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AbstractMeasured traffic traces from live packet networks often  care of this important question.

contain non-stationary effects like level shifts or polynomial trends. We note that the problem was also addressed in the recent
In these cases the popular tests for long-range dependence (LRD) teletraffic literature, e.g. in [2], [4], [6], [15], [13] and also
can result in wrong conclusions and unreliable estimation of the see the related references in [19] but stationarity tests and the
Hurst parameter. In this paper we investigate the implications of  validation techniques of fractal models have not been widely
these effects on several LRD tests. The use of these results can beapplied in today’s teletraffic practice.

utilized to avoid pitfalls in LRD traffic modeling. Our results are There are some ways to deal with this problem. One practical
supported by both analytical and simulation studies with examples  solution is based on the notionlotal stationarity Here we as-
taken from traffic analysis of a live ATM network. sume stationarity only over a short period of time and therefore

our model parameters are valid only for this period and should
be updated in the next period. A measurement-based approach

A very promising approach to capture the bursty nature afith periodic real-time parameter estimation is a possible solu-
packet traffic in a parsimonious manner is to freetal traffic  tion. Local stationarity with traditional models can also be used
modelg13], [19]. The dynamics of these models are governetb capture the observed characteristics [17].

I. INTRODUCTION

by power-lawdistribution functions anthyperbolicallydecay- An alternative but rather difficult approach is to usen-
ing autocorrelation [19]. The important characteristics of thesstationary modelse.g. [5].
models areself-similarityandlong-range dependeng@], [13]. Some authors argue that this topic is somewhat philosophical

Self-similar stochastic processes have been defined in a nuftom an application point of view [6], [9]. Indeed, if the mod-
ber of ways in the literature [8], [13], [19]. In practice the moskling alternative can provide useful practical tools to dimension
important class of these processes is that of long-range depenr networks then this can be a non-questionable proof for a
dent (LRD) processes [8], [13]. LRD has been detected aspaoposed model. However, if more alternatives can work then
widespread property of packet network traffic, e.g. Internet trafve may prefer the parsimonious one which is a nice feature of
fic [12], [18]. In this paper we consider this class of self-similafractal models. We believe that besides these factors the final
processes defined in the next section. choice of the proposed model and understanding about the na-

From a practical point of view the important issues are theire of network traffic should be made not only by the analysis
identification of LRD phenomena and the estimation of LRDbf the measured data but aupriori knowledge about the traffic
parameters, especially the estimation of the Hurst parametgeneration process.

Unfortunately, testing for LRD of measured data is not possi- The contribution of this paper is to reveal the implications of
ble by simply checking the definitions. Instead, we can us@e most important non-stationary effects which occur in prac-
some methods for testing the presence of some characteristieg on the most frequently used LRD tests in order to have a
of the data which can or cannot support LRD, and also can gbod understanding of these phenomena and to investigate the
cannot give a reliable estimate of the Hurst parameter. Moresbustness of these tests against non-stationarity effects. The
over, if all methods support the assumption of the presence pffactical use of our findings is to support teletraffic engineers
LRD with someH parameter it is still possible that this obser-with guidelines to the effect that actual non-stationarities are
vation is caused by non-stationarities present in the data and aes mistaken for stationary fractal behaviour.

not due to the LRD. In this case it is possible to end up with Section Il briefly introduces LRD and the methods of tests
wrong conclusions and build wrong models. In order to avoigind estimations. Our analytical investigations for the tests of
such pitfalls we address this problem in this paper and give agariance-time plot and R/S plot with level shifts and linear
alytical and simulation investigations of the effects of differenfrends are given in Section Ill. Our simulation study with sev-
non-stationarity phenomena in the data. eral examples is presented in Section 1V, and Section V con-

The issue is not new and also addressed in the hydrology lftudes the paper with some useful guidelines for LRD testing.
erature (e.g. [9]) after the application of LRD processes in the
modeling of natural storage systems by Hurst [7], Mandelbrot II. PRACTICAL CHALLENGES IN LRD TESTING
and others [11]. However, after the invent and first application

fLRD in the teletrafi h ber of This section gives a short overview of LRD processes and
0 Processesin t ete etrg IC research a numDer of Papgl.,,ces the most frequently used test methods which are an-
have been published just by blind application of some LRD tes

) ) . . ; Qyzed in the paper.
assuming the stationarity for hours of the traffic and taking no Let X — (X, : k > 0) be a covariance-stationarity pro-

The research was supported by the Inter-University Centre for Telecommufi€SS with autocorrelation funCtior(k_)' X is Said tP exhibit
cations and Informatics (ETIK). long-range dependence (LRI, [8] if r(k) = k*"2L(k) as



k — 0o, 0.5< H <1, whereL(k) is slowly varying at infinity, ~Plotting log [Var (X*¢ ("))] againstlogm we get a convex
i.e.,limg_ o [L(tk)/L(k)] =1, t > 0. curve bounded by two lines. The line with slopg — 2 and or-

As discussed in the previous section the tasks for testing dinatelog [Var (X*“9) — K7 /4] asm — 0 and a horizontal line
LRD and the estimation of Hurst parameter are not simple iwith ordinatek?s/4 asm — oo. This shows that the variance-
practice. The main problem is that it is rather difficult to distime plot of LRD data with level shift has a convex curve and
tinguish between non-stationary processes and stationary LRBymptotically approaches a horizontal line. The estimation of
processes due to the fact that LRD processes appear to hatdor LRD processes should be performed at lagéin the-
local trends, cycles, etc., many of the characteristics of nonry asm — oo0). Therefore we can conclude that the estimation
stationary processes. These properties disappear after sambighly destroyed in the presence of level shifts. Further de-
time but if we have a finite and sometimes also short data dgiils about this distortion are demonstrated by examples given
this identification is almost impossible. With a longer data seh Section IV.
this identification becomes easier but we know for sure that in _ _ L
a long measured data non-stationary effects are present dudto’a"ance-time plot of LRD data with linear trend
the daily cycles of traffic characteristics. The assumption aboutA linear trend was added to the LRD datawith the maxi-
stationarity with high reliability may only be supported in themum value denoted bk ;. This new data series is denoted by
busy period®f the traffic. X, We have proven [3] that in the case of LRD process with

There are methods developed to test for stationarity (e.g. [2his linear trend we have
[14], [17]) and to distinguish between LRD and non-stationarity
effects (e.g. [2], [10], [16]) but the application of these tests is Var (x*™)
not easy in practice. Moreover, such tests can seldom support
their results with high reliability. In the next section the im-where the constant, is independent of» andf. (m) is a com-
pacts of some kinds of non-stationarity effects on some LRputable function ofin [3]. Equation 3 shows that the pres-
tests are analytically investigated. We are concerned with fo@nce of a linear trend in LRD data turns the result of variance-
widely used tests: the variance-time plot, the R/S analysis, thigne plot to be quite different from its original form. Plotting
periodogram plot and the wavelet baséeestimator. Detailed log [Var(X* (™))] versuslogm instead of a straight line with
descriptions of these methods can be found e.g. in [1] and [2]slope(2H —2) we can observe a curve describedflym). The

estimation of the Hurst parameter of LRD from the variance-

time plot should be done by fitting a regression line to the plot
In this section our analytical study which shows how somat large values o, so from 3 asn tends to infinity we get [3]
non-stationary effects can change the results of some widely
used LRD tests is briefly presented. Three cases are exam-  Var ( XL(W)
ined: variance-time plot of LRD data with level shift, with linear
trend, and R/S analysis of LRD data with level shift. Equation 4 concludes that the variance-time plot of a LRD
Consider an{ X1, X»,...X,, } series which is LRD with Hurst process with linear trend asymptotically approaches a horizon-
parameteH. To make the later calculation simpler two assumptal line with ordinateC, K1, + 7 K7 /12, where the constanit; is
tions are made: (1y is large enough so that aggregated serieidependent ofn. The variance-time plots of the LRD process
of {X} used in computation of variance-time plot still containand a process with no LRD are no longer distinguishable in the
large amount of data; (2) the mean{of;,1 < i < n} is zero. presence of a linear trend. For more details see our examples in
The second assumption can be taken into account because r®getion 1V.
zero mean of LRD data does not change the result of LRD tests. ) .
C. R/S plot of LRD data with level shift
The R/S analysis of afiX,, X»,...,X,} data series is de-
The variance-time plois the log-log plot of the variance of fined by the log-log plot of theescaled adjusted rangfR/S
data versus the aggregation level [2]. In the case of LRD preatio) versus the actual data window siz¢2]. For a certain
cesses it can be proven [2] that window sized we consider dat;, off < i < d. The R/S value
is given by:

_ Var(x*) -
Y ICD)

, ®)

I11. ANALYTICAL INVESTIGATIONS

Var(xt) — ¢, TK?

4)

A. Variance-time plot of LRD data with level shift

Var(x™) = m*=? Var(X)  asm — oo, 1)

. . R max{(W; —W;); 4,5 =1,2,...,d}
wherem denotes the aggregation level. Therefore the variance- e ) (5)

time plot of a LRD process with Hurst paramet&should be a Var(Xog 4)

§traight line with slopé2H — 2) at large values of the aggrega-wherex,; , denotes the considered sub-sefi&sy .1, Xog 42,
tion levelm. . Xoﬁer} andWi = 22:1(X0ﬁ+k — Xoff,d) WherEXoﬁ,d de-

By adding a level shift to seriex” we get the new series potes the mean ot ;4. With a value ofi we calculate several
denoted byx"*. The level shift is assumed to have a simple/s ratios by sliding the window of sizethroughout the set of
shape: it has two states of value 0 aiigs separated at the x series. The R/S ratio of LRD data has the following charac-
center of the investigated data. We have proven [3] that in thﬂéristicsR/S ~ Cd" asn — oo, whereCy is an finite positive
case constant independent af[2].

Var (X55) — K2s/4 K2, _Accqrding to the definitio_n of the R/S ratio we 'observed that
2—2m T (2)  this ratio does not change if the data window with sizeéoes

Var (x*50™) ~

m



not cover the level shift. There is a different case when the TABLEI X L
data window contains the level shift. The simple case when tHg'ARACTERISTICS OF INVESTIGATED DATA SETS(ji AND & DENOTE THE
location of the shift is placed at the center of the window is ~ SAMPLE MEAN AND THE SAMPLE VARIANCE, RESPECTIVELY).

concerned: ]
_ | Datasets | Kppsp| o | 6% |
XiES, = { et ik r S k"gj , 0.7-FGN - 0 [ 10

otk T ARLS " 0.7-FGNL 5 125 | 17.78
wherek = 1,2,...,d and (*) means that it only relates to those 0.7-FGNLS 5 12.5 | 18.22
d-windows mentioned above. The following holds [3] for large 0.7-FGNP 5 11.66| 34.53
enough values of:

(E) e ~ d Krs/4 =dCs, (6) A series of ATM cell arrivals obtained from a real-time traf-
5 VVvar(X) + Kj s /4 fic measurement on the Swedish University NETwork (SUNET)

wherecs is a constant independentaf [13] was also analyzed. Data traces were collected in 1996

These points create a separate part on the log-log plot whiE’ﬁseccii on a C#Stom'bl_J”',lt measurement toolll Wh'_Chl is able to
should be placed closely around a straight line with slope 1. THECO' hmore t ar; ?] mi IOT)S COPSGICI:utI\/_e (I:e_ arrivals. In our
other large cluster of points remains at the same place as beff§ats the traces of the number of cell arrivals in a 1ms time win-

adding level shift and this part of the R/S plot of LRD data wit ”ow werehconsidereq. The e;fnalysi.s of these data tracfes clan
level shift looks similarly like the R/S plot of the original LRD Lr;;;tate the non-stationary effects in LRD estimation of rea
data. '

This result shoyvs '_[hat the R/S plot can also pe used for.dg_- Empirical results
tection of level shifts in the data. Moreover, the linear part with _ . .
slope 1 in the plot should be disregarded in the estimation §priance-time plot  The variance-time plots of the FGN se-
Hurst parameter of LRD processes. In this way in the casé§S are presented in Fig. 1. The test result of 0.7-FGN pro-

when this separation is feasible we can make a reliable estim&l¢ces a straight line, which yields the estimated Hurst param-
of H even in the presence of level shifts. eter value 0.7. That is the exact value we expected. Fig. 1

also shows variance-time plots of the 0.7-FGN set with different
IV. SIMULATIONS AND ANALYSIS OF MEASUREDATM TRAFFIC  non-stationary effects. As we can observe all curves are convex
A. Trend types which gives no information about the LRD property of the orig-

The analysis of measured packet traffic can reveal various d@‘:"l FGN data. Illf o;e trn_es to f'r: a line f?r t_he Isrge va:ues olfd
terministic changes in the data on different time scales. The&k 85 Ilt |sdgsu3 y Onﬁ w&_suc ‘3“ Iana ysf|sr,1t e result ;‘{OU
traffic variations are not stochastic by nature but rather causBf Misleading due to the distorted slope of the curve. This re-

by deterministic mechanism like protocols. These mechanisrﬁ‘e‘.lt also justifies our analysis conclusions in Subsection IlI-A

can, for example, introduce quasi-periodic patterns in the traff@'d I!l-B. and illustrates that both 07-FGIS and 07-FGNL
Glrves seem to converge to a horizontal line.

data which can be, if not detected and removed, the cause
several statistical pitfalls, e.g. the conclusion of slowly decay- 3
ing correlations.
On higher time scales a regular character of the traffic due to 21
daily or weekly variations can be observed. These traffic trends
should also be identified and removed prior to any statistical
analysis. These are not easy but important parts of a compre-
hensive statistical analysis. An alternative approach is to use ‘
tests which are robust against these non-stationary effects. -1 1 1 1 1
Different trend models [3] are candidates for investigations, 0 1 2 3 4 5
e.g. linear trend, parabolic trend, exponential trend, logisti- log(m)
cal trend or Gompertz trend, etc. We have chosen the non-
stationary effects and trends which are frequently observed i
practice. These are thevel shift which can be observed when

during our traffic measurements suddenly a new source startSrpg reqyit of variance-time analysis of the SUNET ATM data

to emit trh"’_‘ﬁr']C to the aggregatlt_)n an_?d thleggr an_d parabollc is presented in Fig. 2. The measured ATM traffic is bursty in na-

trends whic can be obserye_d in daily traffic variations. . _ture and although several pre-processing procedures were done
A sample series (containing 32,768 samples) of Fractiongf yhis yrace it is difficult to detect a certain trend. However, the

Gaussian Noise (FGN) [2] was used as a reference data set € e is very similar to those obtained with level shift or trends
hibiting LRD. The Hurst parameter was set to 0.7 and the sg; Fig. 1. The estimation off applied in such a variance-time
ries is denoted by 0.7-FGN. In the next step linear, parabolig; o produce misleading results.

trends and level shift were added to this data set denoted by
0.7-FGNL, 0.7-FGNP, and 0.7-FGINLS, respectively. Table | R/S plot Fig. 3 and 4 show the R/S plots of the 0.7-FGN and
gives more information about these data sets. the 0.7-FGNLS data sets, respectively. In the case of the 0.7-

log(Var X ’)
-

1. The variance-time plot of 0.7-FGN data series (the curves of 0.7-EGN
and 0.7-FGNP nearly coincide)



log(R/S)

0 1 2 3 4 5 0 1 2 3 4 5 6
log(m) log(window size)
Fig. 2. The variance-time plot of the SUNET ATM data Fig. 5. The R/S plot of the SUNET ATM series
5
FGN data set the estimation of the Hurst parameter returns the al o

exact value ofH set to this series. However, the interesting

log(R/S)

est. H=0.68 .
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14 log(window size)
0,54 .
0 : : : : Fig. 6. The R/S plot of the “stationary” subset of the SUNET ATM data set
0 1 2 3 4 5

log(window size) this phenomenon is the possible presence of several local level
shifts in the original SUNET ATM data. The result also demon-
strates that the important part for LRD parameter estimation is

result is found in the plot of FGN series with level shift 0.7-distorted by level shifts.

{:GN‘LSt' Or;}_oge ha_n%, the %IOt tsefems ;O tt’ﬁ cor_lritrulcted froBﬂ'eriodogram plot In the frequency domain adding determinis-

Wo parts which are inoependent of each other. The lower qu& trend to a signal produces the increase of low frequency com-
looks exactly like the R/S plot O.f th_e (_)ngmal setasin Fig. 3. O onents. Thus we were not surprised when observing the rise
. othe_r hand, the upper part_ IS similar to a line of slape 1. Th the lower tail of the periodograms under the influence of dif-

result isin good agreement with our analytical results present?éjrem trends. As an example the periodogram of 0.7-FGN data
in Subsection Ill-C. without and with linear trend are presented in Fig. 7 and Fig. 8,
respectively. Since periodograms at low frequencies should be

Fig. 3. The R/S analysis of the 0.7-FGN data set

35
3 -
25+ 10
m ~
e 27 e
g’ 1,5+ =4
14 8
0,5 g
0 g
0 1 2 3 4 5
log(window size) T T T T 16
-10 -8 -6 -4 2 0
Fig. 4. The R/S analysis of the 0.7-FAN data set log(frequency)

. . . Fig. 7. The periodogram of the 0.7-FGN set
An illustrative example of such an effect from practice can

be seen iq the R/S plot (_)f the SUNET ATM series (Fig. 5). Th‘(a:ounted for estimation of the Hurst parameter, the presence of
plot contains a break point where the slope of the curve changgs, 45 in | RD data destroys the testing and estimating capabil-
approximately placed in the middle of the figure. If one trleﬁy of the periodogram plot.

to estimateH from the upper part of the plot it will result in
a wrong value as we demonstrate it in the following. Fig. GVavelet-based estimator The LRD test based on the wavelet

shows the R/S plot of a subset of the SUNET ATM set. The&ansformation, called the logscale diagram [1], is investigated.
subset is gained from the original set after erasing some suUgg. 9 presents the result of the 0.7-FGN set provided by the
pected non-stationary parts of the data set. In Fig. 6 the partlobgscale diagram. The estimate Bfis 0.71 with confidence
the curve with the higher slope disappeared and the lower panterval (0.7, 0.72) which is close to the exact valugiof
continues growing nearly as a straight line. An explanation of As proven in [1] the influence of polynomial trends on this
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Fig. 8. The periodogram of the 0.7-FGINdata set

Logscale Diagram

processes having short-range dependence with non-stationary
effects. We conclude that the variance-time plot and the peri-
odogram methods should not be used without a stationarity and
trend analysis.

The R/S analysis can reveal the presence of the level shifts,
therefore it is a good candidate method for a test. However, the
Hurst parameter estimation of R/S test without the removal of
points caused by the level shift should also be avoided.

The wavelet-based method provides a very robust estimation
of H even in the presence of level shifts or trends. We rec-
ommend the Logscale diagram for the estimation of the Hurst
parameter of LRD processes in the possible presence of the in-
vestigated non-stationary effects.

12F
10f N=3 |
j=2..8 [1]
est. H=0.718
8r H-ci=(0.71, 0.73) i 2]
-
6f ! k J [3]
g ‘ ’ [4]
2 4 6 8 10 12

Octave | [5]

Fig. 9. Logscale diagram of the 0.7-FGN data set (6]

kind of LRD test can be avoided by an adequate choice of thg
vanishing moments of the wavelet function. Our empirical work
has justified this observation. Moreover, our simulation als
shows that the logscale diagram is still robust in the presence
of level shifts. As seen in Fig. 10 the level shift added to thé!
0.7-FGN set slightly changes the result: the estimatioff a$ [10]

0.72 with confidence interval (0.713, 0.729).
[11]

Logscale Diagram

(12]

14r

N=3 [13]
124 j=2..10 |

est. H=0.72
10t H-ci=(0.71, 0.73)

(14]

(15]

2 4 6 8 10 12 [16]
Octave |

Fig. 10. Logscale diagram of the 0.7-FAM data set
(17]

V. CONCLUSIONS

Our analytical and simulation analysis has shown that tH&sl
presence of different non-stationary effects (level shifts, linear
and polynomial trends) in the data can deceive several LR
tests. The results were also demonstrated by practical examples
from the analysis of measured ATM traces.

In the case of the variance-time plot and the periodogram
these effects result in a poor estimate of the Hurst parameter.
Moreover, the estimated results can be confused with results of
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