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Abstract�In this paper, a state-based modelling of TCP

traf�c is presented. During a connection, TCP stays in either

of the following states: Slow Start, Congestion Avoidance, Loss

Recovery (Fast Recovery and/or Fast Retransmit) and Time

Out. We consider the states of a TCP connection as the phases

of a stochastic process. We propose the use of the discrete-

time batch Markovian arrival process (D-BMAP) to model the

traf�c generated by a TCP connection. The main contributions

of the paper are the followings. Firstly, we provide a simple

uni�ed model for some well-known versions of TCP based on

the D-BMAP process. Secondly, we introduce a new concept,

namely the TCP characterization matrix for a TCP connection

that characterizes the transition probabilities between the states

of TCP. This matrix is crucial in our state-based analysis.

Thirdly, we present a technique to detect the states of TCP.

We have developed our technique into a tool called TCP-ASD

that automates state detection of a TCP connection. Our tool

can automatically detect the beginning and the end of the states

of TCP and thus the sojourn time distributions as well as other

statistics that we use in our analysis. We also discuss the trade-

offs between simplicity and accuracy in the state-based approach.

Finally, we use simulation and numerical analysis to validate our

proposed model.

I. INTRODUCTION

TCP modelling can be found in two main levels: packet level

and �ow (�uid) level. One of the motivations for the packet

level approach is the possibility of applying existing discrete-

time models [3],[9]. Respectively, the motivation for �uid level

model is the possibility of applying existing continuous-time

(control-theoretic) models, [4],[5],[8], to name a few. In both

approaches, good points have been addressed and important,

subtle results have been achieved. In [8], T. Ott et al used

stochastic differential equations to model TCP behavior and

�rst suggested the well-known square-root formula. J. Padhye

et al in [9] extend the model in [8] to capture Time Out.

This model is widely accepted as one of the most accurate

models for TCP Reno (in the case of bulk data transfer).

We can also mention here the chaotic nature of TCP as

suggested and examined in [10]. However, as TCP modelling

is application-sensitive, a general purposed TCP model that is

precise, yet simple, is still unavailable. This makes the TCP

modelling task still very challenging. Another issue of TCP

modelling is the type of modelling: black-box modelling and

white-box modelling. Black-box modelling approaches usually

start from a theoretical model while white-box modelling

approaches try to mimic inherent operations of TCP based
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on some statistics. An example of white-box modelling is

the well-known ON/OFF model for voice traf�c. It has two

states: SILENCE and SPEAK. If the speaker speaks, then

it is in the SPEAK state, and it is in the SILENCE state

otherwise. With some probability the process jumps from

SILENCE state to SPEAK state and respectively, with some

probability the process jumps from SPEAK state to SILENCE

state. So if the sojourn time distributions at the state are

exponential (continuous time) or geometrical (discrete time),

then the background process can be modelled by a two-state

Markov chain and the traf�c generated by voice sources can

be well modelled by a Markov Modulated Poisson Process

(MMPP), [2]. A natural question arises then: How about TCP

traf�c? We model TCP by its states. During a connection, TCP

stays in any of the following states: Slow-Start, Congestion

Avoidance, Fast Recovery, Exponential Back-off. TCP can

jump from one state to another state in response to external

events such as packet loss or Time Out. We consider how

much time TCP stays in each state and the distribution of time

elapsed at each state. We then consider the jumping probability

from one state to another state. From the statistics, we can

build a model to estimate TCP throughput. Last but not least,

on the one hand, we agree that square-root-style models of

TCP based on important metrics like packet loss probability

and average round-trip time are signi�cant steps forward. We

argue, on the other hand, that these metrics are not necessarily

the only metrics that TCP models should be based on. We

could just mention other metrics of TCP as the sojourn time

distributions of TCP at different states, the probabilities that

TCP jumps from a state to another state during a connection,

the distributions (as well as the expectations) of the number of

packets sent in one round-trip time in different states, etc. In

this paper, we not only present a state-based model to estimate

the long term throughput of TCP based on new metrics of TCP

but also try to build the bridges between our model and the

existing models.

The remainder of the paper is organized as follows. In

Section II we present our state-based model for TCP. A tool

for validation is brie�y described in Section III. Section IV

provides validation results of the proposed model. Finally,

Section V concludes the paper.

II. A D-BMAP MODEL FOR TCP STATIONARY

THROUGHPUT

A. The general case

The D-BMAP process was originally introduced and exam-

ined in detail in [1]. The idea of D-BMAP can be traced back



to M. Neuts' work in [6]. Here, we will discuss how to apply

the D-BMAP process to model the traf�c generated by a TCP

connection in a slightly different manner as in [1]. We propose

a discrete-time model for TCP. The states of the background

process (modulating process) are the states of TCP itself (i.e.

Slow Start, Congestion Avoidance, Loss Recovery and Time

Out).

Let's consider a general model of discrete MAP:

� The process is time-slotted: the slot length is the average

round-trip time (RTT )

� The probability of transition from state i to state j is

denoted by pij and the transition probability matrix of

the modulating Markov-chain is P = fpijg
� When the chain is in state l, the TCP source transmits

a random number of packets with probability generating

function (p.g.f.) Bl(z) =
P

i b
(l)
i zi, where b

(l)
i denotes

the probability of i arrivals in a slot when the Markov

chain is in state l.

Now, let's de�ne B(z) matrix as follows:

B(z) =

0
BBBB@

p00B0(z) p10B0(z) ::: pN0B0(z)

p01B1(z) p11B1(z) ::: pN1B1(z)

: : ::: :

: : ::: :

p0NBN (z) p1NBN (z) ::: pNNBN (z)

1
CCCCA

Let � denote the stationary (limit) distribution of the mod-

ulating Markov chain. Then we can estimate the long term

average throughput (BW ) of a TCP connection as follows:

BW = �(B
0

(1))
T e[MSS=RTT ]

where e is the unit column matrix de�ned by e = [1; 1; :::; 1]T

and B0
(1) = dB(z)=dzjz=1.

B. Numerical analysis

The main purpose of this section is to give the formula

for stationary throughput of TCP in closed form with some

assumptions to ease the analysis. In the following discussion,

state 0 stands for Slow Start, state 1 stands for Loss Recovery,

state 2 stands for Time Out and state 3 stands for Congestion

Avoidance, respectively. We analyze TCP Reno in detail. The

analysis of other versions of TCP are similar to TCP Reno

analysis. In TCP Reno we assume that the duration of Loss

Recovery is typically one RTT. It is because at the end of an

RTT, the sender can decide to get out of Fast Recovery and

continue in Congestion Avoidance or Time Out will occur. In

other words, if TCP is in Fast Recovery then the probability

of staying in Fast Recovery in the next round-trip time is

assumed to be 0. We experience from most of our simulations

that Time Out occurred (if any) only in one RTO and no

Exponential Back-off. Although our general model can deal

with Exponential Back-off, for the sake of simplicity, we deal

mainly with Time Out that lasts for only one RTO and as

a consequence, TCP jumps to Slow Start with probability 1.

Denote pTD the probability of triple ACK loss event and pTO
the probability of Time Out event. Let ploss = pTD + pTO.

In this way, we have the probability that TCP jumps from

Loss Recovery to Congestion Avoidance (p13) is
pTD
ploss

and the

probability that TCP jumps from Loss Recovery to Time Out

(p12) is
pTD
ploss

. Now let's determine p01 and p31. The fact that

TCP jumps from Slow Start to Loss Recovery reveals to us

that a loss has occurred and TCP was in Slow Start before

the loss has been detected. As a result, we have p01=P[loss

occurred j from Slow Start]. Similarly, the event that TCP

jumps from Congestion Avoidance to Loss Recovery implies

that a loss has occurred and TCP was in Congestion Avoidance

before the loss has been detected. Consequently, p31=P[loss

occurredj from Congestion Avoidance]. The probability of the

event that TCP jumps directly from Slow Start to Congestion

Avoidance (p01) is P[cwnd =ssthresh ]. Our simulation shows

that, except for the �rst Slow Start, no packet is lost in Slow

Start phase. This is understandable because Slow Start can

only happen following a Time Out and Slow Start ends when

the congestion window equals to the Slow Start threshold and

TCP gets to Congestion Avoidance. After Time Out the pipe is

already empty and the threshold value is suf�ciently small so

that it is easily reached by Slow Start phase and state change

happens. That's why packet loss is very rarely detected in

this period. Consequently, we assume that p01 � 0. From

p01+p31 = ploss we have p31 � ploss and consequently p33 �
(1�ploss). Now denote pthrehold=P[cwnd =ssthresh ] then we

have p03 = pthreshold and consequently p00 = 1� pthreshold.

To sum up, the TCP characterization matrix for TCP Reno

case can be �lled as follows:

PReno =

0
BB@

(1� pthreshold) 0 0 pthreshold
0 0

pTO
ploss

pTD
ploss

1 0 0 0

0 ploss 0 1� ploss

1
CCA

where ploss = pTD + pTO.

Let � be the stationary distribution of the modulating

Markov chain, � = (�0; �1; �2; �3). We have � = �P and

� is a distribution vector, so the following equation system

hold:

�0 = (1� pthreshold)�0 + �2

�1 = �3ploss

�2 = �1
pTO

pTD

�3 = �0pthreshold + �1
pTD

ploss
+ �3(1� ploss)

with the constraint �0 + �1 + �2 + �3 = 1.

Algebraic computation yields:

�0 =
pTO

(1 + pTD + 2pTO)pthreshold + pTO

�1 =
plosspthreshold

(1 + pTD + 2pTO)pthreshold + pTO

�2 =
pTOpthreshold

(1 + pTD + 2pTO)pthreshold + pTO

�3 =
pthreshold

(1 + pTD + 2pTO)pthreshold + pTO

Finally, we deal with the case when the slot times at the

states are different. Let Ti be the slot time at state i, then we



have the corrected stationary distribution � = (�0; �1; :::; �N )

with �i =
�iTiP
j �jTj

. Speci�cally, the time slot in Slow Start,

Congestion Avoidance and Fast Recovery is roughly RTT

whereas the time slot in Time Out (Exponential Back-off) is

measured by RTO. Denote k =
RTO

RTT
. Notice that in practice

k is approximately equal to 4 (k � 4). Denote � =
1

1+(k�1)�2
be the multiplicative correction term. We have the corrected

stationary distribution of the modulating Markov-chain can be

expressed in closed form as follows

�0 =
�pTO

(1 + pTD + 2pTO)pthreshold + pTO

�1 =
�plosspthreshold

(1 + pTD + 2pTO)pthreshold + pTO

�2 =
k�pTOpthreshold

(1 + pTD + 2pTO)pthreshold + pTO

�3 =
�pthreshold

(1 + pTD + 2pTO)pthreshold + pTO

Notice that if k > 1, then � < 1 and k� > 1. The fact that

� < 1 implies that the corrected fraction of time that TCP stays

in Slow Start, Congestion Avoidance and Loss Recovery is

smaller than before correction. Similarly, the fact that k� > 1

implies that the corrected fraction of time that TCP stays

in Time Out (Exponential Back-off) is longer than before

correction. Since in Time Out events signi�cantly reduce

performance, without correction we might have overestimated

the performance that TCP does actually produce.

Finally, the distributions (as well as the expected values) of

the number of packets sent in each time slot for every state

are estimated by simulations.

III. A TOOL FOR VALIDATION

The most important part of our tool is the state detection of

TCP. To collect the statistics needed for our model, we �rst

need to detect the changes of the states. In this Section, we �rst

describe the basic mechanism then we discuss the dif�culties

involved with the implementation and our proposed solutions.

A. The mechanism

To begin with, all TCP connections, after hand-shake phase,

start with Slow Start phase to estimate the available bandwidth

of the network. The TCP sender uses the congestion window

variable (as well as the slow start threshold and some other

variables) to control the number of packets sending to the

network. The idea of our state detection algorithm is based

on the dynamics of the congestion window and the slow start

threshold process. With the congestion window, we can detect

the changes of the states. Observe that if TCP is in some state

and the congestion window is increasing then TCP stays in

that state. If the congestion window is halved or decreased to

1, then a state change has happened. The slow start threshold

provides us the details about the next state, if a state change

is detected.

B. Problems with state detection

We faced some dif�culties when implementing the state

detection mechanism of TCP. In this Section, we �rst state

the problems, then we discuss the solution for them.

1) Problem 1: The �rst dif�culty is the detection of the end

of Time Out when TCP backs-off more than one time in Time

Out. As long as TCP is in Time Out, the congestion window is

constantly 1 and each time it backs-off, the slow start threshold

is halved. In this case, to check how many times TCP backs-off

we need to introduce a new variable, namely ssthreshControl

to follow the halving of the slow start threshold.

2) Problem 2: Another dif�culty is the version of TCP that

we deal with. The state detection of Reno TCP, NewReno

TCP, SACK TCP are more or less the same. The situation

is different with Tahoe TCP. In TCP Tahoe, there is no Fast

Recovery. It slow starts after resending the lost packet(s), of

any kind. In TCP Tahoe, we have two kinds of Slow Start:

Slow Start after Time Out and Slow Start after triple ACKs.

So in this case, we need to use the trace �le that contains the

information about the duplicate acknowledgements.

3) Problem 3: We observe from our simulations that when

the congestion window is small (less than 4), the event that

the congestion window is decreased to 1 does not necessarily

means Time Out. Again, we need the trace �le that contains

the information about the duplicate acknowledgements to deal

with this ambiguity.

We believe these are the major problems that we had to

deal with. There are still many problems relating to the state

detection mechanism that we have �xed but, for the sake of

simplicity, are not listed here.

IV. RESULTS AND VALIDATION

We need to validate two things. Firstly, we consider the

validity of the Markov property in our model by examining the

sojourn time distribution at different states of TCP. Secondly,

we use our model to estimate the steady-state throughput of

a TCP connection (with different versions) by validating it

against different packet loss probabilities. In order to do so,

we �rst need to carry out experiments to collect the statistics

mentioned in the model construction part. The experiments

were conducted using ns-2 simulator [7]. The topology that

we used was a simple half-dumbbell topology. We added a

loss module at the output port of the bottleneck link's router

that can deliberately drop packets so that we can control

the drop probabilities. In this way, instead of adding more

connections to the background traf�c we examine a single

TCP connection. We believe that by deliberately tuning the

loss probability, we are able to emulate different scenarios

of background traf�c because the effect of background traf�c

on a certain TCP connection ultimately results in the packet

loss probability of that connection. For the details about our

simulations, the packet size was 1000 bytes, the access link

was 8 Mb/s with a delay of 0.1 ms, the bottleneck link was 800

Kb/s with a delay of 100 ms and the buffer size was 20 packets.

Regarding the queue management schemes at the router, we

consider both Drop-Tail and RED mechanisms. With RED-

style queue managements, the gentle RED was used and the

adaptive parameter was tuned in.



A. On the sojourn time distribution at the states

1) Congestion Avoidance: First, we examine the sojourn

time distributions at Congestion Avoidance state. Since all

versions of TCP perform identically in this state, we con-

centrate on Reno version. However, we examine Reno both

with Drop Tail and RED router. As we can see in Figure

1, the sojourn time distribution at Congestion Avoidance is

geometrically shaped both in Drop Tail and RED case. It

supports the Markovian assumption of our model for this state.
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Fig. 1. Sojourn time distribution: Congestion Avoidance

2) Loss Recovery: In Reno, according to speci�cation, it

takes approximately one RTT for TCP to get out of Fast

Recovery and TCP enters Congestion Avoidance or Time Out

triggers. The situation is different with NewReno and SACK.

These versions of TCP is equipped with mechanisms to avoid

Time Out in case of multiple losses in a window by longer

Fast Recovery. With NewReno and SACK versions TCP can

stay in Loss Recovery for several round-trip times, depending

on the number of losses occurred in a window. So here, we

can talk about the distribution of sojourn time. As we can

see in Figure 2, the sojourn time distribution at Congestion

Avoidance is geometrically shaped both in NewReno TCP and

SACK TCP cases. This con�rms the Markovian behavior of

TCP in this state.
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(a) NewReno TCP
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Fig. 2. Sojourn time distribution: Loss Recovery

B. On the stationary performance of TCP

The stationary performance is one of the most important

metrics of TCP. This section provides the validation of the

stationary throughput of TCP. We compare our numerical

results that we achieved from our analysis with the simulation

results of ns2 under the same con�guration. We go through

versions of TCP, version by version.

1) The TCP Reno and Tahoe case: In TCP Reno and Tahoe

case, all four states are possible. The probability that Time Out

(Exponential Back-off) exists depend on the magnitude of the

packet loss probability. If the loss probability is very small

(less than 1 percent), then Time Out is rare with TCP Reno, at

least with our con�guration. If the loss probability is increased,

then the probability of more packets dropped in a window of

packets increases. Consequently, the probability of Time Out

events also increases. We observe from our simulations that



if the packet loss probability gets to 10 percent or higher,

Time Out is frequent with Reno. This has severe effect on

the performance of TCP Reno. So we validate our model in

different packet loss scenarios. We basically examine three

types of losses: small (less than 1 percent), average (up to

5 percent), high (higher than 10 percent). Figure 3 shows
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Fig. 3. TCP Reno and Tahoe throughput

the throughput of Reno TCP by simulation and analysis.

It presents that our model is in accordance with the simu-

lation results, although we experience some overestimation.

However, the overestimation is small enough (less than 1

percent), especially when the packet loss probability is small.

The overestimation is already discussed in previous Sections

(assumption of exponentially distributed sojourn time as well

as the presence of Exponential Back-off where we have given

up some details for the sake of simplicity of our model).

Regarding the relative performance of TCP Reno and Tahoe,

we observe that when packet loss probabilities are small,

TCP Reno performs slightly better than TCP Tahoe both in

simulation and analysis. As the packet loss probability gets

higher, the situation changes. TCP Tahoe seems to perform

better than TCP Reno, at least in our experiments. This is

the reason why in wireless environment, when packet loss

probability is high and not necessarily because of congestion,

TCP Tahoe performs somewhat better than TCP Reno, as

widely suggested in the literature.

2) The TCP NewReno and SACK case: In TCP NewReno

and SACK case, we basically have only two states, namely

Congestion Avoidance and Loss Recovery. TCP NewReno and

SACK perform more or less identically most of the time. The

only difference is in the Loss Recovery phase where TCP

SACK, by adapting to the pipe, is a little bit more aggressive

than TCP NewReno. This results in the unfairness between

TCP NewReno and TCP SACK when they are in presence.

Figure 4 shows the throughput of NewReno and SACK

TCP by simulation and analysis. We observe that SACK

performs slightly better than NewReno in most of the cases.

This observation supports our view on the unfairness between

TCP NewReno and TCP SACK. And surprisingly enough, the

model error is smaller than in the Reno/Tahoe case. We believe

that this is because there was Time Out in these cases. At this

point we believe that Exponential Back-off is the major cause
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of error, but more analysis is still needed.

V. CONCLUSION

We have presented a uni�ed model for some well-known

versions of TCP based on the states of TCP itself. We have

introduced a new concept, namely the TCP characterization

matrix and showed how to use this matrix to model the station-

ary performance of TCP. We have described a novel technique

to automatically detect the states of TCP and developed it into

a tool for our state-based analysis. We have applied this tool

to collect useful statistics to validate our state-based model of

TCP.

Topics of ongoing investigations include the study of the

effect of Exponential Back-off on the performance of TCP. We

are also working on applying the state-base approach to model

and characterize the performance of newly proposed versions

of TCP like FAST, Scalable TCP and HighSpeed TCP.
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