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Abstract—The volume of Internet traffic has been growing
exponentially in the last years, and this trend is expected to
intensify in the future. In typical backbone networks hundreds
of thousands of flows, originated from different users and
versatile applications, compete for the available resources. Such
a heterogeneous mixture of traffic flows leads to a continuously
changing environment, hence it is crucial to deeply understand the
behavior of the underlying data transfer mechanisms regarding
many features like stability, convergence and responsiveness. In
this paper we study the characteristics of the recently proposed
digital fountain based transport in dynamic network conditions,
and carry out a comparison with the traditional approach relying
on TCP’s congestion control.

I. INTRODUCTION

Since the early days of the Internet congestion control,
introduced by the Transmission Control Protocol (TCP), has
played the key role in reliable host-to-host communication.
In the last decades the characteristics of network traffic have
changed considerably due to the evolving technologies and
the diversity of applications. Today’s Internet is a large-
scale, highly dynamic network in which sudden variations
are common due to topology and bandwidth changes. While
a great portion of TCP evaluation studies deal with perfor-
mance analysis solely in static environments, some researchers
emphasize the importance of exploring how responsive a
transport protocol is under rapidly changing conditions [1],
[2]. In spite of the significant research efforts devoted to
optimize the operation of TCP for a wide range of network
environments, it seems that congestion control may not be able
to cope with the increasing demands of future networks. In
the recent years we have been working on an alternative data
transfer paradigm, which omits congestion control and applies
rateless erasure codes to recover the information lost during
the transmission. The multi-platform performance evaluation
of our experimental prototype implementation called Digital
Fountain based Communication Protocol (DFCP) [3] revealed
that this new approach has several potential benefits. In this
paper we deeply investigate the dynamic behavior of our
proposal and carry out a comparison with the traditional TCP-
based solution of current Internet.

The paper is organized as follows. First, in Section II we
discuss the main principles of the data transfer paradigms
together with the core components including the transport
protocol and the scheduling mechanism. In Section III we study
the behavior of these approaches in dynamic environments
through packet-level simulations focusing on the properties of
stability, convergence and responsiveness. Finally, Section IV
summarizes the paper and draws our conclusions.

II. DATA TRANSFER PARADIGMS

A. Congestion Control

In the history of the Internet closed-loop congestion control
was the successful paradigm to avoid congestion collapse and
the related performance degradation due to the overload of
network resources. Congestion control is performed by the
Transmission Control Protocol (TCP), which transports more
than 80% of Internet traffic. The basic idea behind the conges-
tion control mechanism of TCP is that the source can determine
the proper sending rate and reduce it before congestion could
happen. The success of TCP was not even questioned until
the fast development of networks, mobile devices and user
applications led to heterogeneous and complex environments
in the last decades. To cope with these changes many different
TCP versions have been proposed [4], [5] and evaluated [6].
Although they introduced great ideas for further development
of TCP, the vast majority of them have never been deployed in
real networks. TCP Cubic [7] is one of the most widely used
TCP versions, because it functions as the default congestion
control algorithm of Linux operating systems.

Nowadays, most network routers apply a simple FIFO
queue management algorithm to handle packet buffering. By
using this method, when the queue becomes full, the newly
arriving packets are dropped until the queue has enough room
to accept incoming traffic. Due to the fact that network traffic
consists of thousands of competing flows, a data transfer
paradigm has to ensure fair bandwidth sharing. In case of
the TCP-based architecture fairness is managed at the host
side, but different TCP versions realize different types of fair-
ness [8]. In this paper the dynamic behavior of TCP Cubic with
FIFO queue management is investigated (see Figure 1a), and
we call this approach as Congestion Control based Architecture
(CCA).

B. Fountain Coding

Over the last decade, the issues of TCP motivated re-
searchers to find alternative ways for data transfer beside the
traditional congestion control based approach. One of these
ideas recommends the omission of congestion control from the
transport layer and the application of erasure coding schemes
instead to handle congestion [9]. This proposal raises new
questions both in theory and practice, but many research works
prove that it can be very promising for future networks. The
most surprising result has been presented by Bonald et al. [10]
who claim that the absence of congestion control does not
necessarily lead to congestion collapse. Erasure codes have
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Fig. 1. Network architectures relying on different transport mechanisms

also been extensively investigated regarding their applicability
in data transport, and these studies have revealed the potential
benefits (see, e.g. [11], [12]).

The concept of reliable data transport without congestion
control has not been specified in detail, and in the lack of
implementation no comprehensive performance evaluation has
been carried out so far by the research community. To take a
step forward, we first introduced our prototype called Digital
Fountain based Communication Protocol (DFCP) in [3] with
some preliminary analytical, simulation and testbed results. In
our vision of the future network architecture relying on DFCP
each host is allowed to send at its maximum transmission rate.
The original data bytes received from the application layer are
organized into message blocks, then DFCP applies a Raptor
coding scheme to these blocks sequentially. Raptor codes [13],
being the most efficient fountain codes [14], can provide linear
encoding and decoding complexity involving two phases:
LDPC (Low-Density Parity-Check) [15] and LT (Luby Trans-
form) [16] coding. This method enables the senders to generate
a theoretically infinite stream of encoded bytes from the
original message of size k by adding a redundancy of ϵ > 0.
When any subset of size ⌈(1 + ε)k⌉ encoded symbols arrive
to the receiver, high probability decoding becomes possible,
and fountain coding ensures that each received packet at the
destination increases the probability of successful decoding.
This approach makes it possible to leave the network congested
resulting in fully utilized links. To provide equal bandwidth
sharing among competing flows fair schedulers, such as Deficit
Round Robin (DRR) [17], can be used in the network nodes
because per-flow fair queuing has proven to be feasible and
scalable [18]. We note that maximal rate sending does not
mean the total utilization of the transmission capacity available
at the sender side in all cases since it would lead to the so-
called dead packet phenomenon. It happens when a source
transmits at a higher speed than its fair share of the bottleneck
link needlessly wasting the bandwidth on the whole path from
concurrent flows. However, there are many possible ways to
avoid this undesirable behavior. We are currently working
on a solution, which can exploit the benefits of software-
defined networks (SDN) where the controllers could provide
information about the link utilization to the senders like in the
OpenTCP framework [19] for rate control purposes. In order
to prevent buffer overflows at the receiver end, a flow control
mechanism is used in DFCP where the window comprises a
certain number of encoded blocks. Since the Raptor coding
scheme can generate an infinite stream of encoded bytes, in
theory it is plausible to choose the window size as high as
possible, however, the use of a larger window leads to a more

bursty traffic. In general, it is practical to limit the window
size at the point where further increasing does not improve
performance.

Our transport protocol has been implemented in the Linux
kernel, and validated on independent platforms [20] including
simulation environments and real testbeds. We also carried
out a comprehensive performance evaluation study both on
simple topologies and in multi-bottleneck networks. The re-
search highlighted the potential benefits of our digital fountain
based approach, including the high loss and delay tolerance,
fair bandwidth allocation, low buffer space demand and fast
completion of traffic flows. In this paper the dynamic behavior
of DFCP with DRR scheduling is investigated (see Figure 1b),
and we refer to this concept as Digital Fountain based Archi-
tecture (DFA).

III. DYNAMIC BEHAVIOR ANALYSIS

In this section we reveal how the two data transfer
paradigms, DFA and CCA, can handle dynamic traffic sit-
uations commonly seen in real networks. We study several
important properties in different scenarios including stability,
convergence, responsiveness and saturation time [5], [21].
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Fig. 2. Simulation topology with N senders and receivers

The performance evaluation was carried out by using the
ns-2 packet-level network simulator [22] with the Network
Simulation Cradle (NSC) extension [23]. This integrated simu-
lation framework allows to test the kernel implementations of
protocols and algorithms directly through the network stack
of various operating systems. However, NSC only enables the
simulation of TCP versions and new TCP-like transport mech-
anisms by default, hence some protocol-specific modifications
have been made to integrate the source code of DFCP into the
framework.

The experiments were performed on a dumbbell topology
with N senders and receivers as shown in Figure 2. In the
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Fig. 3. Dynamics of concurrent flows started with different delays and their convergence to the fair share

measurement scenarios we examined real-world situations,
which typically occur in a dynamic environment by varying
the link capacity and delay, the buffer size and the number
of competing flows. Simulations lasted for 600 seconds, and
if not mentioned otherwise, the bottleneck link capacity was
set to 1 Gbps, the round-trip time was fixed at 50 ms and
the buffer size (denoted by b) was equal to the bandwidth-
delay product (BDP). In DFCP the redundancy and the window
size parameters were adjusted to ϵ = 0.05 and 1000 blocks,
respectively.

A. Stability and Convergence

Network traffic is generated by heterogeneous applications
that results in many concurrent flows traversing different
network paths with multiple bottlenecks from source to desti-
nation. The transmission rates of these flows fluctuate rapidly
since the currently used congestion control based transfer
mechanism could not adapt to changing conditions as fast as
needed. Stability is an important property from both traffic
engineering and user experience point of views [21]. Rate
variations often lead to the oscillation of queue length that
can eventually cause buffer overflows. Such an undesirable
behavior can result in the loss of synchronization among
competing flows, periodic underutilization of link capacity
and degraded quality of service. It is also crucial regarding
efficiency how fast a flow can obtain its equilibrium rate or
converge to the fair share in a dynamic environment.

In Figure 3 the dynamics of three concurrent flows is
illustrated when they were started with different delays, namely
at 0, 100 and 200 seconds. The goodput gives the current
useful data transmission speed in one second resolution, and
the curves were smoothed by using a 10 seconds long moving
window. We can observe that, for CCA, flows converge slowly
to the fair share and then their goodput highly fluctuates
around it. In case of DFA the convergence time is very low
whereas the fluctuation around the fair share remains moderate.
However, the transfer mechanism of DFA leads to a more
bursty transmission than that of CCA, which is due to the
trade-off between the window size and the burstiness of traffic.

To describe the transient fairness of transport mechanisms,
we measured the goodput ratio of two competing flows started
with unequal shares of the bottleneck bandwidth for DFA
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Fig. 4. Goodput ratio in the function of time for two delayed flows

and CCA, respectively. Figure 4 shows a scenario when the
flows were launched at 0 and 100 seconds, hence flow 1 had
been utilizing the total available bandwidth at the time of
starting the second flow. The y-axis gives the goodput ratio
of flow 2 to flow 1. We can see that, for CCA, transmission
rates of competing flows converge slowly, but they remain
stable at different time scales. In contrast, for DFA, while the
goodput convergence is fast providing high degree of long-
term fairness, a slight oscillation around the equal share (i.e.
the goodput ratio of 1) can be observed at small time scales.

TABLE I
CONVERGENCE TIME TO THE FAIR SHARE

Paradigm δ-fair convergence time
δ = 0.1 δ = 0.3 δ = 0.5

DFA 2 sec 1 sec 1 sec
CCA 180 sec 60 sec 5 sec

A frequently used metric to quantify the convergence speed
is δ-fair convergence time [1], which can be given as the
time taken by two flows to obtain a bandwidth allocation of
( 1+δ

2 B, 1−δ
2 B) starting from (B −B0, B0) where B >> B0.

Using the settings of B = 1000 and B0 = 0, the average δ-fair
convergence times provided by DFA and CCA are summarized
in Table I. These results have great significance in case of short
downloads and suggest that CCA cannot guarantee reasonable
fairness for many typical Internet applications since about half
of network flows last less than a few seconds.
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Fig. 5. Responsiveness of per-flow (top) and aggregate (middle) traffic, and
the adaptation error (bottom) for DFA with a buffer size of 100 packets
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Fig. 6. Responsiveness of per-flow (top) and aggregate (middle) traffic, and
the adaptation error (bottom) for DFA with a buffer size of 5000 packets

B. Responsiveness

One of the key concerns in the design of transport protocols
is the ability to handle abrupt change of network parameters
and traffic conditions [21]. In a real network competing flows
governed by different transfer mechanisms often face with
quick variations mainly originated from routing and bandwidth
changes, or sudden congestion. Reponsiveness is of high
importance describing how fast and accurately a transport
protocol can adapt to these environmental factors.

In this paper we focus on the change of the available
bandwidth and quantify the responsiveness of per-flow and ag-
gregate traffic for the two different data transfer paradigms. To
this end, we defined and calculated a metric called adaptation
error as follows. Let gi be the goodput of flow i and fi the
ideal fair share for flow i taking into account the bandwidth
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Fig. 7. Responsiveness of per-flow (top) and aggregate (middle) traffic, and
the adaptation error (bottom) for CCA with a buffer size of 100 packets
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Fig. 8. Responsiveness of per-flow (top) and aggregate (middle) traffic, and
the adaptation error (bottom) for CCA with a buffer size of 5000 packets

change pattern. Using these notations the adaptation error of
per-flow (ep) and aggregate traffic (ea) can be computed by
the following formulas:

ep =
1

n

n∑
i=1

|gi − fi|
fi

and ea =

∑n
i=1 |gi − fi|∑n

i=1 fi

where n denotes the number of flows competing for the
bottleneck bandwidth.

We analyzed the behavior of 10 competing flows by
periodically halving the available bandwidth of the bottleneck
link. Specifically, the bandwidth was reduced from 1000 Mbps
to 500 Mbps in the interval of [100,200], [300,340], [380,420]
and [460,500] as illustrated in Figure 10. In Figure 5–8
the responsiveness of per-flow and aggregate traffic, and the
adaptation error are shown for DFA and CCA. Figure 9 depicts
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Fig. 9. CDF of adaptation error of per-flow and aggregate traffic for DFA and CCA
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the cumulative distribution function (CDF) of error whereas
Table II summarizes the mean and standard deviation of values.
To reveal the adaptation capability of transfer paradigms to
different network environments we investigated both small
(b = 100) and large (b = 5000) buffer sizes (measured in
packets). The good operability with small buffers is a manda-
tory requirement for all-optical communication and also makes
it possible to avoid the bufferbloat phenomenon experienced
in current Internet mainly due to the use of over-sized router
memories [24].

TABLE II
THE MEAN (LEFT) AND STANDARD DEVIATION (RIGHT) OF THE

ADAPTATION ERROR IN PERCENTAGE

Source DFA CCA
b = 100 b = 5000 b = 100 b = 5000

Single flow 2.7 2.6 2.3 1.9 26.1 20.7 2.4 4.5
10 flows, per-flow 6.7 9.2 4.8 4.3 37.5 23.7 13.5 10.4
10 flows, aggregate 6.1 8.4 3.0 2.1 13.2 10.4 0.9 1.9

Regarding the small buffer case (b = 100) we can see
that the adaptation speed of CCA flows to bandwidth changes
is very low (Figure 7). Ideally, each flow would receive an
equal share of the bottleneck link, but in this case some flows
react too aggresively and some too mildly to changing network
conditions. This behavior leads to uneven bandwidth allocation
especially during the periods after the available bandwidth
is doubled. For example, in the interval of [200,300] the
maximum perceived difference in goodput between individual
flows exceeds 200 Mbps, which is two times more than the fair
share. In spite of the high unresponsiveness of single flows the
aggregate traffic roughly follow the change pattern. The per-
flow adaptation error is significant and ranges between 20%
and 70% with a mean of 38% (Table II) while in case of
the aggregate more than half of the samples are below 10%

(Figure 9) with a mean of 13%. For DFA, we can experience a
moderate oscillation of per-flow goodput around the fair share
(Figure 5), however, the stability of aggregate traffic does not
show noticeable difference compared to that of CCA. Apart
from some outlier values the error rate remains moderate with
an average of 7% and 6%, hence it is only slightly higher for
per-flow traffic. If large buffers with size close to the BDP
(b = 5000) are used in CCA routers (Figure 8), individual
flows can follow much more smoothly the bandwidth changes,
which results in high responsiveness of the aggregate traffic.
While the per-flow adaptation error does not exceed 25%, for
the aggregate traffic, the error rate is negligible and can only
be measured when changes occur. Although the use of large
buffers also has a positive effect on the adaptation accuracy
of DFA, the improvement is barely noticeable as can be seen
in Figure 9. Our measurements indicate that CCA can provide
better adaptivity than DFA only in case of the aggregate traffic
and if sufficiently large buffers are applied.

C. Saturation Time

The operation of congestion control algorithms consists
of two main transmission phases. In the initial phase TCP
gradually increases the sending rate until the bottleneck buffer
is filled. Then, it is followed by an equilibrium state when
the protocol achieves the maximum transmission rate and
tries to keep it stable. The length of the transient phase
highly determines the download efficiency of short-lived flows,
therefore it can affect the quality of experience (QoE) for many
applications. In order to capture this behavior, we defined a
performance metric called saturation time [5], which can be
given for a loss-based protocol as the time elapsed from the
starting of a flow until the first packet is dropped. Queue
saturation time (QST) is a good indicator of how fast a
transport protocol can obtain its steady-state performance.

Figure 11 shows the queue saturation time can be provided
by the two data transmission paradigms for increasing number
of flows. Similarly to responsiveness we investigated the
impact of both small and large buffers. If we use a buffer of
size greater than the bandwidth-delay product, the bottleneck
queue is saturated in a very short time and independently of
the number of concurrent flows for both transfer mechanisms.
The figure also clearly demonstrates that, by using a buffer
size of only 100 packets, QST becomes dramatically high for
CCA and it decreases when many concurrent flows share the
bandwidth of the bottleneck link. However, even if the results
suggest that we can theoretically achieve low QST values for



hundreds of competing flows, CCA is unable to handle such
amount of network traffic with small buffers in comparison to
DFA.
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Fig. 11. Queue saturation time for increasing number of flows

In Figure 12 the queue saturation time is depicted for
different round-trip time values. We can see that, using CCA,
the round-trip time (RTT) considerably affects QST in case
of a particular buffer size. With a buffer size of 100 packets
QST is already noticeable on low-latency links and it increases
for higher RTTs. The same tendency can be observed with a
larger buffer of 5000 packets, but the increase in QST is less
significant. In contrast, DFA is able to keep QST low even in
high-delay environments.
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IV. CONCLUSION

In this paper we investigated the dynamic behavior of
our DFCP-based data transfer paradigm (DFA) and compared
it to the current Internet architecture (CCA) relying on the
congestion control mechanism of TCP. The simulation results
revealed that, while CCA can work with moderate goodput
oscillation at small time scales, DFA is more stable in the long
run and can guarantee fast covergence for competing traffic
flows. We also found that DFA is able to cope with sudden
change of network conditions regarding both per-flow and
aggregate traffic independently of the buffer size. CCA shows
better adaptivity only in the case of aggregate traffic and if
sufficiently large buffers are used, with small router memories
CCA is highly unresponsive. Furthermore, DFA provides low
queue saturation time making QoE improvement possible for
many applications.
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