Figure 3.8 shows the application of this mechanism in HIPERLAN/2. One control PDU
carries three missing PDU numbers in each frame. We can see that the PRIME protocol is much
better in avoiding duplicate retransmissions than Go-back-N.

In Selective Repeat ARQ [86, 64], the receiver gives a detailed feedback on which PDUs
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Figure 3.4: Stop-and-Wait ARQ in the HIPERLAN/2 system. Vertical lines mark frame bound-
aries; circles and triangles represent data and acknowledgement PDUs, respectively. A dark circle
shows a data PDU that is lost (corrupted) in the transmission and hence must be retransmitted.
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Figure 3.5: Go-back-N ARQ example

are received and which are not. The transmitter retransmits only those that are missing at
the receiver. This concept is illustrated in Figure 3.9 where the receiver gives a cumulative
acknowledgement (the sequence number of the first missing PDU) and a bitmap of the arrival
status of the subsequent eight PDUs (one means received, zero means not received). This is one
possible way of how selective repeat gives detailed feedback to the transmitter.

The protocol behaviour is shown in Figure 3.10 in the context of HIPERLAN/2. We illus-
trate the receiver feedback of the cumulative acknowledgement and the bitmap of the next eight
sequence numbers. This is the most efficient mechanism in avoiding duplicate retransmissions,
but at the cost of using the most feedback information.

Our motivation for developing a dynamic retransmission protocol is to allow for adaptation
in the amount and contents of the ARQ feedback messages. This is needed in an environment
with bursty traffic patterns and changing channel conditions.

An adaptation mechanism in the ARQ feedback complements other adaptive techniques
known in the literature in the physical layer (adaptive channel selection, adaptive antennas,
modulation mode selection, power control, processing gain adaptation, adaptive equalizers, etc.;
see the references in [77, 15, 88]) and in the link layer are such as adaptive frame and packet sizes
[59, 89, 90, 21, 54] and adaptive coding schemes in [42, 88, 59, 21, 23]. A very general approach
to adaptation is presented in [7] where adaptation is achieved by re-programming the MAC layer.
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Figure 3.6: Go-back-N ARQ in the HIPERLAN/2 system (same notation as in Figure 3.4).
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Figure 3.7: PRIME ARQ example

3.4 Dynamic Retransmission (ARQ) Protocol in HIPER-

LAN/2

As we have seen above, the HIPERLAN/2 system is dynamic in the sense that the data traffic
changes on a frame by frame basis, as decided by the central scheduler. In addition, the amount
of ARQ control messages also has to be decided: in HIPERLAN/2, they are also scheduled in
the central scheduler. Furthermore, the contents of the ARQ can be dynamically adapted to
the current conditions of the system. Another aspect that needs to be taken into account is
that different implementations may impose extra processing delays. All these features make the
design of the ARQ protocol difficult and motivate mechanisms.

To solve these problems, we have proposed a new version of selective repeat ARQ, called Se-
lective Repeat ARQ with Partial Bitmaps (SRPB) [C5, 12]. The protocol allows the transmission
and reception of PDUs in a very flexible way within the transmit and receive windows. Here we
highlight the novelties of the protocol, see [41] for a full description.

The receiver maintains a bitmap corresponding to the reception status of each PDU in its
receive window and uses this bitmap to give feedback to the transmitter. Based on this feedback,
the transmitter retransmits the missing PDUs. The ARQ feedback in ARQ C-PDUs with the
information fields are summarized in Table 3.2. In a single ARQ C-PDU, the receiver can signal
three 8-bit portions of this bitmap, called bitmap blocks. Each bitmap block is identified by
a bitmap number. This gives the receiver a great deal of flexibility in choosing which bitmap
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Figure 3.8: PRIME ARQ in the HIPERLAN/2 system (same notation as in Figure 3.4).
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Figure 3.9: Selective Repeat ARQ example

blocks to signal so that the ARQ feedback is the most efficient.
In addition, the transmitter can cumulatively acknowledge earlier PDU receptions by the CAI

(Cumulative Ack Indication) bit. When it is set, all PDUs before the first bitmap block have
been correctly received. Cumulative acknowledgements help the transmitter become aware of
the correctly received PDUs and advance its transmit window even if some of the ARQ C-PDUs
are lost.

The standard allows flexibility in the design of the ARQ, since it only specifies the format
of the ARQ messages, leaving room for optimizations in both the transmitter and the receiver.
Regarding the receiver, it can use a number of strategies to generate the ARQ feedback. We
provide here three simple mechanisms that the receiver can follow.

A In the first and simplest strategy, the receiver always signals the blocks continuously from
the bottom of the window. This is the simplest strategy to follow, but it does not utilize
the flexibility of the ARQ messages.

This strategy is illustrated in Figure 3.11 where the transmitted data PDUs and the ac-
knowledgements are shown on a frame by frame basis. The acknowledgement contains three
bitmap blocks and their block numbers. (Block number 0 corresponds to PDUs 0-7, block
number 1 corresponds to PDUs 8-15, and so on.) In every frame, the transmitter sends
eight PDUs in this example, and the receiver signals its reception status. The transmitter
first retransmits the missing PDUs, and then continues with the transmission of new PDUs.
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Figure 3.10: Selective repeat ARQ in the HIPERLAN/2 system (triangle means cumulative
acknowledgement; dots represent missing, squares represent received PDUs; other notation as in
Figure 3.4).

Field Bits Function
CAI 1 Cumulative Ack Indication

BMN 1 7 Bitmap Number 1
BMB 1 8 Bitmap Block 1
BMN 2 5 Bitmap Number 2
BMB 2 8 Bitmap Block 2
BMN 3 5 Bitmap Number 3
BMB 3 8 Bitmap Block 3
ABIR 1 ARQ Bandwidth Increase Request

Table 3.2: ARQ feedback fields

Because all the bitmap blocks are reported, sometimes a block with no errors is also sig-
nalled. This prevents the signalling of missing PDU 24 in Frame 4, which is why it is not
retransmitted in Frame 5, but only in Frame 6.

B In the second strategy, the receiver signals the blocks beginning from the bottom of the
window, but only those where there is an error. This makes the retransmission of errored
PDUs faster. In the example of Figure 3.11, the bitmap block with all ones would not be
signalled in this strategy.

We illustrate this strategy for the case when the round-trip time of the ARQ protocol
is greater than one frame. The round-trip time is the minimum time necessary for a
retransmission to arrive at the receiver after the negative acknowledgement is sent. The
round-trip time of the ARQ protocol can be bigger than one frame because of processing
delays in the transmitter or receiver.

See Figure 3.12 using strategy B in the case when there is a one frame delay in generating
the ARQ feedback, hence the round-trip time is two frames. (Note that it would be also
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Figure 3.11: Receiver ARQ strategy A. The receiver chooses the first three bitmap blocks to
signal in the ARQ control message. (The bitmap blocks are shown in brackets, preceded by the
bitmap block numbers.)

possible that the transmitter introduces processing delays.) The transmitter is aware of the
delay in the receiver, and retransmits only the PDUs that are missing and have been sent
until the previous frame. (For this, the transmitter has to remember the last PDU that it
sent in the previous frame.)

We can see in Frame 5 that bitmap block 1 is not reported since there are no errors in it.
This saves ARQ signalling capacity.

On the other hand, the figure also illustrates a problem. Errors are reported twice before
the first retransmission can arrive due to the delay in the ARQ generation. Since the
transmitter retransmits negatively acknowledged PDUs, missing PDUs are retransmitted
twice, even if the first retransmission is successful. This procedure wastes not only ARQ
signalling capacity but also data transmission capacity. This motivates the use of strategy
C.
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Figure 3.12: Receiver ARQ strategy B. The receiver chooses the first three bitmap blocks where
there is a missing PDU. The receiver has a delay of one frame for generating the ARQ C-PDU.

C The third strategy is suited for the case when the round-trip time of the ARQ protocol is
greater than one frame. In this strategy, the receiver signals the blocks from the bottom
of the window, but only those where there is an error, and excluding those which have
been signalled in the last round-trip time period (including this frame) and are unchanged.
In addition, the receiver chooses the first bitmap block in the window at least once in a
round-trip time to be able to cumulatively acknowledge all data below the window.

In Figure 3.13 we plot the use of strategy C. Note that in this case we do not always
report the first bitmap block where there is an error. If we report the first block, the CAI
(Cumulative Ack Indicator) is set, which is marked by an asterisk. In the figure, this is set
in every second frame, as required by strategy C.
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We can see that the missing PDUs that were reported twice in the previous example are
now reported only once, and hence they are retransmitted only once. This saves both
transmission capacity and ARQ signalling capacity. This is why in the six frames shown
and with the same error pattern, strategy C can transmit up to PDU 36 while strategy B
can transmit up to PDU 31 only. (Note however that it may still happen that a missing
PDU is sometimes reported twice in this strategy, when a bitmap block is reported again
after a change or when it is reported as the first block of the window, as in Frame 6.)
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Figure 3.13: Receiver ARQ strategy C. The receiver excludes the bitmap blocks that have been
signalled in the last round-trip time and are unchanged. The acknowledgements where the CAI
(Cumulative Ack Indicator) is set are marked by an asterisk. At least one such ARQ C-PCU is
generated in each round-trip time.

We have implemented strategy B in a packet-based simulator and compared it to PRIME
ARQ in [C5]. Figure 3.14 shows one graph from the study. It shows the throughput performance
of the SRPB and PRIME ARQ using the same set of constraints: a single cell was simulated
on a bursty Markovian error model. As the offered traffic is increased, the throughput saturates
at a higher value for the SRPB protocol. This can be attributed to the fact that the SRPB
protocol is more efficient in retransmitting only the lost (corrupted) PDUs without retransmitting
correctly received PDUs. For this reason, and because SRPB can incorporate a number of
different strategies like A, B, and C, the HIPERLAN/2 standardization body decided on the use
of the SRPB protocol.

Besides the flexibility of choosing the bitmap blocks to signal at the receiver, there is another
feature that makes the ARQ protocol dynamic. The number of ARQ C-PDU feedback messages
is controlled by the scheduler in the access point which may follow a dynamic scheme. Allocating
more ARQ C-PDUs allows quicker retransmissions, but it also consumes more resources. The
dynamic allocation of ARQ capacity is also supported by the ABIR (ARQ Bandwidth Increase
Request) bit in the ARQ C-PDU. When this bit is set in an ARQ message sent by an MT, it
signals to the AP scheduler that the MT would like to increase the number of ARQ C-PDUs.

This feature is illustrated in Figure 3.15. When the receiver can not signal all the errors, it
sets ABIR to one, and the scheduler increases the allocated number of ARQ C-PDUs by one. If
the ABIR is zero, the allocated number of ARQ C-PDUs is decreased by one, but at least one
ARQ C-PDU is always provided.

The performance gain of using a dynamically adaptable number of ARQ C-PDUs is plotted
in Figure 3.16. The adaptation of the number of allocated ARQ C-PDUs is done as shown in the
previous figure. This allows a quick adaptation of the number of ARQ C-PDUs, which is more
efficient than a static allocation. Dynamic allocation allows a much quicker signalling of missing
PDUs when there are many errors, and therefore retransmissions are quicker.
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3.5 Summary

In HIPERLAN/2 the ARQ protocol has to provide feedback to a dynamically changing amount
of traffic in such a way that it is sent in control PDUs that are scheduled separately from data
traffic. Therefore, new mechanisms are needed to optimize the contents of the ARQ messages
and schedule them. These mechanisms must work even if there are implementation-dependent
delays in the end systems.

To satisfy these new demands, we have proposed a new dynamic selective repeat ARQ pro-
tocol, Selective Repeat Partial Bitmap (SRPB) ARQ. The protocol is dynamic in a number of
ways. The receiver can dynamically choose the bitmap blocks that it signals in its ARQ mes-
sage. We have proposed three simple schemes by which the receiver can choose which bitmap
blocks to signal. In addition, the receiver can signal when it has too little capacity allocated for
ARQ information, and based on this feedback, the scheduler dynamically assigns the amount of
capacity for ARQ.

Simulation results show that SRPB gives higher performance than the PRIME protocol at
high traffic loads because of the fact that it is more efficient in retransmitting only the corrupted
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packets. The simulation results also show that the dynamic adaptation of the capacity of the
ARQ messages efficiently improves the system throughput.
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Chapter 4

Fairness and Utilization Analysis
of the Resource Allocation of a
Wireless Base Station

4.1 Introduction

The question of fair resource allocation has been extensively studied in wired networks using the
notion of fluid fair queuing. Using this concept, an ideally fair resource allocation can be defined
among the flows sharing a common link [95, 5].

In fluid fair queuing, each flow i has a weight wi. The total capacity is distributed in pro-
portion to the weights among the flows that are backlogged at a given instant. Formally, for any
time interval [t1, t2] during which there is no change in the set of backlogged flows B(t1, t2), the
amount of allocation Wi(t1, t2) provided to flow i is such that

∀i, j ∈ B(t1, t2),
Wi(t1, t2)

wi
=
Wj(t1, t2)

wj
(4.1)

This is known as the Generalized Processor Sharing (GPS) policy [73]. GPS has two important
properties that motivates its use: it can provide a delay bound for the service as long as the
flows are constrained by a leaky bucket, and it can ensure a fair allocation of resources for
the backlogged flows regardless of whether or not their traffic is constrained. An important
consequence of fair resource allocation is the separation property: a fraction of wi/

∑
j wj of the

resources is guaranteed to flow i even if all the flows are backlogged. If some of the flows become
unbacklogged, the remaining resources are re-distributed among the backlogged flows. But the
guaranteed amount of resources are never taken by other flows.

A number of packet fair queuing algorithms have been designed to approximate the ideal
fluid fair queuing discipline in a practical algorithm. See [95] for an overview of these scheduling
disciplines, including the most well-known example, Weighted Fair Queuing (WFQ) [73]. These
algorithms differ in how accurately they approximate fluid fair queuing and in the complexity of
their implementation. In Section 4.4 we will consider one such packet fair queuing algorithm in
more detail, Start-time Fair Queuing (SFQ).

As we apply the fair queuing algorithms and results in a wireless environment, new problems
arise. Because packets may be lost at the air interface, the amount of service allocated to a
flow is not the same as the amount of service that the flow eventually gets. It implies that the
fairness of fluid fair queuing as determined by Eq. 4.1 no longer holds. Since the channel error
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characteristics may be location-dependent, the service that the flows get are not proportional to
their weights.

To alleviate the unfairness problem, we introduce a compensation mechanism: we compensate
for the resources lost due to errors on the air interface after these errors occur. The compensation
mechanism increases the fairness among the flows, at the cost of reducing the separation property
between the flows. We introduce a trade-off into the resource allocation problem: when we
compensate the for the lost resources, we need to allocate more for the users with a lossy link,
decreasing the overall channel utilization.

This trade-off is further complicated if the most prevailing transport protocol, TCP is used for
transporting data over the wireless link and to dynamically make use of the available transmission
resources, this can further modify the distribution of resources. As we discussed in Chapter 3,
TCP reacts to packet losses as if they were caused by congestion, and decreases the sending rate.
To hide this effect from TCP, we can use a dynamic link-layer ARQ protocol, as described in
Chapter 3.

Our goal here is to investigate the interactions of these effects. We analyze the relationship
between fairness and utilization when TCP is used as the transport protocol, a link-layer ARQ
protocol is used to retransmit packets lost at the air interface, and a simple resource allocation
architecture takes these losses into account and compensates for them.

This chapter is organized as follows. We begin with a brief discussion of related work in
Section 4.2. Section 4.3 presents the architectural framework, Section 4.4 describes SFQ that
will be extended with a compensation mechanism in Section 4.5. Section 4.6 analyzes the trade-
off between fairness and utilization through simulations. Section 4.7 summarizes the results of
this chapter.

4.2 Related Work

The question of how to design a link layer so that it performs well with TCP/IP protocols has
been an active area of research and standardization. Showing the practical importance of the
question, a working group of the IETF was formed called Performance Implications of Link layer
Characteristics (PILC). Among the goals of the working group is to give advice to link layer
designers on how to support TCP/IP protocols efficiently [26].

The potential performance problems of running the TCP/IP protocol over wireless links were
first analyzed in detail in [14]. The authors identify the problem that due to the losses on the
wireless link and losses during a handoff, IP packets may be lost. This is a problem because
the most prevailing transport protocol, TCP [24, 85], was designed such that it interprets packet
loss as a sign of congestion in the network and consequently decreases its window causing an
unnecessary degradation in the throughput. The authors in [14] propose a fast retransmission
scheme in the TCP end hosts to address the problem. Other authors also propose and analyze
solutions that address this problem by modifications at the transport layer, see [1, 82, 93, 2, 13].

At the same time, there are also well-known methods to address the errors of the wireless
physical link at the link layer [77, 86]. Forward Error Correction (FEC) uses redundant coding
to be more resistant to bit errors. Automatic retransmission request protocol (ARQ) uses an
error-detecting code and feedback to the transmitter to retransmit the errored data segments.
These techniques can be applied at the link layer without requiring any knowledge about the
transport and upper-layer protocols. As an alternative, [4] proposes the snoop protocol which
performs local retransmissions based on transport layer knowledge over a wireless link without a
native link-layer retransmission mechanism.

A comparision of the different proposals for improving TCP performance over a wireless link
is found in [3]. The study concludes that link-layer retransmissions (including the snoop mecha-
nism in [4]) are more effficient in reducing the effect of wireless transmission errors than transport
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layer solutions. However, two specific problems may still arise with local retransmissions. If the
local retransmission protocol does not guarantee in-order delivery of packets, then the trans-
port layer retransmission mechanism of TCP may be invoked due to the presence of duplicate
acknowledgements. (This problem is analyzed and an improvement using delayed duplicated
acknowledgements is proposed in [91].) A second problem that may arise is that the local link-
layer retransmission protocol and the transport layer end-to-end retransmission protocol may
interfere, and an end-to-end spurious retransmission may occur while a local retransmission is
still in progress.

The problem of spurious transport layer retransmissions in the case of local link-layer re-
transmissions at a wireless link was first studied in [18] and was regarded as a major performance
bottleneck. However, [57] reconsiders the simulation results and concludes that a number of
assumptions made in [18], such as a constant retransmission timeout of TCP, are unrealistic.
Instead, [57] presents a new analysis of the problem and concludes that in cellular systems where
the wireless link has a latency in the order of a few milliseconds, spurious retransmissions are very
rare because of the conservative TCP-layer retransmission mechanism. This claim is also sup-
ported by measurements of simultaneous link layer and transport layer traces [60]. Experimental
and simulation studies [21, 65] reinforce the finding that a local retransmission protocol at the
wireless link makes a significant performance improvement without causing spurious transport-
layer retransmissions. (Another approach to the potential problem of spurious retransmissions
are addressed in [58] where some TCP extensions are proposed that reduce the likelihood of spu-
rious retransmissions should there be a great variability in the round-trip-time due to wireless
links.)

Based on these findings, [21] and [59] propose to use a persistent link-layer retransmission
mechanism for reliable end-to-end flows. Such a link layer protocol hides the errors of the
wireless link from TCP and avoids the triggering of congestion control mechanisms in response
to non-congestion related losses. However, such a link-layer retransmission mechanism is only
suitable for loss-sensitive end-to-end flows. In other cases, such as real time traffic, delivering
the packets in a timely manner is more important than the avoidance of packet losses. If a
packet does not reach its destination before its deadline, its local link-level retransmission is
not only unneccessary, but also wasteful of resources. This is why [57] introduces the notion of
flow-adaptive wireless links. A flow-adaptive link uses explicit QoS information in the IP header
[27] to dynamically adapt physical and link layer error control schemes for each flow sharing the
link. A flow-adaptive link uses persistent retransmissions for loss-sensitive TCP flow, while it
avoids persistent retransmissions for delay-sensitive real-time flows. The PILC working group of
the IETF came to similar recommendations. According to [30], a link that can separate between
its flows should use a highly persistent retransmission policy for TCP flows and low persistancy
for real-time flows.

Bhagwat et al. analyzes the interactions of link-layer scheduling and TCP performance in
[6]. They consider the IEEE 802.11 WLAN architecture and show three scheduling schemes that
work on a packet by packet basis based on feedback about the channel state. They identify the
problem of head-of-line blocking when simple FIFO scheduling is used: in the case of erroneous
transmission, a packet may be retransmitted several times due to the bursty nature of the wireless
channel. This causes a waste of transmission resources. They show that a simple round-robin
scheduling gives significant improvement in both utilization and fairness due to the fact that it
avoids head-of-line blocking.

Gomez et al. present a framework for provisioning application and channel dependent quality
of service [34]. The frameworks integrates three layers of adaptation. First, a channel predictor
estimates the state of the channel based on previous transmission attempts. This is extended
by a compensation mechanism (based on [6]) that gives compensation to flows with bad wireless
link. Finally, an application-specific adaptation mechanism that takes into account how the
application is able to adapt to the changes of the capacity of the wireless channel.
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There has been a number of studies investigating the adaptation fair scheduling to the wireless
environment (see [55, 56, 70, 76, 69, 22]) independently from the upper layer transport proto-
col and its interaction with the link layer scheduling. In this chapter we focus on the these
interactions. Scheduling architectures will be considered in more detail in Chapter 5.

4.3 Resource Allocation Architecture

Figure 4.1 illustrates the considered architecture of resource allocation. This architecture is in
harmony with the HIPERLAN/2 system introduced in Section 3.2 of Chapter 3, but the resource
allocation architecture itself is general and can be applied in other systems as well.

We call each transmission/reception entity a user. Each connection of a MT corresponds to
a user. The base station (BS, which is an Access Point, AP in the HIPERLAN/2 architecture)
is represented by many users each belonging to a connection interfacing a MT. The BS contains
the master scheduler that is responsible for the distribution of the capacity between the users.
The output of the scheduler is the dynamic allocation of each fixed-length MAC frame. The unit
of allocation is one radio PDU which is of fixed length.

Figure 4.1: Resource allocation architecture

The master scheduler makes its resource allocation decisions based on the resource requests
from the users. For the users within the BS the resource requests are just internal information
within the base station. For the users in the MTs the resource requests are made to the master
scheduler as control information. Resource requests specify the amount of data that the user has
in its buffers to transmit.

The master scheduler runs the scheduling algorithm once for each frame. This algorithm takes
the resource request from the users as its input and determines how much capacity is allocated
to each user in the next frame in the unit of a radio PDU. Here we do not deal with the order
of allocations within a frame. Our focus is the amount of allocations determined by the master
scheduler for each frame.

4.4 Start-time Fair Queuing

Start-time Fair Queuing (SFQ) is a member of the family of packet fair queuing algorithms [95].
SFQ [35] greatly reduces the computational complexity of WFQ by avoiding the need to simulate
the fluid server in real time. The virtual time variable used in SFQ is derived from the start tag
of the packet in service. Another advantage of this method is that SFQ is applicable to variable
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rate servers without a need to take the server rate into account in the virtual time computation
[5]. The fairness, throughput and delay properties of SFQ are analyzed in [35].

Start-time Fair Queuing is defined as follows [35]:

1 Packet j of flow i is stamped with a start and finish time Sj
i and F j

i , respectively, upon
arrival at time Aj

i .

Sj
i = max{v(Aj

i ), F
j−1
i }, (4.2)

F j
i = Sj

i +
Lj

i

wi
for j ≥ 1 (4.3)

where F 0
i =0, wi is the weight of flow i, Lj

i is the length of packet j of flow i, and v(t) is
the virtual time at time t.

2 The server virtual time is initially 0. During a busy period the server virtual time at time
t, v(t), is defined to be equal to the start tag of the packet in service at time t. At the end
of a busy period, v(t) is set to the maximum of finish tag assigned to any packets that have
been serviced by time t.

3 Packets are served in increasing order of start tags; ties are broken arbitrarily.

We modify the first step in such a way that the start and finish tag are maintained for the
first packet of a user only. (But even when the last packet of a user is served, its finish tag,
denoted by F ′

i , must be maintained.)

1’ A start and a finish tag, Si and Fi, are associated with each user, corresponding to the
virtual start and finish time of the packet at the head of the queue. When a new packet
enters the head of the queue at time t (i.e., a packet has been served, or the user becomes
backlogged), then the new values are computed from the old value of the finish time, F ′

i ,
as

Si ← max{F ′
i , v(t)}, (4.4)

Fi ← Si +
L

wi
(4.5)

where initially F ′
i = 0, wi is the weight of flow i, L is the length of all packets, and v(t) is

the virtual time at time t.

This modification does not have any influence on the SFQ itself, but it will make it easier to
introduce compensation below.

4.5 Compensation for Lost Resources

We analyze the trade-off between fairness and utilization by introducing a very simple compen-
sation mechanism. The master scheduler gives additional allocations to the users which have
experienced errors. Errors become known to the master scheduler through the ARQ protocol
after the errors occur.

To implement the compensation, we introduce the state variable lag for each user, denoted by
ni, to represent the amount of normalized service that the user should get in compensation. The
constant βl, βl ≤ 1 represents the amount of compensation for lost resources. βl = 1 means that
all of the lost capacity is compensated later, βl = 0 means no compensation for lost capacity. As
we will discuss, it is even possible to use negative compensation, βl < 0.

The SFQ scheduling is extended as follows.
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4 After each error of a packet of length L on the wireless channel for user i as reported by
the ARQ protocol, its lag is incremented by βl times the normalized service that was lost:

ni ← ni + βl
L
wi

(4.6)
ni ← min{ni, nmax}, ni ← max{ni,−nmax}. (4.7)

(That is, the value of ni is kept between the thresholds [−nmax, nmax]. )

5 Equation 4.5 is modified as follows:

lc ← min{ni, βl
L
wi
}, lc ← max{lc,−βl

L
wi
}, (4.8)

Fi ← Si + L
wi
− lc, ni ← ni − lc, (4.9)

where lc is the normalized compensation given during the service of the packet. Its value
is βl

L
wi

when ni is positive, −βl
L
wi

when ni is negative.

This means that while a user is being compensated, the normalized service given when a
single packet is served is artificially decreased by βl times the normalized length of a packet.
This can also be interpreted as increasing the weight of the user from wi to wi/(1− βl). The lag
is decreased by the amount that was used up for the compensation.

The admission control criterion for a new flow in the case of SFQ is
∑

i∈U wi ≤ C, where C
is the total capacity of the link. This must be modified due to the compensation mechanism. As
seen from the implementation of compensation a user is being compensated in such a way that
its weight is in effect increased from wi to wi/(1 − βl). The admission criterion for a new flow
becomes, using the worst case scenario when all flows need compensation,

1
1− βl

∑
i∈U

wi ≤ C. (4.10)

If this criterion is met, then the amount of wi capacity is guaranteed for user i. The fraction
βlC of the total capacity is reserved for the compensation mechanism, and the remaining (1−βl)C
is distributed between the users.

4.6 Simulation Results

We have implemented the following scenario in our packet-based simulator PlasmaSIM[39]: the
bandwidth of a single base station is shared by 8 MTs numbered 1 through 8 whose weights are
1;1;2;2;4;4;8;8; (in fact, to a single MT two users correspond — one in the MT and one in the
AP — that have equal weights). Note that here we are using weights only as a relative quantity,
but as mentioned above, weights can also correspond to throughput guarantees. Each MT is
receiving data through a single greedy TCP connection from a fixed host (greedy meaning a
connection in which there is always data to send). Our TCP version is New-Reno [29], which
can recover from losses more efficiently than the Reno variant without reaching timeout. The
wireless link is the only bottleneck in our setup. There is a 10ms delay between the fixed host
and the base station in both directions. For a summary of other simulation parameters, refer to
table 4.1.

In this study we use three loss models to represent losses due to bit errors. The first model
M1 has 5% independent (i.i.d.) loss probability for all PDUs; the second modelM2 has 25% i.i.d.
loss; while the third model M3 has 25% bursty loss as given by a Markov Modulated Bernoulli
Process (MMBP): the loss probability is modulated by a two-state discrete-time Markov-chain.
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MAC frame length 2ms
# PDU per frame 8

PDU length 48 bytes
System capacity 1.5 Mbit/sec

# MTs 8
Weights of MTs 1;1;2;2;4;4;8;8;
end-to-end RTT 20ms

Length of simulations 20sec
IP packet size 552 bytes

TCP/IP header 40 bytes
Buffer size at sender 100 PDU

Buffer size at receiver 100 PDU
Loss model M1 5% i.i.d. loss
Loss model M2 25% i.i.d. loss
Loss model M3 25% bursty loss, MMBP

Mean hold. times, M3 (5,17.5) [PDU transmit time]
Loss rate, MMBP of M3 (0.95, 0.05)

Table 4.1: Simulation constants

See table 4.1 for the parameters of the model. We use the same loss model in both uplink and
downlink directions in all cases.

The ARQ protocol operating at the link layer of the simulator is a selective repeat mechanism
that models the SRPB protocol described in Section 3.4 of Chapter 3. The protocol incorporates
a discarding feature as well which allows the sender to give up further retransmission attempts
after a certain number of trials. The knowledge of the number of lost PDUs in a frame are
transferred implicitly by the ARQ protocol to the master scheduler in the base station so that it
can perform compensation one frame later than the transmission errors actually occur.

Our performance metrics are based on the throughput values of the connections (there is a
single connection per MT). We define four levels of throughput. The allocated throughput is the
total transmission capacity allocated to a connection, i.e. the number of allocated PDUs per
second times the bit length of a PDU. The DLC-throughput is the throughput above the ARQ
protocol, i.e. the number of successfully transmitted PDUs per second times the bit length of
a PDU. The DLC-throughput is less than the allocation throughput due to losses over the air
interface. The IP-throughput is the throughput above the DLC layer, i.e. the number of success-
fully transmitted IP packets per second times the bit length of an IP packet. The IP-throughput
is less than the DLC-throughput due to padding at the last PDU of a packet in segmentation.
The application-level throughput, or goodput, is the throughput seen by applications, i.e. the
number of bits transferred from the end-sender to the end-receiver per second. The goodput is
smaller than IP-throughput because of the IP and TCP headers in each packet, the presence of
acknowledgement packets in the reverse direction, and because TCP might allow unnecessary
retransmissions.

We first illustrate the results of full compensation (βl = 1). In our first scenario, we use model
M1 (5% i.i.d. loss) for connections 1,3,5,7; and use model M2 (25% i.i.d. loss) for connections
2,4,6,8; and fully-reliable ARQ at the link layer. Figure 4.2 shows the throughput values for each
connection normalized by the weights of connections (1,1,2,2,4,4,8,8 for connections 1 through 8
respectively). Figure 4.2 illustrates full compensation: by increasing the allocation for MTs with
worse channels, the normalized DLC and IP-level throughputs are nearly identical, resulting in
fair goodput allocation.

In order to achieve fairness in the goodput, as Figure 4.2 illustrates, we have to allocate more
capacity to users with worse channel conditions. This implies a trade-off between the fairness of
goodput seen by the users and the utilization of the system. To analyse this trade-off, we define
the following metrics. Utilization is defined as the sum of the throughput of the connections
divided by the system capacity, and is interpreted for each of the four levels of throughput.
Fairness is characterised by the variability of the normalized throughputs of connections. Here
we measure fairness by the coefficient of variation (standard deviation divided by the mean) of
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Figure 4.2: Throughput measures in case ofM1/M2 models, fully reliable ARQ, full compensa-
tion. (The values for each connection are connected for better presentation.)

the normalized throughput values, and it is also interpreted for each of the 4 levels of throughput.
(The smaller the fairness measure is, the more fair the allocation is. When the allocation of fair
according to the fluid model of Eq. 4.1, this measure is zero.)

We first consider the same scenario with loss modelM1 (5% i.i.d. loss) for odd-numbered and
loss modelM2 (25% i.i.d. loss) for even-numbered connections. Figure 4.3 shows the utilization
and fairness measures as a function of the compensation constant.

The results show that it is possible to improve fairness of IP-level throughput and goodput by
more than an order of magnitude. The goodput fairness improves monotonically with increasing
compensation constant as a result of the compensation mechanism. This comes at the expense
of a slight decrease in the utilization: goodput utilization drops by 1.8% as βl increases from 0
to 1. By applying a negative compensation of βl = −2, we can increase utilization slightly by
1.2%.
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Figure 4.3: Utilization and fairness in the case of 25% i.i.d. loss for even-numbered connections.

The second scenario we consider is the same loss modelM1 (5% i.i.d. loss) for odd-numbered
connections but loss model M3 (25% bursty loss) for even-numbered connections. Figure 4.4
shows the results. We can observe a similar improvement of the fairness of goodput values, but
this comes at the expense of significantly deteriorated utilization. (10.3% decrease in the goodput
utilization as βl goes from 0 to 1.) By applying negative compensation, we can improve goodput
utilization by 4.8% at the expense of reduced fairness.
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Figure 4.4: Utilization and fairness in the case of 25% bursty loss for even-numbered connections,
fully reliable ARQ.

A fully reliable ARQ protocol in the link layer continues retransmissions indefinitely which
may result in frequent losses in the case of bursty losses. We investigated the effect of limiting
the number of retransmission attempts. The results for the limit of maximum eight transmission
attempts of a given PDU are shown in Figure 4.5.
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Figure 4.5: Utilization and fairness in the case of 25% bursty loss for even-numbered connections,
semi-reliable ARQ.

The results show that using a semi-reliable ARQ the utilization can be slightly improved (for
the βl = 0 case it improved by 3.8%.) However, the allocation in this case becomes unfair and
the fairness cannot be improved by increasing the compensation constant. Fairness in the case of
semi-reliable ARQ protocol is determined by TCP’s response to the losses not recovered by the
ARQ protocol. It is interesting to note that fairness actually worsens in this case by increasing the
compensation constant, which can be explained by the fact that additional capacity is allocated
to a user following a loss, which in the case of bursty errors actually increases the probability of
repeated losses and therefore IP packet drops.

Figure 4.6 shows the per connection throughput values (βl = 0), implying that the relative
decrease in the throughput of even-numbered connections (M3 loss model) is much higher for
connections with higher weight, due to the fact that the throughput in this case is limited by the
TCP congestion control mechanism.
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Figure 4.6: Throughput measures in case ofM1/M3 models, semi-reliable ARQ, no compensa-
tion. (The values for each connection are connected only for easier presentation.)

4.7 Summary

We have presented a simple loss compensation scheme to analyze the trade-off between fairness
and utilization of the resource allocation at a wireless base station. The performance evaluation
of the proposed scheme has been carried out based on simulations that show the impact of TCP
traffic and link-layer ARQ.

The results show that fairness of goodput values can be considerably improved by positive
compensation at the expense of reduced system utilization. The reduction of utilization is slight
in the case of independent channel losses, and increases with the burstiness of the loss model.
Higher utilization is achieved by applying negative compensation or by using a semi-reliable
ARQ at the link layer. The fairness of allocation can become considerably worse and can not be
improved by the compensation mechanism in case of using semi-reliable ARQ.
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Chapter 5

Distributed Scheme for the
Resource Allocation of a Wireless
Base Station

5.1 Introduction

The analysis in Chapter 4 used a simple compensation scheme in the master scheduler of the base
station which controlled the trade-off between fairness and utilization. The scheduling scheme
did not use any prediction or assumption about the errors on the wireless channel. Even without
such knowledge, we have shown that the compensation scheme could significantly improve the
fairness of the service received by the users.

We now investigate how to extend the simple compensation mechanism of the previous chapter
to a practical scheme that takes into account the characteristics of the wireless channel as well.
Wireless channel errors often have a bursty nature [6, 97, 77] and this may make it possible to
predict the future state of the channel.

Even though it is plausible to assume the bursty nature of wireless channel errors and use
this property in predictions, it is in general not possible to know the exact channel properties in
advance. This is why our purpose is to design a resource allocation scheme that is independent
of the specific assumptions on the channel. We do not assume bounds on the error rate, nor do
we stick to a specific channel model.

We propose a novel resource allocation scheme that follows a distributed approach. We keep
the simple architecture of the previous chapter. The master scheduler in the base station does
not have any information about the current state of the wireless channel. Instead it compensates
for channel errors after they occur. We extend the architecture by allowing the users to defer
their transmission to a later time when the channel is temporarily in a bad state. Our approach
is therefore decentralized in the sense that the master scheduler using a simple compensation
mechanism is making the scheduling decision without any regard to the wireless channel state.
Each user of the channel is responsible by itself for the estimation and prediction of its own
channel, and can optimize when to transmit on its own. When the channel is expected to be
bad for some time, the user can defer its transmission until the channel is expected to recover,
based on the measured channel properties. This is encouraged (but not controlled) by the master
scheduler as it allows the users to partially reclaim unused capacity in the future.

This approach offers several key advantages.

• We do not need to make any assumptions about the error characteristics of the channel
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and the master scheduler does not need the prediction of the state of the link.

• Our scheme offers a modular implementation and greatly simplifies the master scheduler.

• It offers a decoupling of functionality: the users’ estimation and prediction of the channel
can be changed without modifying the master scheduler.

We will discuss the resource allocation scheme within the context of the resource allocation
architecture presented in Section 4.3 of Chapter 4. Recall that this is a frame-based architecture.
An important consequence is that the scheduler in the base station cannot get immediate feedback
from the terminals on the success of the transmissions. Therefore the scheduling must be done
such that packet transmission decisions are made at least one frame in advance, without exact
knowledge of the momentary channel conditions.

The chapter is organized as follows. We review related work in Section 5.2. We discuss the
design aspects of applying a fair scheduling scheme in our resource allocation architecture in
Section 5.3. Our proposed master scheduling algorithm is described in Section 5.4. Section 5.5
shows how a user can optimize the channel usage for itself. Our simulation results are presented
in Section 5.6, followed by an analytical approximation of the system performance in Section 5.7.
Section 5.8 summarizes the chapter.

5.2 Related Work

The problems of applying the scheduling disciplines developed for fixed networks in a wireless
context were first studied in [6]. They show that the FIFO packet scheduling employed in most
commercial wireless LAN systems causes head of line blocking resulting in inefficient sharing of
the bandwidth. To solve the problem, a new class of scheduling methods, referred to as channel
state dependent packet (CSDP) scheduling methods were developed. The results show that it
achieves significant improvements in utilization.

[55] investigated first the problems of applying a fair scheduling discipline in a wirelesss
network. The paper identifies the problem that the service provided to a flow is not the same
that the flow actually gets due to channel errors. They assume location dependent bursty errors,
furthermore they assume that errors can be predicted in advance. With these assumptions they
propose the Idealized Wireless Fair Queuing (IWFQ) algorithm which works by simulating a
WFQ scheduler in the background, used to define the fairness model. Flows that receive more
service than in the WFQ scheduler are said to be leading, flows that receive less are said to be
lagging. The scheduler works by favouring channel access for lagging flows.

[70] and [56] propose two other adaptation of fair scheduling to wireless networks, CIF-Q
(Channel-condition Independent Fair Queuing) and WFS (Wireless Fair Service), respectively.
They apply a simulation of a fair scheduler in the background (Start-time Fair Queuing in CIF-
Q, enhanced WFQ in WFS). However, compensation to lagging flows is different. While IWFQ
stops giving service to leading flows to compensate lagging flows, in CIF-Q and WFS the service
given to leading flows depends on the amount of lead. In CIF-Q, leading flows relinquish service
as a linear function of their lead, while in WFS leading flows relinquish service as an exponential
function of their lead.

[76] introduces the Server Based Fairness Approach (SBFA): instead of simulating a fair
scheduler in the background, it uses the fair scheduling discipline itself to select the next flow
for service. Besides the flows that carry regular traffic, virtual flows are introduced for com-
pensation. When such a flow is selected by the scheduler for service, compensation is given to
the corresponding flow. To achieve this, SBFA requires that we statically reserve a fraction of
the capacity for the purpose of compensation. SBFA is very flexible in the sense that it can
incorporate any fair scheduling algorithm into its framework.
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[32] looks at the problem from a different perspective: rather than defining a new compen-
sation mechanism based on fair queuing mechanisms, it defines an architecture for the capacity
sharing of the link based on CBQ (Classed Based Queuing, [31]). It incorporates a modified
version of CSDP scheduling [6] to alleviate the effect of channel errors.

[69] established a unified architecture in which all the proposals can be investigated and
compares the algorithms mentioned above. By looking at the throughput, delay and fairness
performance, [69] concludes that CIF-Q [70] and WFS [56] give the best results.

[22] accepts that location dependent errors may modify the fairness of user perceived through-
put. The authors propose effort limited fair (ELF) scheduling as a compensation mechanism that
ensures fairness up to a limited amount of errors, but at the same time it limits the amount of
effort spent on a given flow. This scheme provides a flexible framework to administratively
implement a variety of fairness and efficiency policies.

All of the above proposals use a centralized scheduler at the base station. The novelty of our
architecture that we will discuss below is that we consider a decentralized architecture where the
master scheduler in the base station does explicitly consider the characteristics of the wireless
channel. Instead, we investigate how the master scheduler can encourage individual users to
optimize the channel for their own.

5.3 Fair Queuing in the AP Master-scheduler

We first discuss how the resource allocation can accommodate a fair scheduling algorithm in
the master scheduler. The scheduling process is detailed in Figure 5.1. The first row represents
the implementation of the scheduling process. The input of the scheduler, namely the resource
requests from users, are transmitted either in the random access channel at the end of frames
(shown in the figure) or earlier in the frame as control information (not shown). Depending on
the implementation the scheduling process can incur one or more frames of delay which we do not
consider here. The output of the scheduler are the resource grants announced at the beginning
of the new frame.

Alloc ReqdataAlloc Reqdata

MAC frames

Scheduling process
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es

ou
rc

e 
re

qu
es

t
R

esource grant

Step 1 Step 21) Scheduling implementation

2) Ideal implementation

3) Fair server

Alloc Reqdata

Figure 5.1: Scheduling process. The horizontal direction represents time, with the MAC frames
shown at the bottom. Each frame begins with a broadcast of the frame structure announcement;
frames end with a random access channel where the resource requests are sent.

When applying a fair queuing algorithm in the master scheduler, we can think of the schedul-
ing process in two steps. Based on the resource requests from the users, a virtual server running
a fair queuing algorithm serves the users in the first step, and the amount of total service is
determined for each user for the next frame. This is the amount of allocation each user will get
in the frame, but the actual ordering of allocation within the frame may be changed in the second
step. Allocations for a given user can be grouped together to reduce overhead, and downlink
and uplink transmissions can also be grouped together. The second row shows an ideal scheduler
that performs these two steps immediately after the end of a frame to get the allocations for the
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next frame. The ideal (and also the slower real) scheduler is based on a non-frame based fair
server. It is shown in the third row, as it makes the scheduling decisions during the frame. We
address only this step in this chapter, so it must be kept in mind that the actual transmissions
may take place at a time of maximum one frame apart from when the server made the service.

It is possible to use any of the fair scheduling algorithms in the first step of the AP master
scheduler [95]. A number of differences from wireline fair queuing must be noted however.

• The scheduling process has no immediate information about the arrival of packets or the
immediate backlogged status of queues. All that the server can take into account is whether
users are satisfied or unsatisfied as compared to the resource requests that users make on a
frame by frame basis. This is why in this chapter we use the terms satisfied or unsatisfied,
instead of backlogged or unbacklogged, for the status of the users in the scheduling process.

• The scheduler is only responsible for the amount of allocations to the users, and the users
of the air interface themselves can decide how to utilize the allocated capacity for new
transmissions and retransmissions. Since the scheduler is in no control of the individual
packets, it is better to use per user state information in the scheduling process, rather than
per packet information (as is traditional with the start and finish time tags in fair queuing
algorithms).

• The computation of the system virtual time (i.e., the simulation of the fluid server) is made
easier by the fact that users can become unsatisfied only at frame boundaries (i.e., when
the scheduling for a new frame begins), which must be also packet service boundaries. This
follows that the satisfied status of a user changes only after the service of a packet.

• The unsatisfied status of a user may change to satisfied even without the requested amount
of service provided by the scheduler because the user may give up further transmission
attempts of some packets at the expiration of a timer, or due to mobility. In addition, a
user may decide to defer its transmission to a later frame as discussed below in Section 5.4
and Section 5.5. When the virtual fluid server is simulated, this requires modifications
since the set of unsatisfied users can change in the past in the sense that virtual service
was given to a user but the corresponding real service cannot be given later. To solve this
problem, the real service to a user that is no longer unsatisfied can be given to another user
as an extra service.

We will apply SFQ in our proposal, though other fair queuing schemes could also be applied
taking into consideration the discussion above. The choice is motivated by the fact that SFQ is
not sensitive to the changes of the satisfied status of the users, i.e., the computation of the virtual
time or the selection of the next user does not have to be modified as users become satisfied and
unsatisfied.

We adapt SFQ to the master-scheduler of the AP, as described in Chapter 4:

1 A start and a finish tag, Si and Fi, are associated with each user, corresponding to the
virtual start and finish time of the packet at the head of the queue. When a new packet
enters the head of the queue at time t (i.e., a packet has been served, or the user becomes
unsatisfied), then the new values are computed from the old value of the finish time, F ′

i , as

Si ← max{F ′
i , v(t)}, (5.1)

Fi ← Si +
L

wi
(5.2)

where initially F ′
i = 0, wi is the weight of flow i, L is the length of all packets, and v(t) is

the virtual time at time t.
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2 The server virtual time is initially 0. During a busy period the server virtual time at time
t, v(t), is defined such that when a packet from user i is being served, the system virtual
time becomes Si, the start tag corresponding to the packet. When the system is idle the
virtual time is increased linearly such that dv(t)/dt = C/

∑
i∈U wi where U is the set of all

users.

3 Packets are served in increasing order of start tags; ties are broken arbitrarily.

Recall that the start and finish tag computation was modified in so far as only the start and
finish tag of the first packet of a user is maintained. F ′

i is the finish tag of the last packet served.

5.4 Compensation for Unused Resources

We extend the compensation of lost resources of Section 4.5 of Chapter 4 with a new type of
compensation: compensation for unused resources.

Unused resources correspond to the amount of service a user could have got while it did
not request resources. By compensating unused resources later we give incentive to the users
to monitor the state of their wireless links themselves and defer transmission when the link is
temporarily in a bad condition.

We keep constant βl of Chapter 4 to represents the amount of compensation for lost resources.
Recall that βl = 1 means that all of the lost capacity is compensated later, βl = 0 means no
compensation for lost capacity (we now use values, 0 ≤ βl ≤ 1). We introduce a new constant
βu to represent the amount of compensation for unused resources, 0 ≤ βu ≤ 1. Besides the
constants βl and βu, we will also study the effects of the speed of compensation represented by
γ, 0 ≤ γ ≤ 1, which determines the increase of allocations when a user is being compensated.
γ = 0 corresponds to no compensation, whereas γ = 1 corresponds to immediate compensation,
where a user is compensated before any other users can get more allocations.

The SFQ scheduling algorithm is extended by giving compensation to users after errors have
occurred (4), and when users miss service (5):

4 After each error of a packet of length L on the wireless channel for user i as reported by
the ARQ protocol, its lag is incremented by βl times the normalized service that was lost:

ni ← min{ni + βl
L

wi
, nmax}. (5.3)

5 When user i becomes unsatisfied at the beginning of a frame at time t after being satisfied,
its lag is incremented by βu times the normalized service that the user missed:

ni ← min{ni + βu max{v(t)− F ′
i , 0}, nmax} (5.4)

where v(t) is the virtual time at time t, and F ′
i is the finish time of user i before it became

satisfied. Since v(t) can be interpreted as the normalized fair amount of service that each
user could have received up to time t, v(t) − F ′

i is the amount of normalized service that
the user missed while it was satisfied.

6 Equation eq. (5.2) is modified as follows.

lc ← min{ni, γ
L

wi
}, (5.5)

Fi ← Si +
L

wi
− lc, (5.6)
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ni ← ni − lc, (5.7)

where lc is the normalized compensation given during the service of the packet.

In this case compensation means that the normalized service when a packet is sent is
compensated by γ times the normalized length of the packet. This corresponds to increasing
the weight of the user from wi to wi/(1− γ).

The virtual time computation was modified (4) in that for an idle server, the virtual time
is incremented linearly so that it reflects the increase in the minimum amount of virtual service
that each user could have been given if it were unsatisfied.

The amount of lag is maximized by nmax. Using this limit allows the compensation of lost
and temporarily deferred transmissions but limit the amount of compensation for a users with
little or no traffic for a long period of time.

Since we use now the constant γ for speed of compensation, this follows that the admission
criterion for a new flow becomes 1

1−γ

∑
i∈U wi ≤ C.

5.5 User Behaviour

The previous section has presented the master scheduling algorithm that provides two kinds of
compensation to the users: compensation for lost and unused resources. Each user can observe the
quality of its own channel through measurements and can decide how much capacity to request.
A user either makes a resource request according to the packets waiting for transmission in its
buffers, or makes a resource request of zero, thereby relinquishing service to a later frame. Our
purpose in this section is to arrive at a method for a user to decide when to relinquish service
(i.e., make a resource request of 0). We assume that a user has knowledge of the scheduling
algorithm and its constant parameters.

Relinquishing service in a given frame can be useful for the mobile because channel behaviour
is typically positively correlated, so when a user observes bad channel, it is likely that the channel
will continue to be bad for some time.

In the following subsections, we present a simple solution to this problem where the user
builds a model of the channel estimating the parameters, which enables it to make a prediction
of the future expected channel state and decide when to relinquish service.

5.5.1 Channel Model and Prediction

We use a simple AR(1) (autoregressive) model. This is a very simple model, yet powerful enough
to capture the correlated nature of the channel. Note that the AR(1) model and the quantitative
approximation must be regarded as heuristics since we have no way of getting any a priory
information on the channel properties and its stationary nature.

We model the success rate in every frame, that is, the fraction of successfully received PDUs
out of the transmitted PDUs in every frame. The distribution of errors within a frame is not
modelled.

The AR(1) process (established independently for each user) is written as

v[t+ 1] = ρv[t] + σz, (5.8)
s[t] = π + v[t] (5.9)

where v[t] is the actual AR(1) process, and s[t] is the process of success rate. t is the frame counter
(integer), z is a standard normally distributed random variable, ρ, σ, π are the parameters of the
process. We make the simplification that the frames where the user is not scheduled are not
regarded as part of the AR(1) process.
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The expected value, variance and correlation of the process s[t] are given as

E {s[t]} = π, (5.10)

Var {s[t]} =
σ2

1− ρ2
, (5.11)

Cov {(s[t], s[t+ k])}
Var {s[t]} = ρk (5.12)

We note that the process s[t] could take on values outside the interval [0, 1]. However, we
are going to use the model only to predict the expected value of the success rate in the future.
According to Equation 5.17 in Subsection 5.5.1, it will be clear that the prediction cannot take
on a value outside the interval [0, 1] provided that π and the measured values of the process are
within that interval.

We need to estimate the parameters of the model in such a way that as more and more
measurements are available, the accuracy improves, on the other hand, the parameter estimation
adapts to long-term, non-stationary changes in the channel behaviour. To achieve this, we use
exponential moving averages in all the parameter estimations with weight φ.

Estimations are based on s∗i [t], success rate measured in the last frame. This is based on the
assumption that the ARQ protocol is able to provide error characteristics for the last frame. π
is estimated at frame t as

π[t]← π[t− 1]φ+ s∗i [t](1− φ) (5.13)

Estimation of correlation is made indirectly through the estimation of second moment, δ, and
first order mixed second moment (i.e., E {s[t]s[t− 1]}), ψ, of the process:

δ[t]← δ[t− 1]φ+ (s∗[t])2(1− φ), ψ[t]← ψ[t− 1]φ+ s∗[t]s∗[t− 1](1− φ) (5.14)

The variance of the measured process is estimated as

µ[t] = δ[t]− (π[t])2 (5.15)

The following estimator can be shown to converge to the correlation if the measured process
is AR(1):

ρ[t] =
ψ[t]− π[t]π[t− 1]√

(δ[t− 1]− (π[t− 1])2)(δ[t]− (π[t])2)
(5.16)

Given a current measurement of the success rate s∗[t] and the estimations π[t] and ρ[t], the
success rate for the frame t+ k can be predicted as

ŝ[t+ k] = (s∗[t]− π[t])(ρ[t])k + π[t] (5.17)

5.5.2 User Decision

Based on the channel measurements and predictions, a user must decide whether to relinquish
transmission in the next frame in the hope of more efficient transmission later. Our criterion
aims at maximizing throughput for the user.

In order to be able to provide a decision function that is applicable by a user without any
explicit information about other users or the future, we make several simplifying assumptions.
We assume that compensation is not yet limited by the maximum lag; and we do not consider
changes in the success rate during compensation for unused service; furthermore we approximate
the service given to a user for a compensation of x to be xπ[t], that is, success rate during
compensation is approximated by the estimated average success rate π[t] . Our decision will be
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based on the expected service with compensation for one PDU in a frame.
If the user decides to transmit in the next frame, the expected service per packet in the frame

is Lŝ[t+ 1] (where L is the packet length), and the expected lost service is L(1− ŝ[t+ 1]). The
expected compensation is L(1− ŝ[t+1])βl giving an expected service of L(1− ŝ[t+1])βlπ[t] since
we assume that the success rate during compensation for lost resources is π[t]. So the expected
service per PDU is L(ŝ[t + 1] + (1 − ŝ[t + 1])βlπ[t]). If the user defers transmission to a later
frame t+ d, the total service received instead of the allocation of a PDU in the current frame is
less by the factor βu since the service is being compensated for unused capacity. So the expected
service per PDU is Lβu(ŝ[t+d]+ (1− ŝ[t+d])βlπ[t]). Transmission is relinquished in the current
slot if the expected service per PDU is increased:

L(ŝ[t+ 1] + (1− ŝ[t+ 1])βlπ[t]) < Lβu(ŝ[t+ d] + (1− ŝ[t+ d])βlπ[t]) (5.18)

which gives
ŝ[t+ 1]
βu

+
1

βu
− 1

1
βlπ[t] − 1

< ŝ[t+ d] (5.19)

Deferring transmission in the current frame is useful when the channel model suggests that
at a later frame t+ d the expected success rate fulfils the above equation.

We introduce a threshold-based decision criterion for a user using an upper threshold θ1 and
a lower threshold θ2 on the expected success rate for the next frame ŝ[t + 1]. The criterion is
slightly different for a greedy and a non-greedy user. We can differentiate between a greedy and
non-greedy user by a threshold on the buffer occupancy.)

The upper threshold determines the sensitivity of the algorithm and it is specified through
the constant ω which gives the thresholds relative position with respect to the average success
rate and its standard deviation:

θ1 = π[t]− ω
√
µ[t] (5.20)

The lower threshold is determined in such a way that if the expected success rate in the next
frame falls below the lower threshold and the user waits until the expected success rate reaches
the upper threshold, then the user is expected to receive more service compared to not deferring
transmission. This follows that the relationship between θ1 and θ2 can be obtained by applying
eq. (5.19):

θ2 = βu

(
θ1 −

1
βu
− 1

1
βlπ[t] − 1

)
. (5.21)

The rule for a greedy user is that we begin deferring transmission (i.e., requesting zero capac-
ity) when the expected success rate falls below θ2, and re-start when the expected success rate
is above θ1. In other words, we use a hysteresis with two thresholds.

For a non-greedy user, the rule may be different. In that case, the user has less data than
the available capacity. In this case, if we defer the transmission to a later time, this does not
mean that current transmission capacity is lost, since the user needs less capacity than available
anyway. For a non-greedy user, we simply require that the expected success rate be at least θ1.

Figure 5.2 shows the user decision rule. The outcome is either R = 0 in which case the user
relinquishes transmission in the current frame, or R = 1 when the user transmits in the current
frame. H is a state variable associated with the hysteresis, initially it is OFF.

In addition to the presented algorithm, we applied the following extra criteria: a user is not
allowed to relinquish transmission in more than Dmax consecutive frames, where Dmax was set to
10. This ensures that the user periodically samples the state of the channel, and is not allowed to
wait forever. Additionally, relinquishing transmission is switched off at the start of a transmission
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Case greedy, H == ON : if ŝ[t + 1] < θ1 then R← 0 else H ← OFF ; R← 1 endif
Case greedy, H == OFF : if ŝ[t + 1] ≤ θ2 then H ← ON ; R← 0 else R← 1 endif
Case non-greedy: if ŝ[t + 1] < θ1 then R← 0 else R← 1 endif

Figure 5.2: User decision rule

until the estimated parameters reflect measured values.

5.5.3 Adaptive Sensitivity Setting

The previous subsection described how the thresholds θ1 and θ2 can be computed given ω,
which determines sensitivity of the thresholds. A high value of ω results in lower thresholds and
therefore less frequent relinquishing of service. A low value of ω on the other hand causes the
user to relinquish service more often.

To reach the highest throughput and most efficient resource utilization, a user should relin-
quish service as often as possible so that during transmission, the channel behaviour is as good
as possible. However, the speed of compensation in the master-scheduler (determined by the
parameter γ) poses an upper limit on the frequency of relinquishing service: the average rate of
necessary compensation generated by the user should not exceed the rate of compensation that
the scheduler can provide.

The optimal value of ω depends on the speed of compensation, γ, but also on the behaviour
of other users, whether they request resources or not and how much compensation they receive.
This is why we have chosen to implement an adaptive algorithm for setting ω based on feedback
from the scheduler in the AP. This adaptive algorithm can be regarded as optional in the scheme:
without it, a value for ω can be set as a constant.

The algorithm works as follows. In the broadcast channel of each frame, the AP gives a one-
bit feedback to all the users which is set when the user has nonzero lag. Each user monitors this
bit and computes an exponential moving average (denoted by fi) for the ratio of frames where
the user has nonzero lag at the scheduler. When fi is too small this means that the scheduler
can still provide more compensation. In this case the user decreases ω in order to get more
compensation for unused resources, so that user is active when the channel is better. When fi is
too large this means that there is a danger that the lag is too high and reach its upper limit, i.e.
the scheduler can not provide the required amount of compensation. In this case ω is increased.

Section 5.6 will show simulation results using adaptive threshold (ω) computation. In the
simulated algorithm, the target for fi is to be between 0.7 and 0.9, so ω is decreased when
fi < 0.7 and increased when fi > 0.9. But ω must remain always within ωmin = 0.2 and
ωmax = 2.

5.6 Simulation-based Performance Analysis

We have implemented our scheme in a packet-level simulation environment. The simulated
architecture conforms to the resource allocation architecture presented in Section 4.3 of Chapter 4
with frame based MAC protocol with a frame length of 2 ms (as in the HIPERLAN/2 system
[37]). In the first set of our simulations, the capacity of the system was 8 PDUs/frame where a
PDU can carry 48 bytes, giving a total system capacity of 1.5Mbps. This capacity is shared by
two users, each having an average PDU loss rate of 25%, but independent channel error models.
User 1 has independently distributed losses, while User 2 has bursty losses according to an ON-
OFF Markovian model. The average OFF period is 100 PDU transmission times, the loss rate
is 95 % in the OFF period, 5% in the ON period. Both users are greedy which means that they
transmit as many PDUs as possible.
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Figure 5.3: User behaviour when the channel has bursty errors.

The most widely used transport protocol, TCP, can be regarded as an approximation to such
a greedy user (we do not deal with TCP layer and link layer interactions here, refer to Chapter 4
on this issue). Our performance metrics will be the achieved throughputs of the users, overall
system utilization and fairness between users.

5.6.1 Example Trace of User Behaviour

Figure 5.3 shows a trace from a simulation for User 2, having bursty losses. The figure plots the
time evolution of a number of parameters computed each frame. The measured success rate is
the ratio of the successful PDU deliveries to all PDU transmissions in the last frame. The average
and predicted success rates are computed as described in Subsection 5.5.1. The thresholds θ1
and θ2 (Subsection 5.5.2) are also plotted. The user’s decision and the behaviour of the scheduler
is seen on the amount of allocation per frame. In the figure, this gives the number of PDUs
allocated in the frame to the user as a fraction of the total number of PDUs per frame (8 in
our setup). When the user decides to relinquish service in a frame, this is seen by the lack of
allocation per frame.

The simulation illustrates the user behaviour and compensation (we used the parameters
γ = 0.5, βl = 0.5, βu = 0.8 here). The user begins to relinquish service when the predicted success
rate falls below the lower threshold θ2, and begins requesting again when the success rates reaches
the upper threshold θ1. In the figure we can see two periods when the user relinquishes service,
one at 1850 ms, the other from 1980 ms to 2120 ms. The latter is a long OFF period in which
the user re-starts several times. Note the increased amount of allocation after a user relinquished
its service as a result of compensation for unused capacity in the scheduler.

5.6.2 Dependence on Parameter Settings

Here we investigate the dependence of the user performance metrics on the parameters of the
scheduling scheme. Figure 5.4 shows the effect of ω on the throughput of connections and system
utilization. In this simulation there was full compensation for unused capacity (βu = 1), no
compensation for lost capacity (βl = 0) and the speed of compensation was γ = 0.5. The figure
shows the following throughput quantities normalized by the system capacity: the total allocation
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Figure 5.4: Effect of ω, γ = 0.5, βu = 1, βl = 0.
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Figure 5.5: Effect of γ, βu = 1, βl = 0.5.

for both connections (SumAlloc), the total goodput of the two connections (SumGoodput), the
allocated capacity from the two connections (Alloc1 and Alloc2) and the goodput (successfully
carried traffic) for the two connections. The graphs DeferRate1 and DeferRate2 show the fraction
of frames where User 1 and 2 decided to relinquished transmission.

The figure clearly shows a maximum for the total goodput and the goodput for User 2 (the
one with bursty channel loss model) at near ω = 0.15. User 1 can not achieve any improvement
since its channel losses are independent. For higher ω, the gain of User 2 is less because the user
relinquishes transmission less frequently, therefore it does not avoid all the bad channel states
that it possibly could. This clearly shows the advantage of using the compensation method
for unused capacity. For smaller ω, the compensation mechanism becomes saturated: the user
relinquishes more service that the scheduler can compensate. As a result, the allocation to User
2 is decreased, and this results in goodput decrease.

Figure 5.4 illustrates that there exists an optimal value of ω motivating the use of the adaptive
ω calculation approach described in Subsection 5.5.3.

Using that algorithm to set ω adaptively, Figure 5.5 shows the effect of changing the speed of
compensation, γ, while βu = 1 and βl = 0.5. (The average value of ω for the users are shown by
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aOmega1 and aOmega2.) As the speed of compensation increases, there is time for more frequent
relinquishing of service for User 2 (increase of deferRate2). This is achieved through the decrease
of ω. Note that as γ increases from 0 to about 0.6, there is significant increase in the total system
goodput as well as the goodput of User 2 and also User 1. The increase of goodput for User 2 is
explained by its better utilization of the allocated capacity, while the slight increase of goodput
for User 1 is explained by the increase of allocation provided to it due to the compensation for
lost capacity.

5.6.3 Performance of User Behaviour

We now turn our attention to a single user. The difficulty here is that the performance of
the scheduling algorithm and user behaviour are closely coupled. Nevertheless it is possible to
investigate the performance of user behaviour separately.

The net effect of the user relinquishing service is that, by making use of the positive correlation
in the channel, the user can avoid transmitting when the channel is temporarily bad, and therefore
the success rate of transmission is increased. This can be quantified by the plot of the user’s
observed success rate (π) versus the sensitivity of the algorithm as controlled by the parameter
ω, which determines the frequency of relinquishing service.

In the subsequent results, we use the following parameters simulation: the capacity of the
system is 32 PDUs/frame where a PDU can carry 48 bytes, giving a total system capacity of
6Mbps. This capacity is shared by several users. Users 1,3,5,. . . have a “good” channel with a
PDU loss rate of 5% and independent losses. Users 2,4,6,. . . have a “bad” channel with bursty
losses according to an ON-OFF Markovian model with and average loss rate of 25%. The average
OFF period is 100 PDU transmission times, the loss rate is 95 % in the OFF period, 5% in the
ON period. All users are greedy, which means that they transmit as many PDUs as possible.

Figure 5.6 shows the simulated performance of the user algorithm as a function of ξ, the
frequency of relinquishing service. This means the fraction of frames when the user decides to
relinquish service. In this simulation there were 4 users, two with “good” channel and two with
“bad” channel. The figure shows the success rate observed by the second user as it changes the
sensitivity of its algorithm. (The other users employ automatic sensitivity setting.) It also shows
the amount of allocation and amount of successfully carried traffic (goodput) normalized by the
fair share of the user (i.e., 1/4 of the total capacity). In the simulations, γ = 0.5, βu=1, and (a)
βl = 0 (b) βl = 0.5.

The amount of improvement for the channel success rate shows the performance of the al-
gorithm. (Note that these improvements are dependent on the parameter settings, the number
of users, and channel properties.) We can observe that the algorithm works successfully by
improving the success rate from 0.75 to 0.88.

The amount of allocation remains close to the fair share up to about ξ = 0.35, and then
begins to decline. This decline is due to the same saturation effect as that seen in Figure 5.4:
above the saturation point, the master scheduler can not provide the compensation for unused
resources during the time when the user is requesting service. Below the saturation point, the
scheduler provides full compensation for the unused resources, as illustrated in Figure 5.6 (a) by
the horizontal line at 1. Figure (b) on the other hand shows that this user is allocated even more
resources than its fair share below the saturation point. This is because in this simulation, there
is compensation for lost resources (βl = 0.5) and the more errors there are on the channel, the
more extra allocation the user receives.

The declining curve of the amount of allocation to the user multiplied by the increasing curve
of improving transmission success rate gives us the change of user goodput (successfully carried
traffic). The user is looking for the maximum of this curve in order to optimize its throughput
locally. We call it “locally greedy” user behaviour. Indeed, the adaptive sensitivity setting for
this user finds the point at ξ = 0.25, which gives a nearly optimal local throughput performance.
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Figure 5.6: Performance of user algorithm as a function of ξ, the frequency of relinquishing
service. γ = 0.5, βu=1, (a) βl = 0 (b) βl = 0.5.

5.7 Analytical Approximation of System Performance

The simulation results above have validated the proposed architecture. On the other hand, based
on purely simulations, it is hard to predict system performance in a quantitative fashion. For this
reason, we propose here an abstraction which, although not as accurate as simulations, provides
an analytical formulation of system utilization and fairness.

Besides the locally greedy user behaviour described in the previous subsection (Subsec-
tion 5.6.3, illustrated in Figure 5.6), we introduce here two simple other behaviours as well
for analytical purposes. The first is the “no algorithm” case, that is, when the user does not
relinquish service. This simply corresponds to the ξ = 0 case.

The second is the ideal algorithm case which is interpreted as follows. In the simulation
example, the user algorithm has been able to increase the success rate from 0.75 to 0.88. We can
say that an upper limit on the achievable success rate is 0.95, since this is the success rate in the
ON state in our actual channel model. So the quicker and close the success rate approaches 0.95
as ξ is increased from 0 to 1, the better the algorithm is. The limiting case is the one in which
the success rate reaches 0.95 as ξ grows from 0 to an infinitesimal small value. This takes us to
the ideal limiting case, for which ξ = 0 and the success rate is 0.95.

In general, we say that an ideal algorithm is one in which for ξ = 0, the success rate is no
smaller than what can be achieved by any ξ > 0. Such an algorithm is naturally impossible to
implement or even approach, but it provides a valuable abstraction for the analysis of the system.

Figure 5.7 marks the “ideal” and “no algorithm” cases in a schematic figure. It also plots the
marks the “locally greedy” point, where the goodput of the user is maximal.

The two abstract cases introduced above, the “no algorithm” and “ideal algorithm” cases,
allow us to derive system performance metrics. In both of these cases, ξ = 0, i.e., the user does
not give up service by itself. This follows that the total system capacity is distributed among the
users based on their weights. However, we have to take into account the compensation mechanism
for lost capacity.

Let us denote by Πi the transmission success rate of user i. The normalized service without
compensation to the user is L/wi for one PDU. With probability 1 − Πi, the transmission is
unsuccessful, in which case the lag of the user is increased by βlL/wi.

In order to derive the effect of compensation for lost capacity, we have to find the set of
parameters where the compensation is saturated. This happens when the amount of lag generated
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Figure 5.7: The “ideal” and “no algorithm” cases, as well as the “locally greedy” algorithm. The
schematic figure plots the success rate, rate of allocations and rate of goodput as a function of
the frequency of relinquishing service, as in Figure 5.6

is at least as much as the maximum amount of compensation that the scheduler can give to the
user. The expected increase of the lag for one PDU is (1 − Πi)βlL/wi, and the maximum
compensation is given when the user gets compensation during the service of all PDUs, in which
case the compensation if γL/wi per PDU. This follows that compensation is saturated when
γ < (1 −Πi)βl.

In this case, the normalized service with compensation for one PDU is L/wi − γL/wi. If the
compensation is not saturated, then the compensation equals the amount of lag generated, so
normalized service for one PDU is ΠiL/wi +(1−Πi)(1−βl)L/wi. Taking the two cases together,
the normalized service to the user is compensated in such a way that it can be modelled by the
following modified weight of user i:

w′
i =

1
1−min{γ, βl(1− Πi)}wi. (5.22)

The total system capacity, C, is distributed among the users according to equation 5.22.
Using W ′ =

∑
iw

′
i, the allocation and goodput to user i (assuming greedy users) are

ai =
w′

i

W ′C and gi = Πiai. (5.23)

The total system performance is characterized by the following metrics: the system utiliza-
tion, defined by U =

∑
i gi/C, the goodput fairness Vg = σ{gi/wi}/E{gi/wi}, and allocation

fairness Va = σ{ai/wi}/E{ai/wi}, that is, the coefficient of variation of normalized goodput and
allocation values, as used also in Chapter 4. The higher the coefficient of variation, the worse
the fairness is.

For a specific channel, we can use the following success ratios: Πi,avg for the average success
rate of the channel, and Πi,max for the maximum success rate that can be achieved by any user
behaviour. Such an upper limit can be interpreted, for example, for a Markovian channel by the
success rate in the best state. By using the success rates Πi,avg and Πi,max for Πi, the utilization
and fairness metrics can be derived for the no algorithm and ideal algorithm cases.

Figure 5.8 (a) and (b) show these metrics for the case of four users, βl = 0.5 and βl =
1, respectively, and the same parameters as in Subsection 5.6.3. The figures show the two
abstract cases (no algorithm and ideal algorithm) together with the simulated locally greedy
case. The figure shows that these abstract limiting cases provide a good hint for the actual
system performance.

We can see that in both cases (a) and (b), total system utilization is significantly increased as
γ goes from zero (no compensation) to 0.7. Further increase of γ does not increase the utilization,
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Figure 5.8: System performance, (a) βl = 0.5 (b) βl = 1, four users.

in fact, it can slightly decrease it. This is attributed to the fact that the specific user behaviour
considered in this paper works better when the speed of compensation is not too fast (i.e., γ is
lower than 1).

The fairness curves show that the algorithm, while keeping the increase in utilization, can
significantly improve the goodput fairness of the system. It is seen that the fairness in goodput
and allocation run counter to each other: improving one makes the other worse. For βl =
1, almost complete fairness can be achieved for γ > 0.3. The figure clearly illustrates that
it is possible to improve utilization and fairness simultaneously. This is possible because our
architecture encourages efficient use of resources.

5.8 Summary

We have presented a scheme for the resource allocation of the capacity of a frame-based wireless
base station with its performance evaluation. We have described a novel modular architecture
where the fair master-scheduler does not explicitly take into consideration the channel state of
individual users, and we have shown how a wireline fair scheduling algorithm can be simply
extended to compensate for lost capacity after losses occur. We have extended the master-
scheduler with compensation for unused capacity, so a user can optimize on its own when to
relinquish service in the hope of more service later. We have given one possible way of user
behaviour and shown by simulation that the pair of master scheduler and user decision rule can
work together to improve both the total system utilization and the goodput of individual users.

In addition, we have introduced metrics by which the performance of the user algorithm can
be assessed, and we have defined the utilization and fairness metrics by which the system can be
analyzed. We have shown two simple abstract user behaviours, and we have implemented the
locally greedy user algorithm in a packet-based simulator. We have shown that these abstract
user behaviours can be handled analytically and provide a good approximation for the simulated
locally greedy behaviour.
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Chapter 6

A Novel Scheme to Interconnect
Multiple Frequency Hopping
Channels into an Ad Hoc
Network

6.1 Introduction

So far, we have investigated packet-switched networks that all possessed a fixed infrastructure.
Using wireless technologies, it is possible to design networks where such a pre-installed fixed
infrastructure is not present. This type of networks are referred to as ad hoc networks. The
MANET (Mobile Ad hoc Networking) working group of the IETF has been formed to study the
protocol issues involved in such networks. The vision of the MANET working group [16] “is
to support robust and efficient operation in mobile wireless networks by incorporating rout-
ing functionality into mobile nodes. Such networks are envisioned to have dynamic, some-
times rapidly-changing, random, multihop topologies which are likely composed of relatively
bandwidth-constrained wireless links.”

Frequency hopping spread spectrum radio technology [75] possesses a number of advantages
that has motivated its selection in many radio systems. These advantages include robustness
against interference, fading and noise, simplicity and low cost of implementation. A key advantage
is that a number of such systems can be independently operated in the same coverage area with
limited interference. There is no hard capacity limit for the number of interferers. Increasing
their number results in a graceful degradation of performance.

Specifically, Bluetooth [10, 38] is one of the technologies that makes good use of the advantages
of frequency hopping, as it has been designed to allow a large number of channels to co-exist in
the same coverage area. Bluetooth is primarily intended as a cable replacement radio technology,
using a short range (10m) radio interface designed to facilitate the development of very small and
cheap implementations. Thanks to the frequency hopping radios, the system is indeed robust
against interference caused by other Bluetooth and non-Bluetooth interferers in the same band
[98].

When a large number of frequency hopping channels are present, the question of channel
establishment and synchronization must be addressed. In the case of Bluetooth, devices have to
synchronize using a paging procedure to establish the channel referred to as a piconet. The node
initiating the procedure becomes the master of the piconet. The formation of the piconet takes a
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relatively large overhead of several seconds, but makes data transmission straightforward once the
piconet is established. This is in harmony with the requirements of cable replacement applications
where a connection needs to be set up rarely, typically only once when the application is started
or re-started. Once the piconet is established, the frequency hopping sequence is derived from the
clock and address of the master node. The timing synchronization is defined by the transmissions
of the master.

The channel establishment procedure makes it possible to set up multiple frequency hopping
channels in the same coverage area. In Bluetooth, the hopping sequence is dependent on the
master, which is why each piconet is using a different hopping channel. Although there can be a
certain amount of interference, this provides a good separation of the radio channels. This also
provides a logical separation since devices in different piconets do not even have to know about
each other at all. Devices in the same piconet, on the other hand, need to be co-ordinated. This
is performed by the master node using a centralized polling-based scheduling mechanism.

Once we have a large number of devices capable of communicating over a number of inde-
pendent frequency hopping channels, it becomes a natural requirement to be able to connect
them into a single network. This step, however, is problematic. In the case of Bluetooth, it is
theoretically possible to form a network even though the system has been optimized for cable
replacement scenarios. The specification allows a device to be a member in multiple piconets and
several piconets can be connected into a so-called scatternet. Figure 6.1 shows an example of such
a scatternet where two laptops L1 and L2 and projector Pj, together with other accessories, are
connected into a network. Such scatternet networks are made possible by the specification, but a
number of important issues remain unresolved, such as how to decide about piconet membership
and master roles (i.e., connection setup), how to route packets, how to schedule the presence of a
node in multiple piconets, and how to discover and manage neighbours. These problems have to
be resolved in extension protocols to the core Bluetooth specification. Research (see for example
[C8, C9, 81, 94, 52, 78]) and specification work [11] is ongoing to address these issues.

Master

Master/Slave

Slave

Laptop L2

Laptop L1

Phone P2

Projector Pj

Remote controller R

Phone P1 Printer Pr

Palmtop Pm

Figure 6.1: Example Bluetooth scatternet

In this chapter we suggest a new approach to interconnect multiple frequency hopping chan-
nels into an ad hoc network. We propose Multiple Frequency Hopping Channel communication
(MFHC) to address this problem, and investigate the performance of MFHC ad hoc networks.
Our approach avoids the use of a scatternet network, and allows nodes to communicate with all
neighbours that are in radio range in a connection-less fashion. Our solution uses CSMA/CA
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(Carrier Sense Multiple Access with Collision Avoidance) random access scheme [43] for each
channel, with the extension that we allow a device to switch to a new frequency hopping channel
(FHC for short) before each packet transmission. Each node has an associated home FHC that
it follows by default. If a source node needs to send a packet to a destination node on the same
home FHC, it uses the basic random access scheme on the common hopping channel. If, on the
other hand, a source node needs to send a packet to a destination node that has a different home
FHC than that of the source, then it switches to the home FHC of the destination and applies
the random access scheme on the destination node’s home FHC.

Laptop L2

Laptop L1

Phone P2

Projector Pj

Phone P1 Printer Pr

Palmtop Pm

Remote controller R

FHC1

FHC3

FHC2

Figure 6.2: Example of the proposed MFHC scenario

Figure 6.2 shows the application scenario of Figure 6.1 employing the proposed MFHC scheme.
The devices form three frequency hopping channels, denoted by FHC 1-3. Nodes within the same
FHC can communicate with each other directly using CSMA/CA. This is shown by the solid lines.
Nodes can also send data to another node in radio range in another FHC by switching to the
destination node’s home FHC. This is how communication between nodes connected by a dashed
line (and between every other pair of nodes in radio proximity) can take place. As the figure
suggests, the MFHC scheme avoids the complexity associated with establishing a scatternet
and selecting master and slave roles, determining, optimizing and maintaining the topology and
scheduling transmissions. MFHC also avoids multi-hop communication between neighbours.
Instead, nodes can send packets to any of their neighbours by switching to the destination node’s
home FHC and following the well-known CSMA/CA scheme. The solution allows the formation
of a connected ad hoc network, but at the same time keeps the advantages of using a single
frequency hopping channel for a group of devices. To achieve this, MFHC requires a neighbour
discovery and synchronization mechanism. One possible mechanism for neighbour discovery is
described in [78].

The MFHC solution makes it possible to send data to a different node on another FHC, but
it is clear that communication is more efficient when switching between FHCs is not needed.
This raises the question of how to arrange the devices into groups using a common channel. One
example is the one shown in the figure, but a number of other alternatives exist, including the
important special case where each device has an associated FHC of its own. We will examine
the performance trade-offs involved with grouping devices into FHCs. We will investigate static
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FHCs, but we note here that it is possible to make the FHC selection algorithms dynamic, in
which a node can change its home FHC membership based on traffic measurements.

The chapter is organized as follows. Section 6.2 reviews related frequency hopping systems
and their networking capabilities. Section 6.3 describes the proposed MFHC solution. Section 6.4
presents three basic FHC configurations and compares them through a simple analytical model.
Section 6.5 investigates MFHC via simulations. Section 6.6 concludes the chapter.

6.2 Related Work

A number of existing and proposed systems use frequency hopping spread spectrum radios,
providing a limited networking capability. Here we provide a brief overview of such technologies
in addition to Bluetooth that has already been introduced above. Table 6.1 summarizes the main
features of the systems considered in this chapter.

Currently the most widely used ad hoc networking platforms are based on the IEEE 802.11
wireless LAN standard [43, 38]. At the MAC layer, multiplexing of traffic on a single channel is
achieved by CSMA/CA. An RTS (request to send) - CTS (clear to send) - data - ACK four-way
handshaking mechanism is defined. The RTS-CTS message exchange decreases the overhead of
collision (when packets are long) and solves the hidden terminal problem [43]. IEEE 802.11 defines
a number of physical layers, frequency hopping spread spectrum being one of them. However,
communication is possible only in a single channel (between nodes in the same Basic Service Set
in the 802.11 terminology). (Note that existing products that use the frequency hopping physical
layer do not support fully distributed ad hoc operation even at a single channel, despite the fact
that the standard allows this and defines a distributed time synchronization method. Instead, ad
hoc operation is supported by products based on the direct sequence spread spectrum physical
layer.) To use multiple channels, we have to have an infrastructure of connected access points.
Without any infrastructure, it could be possible to use several independent hopping channels on
the same coverage area to share the available spectrum, but only nodes on the same channel
could communicate with each other. MFHC addresses this problem: it allows nodes in different
channels to communicate.

The Hop-Reservation Multiple Access (HRMA) protocol is introduced in [87] for frequency
hopping spread spectrum packet radios. The protocol uses a hop reservation and RTS-CTS
handshake mechanism to guarantee collision-free operation even in the presence of hidden termi-
nals. The protocol uses a designated frequency for control message exchange and requires timing
synchronization over the whole network. By relying on this common channel that every node
listens to, collision avoidance and hop reservation for data transmission can be achieved, so that
multiple data transmissions use different frequencies. However, the requirement of synchronizing
the whole network in time and using a single common signalling channel may imply performance
and robustness bottlenecks.

The design concepts used in the High Frequency (HF) Intra Task Force (ITF) Communication
Network are discussed in [25] employing frequency hopping spread spectrum radios. The proposal
incorporates the Linked Cluster Algorithm that structures nodes into disjoint clusters making
use of two TDMA frames that are synchronized over the whole network. Once the clusters are
formed, a second procedure called Link Activation Algorithm controls how slots are allocated on
the links. The available frequency band is divided into several sub-bands, and an independent
network is formed in each sub-band. This makes it feasible to perform re-configuration of the
network in one sub-band while communication can still continue in other sub-bands. However,
the complexity and performance implications of re-configuration of the clusters and schedules are
unclear.

The proposed MFHC scheme is novel in the way it establishes a connected ad hoc network
when multiple unsynchronized frequency hopping channels exist on the same coverage area. The
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System Networking Channel Setup Resource alloca-
tion

Synchronization

Bluetooth Speci-
fication

Single piconet Piconet formation Centralized
scheduling

Piconet-wide

Bluetooth Scat-
ternet PAN

Connection-
oriented multihop

Scatternet forma-
tion algorithm

Distributed
scheduling

Piconet-wide

802.11/FH ad
hoc

Single BSS Distributed syn-
chronization

On demand,
CSMA/CA

BSS-wide

HRMA Connection-less Distributed syn-
chronization

On demand, hop
reservation

Network-wide

HF ITF Connection-
oriented multihop

Linked Cluster Al-
gorithm

Scheduled (Link
Activation Algo-
rithm)

Cluster-wide,
network-wide

MFHC Connection-less FHC selection algo-
rithm

On demand,
CSMA/CA

FHC-wide

Table 6.1: Summary of related work and MFHC with ad hoc frequency hopping systems

architecture combines many of the advantages of frequency hopping systems. It facilitates the
use of low cost frequency hopping radios as in Bluetooth, it is based on a simple connection-
less approach with on-demand resource allocation as in the case of IEEE 802.11, it enables
networking between all devices as in HRMA and HF ITF, but without the need for a network-
wide synchronization mechanism. MFHC can be adapted to frequency hopping physical layers
with very different characteristics, e.g., to the physical layer of Bluetooth or 802.11 FH. As we
make numerical investigations (Sections 6.4 and 6.5), we will use parameters that are typical of
today’s Bluetooth implementations, but is clear that MFHC is applicable with a number of other
physical layer parameter settings as well.

6.3 Multiple Frequency Hopping Channel Communication

(MFHC)

To interconnect multiple frequency hopping channels that co-exist on the same coverage area, we
apply an adapted CSMA/CA scheme. Channel access within a FHC is based on the CSMA/CA
approach used by the IEEE 802.11 protocol [43]. This means that a node that has a packet to
send on the FHC first waits until the channel becomes free for at least a minimum period of time,
which we refer to as GS (guard space). Communication may begin at fixed slot boundaries. To
resolve collisions due to more than one stations sending at the same time, a contention mechanism
is applied as follows. Each station has a contention window, CW , and chooses a random backoff
value B from the interval [0, CW − 1]. In each slot when the channel is sensed free, the value
of B is decreased if it is above zero. A node may transmit when the value of B reaches zero. If
the transmission is successful, the value of CW is initialized to CWmin. If the transmission is
unsuccessful, the value of CW is doubled unless it reaches CWmax and the transmission attempt
will be repeated. This scheme ensures that collisions will be resolved after one or more stages
of contention. (Note that in a practical implementation, it is important to limit the number of
transmission attempts to avoid deadlock if the radio channel is down for any reason.)

We precede each packet transmission by an RTS-CTS message exchange, as in the 802.11
protocol. This handles the hidden terminal problem (the destination receives packets from a
station that the source cannot receive from), and also decreases the overhead of contention in the
case of long packets. In addition, the RTS-CTS message exchange provides a way for negotiation
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of parameters for the subsequent data transmission.
This scheme can be extended for multiple FHCs, as shown in the example of Figure 6.3. Even

though it is allowed for a node to switch from one FHC to another, we associate a default FHC
with each node, which we refer to as the home FHC of the node. The figure shows two FHCs,
where FHC 1 is the home of nodes A and B, FHC 2 is the home of nodes C, D and E. A node
may temporarily leave its home FHC, as node B does to visit FHC 2 (B’), but it returns to its
home FHC as soon as it has finished contention or transmission. To initiate a data transmission
to a node, we need to switch to the destination node’s home FHC and wait until the node is
available and the channel is free.

T6T5T2 T4T3T1

FHC 2

LN

RTS

LN

RTS CTSCTS

FHC 1

GS

CTSRTS
A

E

RTS

GSRTS CTSRTS

RTS

LN

B

C

B’

D

Figure 6.3: Example of Multiple Frequency Hopping Channel communication

When the destination node’s FHC is different from the source node’s home, then the source
node has to switch between the source and destination FHCs during contention. This is illustrated
in the figure, where node B wants to send a packet to node C in FHC 2. First, it switches to
FHC 2 (becomes B’ after transition T1) and listens on the channel for at least a fixed amount
of time (denoted by LN (listen) in the figure). This is needed to synchronize to the channel and
determine if there is an ongoing data transmission in the FHC or not. If there is an ongoing data
transmission, as in the example, then B must wait until this transmission is over (and observe the
guard space, GS) before sending an RTS. In the figure, node D also wants to send to node C, and
after colliding with B at the first RTS transmission, it wins the contention in the second stage. B
notices this when it hears the RTS from node D and waits until this data transmission is over. For
this period of time, it switches back to its home FHC (transition T2). To determine when it can
try again with a new RTS, node B uses its estimate of the length of the data transmission given
in the RTS packet (this information is also given in CTS packets). Node B switches back to FHC
2 (transition T3) such that it spends the period of LN before its backoff counter reaches zero.
In the figure, node D wins the contention once again, and B switches back to FHC 1 (transition
T4). In the meantime, node A initiates a data transmission to node B which is unsuccessful
because node B is away at that time. The RTS is retransmitted later, and the subsequent data
transmission is started to node B. This delays node B switching to FHC 2 once again. However,
when the transmission in FHC 1 is over, node B can immediately switch to FHC 2 (transition
T5). After a period of LN has passed and FHC 2 is sensed free, node B sends its RTS which is
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successfully received this time, allowing the consequent data packet transmission. Once this is
over, node B switches back to its home FHC (transition T6).

The address and home FHC of a neighbouring node is known from a neighbour discovery
mechanism. This is either based on a static configuration, or on beacon packets sent by the
nodes [78]. Beacon packets can be sent at a dedicated frequency, or on a special frequency
hopping sequence. In addition, beacon packets are sent on each FHC in order to synchronize
the channel timing [43]. Note that while it is clear that we must ensure timing synchronization
between two nodes that communicate with each other, MFHC does not require a network-wide
synchronization mechanism. Here we do not consider the synchronization mechanism in detail,
but we will consider the overhead of beacon packets used for channel synchronization in the
analysis of Section 6.4.

Since MFHC makes it possible for the nodes to communicate with all neighbours within radio
range in a connection-less fashion, it is possible to apply any of the MANET routing protocols
[61] to extend connectivity over multiple hops. In this case, we use beacon packets to keep track
of the neighbours. One issue that needs special attention in this case is that of broadcasts.
Since MFHC uses multiple channels, a broadcast packet needs to be transmitted separately to
neighbours on different channels.

6.4 Analysis of FHC Configurations

We now investigate the question of selecting the FHCs so that the performance of the com-
munication is maximized. For this, we introduce three FHC configurations and compare their
performance based on a simple analytical model. To enable the analysis, we first introduce a
model for the contention mechanism. This will be followed by a system model that will be used
for the subsequent performance comparison. In the comparison of this section we concentrate on
the FHC configurations and simplify the details of the backoff mechanism, packet types and local
retransmissions. Later in Section 6.5 we repeat and elaborate the analysis based on simulations
of an implementation of the architecture.

6.4.1 Modelling of Contention

For our analysis we use a very simple performance model of the contention mechanism that cap-
tures the impact of the number of competing nodes on the time needed to resolve contention.
In [8] and [9] the authors aim at modelling the behaviour of the IEEE 802.11 contention mech-
anism as closely as possible. Here we neglect most of the details and make some additional
simplifying assumptions so that our performance model remains analytically tractable even in a
multi-channel environment.

In our model, there is one round of contention in each slot. This means that we assume
that the nodes sending the RTS packets get immediate feedback on the success or failure of the
contention, and we neglect the possible loss and associated delay with the CTS packet. We also
assume that each contending node is aware of an ongoing transmission on the channel and does
not attempt to send an RTS during this period. Therefore in this model we consider only the
slots when contention takes place. A node either sends an RTS in a slot, or defers sending its
RTS, depending on whether its backoff counter has reached zero or not.

It has been observed [8, 96, 9] that the initial value of the contention window, CWmin may
impact the overhead of the contention and its optimal value is dependent on the number of
competing nodes. In our analysis we do not consider the question of setting the CWmin constant,
instead we use the optimal setting of the contention window based on the number of contenders.
(Note that this issue is considered in detail in [9] where an adaptation mechanism is proposed
and it is shown that the performance of the adaptive setting is close to the optimal settings.)
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Let the number of contending devices be denoted by k, and let the size of the contention
window at each node be constant W . Using a simple Markovian model, it can be shown [9] that
a single node transmits an RTS in a given slot with a probability of τ = 2/(W + 1). In a given
slot a new packet transmission is initiated when exactly one node transmits an RTS. Assuming
independence between nodes, its probability is

Ptx = k(1− τ)k−1τ(1 − p). (6.1)

where p is the probability of non-collision error (interference, fading, noise). Our purpose here is
to find the value of τ (and W ) that maximizes Ptx. Taking the derivative of the expression and
solving it for zero, we get

τ =
1
k

(6.2)

and consequently W = 2k − 1. The probability of successful RTS transmission is then Ptx =
(1−1/k)k−1(1−p). It is well known that the first factor in the formula goes to 1/e as k increases.
We can thus approximate the probability as

P ∗
tx =

1
e
(1 − p) (6.3)

In Figure 6.4 we show the probability of successful contention in a slot as a function of the
number of competing nodes. The figure shows the results of simulation of the exponential backoff
procedure with a fixed value of CWmin = 8, the value of Ptx for the optimal case with constant
window as computed above, and the approximation P ∗

tx. (In this case, p = 0 was used.) The
simulated performance curve shows a slight increase which is due to the fixed initial contention
window setting: when the number of contenders grows, the initial suboptimal setting no longer
limits the performance. The optimal window performance Ptx gives an upper bound that tends
to the simulated values of the backoff procedure as the number of nodes increase, similarly to
the approximation P ∗

tx.
In the following, we will use the approximation P ∗

tx since it is close to the simulated backoff
results especially as the number of nodes increases, and it gives an analytically tractable approx-
imation which is independent of the implementation details and parameters of the contention
procedure. (For simplicity, we will extend this approximation even for the k = 1 case.) With this
approximation, the average number of slots it takes until one of the k nodes wins the contention
is therefore

C =
1
P ∗

tx

=
e

1− p . (6.4)

6.4.2 System Model

To model system performance, we introduce a network and traffic model, and compare a number
of FHC configurations. Our primary performance metric will be the total system throughput.
We will compare the throughput performance of three different FHC configurations.

To model a number of groups of devices using a common application over the same coverage
area in an ad hoc networking scenario, we use a group-based traffic model: devices send most of
their data to other members of the same group. The total of N nodes are divided into groups
of size G. In our numerical analysis, we consider the extreme case where nodes within a group
send packets to the members of the same group only. (Later in Section 6.5 we will investigate
the effect of inter-group communication.) Sources are assumed to be greedy, which means that
sources always have a packet to send. Before each packet transmission, the destination is chosen
randomly and independently according to a uniform distribution from the other nodes in the
same group. Each of the N nodes are within transmission range of each other, so transmissions
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Figure 6.4: Simulated and analytical performance of contention

in different groups at the same time and same frequency collide.
We assume that transmission errors can be detected by an ARQ (Automatic Repeat reQuest)

protocol but the details of this protocol are not considered here. In the analysis we assume
that there exists a segmentation and reassembly mechanism, and the ARQ protocol retransmits
the errored segments only. Therefore we model the additional load caused by retransmissions
through the increase of the packet length by a factor of 1/(1− p), since 1− p is the success rate
of data segment transmissions, where p is the transmission failure probability for a segment. (In
the three configurations that we consider below, we will denote this probability by pc, pg and pd.)
We also assume segments of one slots in length, where a slot corresponds to the time the channel
remains at one frequency hop (similarly to the Bluetooth system [10]). Furthermore we have an
RTS packet that also takes one slot and we approximate the non-collision error probability of
sending an RTS packet with that of sending a segment of one slot in length (that is, p). These
assumptions are not essential to the MFHC proposal, and are used to facilitate the analysis in a
potential application scenario.

We distinguish three different FHC configurations based on the set of nodes that have a
common home FHC. In the common FHC case the same single channel is used by all of the N
nodes. This will be our reference case where devices do not need to switch to a different FHC. In
the device FHC case there is a separate FHC for contention and data transfer for each device. In
this case, for each destination a node has to switch to a new FHC. The third FHC configuration
that we investigate represents a compromise between the two extremes. In the group FHC case,
every group of G nodes has its own FHC for contention and data transmission. Since in our
traffic model of this section packets are sent only within the group, therefore nodes do not have
to switch to a different FHC in this case, either.

Figures 6.5 - 6.7 illustrate the three cases. The dark rectangles represent the data packets
sent on a given hopping channel, while the lightly shaded rectangles represent contention periods,
with the arrows showing the direction of the data transmission and the contention. The winner
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of the contention is marked by a solid arrow, while other contenders are marked with a dashed
arrow. Note that a device may simultaneously compete to transmit to other nodes while receive
RTS packets. This is achieved by switching between transmitting an RTS and receiving, as
illustrated in the example of Figure 6.3.

In the following we will analyze each of these configurations separately.

Group 1

Group 2

E

G

H

F

A

C

D

B

Figure 6.5: Common FHC: the same channel is used by all of the nodes.

6.4.3 Common FHC

In the common FHC case each device communicates on the same single frequency hopping channel
(Figure 6.5). The channel is occupied by alternating transmission and contention periods.

To find an approximation for the system throughput, we have to consider the length of the
data transmissions and the length of the contention periods. The length of the data transmissions
is taken to be constant L0. To find an approximation for the time spent with contention, we
use the results of Section 6.4.1. The approximate average time until one of the nodes wins the
contention is Cc = e/(1−pc) where pc is the non-collision error probability when sending an RTS
packet. In this analysis we only consider errors caused by interference, but in the common FHC
case there is only one channel and therefore in this model we have pc = 0.

From this, the load on the common frequency hopping channel (i.e., the fraction of time spent
with packet transmission, including retransmissions) is

Λc =
L0

L0 + e
. (6.5)
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Figure 6.6: Group FHC: every group has its own channel.
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Figure 6.7: Device FHC: there is a separate channel for each of the nodes.

The traffic offered to the channel by a single node (i.e., the fraction of time spent with packet
transmission, including retransmissions) is therefore:

λc =
Λc

N
=

1
N

(
L0

L0 + e

)
. (6.6)

To find the total throughput, we also take into account that the channel synchronization must
be maintained. This requires the exchange of packets that consume overhead. Here we consider
that synchronization is maintained by the transmission of special single-slot beacon packets with
a base period of Tb slots. This decreases the capacity of the channel by a factor of 1− 1/Tb. The
total throughput is then

Θc = Λc(1− 1/Tb) (6.7)

measured in the unit of the capacity of a single frequency hopping channel.
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6.4.4 Group FHC

The group FHC case is characterized by each group of G devices using a common frequency
hopping channel for both contention resolution and data transmission (Figure 6.6).

We use a similar approach to find an approximation for the system throughput as in the
previous subsection. We have to characterize both the length of the data transmissions and the
length of the contention periods. To characterize the length of the data transmissions, we assume
that each packet transmission takes L slots, where the amount of data transmitted corresponds
to a constant L0 slots.

L > L0 because there may be errors on the channel causing retransmissions, making the
transmission of a complete packet longer. We only consider the errors caused by interference
and use an independent and identically distributed error model with a segment error probability
of pg. The extra load caused by the retransmissions are approximated as L = L0/(1 − pg) (as
described in Section 6.4.2).

To find an approximation for the time spent with contention, we use Cg = e/(1−pg) where pg

is also the probability that an RTS is lost due to non-collision error (interference in our model).
The load on a single FHC can then be computed as:

Λg =
L

L+ Cg
=

L0

L0 + e
. (6.8)

The traffic offered by a single node then becomes

λg =
Λg

G
=

1
G

(
L0

L0 + e

)
. (6.9)

We now approximate the probability of interference error, pg. A single frequency hopping
channel is disturbed by N/G − 1 other similar channels. Each channel hops on K different
carriers independently in a pseudo-random manner. Since the channels are not synchronized
with each other, a transmission in a single slot in one channel may disturb two slots in a different
channel if the carriers collide. If we neglect the interference caused by RTS and CTS packets,
the probability that a transmission of one slot is successful despite the interference caused by
another channel with a load of Λg is 1− Λg

2
K . The error probability can then be approximated

as

pg = 1−
(

1− Λg
2
K

)N/G−1

. (6.10)

The total throughput is obtained by summing the traffic in each channel, taking into account
the synchronization overhead and that data transmission has an efficiency of 1−pg due to errors:

Θg =
N

G
Λg(1− pg)(1− 1/Tb). (6.11)

6.4.5 Device FHC

The device FHC is characterized by each node having a separate channel of its own (Figure 6.7).
This means that each time a source node sends a data packet to any destination node, the source
first has to switch to the FHC of the destination.

To find the traffic offered by a single node, we approximate the average time taken with data
reception as follows. Similarly as above, a single packet reception takes L = L0/(1 − pd) slots,
where pd is the segment error probability. A packet reception is preceded by a contention period.
This would take on average e/(1 − pd) slots in general (since there is a non-collision error with
probability pd for an RTS).
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However, contention is prolonged in this case for the following reasons. While waiting for
incoming RTS packets initiating a data transfer, each node also has a packet to send at the
same time. This means that a node has to switch between its own frequency hopping channel
and that of the frequency hopping channel of its destination, as described in Section 6.3. The
node participates in two contentions simultaneously, once as a potential transmitter and once
as a potential receiver. Even if this could be done with 100% efficiency, this would double the
time of the average contention. However, switching between the channels necessarily implies
inefficiency. In addition, the contention window of source nodes are increased due to the fact
that a destination node does not respond to an RTS when it has switched to a different FHC.
The extent of these effects depends on many implementation dependent factors, such as the
time needed to switch to a different FHC, and the setting of the maximum contention window.
We approximate these effects by assuming that contention is prolonged by a factor of β due to
the inefficiency incurred by switching between different channels. Our approximation for the
contention period is therefore Cd = βe/(1− pd). We have β > 2 since the length of contention is
at least doubled. (We will investigate the value of β through simulations in Section 6.5.)

Due to symmetry between nodes and roles, each node spends the same amount of time with
transmitting and receiving, and consequently transmits on average one packet for each packet
reception. This follows that the fraction of time spent with reception at a given node is

λd =
L

2L+ Cd
=

L0

2L0 + βe
. (6.12)

Due to symmetry of the traffic model, λd is also the time spent with transmission by a given
node.

Similarly to the previous subsection, the segment error probability can be found:

pd = 1−
(

1− λd
2
K

)N−1

. (6.13)

To find the total throughput, we have to take into account the synchronization overhead. Each
node in a group has to synchronize to all other nodes in the group, giving a factor of 1−G/Tb.
We can write the total system throughput as

Θd = Nλd(1− pd)(1−G/Tb). (6.14)

6.4.6 Performance Comparison

We now evaluate the performance of the FHC configurations based on the analytical model of
the previous subsections. First, we plot the total throughput as a function of the total number
of nodes N , see Figure 6.8. In the figure we use tentative parameter settings: the group size
was fixed at 10 nodes, packet length was 12 slots, number of hop frequencies was set to 79, we
used β = 4, and the synchronization overhead was not included. In the upper left box, we plot
the offered traffic by a single node, that is, the fraction of time spent with data transmission
by a node. First of all we can observe that this is constant for the group and device FHC
configurations. To explain this, notice that the groups are logically independent and do not
depend on each other except for the interference. The increase in the interference is shown in
the upper right. Interference causes data transmissions to be longer, but it also prolongs the
contention period by the same factor explaining why the offered traffic remains constant. (Note
that in a given implementation the effect of packet losses may cause a different factor of increase
for the data transmission time and for the contention. This may result in slight changes in the
offered traffic as will be visible in the simulation results of the next section.) In the common
FHC case, nodes share the same channel which causes the per node offered traffic to decrease as
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the number of nodes increases.
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Figure 6.8: System performance, G = 10, L0 = 12, Tb =∞

The figure in the lower left box shows the total throughput of the system measured in the
unit of the capacity of a single frequency hopping channel. This is constant for the common FHC
case since the total capacity of a single channel is used, and it is not affected by interference.
In the device and group cases, the total throughput increases with increasing number of nodes.
This is because the number of FHCs are increased providing multiplexing gain. The slope of
the curves decreases though because of the increased interference. The device FHC case allows
for a greater number of parallel data transmissions to be multiplexed than the group FHC case
which allows only a single transmission per group. This explains the significantly higher total
throughput of the device FHC configuration.

Also plotted in the lower right box is a measure of the spectral efficiency. We obtained this
measure by dividing the total throughput by the number of hop carriers, K. If all carriers were
continuously transferring data, this measure would yield 1; its value therefore represents the
efficiency of utilizing the available spectrum. We made an exception in the common FHC case,
where we did not divide the total throughput by K, since only a single common channel is used in
this case, which could - hypothetically - span even the whole available spectrum without causing
any interference. In the rest of the cases, this is not possible since many channels need to be
multiplexed that could interfere with each other.
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The results show that the spectral efficiency is highest in the common FHC case, and it is
lower for the other configurations. This observation can be interpreted as follows. If a single
common high-speed channel can be used by all devices on an on-demand time-division basis,
it can give a much more efficient usage of the available spectrum than dividing it into many
uncoordinated low-speed channels. We have to keep this in mind when considering the other
configurations employing multiple uncoordinated frequency hopping channels. However, a high-
speed common channel may be difficult or costly to realize in practice. Note also that frequency
hopping radios naturally lead to the use of multiple channels rather than a common channel of
higher bandwidth. A full comparison of these two cases, involving other aspects such as hardware
limitations, cost, radio propagation and error characteristics, is out of the scope of this chapter.

Figure 6.9 shows the dependence of the traffic offered by a node on the group size and packet
length, with only a single group present. (Note that the offered traffic determines the total
throughput.) We can see that the device FHC case offers a constant per node offered traffic, while
the group and common FHC cases (which are identical in this scenario) yield a decreasing per
node offered traffic. The reason for this is that the device FHC configuration allows multiplexing
of data transmissions within a group. To compare the two curves at G = 2, notice that we have
β > 2, which follows that λd < λg. This means that for a group of two nodes, the device FHC
is necessarily less efficient than the group FHC. Depending on the implementation dependent
value of β, the two curves must intersect each other, marking the group size where the device
FHC configuration is equally efficient as the group FHC. By comparing the two graphs for long
and short packet size, we can observe that the intersection point is also dependent on the packet
size. When packets are shorter, the effect of backoff overhead is increased, therefore the per node
offered traffic (and the total throughput) is lower.
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Figure 6.9: Dependence of the per node offered traffic on the group size and packet length.
N = G, Tb =∞. On the left L0 = 12, on the right L0 = 2.

Figure 6.10 shows the dependence of the total throughput on the synchronization overhead.
This overhead depends on the accuracy of the clocks that are used: the less accurate they are,
the more frequently we need to send beacon packets to keep the synchronization. The figures
plot the base beacon sending period. The figures show that the device FHC case is the most
sensitive to synchronization overhead, especially for higher group size. This is attributed to the
fact that in this case, a node in a group has to synchronize to all other nodes in its group to
be able to send data, while in the other cases nodes have to synchronize to one channel only.
Note also that we took a very conservative computation for the synchronization overhead, since
only a singe slot was wasted for a beacon packet. In a practical implementation, however, this

69



overhead might be much higher, which further emphasizes that the device FHC configuration is
very sensitive to accurate synchronization.
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Figure 6.10: Dependence of system throughput on the beacon period and group size. N =
G,L0 = 12. On the left, G = 2, on the right, G = 10.

6.5 Simulation Study

To investigate the performance of the implementation of different FHC configurations, we have
implemented the MFHC scheme in a packet level simulator [39]. Figure 6.11 shows the architec-
ture of the simulator. The physical layer consists of a packet collision detector which determines
the reception status of every individual packet. Each node has an associated FHC object in the
physical layer (this association is shown by the dashed lines). The link layer representation of
each node connects to exactly one FHC in the physical layer at a time, the one that it follows at
the given moment as determined by the MFHC protocol implementation in the link layer (this
connection is shown by the solid lines).

We consider scenarios where all nodes are within radio range of each other, which represents
the worst case in terms of interference. In the physical layer model, packets can be lost due
to interference (i.e., two or more packets are sent on the same frequency at the same time) or
collision (i.e., an RTS packet collides with another packet sent to the same destination), otherwise
they are delivered correctly. In the link layer, we model the contention mechanism as described
in Section 6.3. FHCs are independent of each other using a pseudo-random frequency hopping
pattern. We have implemented a segmentation and reassembly mechanism, and an ARQ protocol
that gives feedback on the reception status after each segment. Lost segments are retransmitted
immediately. Packets can be sent at the beginning of a slot. The slot timing is aligned to
frequency hopping: there is a guard time at the end of each slot to allow devices to tune to a
new frequency. Table 6.2 lists the parameters used in the simulations. Note that the channel
capacity and the number of hop frequencies were selected to reflect the constraints of the 2.4GHz
ISM band, and the other parameters were selected to reflect the current capabilities of typical
Bluetooth implementations.

First we investigate the extent of multiplexing that can be achieved by using the group and
device FHC configurations. Figure 6.12 shows the per node offered traffic and total system
throughput as the number of groups, each with ten member nodes, are increased. The results
are in accordance with the analysis of Section 6.4, showing that the device FHC configuration
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Figure 6.11: Simulator architecture

Channel capacity 1 Mbit/sec

Slot length 1 ms

Hop frequencies 79

Segment length 1, 2, 3, 4 or 5 slots

Segment header length 164 bits

Guard time for frequency hopping 0.1 ms per slot

Length of RTS, CTS, ACK packets 1 slot

Minimal contention window 8 slots

Maximal contention window 64 slots

Synchronization overhead 0 (not considered)

Listen time on new FHC 6 slots

Table 6.2: Simulation parameters

increases the total system throughput by a factor of two. However, the multiplexing gain that is
achieved by the device FHC is only present with large group sizes. Figure 6.13 shows that with
a group size of two nodes, the device FHC case actually performs worse by about 30%, because
it is less efficient in contention and can not make use of multiplexing.

Figure 6.14 investigates the differences between small and large groups. The results follow
the same trend as the analytical model shown in Figure 6.9. Fitting the formulas of Section 6.4
to the simulation results, we can approximate the value of β, which shows the inefficiency of
contention in the device FHC case. We get a value of β = 16 in the case of 1500 byte packets
and β = 8 in the case of 250 byte packets. These values are much greater than the minimal value
of 2, showing that the switching of FHC during contention introduces a significant amount of
extra overhead. Note also that this factor is not constant: in the case of long (1500 byte) packets
and minimal group size of 2 nodes, the device FHC becomes more efficient (β decreases to 8 in
this case). When there are only two nodes in the group, the intended destination node does not
communicate with other nodes. That would cause failed RTS attempts whose number is much
bigger in the case of long packets, which explains why we see this effect to a much greater extent
in the case of long packets.

So far we have allowed traffic only within a group in our model. We now extend our traffic
model to investigate the effect of traffic between the groups as well. In the extended model, with
a probability png a nodes chooses its destination from all the other nodes in the network, not just
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Figure 6.12: Per node offered traffic and total throughput as the number of groups are increased.
Group size is fixed at 10.

its own group. Figure 6.15 shows the throughput performance as a function of the probability
png which determines the non-group traffic. The device FHC configuration is not sensitive to this
change since it does not depend on the formation of groups. It only shows a slight throughput
decrease in the case when the group size is two, which is explained by the reasoning above in the
previous paragraph. The group FHC shows a decrease in both small and large group sizes, but
the decrease is much more significant when the group size is small. The reason for this is that
when the group size is high, there is a higher chance that at least one of the potential destinations
is available, and so the channel can be utilized. In both cases, the results show that the device
FHC configuration gives higher performance in the case of heterogeneous traffic, that is, when
there is significant traffic between the groups.

Finally we observe the effect of changing the traffic pattern within a group to model a client-
server application (with no traffic between the groups). In this case we designate one node in all
groups to be a server and the other nodes in the group to be clients. All nodes remain greedy as
before in that they always have a data to send, but with a constant probability ps, the clients
choose the server as their destination. Figure 6.16 shows the total throughput as the constant
ps is increased from 0 to 1 (server-client traffic only). In this experiment the total throughput
of the group FHC configuration remains constant since this is determined by the capacity of the
group channel. On the other hand the performance of the device FHC configuration decreases
to that below the group case. When there is only server-client traffic, the device FHC case can
not achieve multiplexing gain, and it uses a less efficient contention scheme than the group FHC
which explains its lower performance.

6.6 Summary

We have proposed Multiple Frequency Hopping Channel communication (MFHC), a scheme
that forms a connected ad hoc network from multiple frequency hopping channels. Our scheme
relies on the notion of home FHC. Each device participating in an ad hoc network has a home
FHC which determines the frequency hopping scheme it follows whenever it is not transmitting
at another FHC. To transmit to a particular device, it is necessary to switch to that particular
device’s home FHC, listen to the channel and resolve contention. The difference from a traditional
random access scheme is that besides the possibilities of success or collision, a third option is
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Figure 6.13: Per node offered traffic and total throughput as the number of groups are increased.
Group size is fixed at 2.

that the destination is “away” at another FHC.
Besides allowing ad hoc networks to benefit from the advantages of frequency hopping, this

scheme increases their throughput compared to using a single channel only, but it requires ad-
ditional coordination. We have investigated the impact of this additional coordination on the
system’s performance using analytical and simulation tools. In particular, we have compared the
extreme case of MFHC, where each device has its own distinct FHC, to a reference case where the
entire ad hoc network uses the same single FHC. The results show that the former case (device
FHC) provides significantly higher total throughput than the reference case (common FHC).

We have also analyzed a case where subsets of an ad hoc network form a partially closed
communication group in the sense that members of one group communicate mostly with other
members of the same group and rarely with other nodes of the ad hoc network. This scenario
may be typical in some realistic ad hoc networks. We have shown how MFHC can adapt to
this case such that members of one group share the same home FHC. This case, referred to as
group FHC, represents a compromise between the device FHC and common FHC cases. We have
shown that it is especially well suited to server-client type traffic patterns, but it is ill-suited for
heterogeneous traffic patterns. The group FHC configuration makes the contention mechanism
more efficient and it requires less overhead for channel synchronization, in exchange for lower
multiplexing gain and consequently lower total throughput.
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Figure 6.14: Per node offered traffic in the case of a single group. On the left packet length is
1500 byte, on the right packet length is 250 byte.
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Figure 6.15: The effect of non-group traffic on the total throughput. On the left group size is 2,
on the right group size is 10. The number of nodes is fixed at 50.
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Figure 6.16: The effect of server-client traffic on the total throughput. Group size is fixed at 10,
number of nodes is 50.
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Chapter 7

Conclusions

7.1 Contribution of Thesis

In the dissertation we have addressed some of the challanges of supporting data traffic in com-
munication networks, mobile networks in particular. The unpredictable nature of the user traffic
demand and the erroneous nature of wireless air interfaces motivated the design of a number of
new control mechanisms.

We have examined one motivation, the characterisation of dynamic traffic demand, in details.
We have applied the concept of peakedness for traffic characterization. We have given the formu-
lation of peakedness in discrete time, and we have also given a number of practical considerations
on its application. We have applied the peakedness measure for a number of measurement traces,
showing a great deal of variability depending on the application. We have also given a fitting
technique that fits a Markovian model to a peakedness curve.

After characterizing the variability of traffic, we have investigated control mechanisms that
work adaptively depending on the traffic and channel characteristics. We have investigated a
single wireless link and proposed a new automatic repeat request mechanism, and we have also
investigated the resource allocation of a wireless base station with many terminals.

We have proposed a new type of selective repeat retransmission (ARQ) protocol in the HIPER-
LAN/2 wireless LAN architecture. In this case, dynamic adaptation can select the appropriate
negative acknowledgements and determine the amount of ARQ signalling capacity. This adap-
tation is based on the co-operation of the terminals and the base station scheduler. We have
presented simulation results that show that the proposed scheme with dynamic adaptation is
more efficient than static schemes in terms of thoughput and delay.

In the case of the resource allocation of a wireless base station, we have analyzed the inter-
action between a number of control mechanisms. The retransmission protocol works on each
individual wireless link at the link layer. The transport layer (TCP) provides another level of
retransmissions, and based on the observed capacity, it adapts the sending rate of the end source.
The resource allocation mechanism employs another level of adaptation that compensates for the
losses that occur on the air interface. Our aim with the compensation mechanism was to control
the trade-off between system utilization and fairness. This trade-off arises because — unlike in
fixed networks — the amount of service given to a flow is not the same as the amount of service
that it gets due to the location-dependent channel errors.

We have made a number of observations in our simulation-based analysis. We have found
that the link-layer ARQ mechanism can work independently from the transport-layer TCP re-
transmissions since the link-layer in our case is much faster. We have investigated the effect
of persistency of the link-layer ARQ mechanisms. We have found reliable (fully persistent) re-
transmissions at the link layer improve efficiency and make the fairness of the resource allocation
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controllable. On the other hand, if the link-layer retransmissions are given up after a threshold
number of trials, the effect of packet losses can be that the TCP congestion control algorithms
are triggered, which in turn can completely change the fair resource sharing. We have also shown
that a simple compensation mechanism can significantly improve fairness at the cost of slight
decrease in the system utilization. The reduction of utilization is slight in the case of independent
channel losses, and increases with the burstiness of the loss model.

We have extended this scheme with two additional levels of adaptive control. We have ex-
tended the scheduler in the base station with a compensation mechanism for unused capacity.
The base station gives additional capacity to a user (terminal) later if it requests less capacity
than the amount that it could receive. This encourages users to optimize their channel usage
on their own. Another adaptive mechanism at the user makes measurements and estimations of
the channel, and when it predicts that the channel will be erroneous, it relinquishes its capacity
request. The working of the user is determined by the channel characteristics: errors are typically
bursty in nature, which can be utilized in the resource requesting mechanism. We have extended
the scheme with an optional third adaptive mechanism that helps users set the sensitivity of
their algorithm based on a one-bit feedback from the base station. We have used simulations
and analysis to evaluate this architecture. We have shown that this scheme encourages the ef-
ficient use of the capacity. For this reason, the system utilization and fairness can be improved
together. We have also introduced two abstract user behaviour for the analysis and used them
to approximate the performance of the system.

Finally, we have addressed the question of a mobile ad hoc network using frequency hopping
spread spectrum radios. In these networks, all nodes may be mobile, and communication may
take place using multiple hops. Due to the frequency hopping radios however, two devices need
to use the same frequency hopping channel in order to communicate. This requires some sort
of co-ordination mechanism. We have proposed MFHC (Multiple Frequency Hopping Channel
Communication) to enable devices communicate even when many channels are used simultane-
ously in the network. Devices switch between the different channels and communicate using the
CSMA/CA principle.

We have used simulation and analytical methods to compare the performance of different
frequency hopping channel configurations. The results have validated the feasibility of this type
of novel ad hoc networking architecture. In particular, we have shown that the extreme case
where each device has an associated frequency hopping channel can achieve high throughput
performance due to its multiplexing gain. We have also shown that other configurations where
a group of devices uses the same channel can also achieve high performance, and in some cases
this is the most efficient scenario. Our results give guidelines on the performance differences of
the different configurations.

7.2 Areas for Future Research

There are many ways to continue the research in the dissertation. Below we suggest some
interesting areas of continuation.

Traffic characterization remains an open area for research. One interesting topic is the inves-
tigation of non-stationarity in the measurements. Another open area remains to develop suitable
characterization methods that take into account the transport layer (TCP) feedback mechanisms
that influence traffic behaviour.

Regarding dynamic retransmission protocols, in the future it is essential to carry on the
analysis using measured channel characteristics. Such measurements could open the way for
optimization of the adaptation mechanisms of the ARQ protocol.

In the resource allocation of a wireless base station, future research needs to verify the findings
in a real implementation. The effect of implementation constraints need to be addressed. The
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user behaviour algorithms have to be evaluated under a number of different channel conditions.
Based on the results, a possible set of new use behaviour algorithms can be developed.

Another interesting area of future research is to provide delay bound based on certain as-
sumptions on the wireless channel. Other scheduling principles can also be studied, and their
performance characteristics can be investigated by further simulation as well as analytical meth-
ods.

Regarding ad hoc communication over multiple frequency hopping channels, also a number
of new research directions remain. The dissertation has indicated a number of different channel
configurations. In the future, protocols can be developed that are based on these performance
findings and control the frequency hopping channel configurations. The protocols will have to be
verified by further performance analysis. In addition, neighbour discovery and synchronization
mechanisms need to be studied in more detail. The multihop networking scenario also requires
further study.

The dissertation has addressed some of the design issues that arise as a consequence of the
shift towards mobile data communication networks. We can be sure that in the years to come,
this trend will continue to pose a large number of research questions.
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Appendix A

Derivation of Peakedness Results

A.1 Peakedness in Discrete Time

We begin the analysis of peakedness in discrete time by refreshing the notation of Chapter 2.
Time is discretized, and the amount of work arriving at epoch i is denoted by w[i]. We suppose
and infinitely long past: i = . . .−1, 0, 1, . . .. This process is assumed to be stationary. The
number w[i] corresponds to the number of arrivals in epoch i, but it can be interpreted in a more
general sense, as the amount of work arriving in epoch t. (The formulas below are valid even if
w[i] is not integer.) The first and second moments of w[i] are m1 = E {(w[i])}, m2 = E

{
(w2[i])

}
,

which are independent of i due to the stationarity assumption. The autocovariance function of
w[i] is k[s] = Cov {(w[i], w[i + s])} = k[−s]. It is easily seen that k[0] = m2 −m2

1.
The arrivals are offered to an infinite group of servers, where the service time T is a random

variable. Its distribution is t[1], t[2], . . . on 1, 2, . . .. (It cannot take on zero value.) The complen-
tary holding time distribution function of the service time is F c[x] =

∑∞
s=x+1 t[s] = P (T > x) if

x ≥ 0 and F c[x] = 0 if x < 0. Denote the service intensity by µ = 1/E {T }. It can be shown that
1/µ = E {T } =

∑∞
−∞ F c[s]. Autocorrelation function of F c is ρF c [x] =

∑∞
s=−∞ F c[s]F c[s + x].

It is seen that ρF c [0] =
∑∞

s=−∞(F c)2[s].

A.2 Peakedness Computation

In each epoch there are w[i] arrivals, and a server is assigned to each of them, where the service
time of each server is independent and has a complementary holding time distribution of F c[x].
The peakedness of the arrival stream corresponding to this holding time distribution is Z{F c} =
Var{L[t]}
E{L[t]} where L[t] is the number of busy servers at epoch t. The peakedness is independent

of t due to the stationarity of the process. Our purpose here is to determine the peakedness by
computing Var {L[t]} and E {L[t]}.

Let us define the indicator

h(t, s, x) =
{

1 if s ≤ t < s+ x
0 otherwise (A.1)

The number of busy servers due to the arrivals at epoch s is

Ls,w[s][t] =
w[s]∑
i=1

h(t, s, Ti[s]) (A.2)
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where Ti[s] is the service time random variable assigned to the ith arrival of the batch at epoch
s independently for each arrival; s and w[s] are fixed. For each i, P (h(t, s, Ti[s]) = 1) = F c[t− s]
due to the definition of F c[t− s]. It follows that the distribution of Ls,w[s][t] is binomial, and

E
{
Ls,w[s][t]

}
= w[s]F c[t− s] (A.3)

Var
{
Ls,w[s][t]

}
= w[s]F c[t− s](1− F c[t− s]) (A.4)

For a fixed arrival stream S : . . . , w[−1], w[0], w[1], . . ., we can sum up for all s to get, using
the independence of the service of the different arrivals,

E {L[t]|S} =
∞∑

s=−∞
w[s]F c[t− s] (A.5)

Var {L[t]|S} =
∞∑

s=−∞
w[s]F c[t− s](1 − F c[t− s]). (A.6)

From this, we have

E {L[t]} = E {E {L[t]|S}} =

= E

{ ∞∑
s=−∞

w[s]F c[t− s]
}

=
∞∑

s=−∞
E {w[s]F c[t− s]}

=
∞∑

s=−∞
E {w[s]}E {F c[t− s]}

= m1

∞∑
s=−∞

F c[t− s]

= m1E {T }
= m1/µ. (A.7)

To compute Var {L[t]}, we will need E {Var {L[t]|S}} and Var {E {L[t]|S}}. Using eq. (A.6)
and eq. (A.5),

E {Var {L[t]|S}} = E

{ ∞∑
s=−∞

w[s]F c[t− s]
}
− E

{ ∞∑
s=−∞

w[s](F c[t− s])2
}

= m1

( ∞∑
s=−∞

F c[s]−
∞∑

s=−∞
(F c[s])2

)

= m1(E {T } − ρF c [0])
= m1(1/µ− ρF c [0]). (A.8)

Var {E {L[t]|S}} = Var

{ ∞∑
s=−∞

w[s]F c[t− s]
}
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=
∞∑

s=−∞

∞∑
r=−∞

Cov {(w[s]F c[t− s], w[r]F c[t− r])}

=
∞∑

s=−∞

∞∑
r=−∞

F c[t− s]F c[t− r]Cov {(w[s], w[r])}

=
∞∑

s=−∞

∞∑
r=−∞

F c[s]F c[r]k[s− r]

=
∞∑

s=−∞

∞∑
r=−∞

F c[s+ r]F c[r]k[s]

=
∞∑

s=−∞
ρF c [s]k[s]. (A.9)

Taking the two results eq. (A.8) and eq. (A.9) together, and using the fact that Var {X} =
E {Var {X |Y }}+ Var {E {X |Y }},

Var {L[t]} = E {Var {L[t]|S}}+ Var {E {L[t]|S}}

= m1(E {T } − ρF c [0]) +
∞∑

s=−∞
ρF c [s]k[s]

= m1/µ+
∞∑

s=−∞
ρF c [s](k[s]−m1δ[s]) (A.10)

where δ[s] is the discrete time delta function (δ[s] = 1 if s = 0, δ[s] = 0 otherwise).
The peakedness of the arrival stream can now be expressed by eq. (A.7) and eq. (A.10) as

z{F c} =
Var {L[t]}
E {L[t]}

= 1 +
µ

m1

∞∑
s=−∞

ρF c [s](k[s]−m1δ[s]). (A.11)

A.3 Single Holding Time for a Batch

The computation of peakedness is similar when we assign only one holding time variable to a
batch, and assign one server to each arrival according to this common holding time.

In this case, eq. (A.2) becomes

Ls,w[s][t] = w[s]h(t, s, T ) (A.12)

as there is only a single random holding time. The value of h(t, s, T ) is 1 with probability F c[t−s]
and 0 otherwise, so the expected value of Ls,w[s][t] is not changed but the variance is as compared
to eq. (A.3), eq. (A.4):

E
{
Ls,w[s][t]

}
= w[s]F c[t− s]

Var
{
Ls,w[s][t]

}
= (w[s])2F c[t− s](1− F c[t− s]) (A.13)

From this, we get the same result for E {L[t]}, Var {E {L[t]|S}} as eq. (A.7) and eq. (A.9).
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But for E {Var {L[t]|S}}, we get a different constant:

E {Var {L[t]|S}} = E

{ ∞∑
s=−∞

(w[s])2F c[t− s](1− F c[t− s])
}

=
∞∑

s=−∞
E
{
(w[s])2F c[t− s](1− F c[t− s])}

=
∞∑

s=−∞
E
{
(w[s])2

}
F c[t− s](1 − F c[t− s])

= m2(E {T } − ρF c[0])
= m2(1/µ− ρF c[0]) (A.14)

This gives, using eq. (A.14) and eq. (A.9),

Var {L[t]} = E {Var {L[t]|S}}+ Var {E {L[t]|S}}

= m2(1/µ− ρF c[0]) +
∞∑

s=−∞
ρF c [s]k[s]

= m2/µ+
∞∑

s=−∞
ρF c [s](k[s]−m2δ[s]) (A.15)

and therefore the peakedness for single holding time for a batch, denoted by z̃{F c}, is ex-
pressed using eq. (A.15) and eq. (A.7):

z̃{F c} =
Var {L[t]}
E {L[t]}

=
m2/µ+

∑∞
s=−∞ ρF c [s](k[s]−m2δ[s])

m1/µ

=
m2

m1
+

µ

m1

∞∑
s=−∞

ρF c [s](k[s]−m2δ[s]) (A.16)

We now determine the relation between z{F c} and z̃{F c} From eq. (A.11) and eq. (A.16) we
can easily express

∑∞
s=−∞ ρF c [s]k[s] to get an expression connecting z{F c} and z̃{F c}:

z{F c} − 1
µ/m1

+ ρF c [0]m1 =
z̃{F c} −m2/m1

µ/m1
+ ρF c [0]m2 (A.17)

which yields

z̃{F c} − z{F c} =
(
m2

m1
− 1
)

(1− ρF c [0]µ). (A.18)

The first factor is zero if and only if the arrival stream has no batches, the second factor is
zero only if and only if the holding time distribution is deterministic.
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A.4 Geometrically Distributed Holding Times

If the random variable T is geometrically distributed, that is, t[i] = µ(1−µ)i−1 (0 < µ < 1), and
so E {T } = 1/µ, then we have

F c[x] =
∞∑

k=x+1

µ(1− µ)k−1 = (1− µ)x. (A.19)

The autocorrelation function for i ≥ 0 is expressed as

ρF c [i] =
∞∑

s=0

F c[s]F c[s+ i]

=
∞∑

s=0

(1− µ)s(1− µ)s+i

= (1− µ)i
∞∑

s=0

(1− µ)2s

= (1− µ)i 1
1− (1− µ)2

=
(1− µ)i

µ(2− µ)
(A.20)

which gives

ρF c [i] =
(1 − µ)|i|

µ(2− µ)
. (A.21)

Using formula eq. (A.11) we get the peakedness value for geometrically distributed holding
times:

zgeo(µ) = 1 +
µ

m1

∞∑
s=−∞

(1− µ)|s|

µ(2− µ)
(k[s]−m1δ[s])

= 1 +
k[0]−m1

m1(2− µ)
+

2
m1(2− µ)

∞∑
s=1

k[s](1− µ)s

= 1 +
k[0]−m1

m1(2− µ)
− 2k[0]
m1(2− µ)

+
2

m1(2− µ)

∞∑
s=0

k[s](1− µ)s

= 1− m2 +m1 −m2
1

m1(2− µ)
+

2
m1(2 − µ)

k∗(1− µ) (A.22)

where k∗(x) denotes the z-transform of k[s].
To simplify the notation, let us introduce [50]

K[s] =
{ 2

m1
k[s] if s > 0

1
m1
k[0] if s = 0 (A.23)

Then eq. (A.22) becomes

zgeo(µ) = 1 +
K∗(1 − µ)− 1

2− µ (A.24)

where K∗(ω) is the z-transform of K[s].
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A.5 Peakedness and IDC

We investigate the connection between the peakedness function and the index of dispersion for
counts (IDC, [17]). The IDC is a measure used to characterize the variability of an arrival stream
on different time scales.

I[t] =
V [t]
E[t]

=
V [t]
m1t

(A.25)

where E[t] and V [t] are the mean and variance of the number of arrivals in t consecutive epochs
(t = 1, 2, . . .).

First we express I[t] by the covariance function. For this, first observe that the number of
arrivals in an interval of length t can be expressed as the sum of the arrivals of t intervals of
length 1, and the variance of the number of arrivals is therefore:

V [t] = tV [1] + 2
t−1∑
i=1

(t− i)k[i]. (A.26)

Using the notation for K[t] eq. (A.23), we get

I[t] =
1
t

t−1∑
i=0

(t− i)K[i]. (A.27)

Next we determine the z-transform of I[t] (where we take I[0] = 0):

I∗(ω) =
∞∑

t=1

I[t]ωt

=
∞∑

t=1

t−1∑
i=0

1
t
(t− i)K[i]ωt

=
∞∑

i=0

∞∑
t=i+1

1
t
(t− i)K[i]ωt

=
∞∑

i=0

∞∑
t=i+1

K[i]ωt −
∞∑

i=0

∞∑
t=i+1

i

t
K[i]ωt. (A.28)

The first term of eq. (A.28) is

∞∑
i=0

∞∑
t=i+1

K[i]ωt =
∞∑

i=0

K[i]ωi+1
∞∑

t=0

ωt

=
∞∑

i=0

K[i]
ωi+1

1− ω

=
ω

1− ω
∞∑

i=0

K[i]ωi

=
ω

1− ωK
∗(ω) (A.29)
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To evaluate the second term of eq. (A.28), note that

∞∑
t=i+1

ωt

t
=
∫ ω

0

xi

1− xdx,

which can be proven by taking the derivative of both sides. Using this result,

∞∑
i=0

∞∑
t=i+1

i

t
K[i]ωt =

∞∑
i=0

iK[i]
∞∑

t=i+1

ωt

t

=
∞∑

i=0

iK[i]
∫ ω

0

xi

1− xdx

=
∫ ω

0

1
1− x

∞∑
i=0

iK[i]xidx

=
∫ ω

0

(
1

1− x
d

dx

∞∑
i=0

K[i]xi+1 − 1
1− x

∞∑
i=0

K[i]xi

)
dx

=
[

1
1− xxK

∗(x)
]ω

0

−
∫ ω

0

1
(1− x)2 xK

∗(x)dx −
∫ ω

0

1
1− xK

∗(x)dx

=
ω

1− ωK
∗(ω)−

∫ ω

0

1
(1 − x)2K

∗(x)dx (A.30)

using partial integration.

Using eq. (A.29) and eq. (A.30), the sum of the two terms is

I∗(ω) =
∫ ω

0

1
(1− x)2K

∗(x)dx. (A.31)

We can now express K∗(ω) by differentiating both sides:

K∗(ω) = (1− ω)2
dI∗(ω)
dω

. (A.32)

We get the connection between the peakedness function and IDC by substituting this result
into eq. (A.24):

zgeo(µ) = 1− µ2 dI∗(1−µ)
dµ + 1

2− µ . (A.33)

This result can be used to get asymptotic results that connect the IDC and the peakedness.
According to the final value theorem,

lim
t→∞ I[t] = lim

ω→1
(1 − ω)I∗(ω). (A.34)

If this limit is non-zero, then we can use the L’Hostipal rule:

lim
t→∞ I[t] = lim

ω→1

I∗(ω)
1/(1− ω)

= lim
ω→1

(1− ω)2
dI∗(ω)
dω
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= − lim
µ→0

µ2 dI
∗(1− µ)
dµ

(A.35)

Comparing it with eq. (A.33) and using this limiting value at µ = 0, we get that if limt→∞ I[t]
is non-zero, then

zgeo(0) =
limt→∞ I[t] + 1

2
. (A.36)

To see the connection between the first value, I[1] and the peakedness function, we use the
middle value theorem which says that

I[1] =
dI∗(ω)
dω

∣∣∣∣
ω=0

=
dI∗(1− µ)

dµ

∣∣∣∣
µ=1

(A.37)

Using eq. (A.33), we get that

zgeo(1) = I[1] =
Var {w[i]}
E {w[i]} . (A.38)

A.6 Peakedness of Traffic Models

We now determine the peakedness function for geometrically distributed holding times for well-
known and useful arrival processes.

A.6.1 Independent Identically Distributed Arrivals

The simplest case is when the numbers of arrivals in a slot are independent identically distributed
with mean m1 and second moment m2.

In this case, k[i] = 0 (and also K[i] = 0) for all i > 0. Thus,

K∗(ω) = K[0] =
Var {(w[i])}
E {(w[i])} =

m2 −m2
1

m1
(A.39)

and

zgeo(µ) = 1 +
K∗(1− µ)− 1

2− µ

= 1 +

Var{(w[i])}
E{(w[i])} − 1

2− µ (A.40)

For the special case of Poisson arrivals, the distribution of arrivals in a slot is Poissonian.
Var{w[i]}
E{w[i]} = 1 which gives zgeo(µ) = 1. In the case of constant number of arrivals, zgeo(µ) =

1− 1
2−µ .

A.6.2 Markov Modulated Batch Bernoulli Process (MMBBP)

A very general Markovian arrival process is the Markov Modulated Batch Bernoulli Process or
MMBBP. The modulating process is a discrete time Markov process. In each state of the mod-
ulating Markov-process, batch arrivals are generated independently according to a distribution
corresponding to the state.
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Let us denote by P and D the transition probability matrix and the row vector of steady-
state distribution of the modulating Markov process, respectively. Let M1 and M2 be diagonal
matrices corresponding to the first and second moments of the number of arrivals in states. Let
e be the column vector of all ones, I be the identity matrix.

We can express the mean number of arrivals as

m1 = DM1e (A.41)

and the second moment as
m2 = DM2e. (A.42)

The covariance function of the arrival process (s > 0) is written as

k[s] = Cov {w[i], w[i+ s]}
= E {w[i]w[i + s]} − E {w[i]}E {w[i+ s]}
=

∑
x,y

P {S[i] = x,S[i+ s] = y} (w[i]|S[i] = x)(w[i + s]|S[i+ s] = y)−m2
1

=
∑

x

P {S[i] = x} (w[i]|S[i] = x)
∑

y

P {S[i+ s] = y|S[i] = x} (w[i + s]|S[i+ s] = y)−m2
1

= DM1PsM1e−m2
1. (A.43)

where S[i] = x means that the Markov-chain is in state x at time i. For s = 0, k[0] = Var {w[i]} =
m2 −m2

1.
Using k[s] we can determine its z-transform, K(ω) as follows:

K∗(ω) =
1
m1

k[0] +
∞∑

s=1

2
m1

k[s]ωs

=
m2

m1
−m1 +

2
m1

( ∞∑
s=1

DM1PsωsM1e−m2
1

∞∑
s=1

ωs

)

=
1
m1

(2ωDM1P(I −Pω)−1M1e+m2)−m1
1 + ω

1− ω (A.44)

This defines the peakedness function by eq. (A.24).
Using this result, we can obtain the peakedness function for special cases of the MMBBP pro-

cess, such as the Batch Bernoulli Process (BBP), Markov Modulated Bernoulli Process (MMBP),
Switched Batch Bernoulli Process (SBBP), as described in Section 2.2.4. For the discrete time
batch renewal process we can also obtain the peakedness based on the derivation of the covariance
function in [50], as described in Section 2.2.4.
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[C8] Gy. Miklós, A. Rácz, Z. Turányi, A. Valkó, P. Johansson “Performance Aspects of Bluetooth
Scatternet Formation,” Proceedings of MobiHoc 2000, pp. 147-148, Boston, USA.
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[P8] A. Rácz, Gy. Miklós, A. G. Valkó, F. Kubinszky, “Signaling Free, Self Learning Scatternet
Scheduling Using Checkpoints,” US patent application No. 09/840241, April 2001.
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