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Abstract-We propose a new multifractal traffic model for network
traffic. The model is a combination of a multiplicative cascade with
an independent lognormal process. We show that the model has all
the important properties observed in data traffic including LRD,
multifractality and lognormality. We also demonstrate that the
model is flexible enough to capture the complete multifractal char-
acteristics of data traffic including both the scaling function and
the moment factor. On the other hand, we argue that the model
is simple from practical point of view having only three parame-
ters. Practical applications for measured data traffic and valida-
tion of the model with queueing performance evaluation are also
presented.

I. INTRODUCTION

Traffic characterization studies have shown that network traf-
fic exhibits strong variability and burstiness on many time scales
[9], [23], [4]. This was the reason to introduce fractal traffic
models, which were able to capture the discovered scaling prop-
erties via self-similarity and long-range dependence (LRD) [18],
[1], [23]. Self-similarity expresses the monofractal property
of network traffic, that is, the traffic looks statistically similar
on all (or many) time scales. LRD is revealed by the power
law decay of the autocorrelation function at large lags, i.e.,
���� � �����

����� � � �� � � ����� ��� where �� is a constant
[1]. The degree of this slow decay is determined by the Hurst
parameter (�).

In this self-similar traffic characterization framework a large
number of traffic models has been developed (fractional Brow-
nian motion (fBm) models, FARIMA models, Cox’s M/G/�
models, on/off models, etc.) [23]. From these models the fBm
model [14] has widely been applied. The fBm model can nicely
be handled analytically due to its Gaussian nature and it was
found to be a tractable model of traffic aggregation [8].

Deeper analysis of data traffic revealed a highly irregular lo-
cal structure with a more complex scaling behavior, which can-
not be explained in a self-similar framework [19], [7]. It be-
came clear that the monofractal traffic models (e.g. fBm) are
inadequate to characterize the network traffic and multifractals
can provide a mathematical framework for characterizing these
complex local traffic structures. An exception can be found in
[13], where a monofractal model is presented which has supe-
rior modelling abilities compared to self-similar models. It was
also found that in many environments traffic has a non-Gaussian
character, which excludes the usage of the popular Gaussian
traffic models like fBm.

To develop a multifractal framework for network traffic char-
acterization and modeling is a very recent research topic. In
spite of the fact that some models are already published, the
complete understanding of this phenomenon and the application

of the models in practice is far from being complete.
There are different processes which are candidates for mul-

tifractal modeling. Multiplicative cascades were first used as a
multifractal model for data traffic [15], [7]. This class is the
most well-known member of the class of multifractal processes.
The simplest case of this process is the binomial cascade which
can be defined by a binary tree structure [5], [15]. Combin-
ing this process with the aforementioned fBm we can define a
new class called the fractional Brownian motions in multifractal time
[20]. This process has several nice properties, e.g. it is able to
capture LRD and multifractal scaling independently. The self-
similar �-stable process [18] is a different multifractal process.
Its statistics of order � � � are not finite resulting in an irregu-
lar multifractal structure. One of the simplest process from this
class is the linear fractional stable motion.

In this paper we propose a new multifractal model which is
based on the pairwise product of a multiplicative cascade and
an independent lognormal process. Earlier published multifrac-
tal models based on multiplicative cascades do not aim to cap-
ture the complete multifractal characteristics (including both
the scaling function and the moment factor) and/or use many
parameters for the model [16], [7], [2], [6], [10]. Comparing
these models to our new model we argue that our model is sim-
ple enough for practical purposes having only three parameters
but, on the other hand, flexible enough to capture accurately
the whole multifractality of the traffic. We show the statistical
properties of the model and also the applications for actual mea-
sured network traffic. The model is validated by comparing the
queueing performance produced by the original measured traf-
fic to the queueing results obtained by the traffic generated by
our model.

The rest of the paper is organized as follows. Section II
overviews the basic concepts of multifractals and multiplicative
cascades. Section III presents our new multifractal traffic model
including the construction of the model, its parameters and the
main statistical properties. Section IV shows the application of
the model for measured data traffic with its validation based on
a queueing study. Finally, Section V concludes the paper and
suggests some future research directions.

II. MULTIFRACTALS AND MULTIPLICATIVE CASCADES

In this section we overview the definitions of multifractals
and multiplicative cascades. The iterative procedure for cascade
construction is also presented.

A. Multifractals

The multifractal concept was first introduced by Mandelbrot
in the context of turbulence in the early 70’s. Since then multi-
fractal processes have been widely used in a variety of research



fields like geophysics, image processing, stock market model-
ing, and recently network traffic characterization.

A stochastic process 	�
� is called multifractal if it has sta-
tionary increments and satisfies [5]

���	�
��� � � ����
������ � ����
������ (1)

for some positive values � � �, ��� �� � �, where ���� is called
the scaling function and the moment factor ���� is independent of

. In this paper we refer to ����� as the scaling function instead
of ����. An easy consequence of the definition is that ���� is a
concave function [5]. If ���� is linear in � the process is called
monofractal, otherwise it is multifractal. It can be shown that
in the special case of self-similar process with index � we get
� ��� � �� � � and ���� � ���	����� �.

The definition above describes multifractality in terms of pro-
cess moments and it may lead to a more intuitive understanding
of multifractality. However, there is an alternative approach to
multifractals, also found in the literature, which is based on the
study of the local erratic behaviour of the process by means of
its local Hölder exponents. For the details of this approach, see
[15] and references therein. The most obvious examples of mul-
tifractals are self-similar and multiplicative processes.

B. Multiplicative cascades

The simplest multifractals are typically constructed by an it-
erative procedure called multiplicative cascade. Consider a unit
interval associated with a unit mass. At state � � � divide the
unit interval into two equal subintervals and associate with them
the mass � and � � �, respectively. The fraction � is called the
multiplier. The same rule is applied to each subinterval and
its associated mass. The multipliers � are chosen to be in-
dependent random variables  concentrated on ��� �� with the
probability distribution function �����, ��� � ��	. We also
choose the multiplier � to have a symmetric density function so
that � and � � � have the same marginal distribution. Thus at
the state � a dyadic interval of length 	
� � 	�� starting at

 � ��������� �

�
��	
�� has the mass (measure)

��	
�� � �������� ��� � � � ���� � � � � ����

where ���� � � � � ��� indicates the multiplier at state number �.
Since multipliers are i.i.d. it is easy to show that the measure �
satisfies the scaling relationship:

����	
� �
�� � ���� ��� � 	


� ��	� ���
��

� �

which defines a multifractal process with scaling function
����� � � 
��� ��

� �.
Note that the multifractal process constructed above is also

referred to conservative cascade. An important property of this
random cascade is its dependence structure due to the construc-
tion. If the multipliers used in the construction have the same
fixed value �� (� � �� � �) then the obtained multiplicative mea-
sure is called binomial. Binomial measure is a deterministic cas-
cade, its scaling function being ����� � � 
�����

�
�������

���.
In addition, if the iteration only conserves mass on the aver-
age,i.e., multipliers at each mass division are also i.i.d. but have
mean of 1/2, the corresponding measure is called canonical [5].
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Fig. 1. Conservative cascade measures (� � Uniform��� ��) at stage � � ��.

An example of the multiplicative cascades can be seen in Fig. 1.

From the network modeling point of view only conservative
cascades are of interest. The binomial cascade is naturally ex-
cluded because it is a deterministic process. The canonical cas-
cade cannot be used since it is an independent random process,
while network traffic flows are long-range dependent. In this
study we use the conservative cascade as a building block of
our traffic model.

III. A MULTIFRACTAL TRAFFIC MODEL

Our multifractal model based on multiplicative cascades is
presented in details in this section. Statistical properties of the
model are also derived. Finally, we give a comparison to the
different multifractal models which can be found in teletraffic
literature.

A. Construction of the model

Suppose that the multifractal analysis of a real data series
obtained form measured network traffic shows its multifractal
properties characterized by the scaling function � ���� and the
moment factor ����. The obvious task of cascade modeling is to
find a convenient probability distribution for multipliers  such
that � 
������

� �� � �����. However, this cascade model cap-
tures only the multifractal properties given by the scaling func-
tion and fails to furnish any information on the moment factor
����. The idea for a more comprehensive traffic model is the
following: 	� synthetic data ��	
�� is first generated by mul-
tiplicative cascade with multipliers governed by the distribution
of . Then 	� data series of our model is the pairwise product
of the cascade data series and an i.i.d. random samples of a pos-
itive random variable � with the same length. The variable � is
chosen to be independent of the cascade measure ��	
��, thus
the obtained series, denoted by 	�	
��, satisfies

��	�	
� ��� � ��� ������	
� ��� � ��� ��	

�����
� � (2)

The model fitting task is to find the suitable random variables 
and � such that �

� 
������
� �� � �����

��� �� � �����

The presented model is relevant to multifractal network traf-
fic for the following reasons. First, it is based on the multiplica-
tive construction of a cascade which seems to closely match the
TCP/IP protocol operating mechanics as suggested in a number



of traffic research studies [3], [7] as the main cause of multi-
fractality in traffic data at small timescales. Second, the model
traffic can be interpreted as the product of the random peak rate
of the flow � and the measure of burstiness ��	
�� at the mod-
elled time scale	
� .

For practical use, we introduce some modifications to the
model. The measure ��	
�� has a very small value since it
is the product of � multipliers � � � � �, so to avoid loss of
information we multiply the cascade measures by 	� . Since
����	
� �� � 	�� , this normalizes the cascade increment so
that it has unit mean. As another modification, we also rescale
the cascade process to have unit time interval at stage � instead
of	
� � 	�� . For a multifractal increment 	�

��	�
�
� � �����	


�����
�

� �����

�
	
�
	
�

�������
	


�����
� � �����	


�����
� � (3)

which means that the choice of time unit influences the value
of the moment factor ����. After applying these changes to the
model we obtain

��	�	
� �
�� � ��� ��	�
����	� ���

���	

� ��	� ���

��
� � (4)

where	
� denotes the unit time interval of the data traffic to be
modelled.

B. Model parameters

For multifractal traffic data, the scaling function ����� and the
logarithm the moment factor ���� can be estimated by a simple
absolute moment method, see [12] for details. Denote these
estimated functions by ������ and 
�� �����, respectively. Owing
the modifications mentioned above, the random variable  and
� should be chosen such that

� 
������
� �� � ������ (5)


�� ��� �� � 
�� ������ ��  
��� ��
� ��� 
�� 	

� 
�� ������ �� � �������� 
�� 	� (6)

Our analysis of various measured traffic with multifractal
properties shows that the choice of  as a symmetric beta ran-
dom variable on [0,1] Beta��� �� with only one parameter � � �

is accurate to model the estimated scaling function. In this case

����� � 
���
������	� ��

��� ����	��
� (7)

where ���� denotes the Gamma function.
We also choose the lognormal distribution for the random vari-

able � . It has two parameters � and � and the moment is of the
form ��� �� � �	��
�����. Thus from Eq. (6) � and � should
be chosen such that

��
����

	
� 
�� ������

�
� � 
���

������	� ��

��� ����	��

�
� 
�� 	� (8)

In summary, our presented multifractal model has three param-
eters ����� �� and the following characterization functions:�

����� � 
���
�����������
�����������

���� � �	��
�����	
�
�
����	�

�����������
�����������

�
�

Note that if the right-hand side of Eq. (6) is a concave func-
tion of � then the examined traffic data cannot be captured by
our model since the absolute moment of any stochastic process
is a log-convex function of the moment order �. (This property is
easily derived from the Hölder inequality.) These kind of mul-
tifractal traffic cannot be fully characterized by a cascade based
model.

C. Statistical properties

Statistical properties of multiplicative cascades are studied in
a number of papers, see [22], [6] for examples. We extend these
properties for 	� synthetic samples of our multifractal model.
(i) As an extension of the conservative cascade our traffic model
is an exact positive multifractal process. In the model construction
presented in the previous section, the multifractality is char-
acterized by scaling function ����� � 
���

�����������
�����������

and the
logarithm of the moment factor 
�� ���� � ���  � ����	� �
� � 
���

�����������
�����������

�
� 
�� 	 where ����� �� are model pa-

rameters.
(ii) The mean and the variance of the model process are:
��	�	
� �� � ��� � � �	�
���;
var�	�	
��� � ��� ��	����� �� � ��	�	
� ��

� �

� ��	��
�� ���
�����

�� � ��	�
� .
(iii) For � 
 �, 	�	
�� has lognormal distribution. This
property is deduced directly from the fact that 	�	
 �� �

	� ������� � � � ���� � � � � �� � and the central limit theorem.
(iv) 	�	
�� has long-range dependent correlation structure.
Consider the covariance cov�	�	
��� 	�	
�����, where � �

	�� � � �� 	� � � �, which can be derived as follows:

cov�	�	
��� 	�	
����� �

� ��� ��
	
	������	
� ����	
������ �



� (9)

The two measures ��	
�� and ��	
���� have the same
origin at stage � � � � �, denoted by ��	
������,
thus ��	
�� � ��	
������������

��
������ ����� and

��	
���� � ��	
���������� � �����
��

������ �����
where ���� denotes the actual multiplier values at stage �.
Then ����	
� ����	
����� � ����	
������

�������� �� �

��������
��

������ ���������� � � ��� ������� �
�
���� �����	���.

Insert this into Eq. (9) we get

cov�	�	
��� 	�	
����� �

� ��	�
�

�
��� �����

�� ��	��

�
� �

� ��	

��
� �

�

� ��	�
� ��� �����

�� ��	��
�
� ��	�

�
���
�����

�
� ��	�
� � (10)

Thus when �� � are large the covariance is ruled by

�
� ��	�

�
���
�����

�
, i.e., the model has LRD structure with Hurst pa-

rameter � � � �
��	�

���
�����

�
. It is easy to check that for � � �

� � ����� ��.

D. Comparison with other multifractal models

We first summarize the reasons which explain the suitability
of the described multifractal model for network traffic model-
ing: (1) it is a positive process, hence reasonable for the sim-
ulation of the traffic counting processes; (2) it captures the full



multifractal characteristics defined by the scaling function �����
and the moment factor ����; (3) it has approximately lognor-
mal marginal distribution, which seems to match the real traffic;
(4) it also has LRD correlation structure, which is an important
property of high-speed LAN/WAN network traffic.

Since the observation of the flexible scaling structure in some
WAN traffic environments [17], [11], [3] network researchers
have suggested several multifractal models for characterization
of these traffic flows among which two distinct approaches can
be identified. The first one uses multifractal time for subordinat-
ing a monofractal process (FBM) to model multifractals, e.g. in
[21]. The disadvantages of this approach lie in the presence of
some negative values and Gaussian marginals of the model syn-
thetic processes, which is not suitable for network traffic simula-
tion. The other approach is based on the multiplicative cascades
[16], [7], [2], [6], [10]. In general, multiplicative cascades are
very attractive for traffic modeling. They are positive processes,
easy to generate, and also possessing a plausible explanation for
the origin of multiscaling properties in the traffic [7]. However,
authors in [2] and [6] only fit the model to the LRD structure of
the measured traffic, thus these models do not capture the mul-
tifractal characteristics of the traffic which is also ruled by the
higher order moments. Cascade models in [16], [7] provide a
better fit to the traffic multifractality but require � parameters
for 	� synthetic data. Then it is difficult to use these models
in analytical approaches, e.g., in queueing performance estima-
tions for multifractal traffic input.

In contrast, out traffic model suggests an alternative method
of cascade modeling with only three parameters. The model
provides the closed analytic form of the characteristic functions
of multifractality with properties close to the real data traffic.

IV. ANALYSIS

In this section we examine the effectiveness of the model in
simulation of some real data traces. After fitting the parameters,
synthetic data is generated and compared with the real traces in
a queueing performance analysis.

A. Model fitting

Data traces were collected from our real traffic measurements
carried out at an outgoing Internet connection of the Informatics
Building, Budapest University of Technology and Economics in
2000. The traffic traces, captured by tcp-dump, were the ag-
gregated traffic of about 100 workstations used by staff member,
PhD students, and student laboratories. We use two data sets,
denoted by DATASET1 and DATASET2, for analysis. Both sets
contain 	�� data samples of IP traffic bytes, counted in 100 byte
units for simple calculation, arriving in consecutive time inter-
vals of 60ms. The absolute moment based method presented
in [12] was used to test the multifractal characteristics of the
traces.

Figure 2 presents the multifractal analysis and model fitting
results for the DATASET1. As seen in Fig. 2(a) the concav-
ity of the estimated scaling function shows evidence for mul-
tiscaling structure of the DATASET1. We can also see in this
figure the theoretical multiscaling function of the multiplicative
cascade with parameter �� � ���� of the Beta��� ��-distributed
multipliers. As it is seen, the multiscale function of the cas-
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Fig. 2. Model fitting results for the DASTASET1: (a) the estimated scaling
function and the fitted curve; (b) moment factor fitting.

cade process (also of the model) provide a very tight fit to the
estimated curve. The next step is to determine the value of the
parameters � and � of the lognormal distribution to account for
the difference between the logarithm of the estimated moment
factor and the moment factor of the multiplicative cascade. The
two moment factors and their difference are plotted in Fig. 2(b).
We find that the lognormal distribution with �� � ���� and
�� � ��	� is adequate for this goal.
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Fig. 3. Model fitting results for the DASTASET2: (a) the estimated scaling
function and the fitted curve; (b) moment factor fitting.

A similar procedure is carried out for the DATASET2 and
the results are presented in Fig. 3. The analysis also indicates
the multiscaling properties for this data set. Our model can be
fitted to the estimated multifractal characteristic functions with



�� � ������, �� � ����, and �� � ����.

B. Queueing analysis

Next we study the queueing performance of the real data
traces and their simulated data sets using the new model. We
consider an infinite-buffer single-server queue with constant
service rate and FIFO serving discipline. The synthetic data
sets for each real trace are generated using the estimated model
parameters. The analysis results are shown in Fig. 4.

We present in Fig. 4(a) the observed queue tail probabilities
for the DATASET1 and their synthetic sets. The analysis is con-
sidered at different server utilizations �. In the plot the solid
lines present the tail probabilities of the real trace and the dashed
lines the results of the trace simulation. The curves, from top to
bottom, correspond to � � ���, ���, and ���, respectively. The
results show that the queueing behaviour of the real trace and
their synthetic sets are approximately similar.
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Fig. 4. Experimental queue tail distributions of the DATASET1 and
DATASET2 (solid lines) and their corresponding synthetics (dashed lines)
at different server utilizations of ���, ���, and ��� (from top to bottom).

Queueing performance comparison on the DATASET2 and
its synthetics, as seen in Fig. 4(b), also exhibits a very good
match. The results show that our multifractal traffic model pro-
vides queueing behaviour close to that of the measured traffic.

V. CONCLUSION

A new multifractal traffic model has been introduced in this
paper. The modelling process is the pairwise product of a mul-
tiplicative cascade and an independent, identically distributed
lognormal process. The obtained traffic model thus can capture
the full characteristics of multifractality defined by its scaling
function and the moment factor. We also study the detailed sta-
tistical properties of the model and find that it can match the
most important properties of the real WAN traffic like long-
range dependence and lognormal marginals.

The traffic model is then applied to two real traffic traces
which are found to have multiscaling structure. The real traces

and their corresponding synthetic sets generated by the model
are compared in a queueing performance test of a infinite-buffer
single-server queueing system with constant service rate. The
results show that the queue tail behaviours, simulated at differ-
ent server utilizations, are very close to each other. We conclude
that our model provides a good alternative method for multifrac-
tal traffic modeling.

The model construction possesses the opportunities for fur-
ther developments. One can choose other distributions which
provide an even better fit for multifractal characteristic func-
tions. We also intend to apply the model to more measured data
traffic with multifractal properties.
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