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Abstract-Measured traffic traces from live packet networks often
contain non-stationary effects like level shifts or polynomial trends.
In these cases the popular tests for long-range dependence (LRD)
can result in wrong conclusions and unreliable estimation of the
Hurst parameter. In this paper we investigate the implications of
these effects on several LRD tests. The use of these results can be
utilized to avoid pitfalls in LRD traffic modeling. Our results are
supported by both analytical and simulation studies with examples
taken from traffic analysis of a live ATM network.

I. I NTRODUCTION

A very promising approach to capture the bursty nature of
packet traffic in a parsimonious manner is to usefractal traffic
models[13], [19]. The dynamics of these models are governed
by power-lawdistribution functions andhyperbolicallydecay-
ing autocorrelation [19]. The important characteristics of these
models areself-similarityandlong-range dependence[8], [13].

Self-similar stochastic processes have been defined in a num-
ber of ways in the literature [8], [13], [19]. In practice the most
important class of these processes is that of long-range depen-
dent (LRD) processes [8], [13]. LRD has been detected as a
widespread property of packet network traffic, e.g. Internet traf-
fic [12], [18]. In this paper we consider this class of self-similar
processes defined in the next section.

From a practical point of view the important issues are the
identification of LRD phenomena and the estimation of LRD
parameters, especially the estimation of the Hurst parameter.
Unfortunately, testing for LRD of measured data is not possi-
ble by simply checking the definitions. Instead, we can use
some methods for testing the presence of some characteristics
of the data which can or cannot support LRD, and also can or
cannot give a reliable estimate of the Hurst parameter. More-
over, if all methods support the assumption of the presence of
LRD with someH parameter it is still possible that this obser-
vation is caused by non-stationarities present in the data and are
not due to the LRD. In this case it is possible to end up with
wrong conclusions and build wrong models. In order to avoid
such pitfalls we address this problem in this paper and give an-
alytical and simulation investigations of the effects of different
non-stationarity phenomena in the data.

The issue is not new and also addressed in the hydrology lit-
erature (e.g. [9]) after the application of LRD processes in the
modeling of natural storage systems by Hurst [7], Mandelbrot
and others [11]. However, after the invent and first application
of LRD processes in the teletraffic research a number of papers
have been published just by blind application of some LRD tests
assuming the stationarity for hours of the traffic and taking no
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care of this important question.
We note that the problem was also addressed in the recent

teletraffic literature, e.g. in [2], [4], [6], [15], [13] and also
see the related references in [19] but stationarity tests and the
validation techniques of fractal models have not been widely
applied in today’s teletraffic practice.

There are some ways to deal with this problem. One practical
solution is based on the notion oflocal stationarity. Here we as-
sume stationarity only over a short period of time and therefore
our model parameters are valid only for this period and should
be updated in the next period. A measurement-based approach
with periodic real-time parameter estimation is a possible solu-
tion. Local stationarity with traditional models can also be used
to capture the observed characteristics [17].

An alternative but rather difficult approach is to usenon-
stationary models, e.g. [5].

Some authors argue that this topic is somewhat philosophical
from an application point of view [6], [9]. Indeed, if the mod-
eling alternative can provide useful practical tools to dimension
our networks then this can be a non-questionable proof for a
proposed model. However, if more alternatives can work then
we may prefer the parsimonious one which is a nice feature of
fractal models. We believe that besides these factors the final
choice of the proposed model and understanding about the na-
ture of network traffic should be made not only by the analysis
of the measured data but oura priori knowledge about the traffic
generation process.

The contribution of this paper is to reveal the implications of
the most important non-stationary effects which occur in prac-
tice on the most frequently used LRD tests in order to have a
good understanding of these phenomena and to investigate the
robustness of these tests against non-stationarity effects. The
practical use of our findings is to support teletraffic engineers
with guidelines to the effect that actual non-stationarities are
not mistaken for stationary fractal behaviour.

Section II briefly introduces LRD and the methods of tests
and estimations. Our analytical investigations for the tests of
variance-time plot and R/S plot with level shifts and linear
trends are given in Section III. Our simulation study with sev-
eral examples is presented in Section IV, and Section V con-
cludes the paper with some useful guidelines for LRD testing.

II. PRACTICAL CHALLENGES IN LRD TESTING

This section gives a short overview of LRD processes and
introduces the most frequently used test methods which are an-
alyzed in the paper.

Let X = (Xk : k � 0) be a covariance-stationarity pro-
cess with autocorrelation functionr(k). X is said to exhibit
long-range dependence (LRD)[2], [8] if r(k) = k2H�2L(k) as



k !1, 0:5 < H < 1, whereL(k) is slowly varying at infinity,
i.e., limk!1 [L(tk)=L(k)] = 1; t > 0.

As discussed in the previous section the tasks for testing of
LRD and the estimation of Hurst parameter are not simple in
practice. The main problem is that it is rather difficult to dis-
tinguish between non-stationary processes and stationary LRD
processes due to the fact that LRD processes appear to have
local trends, cycles, etc., many of the characteristics of non-
stationary processes. These properties disappear after some
time but if we have a finite and sometimes also short data set
this identification is almost impossible. With a longer data set
this identification becomes easier but we know for sure that in
a long measured data non-stationary effects are present due to
the daily cycles of traffic characteristics. The assumption about
stationarity with high reliability may only be supported in the
busy periodsof the traffic.

There are methods developed to test for stationarity (e.g. [2],
[14], [17]) and to distinguish between LRD and non-stationarity
effects (e.g. [2], [10], [16]) but the application of these tests is
not easy in practice. Moreover, such tests can seldom support
their results with high reliability. In the next section the im-
pacts of some kinds of non-stationarity effects on some LRD
tests are analytically investigated. We are concerned with four
widely used tests: the variance-time plot, the R/S analysis, the
periodogram plot and the wavelet basedH-estimator. Detailed
descriptions of these methods can be found e.g. in [1] and [2].

III. A NALYTICAL INVESTIGATIONS

In this section our analytical study which shows how some
non-stationary effects can change the results of some widely
used LRD tests is briefly presented. Three cases are exam-
ined: variance-time plot of LRD data with level shift, with linear
trend, and R/S analysis of LRD data with level shift.

Consider anfX1; X2; :::Xng series which is LRD with Hurst
parameterH. To make the later calculation simpler two assump-
tions are made: (1)n is large enough so that aggregated series
of fXg used in computation of variance-time plot still contains
large amount of data; (2) the mean offXi; 1 � i � ng is zero.
The second assumption can be taken into account because non-
zero mean of LRD data does not change the result of LRD tests.

A. Variance-time plot of LRD data with level shift

Thevariance-time plotis the log-log plot of the variance of
data versus the aggregation level [2]. In the case of LRD pro-
cesses it can be proven [2] that

Var(X(m)) = m2H�2 Var(X) asm!1; (1)

wherem denotes the aggregation level. Therefore the variance-
time plot of a LRD process with Hurst parameterH should be a
straight line with slope(2H � 2) at large values of the aggrega-
tion levelm.

By adding a level shift to seriesX we get the new series
denoted byXLS . The level shift is assumed to have a simple
shape: it has two states of value 0 andKLS separated at the
center of the investigated data. We have proven [3] that in this
case
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LS=4 asm ! 1. This shows that the variance-
time plot of LRD data with level shift has a convex curve and
asymptotically approaches a horizontal line. The estimation of
H for LRD processes should be performed at largem (in the-
ory asm!1). Therefore we can conclude that the estimation
is highly destroyed in the presence of level shifts. Further de-
tails about this distortion are demonstrated by examples given
in Section IV.

B. Variance-time plot of LRD data with linear trend

A linear trend was added to the LRD dataX with the maxi-
mum value denoted byKL. This new data series is denoted by
XL. We have proven [3] that in the case of LRD process with
this linear trend we have

Var
�
XL(m)

�
�

Var(XL)� C1

mfL(m)
; (3)

where the constantC1 is independent ofm andfL(m) is a com-
putable function ofm [3]. Equation 3 shows that the pres-
ence of a linear trend in LRD data turns the result of variance-
time plot to be quite different from its original form. Plotting
log

�
Var(XL (m))

�
versuslogm instead of a straight line with

slope(2H�2) we can observe a curve described byfL(m). The
estimation of the Hurst parameter of LRD from the variance-
time plot should be done by fitting a regression line to the plot
at large values ofm, so from 3 asm tends to infinity we get [3]
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Equation 4 concludes that the variance-time plot of a LRD
process with linear trend asymptotically approaches a horizon-
tal line with ordinateC2KL+7K2

L=12, where the constantC2 is
independent ofm. The variance-time plots of the LRD process
and a process with no LRD are no longer distinguishable in the
presence of a linear trend. For more details see our examples in
Section IV.

C. R/S plot of LRD data with level shift

The R/S analysis of anfX1; X2; : : : ; Xng data series is de-
fined by the log-log plot of therescaled adjusted range(R/S
ratio) versus the actual data window sized [2]. For a certain
window sized we consider dataXi; o� < i � d. The R/S value
is given by:

R

S
=

max f(Wi �Wj); i; j = 1; 2; : : : ; dgp
Var(Xo� ;d)

; (5)

whereXo� ;d denotes the considered sub-seriesfXo�+1; Xo�+2;

: : : ; Xo�+dg andWi =
Pi

k=1
(Xo�+k � �Xo� ;d) where �Xo� ;d de-

notes the mean ofXo� ;d. With a value ofd we calculate several
R/S ratios by sliding the window of sized throughout the set of
X series. The R/S ratio of LRD data has the following charac-
teristicsR=S � CHd

H asn!1, whereCH is an finite positive
constant independent ofd [2].

According to the definition of the R/S ratio we observed that
this ratio does not change if the data window with sized does



not cover the level shift. There is a different case when the
data window contains the level shift. The simple case when the
location of the shift is placed at the center of the window is
concerned:

X� LSo�+k =

�
Xo�+k if k � bn=2c
Xo�+k +KLS if k > bn=2c

;

wherek = 1; 2; : : : ; d and (*) means that it only relates to those
d-windows mentioned above. The following holds [3] for large
enough values ofd:
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R
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LS=4
= d C3; (6)

whereC3 is a constant independent ofd.
These points create a separate part on the log-log plot which

should be placed closely around a straight line with slope 1. The
other large cluster of points remains at the same place as before
adding level shift and this part of the R/S plot of LRD data with
level shift looks similarly like the R/S plot of the original LRD
data.

This result shows that the R/S plot can also be used for de-
tection of level shifts in the data. Moreover, the linear part with
slope 1 in the plot should be disregarded in the estimation of
Hurst parameter of LRD processes. In this way in the cases
when this separation is feasible we can make a reliable estimate
of H even in the presence of level shifts.

IV. SIMULATIONS AND ANALYSIS OF MEASUREDATM T RAFFIC

A. Trend types

The analysis of measured packet traffic can reveal various de-
terministic changes in the data on different time scales. These
traffic variations are not stochastic by nature but rather caused
by deterministic mechanism like protocols. These mechanisms
can, for example, introduce quasi-periodic patterns in the traffic
data which can be, if not detected and removed, the cause of
several statistical pitfalls, e.g. the conclusion of slowly decay-
ing correlations.

On higher time scales a regular character of the traffic due to
daily or weekly variations can be observed. These traffic trends
should also be identified and removed prior to any statistical
analysis. These are not easy but important parts of a compre-
hensive statistical analysis. An alternative approach is to use
tests which are robust against these non-stationary effects.

Different trend models [3] are candidates for investigations,
e.g. linear trend, parabolic trend, exponential trend, logisti-
cal trend or Gompertz trend, etc. We have chosen the non-
stationary effects and trends which are frequently observed in
practice. These are thelevel shift, which can be observed when
during our traffic measurements suddenly a new source starts
to emit traffic to the aggregation and thelinear and parabolic
trends, which can be observed in daily traffic variations.

A sample series (containing 32,768 samples) of Fractional
Gaussian Noise (FGN) [2] was used as a reference data set ex-
hibiting LRD. The Hurst parameter was set to 0.7 and the se-
ries is denoted by 0.7-FGN. In the next step linear, parabolic
trends and level shift were added to this data set denoted by
0.7-FGNL, 0.7-FGNP, and 0.7-FGNLS, respectively. Table I
gives more information about these data sets.

TABLE I

CHARACTERISTICS OF INVESTIGATED DATA SETS(�̂ AND �̂
2 DENOTE THE

SAMPLE MEAN AND THE SAMPLE VARIANCE, RESPECTIVELY).

Data sets KL;LS;P �̂ �̂2

0.7-FGN - 10 10
0.7-FGNL 5 12.5 17.78
0.7-FGNLS 5 12.5 18.22
0.7-FGNP 5 11.66 34.53

A series of ATM cell arrivals obtained from a real-time traf-
fic measurement on the Swedish University NETwork (SUNET)
[13] was also analyzed. Data traces were collected in 1996
based on a custom-built measurement tool which is able to
record more than 8 millions consecutive cell arrivals. In our
tests the traces of the number of cell arrivals in a 1ms time win-
dow were considered. The analysis of these data traces can
illustrate the non-stationary effects in LRD estimation of real
traffic.

B. Empirical results

Variance-time plot The variance-time plots of the FGN se-
ries are presented in Fig. 1. The test result of 0.7-FGN pro-
duces a straight line, which yields the estimated Hurst param-
eter value 0.7. That is the exact value we expected. Fig. 1
also shows variance-time plots of the 0.7-FGN set with different
non-stationary effects. As we can observe all curves are convex
which gives no information about the LRD property of the orig-
inal FGN data. If one tries to fit a line for the large values of
m, as it is usually done in such an analysis, the result would
be misleading due to the distorted slope of the curve. This re-
sult also justifies our analysis conclusions in Subsection III-A
and III-B, and illustrates that both 07-FGNLS and 07-FGNL
curves seem to converge to a horizontal line.
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Fig. 1. The variance-time plot of 0.7-FGN data series (the curves of 0.7-FGNL
and 0.7-FGNP nearly coincide)

The result of variance-time analysis of the SUNET ATM data
is presented in Fig. 2. The measured ATM traffic is bursty in na-
ture and although several pre-processing procedures were done
in this trace it is difficult to detect a certain trend. However, the
curve is very similar to those obtained with level shift or trends
in Fig. 1. The estimation ofH applied in such a variance-time
plot can produce misleading results.

R/S plot Fig. 3 and 4 show the R/S plots of the 0.7-FGN and
the 0.7-FGNLS data sets, respectively. In the case of the 0.7-
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Fig. 2. The variance-time plot of the SUNET ATM data

FGN data set the estimation of the Hurst parameter returns the
exact value ofH set to this series. However, the interesting
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Fig. 3. The R/S analysis of the 0.7-FGN data set

result is found in the plot of FGN series with level shift 0.7-
FGN LS. On one hand, the plot seems to be constructed from
two parts which are independent of each other. The lower part
looks exactly like the R/S plot of the original set as in Fig. 3. On
the other hand, the upper part is similar to a line of slope 1. This
result is in good agreement with our analytical results presented
in Subsection III-C.
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Fig. 4. The R/S analysis of the 0.7-FGNLS data set

An illustrative example of such an effect from practice can
be seen in the R/S plot of the SUNET ATM series (Fig. 5). The
plot contains a break point where the slope of the curve changes
approximately placed in the middle of the figure. If one tries
to estimateH from the upper part of the plot it will result in
a wrong value as we demonstrate it in the following. Fig. 6
shows the R/S plot of a subset of the SUNET ATM set. The
subset is gained from the original set after erasing some sus-
pected non-stationary parts of the data set. In Fig. 6 the part of
the curve with the higher slope disappeared and the lower part
continues growing nearly as a straight line. An explanation of
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Fig. 5. The R/S plot of the SUNET ATM series
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Fig. 6. The R/S plot of the “stationary” subset of the SUNET ATM data set

this phenomenon is the possible presence of several local level
shifts in the original SUNET ATM data. The result also demon-
strates that the important part for LRD parameter estimation is
distorted by level shifts.

Periodogram plot In the frequency domain adding determinis-
tic trend to a signal produces the increase of low frequency com-
ponents. Thus we were not surprised when observing the rise
of the lower tail of the periodograms under the influence of dif-
ferent trends. As an example the periodogram of 0.7-FGN data
without and with linear trend are presented in Fig. 7 and Fig. 8,
respectively. Since periodograms at low frequencies should be
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Fig. 7. The periodogram of the 0.7-FGN set

counted for estimation of the Hurst parameter, the presence of
trends in LRD data destroys the testing and estimating capabil-
ity of the periodogram plot.

Wavelet-based estimator The LRD test based on the wavelet
transformation, called the logscale diagram [1], is investigated.
Fig. 9 presents the result of the 0.7-FGN set provided by the
Logscale diagram. The estimate ofH is 0.71 with confidence
interval (0.7, 0.72) which is close to the exact value ofH.

As proven in [1] the influence of polynomial trends on this
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Fig. 8. The periodogram of the 0.7-FGNL data set
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Fig. 9. Logscale diagram of the 0.7-FGN data set

kind of LRD test can be avoided by an adequate choice of the
vanishing moments of the wavelet function. Our empirical work
has justified this observation. Moreover, our simulation also
shows that the logscale diagram is still robust in the presence
of level shifts. As seen in Fig. 10 the level shift added to the
0.7-FGN set slightly changes the result: the estimation ofH is
0.72 with confidence interval (0.713, 0.729).
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Fig. 10. Logscale diagram of the 0.7-FGNLS data set

V. CONCLUSIONS

Our analytical and simulation analysis has shown that the
presence of different non-stationary effects (level shifts, linear
and polynomial trends) in the data can deceive several LRD
tests. The results were also demonstrated by practical examples
from the analysis of measured ATM traces.

In the case of the variance-time plot and the periodogram
these effects result in a poor estimate of the Hurst parameter.
Moreover, the estimated results can be confused with results of

processes having short-range dependence with non-stationary
effects. We conclude that the variance-time plot and the peri-
odogram methods should not be used without a stationarity and
trend analysis.

The R/S analysis can reveal the presence of the level shifts,
therefore it is a good candidate method for a test. However, the
Hurst parameter estimation of R/S test without the removal of
points caused by the level shift should also be avoided.

The wavelet-based method provides a very robust estimation
of H even in the presence of level shifts or trends. We rec-
ommend the Logscale diagram for the estimation of the Hurst
parameter of LRD processes in the possible presence of the in-
vestigated non-stationary effects.
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