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Abstract

Accurate classification of traffic flows is an essential step for administrators to detect
intrusion or malicious attacks, forbidden applications, or simply new applications
which may impact the future provisioning of network resources. In this work four
major topics are considered in connection with traffic classification activities.

First, a novel validation method is proposed for characterizing the accuracy and
completeness of traffic classification algorithms. The main advantages of the new
method are that it is based on realistic traffic mixtures, and it enables a highly auto-
mated and reliable validation of traffic classification. The validation method is used
to create reference traces and the classification performance of the existing traffic
classification methods is measured. Using this information a combined traffic classi-
fication method that includes the advantages of different approaches is introduced, in
order to provide a high level of classification completeness and accuracy.

The second part of our work focuses on gaming traffic. Gaming traffic depends on
two main factors, the game protocol and the gamers’ behavior. By understanding the
nature of the impact of the later one user behavior detection algorithms are introduced
to grab specific events and states from passive traffic measurements. The algorithms
focus on the characteristics of the traffic rate, showing what information can be
gathered by observing only packet header information.

In the third part of our work, a novel model and an algorithm are introduced to
extend the Deep Packet Inspection traffic classification method with the analysis of
non-fix byte signatures, which are not considered in current methods.

Finally, we focus on the performance of traffic classification methods in terms of
speed. To support high speed traffic classification the majority of the tasks are refor-
mulated as parallel algorithms and pushed to the Graphical Processing Unit to offload
the CPU, which then may serve other processing intensive tasks, e.g., traffic capture.
The performance tests of the proposed methods showed that traffic classification is
possible up to approximately 6 Gbps with a commodity PC.
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Introduction

Detailed knowledge about the traffic mixture is essential for network operators and
administrators, as it is a key input for numerous network management activities. For
example, it can be the input for network planning and capacity provisioning, fine-
tuning of charging schemes or security monitoring. Further, a good understanding
of the traffic mix and the capability of observing trends in the traffic volume of the
different applications can provide important input to network equipment design.

The aim of traffic classification is to find out what type of applications are run
by the end users, and what is the share of the traffic generated by the different
applications in the total traffic mix. The communication between IP network nodes
can be organized into flows and the task of traffic classification is to assign a specific
application to each individual flow. A flow is a collection of IP packets sent from a
given port at one IP address to a given port at another IP address using a specific
protocol. A flow is identified by its five-tuple flow identifier: source IP address,
destination IP address, source port, destination port, protocol identifier.

The objective of the dissertation is to design and develop robust and efficient traffic
classification tools for IP networks. Our first goal was to establish a framework
to make it possible to compare the traffic classification mechanisms avail-
able in literature. We proposed a method for traffic classification validation. The
further goal was to utilize the results of the measurement of classification metrics to
propose a new combined method for traffic classification.

During the validation of traffic classification methods, it turned out that the pre-
sumptions used in traffic characteristics based classifiers in current literature is ob-
solete when the identification of currently popular gaming traffic is needed. Most of
current internet traffic consists of proprietary Real Time Strategy (RTS) and Mas-
sively Multiplayer Online Role Playing Game (MMORPG) traffic beside the former
modeled First Person Shooter (FPS) games. FPS traffic consists of fixed sized packets
sent in fixed rate. Current popular gaming traffic is special as the traffic characteris-
tics are highly influenced by user interactions. Our second goal was to analyze
the traffic characteristics of these new emerging game types.

Gaming traffic usually uses proprietary non-documented protocols, or further even



Protocol Header Encryption to make protocol recognition unfeasible with common
Deep Packet Inspection (DPI) methods. During our work with gaming traffic, we
experienced that in most cases gaming traffic consists of the communication of player
related coordinates between peers. We analyzed the possibility of the utilization of
this information. The third goal was to extend current DPI methods to make
them also capable of recognizing fields with non-fixed byte signatures in a
protocol structure.

The first part of our work focused on traffic classification accuracy and complete-
ness and not considered the traffic classification speed. However, in most cases this is
basis of a go or not go decision whether a method can be applied in a real-time traffic
classification system. The fourth goal was to focus on wire-speed traffic clas-
sification and to reformulate traffic classification parts to utilize efficiently
massively parallel architectures.

All the algorithms presented in this work were implemented and used in real
network conditions. In Section 2.1 the applied method were measurement and im-
plementation of the algorithms to work in real network conditions. The proposed
validation method was implemented as a network driver. This made it possible to
create measurements in real network conditions. The measurement of the accuracy
of the traffic classification engines was possible either by obtaining the original source
code of the papers or by implementing ourselves. The proposed classification algo-
rithm was also implemented and used on the reference trace and traces obtained from
real networks. Results reported in Section 3 were obtained by statistical analysis of
active measurements. In Section 4 the model parameters were obtained through the
statistical analysis of measured data from real networks. The analysis of the effects of
process decomposition was analyzed through custom-built simulations implemented
in Matlab [39]. In Section 5 the proposed algorithms were implemented on a proper
hardware and tested on measurements obtained from real world measurements. The
achievable compression ratio was analyzed through custom-built simulations imple-
mented in Matlab [39)].



Chapter 1

Related work

Currently, there are a couple of fundamentally different approaches for traffic classi-
fication. In this section we browse through the state-of-the-art traffic classification
methods. We discuss briefly the accuracy of these methods, which is relevant here,
because in most cases a classification method is validated by another classification
method ([91], [127], [124]).

The most accurate traffic classification would obviously be complete protocol pars-
ing. However, many protocols are ciphered due to security reasons (SSH [30], SSL
[29]). Also some are proprietary, thus there is no public description available (Skype
[31], MSN Messenger [17], World of Warcraft [38], etc.). In general, it would be diffi-
cult to implement every protocol which can occur in the network. In addition, even
simple protocol state tracking can make the method so resource consuming that it
becomes practically infeasible.

1.1 Port based classification

In TCP/IP and UDP networks, a port is an endpoint to a logical connection and the
way a client program specifies a specific server program on a computer in a network.
Some ports have numbers that are preassigned to them by the IANA [12] first in 1994.
Port numbers range from 0 to 65536, but only ports numbers 0 to 1024 are reserved
for privileged services and designated as well-known ports. The Registered Ports are
those from 1024 through 49151 and above this port number are the Dynamic and/or
Private Ports.

In the simplest and most common method the traffic classification is based on
associating a well-known port number with a given traffic type, e.g., web traffic with
TCP port 80 [12]. This method needs access only to the header of the packets. One of
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the first network monitoring systems using port based classification was [45] published
in 1998.

The advantage of port based method is that it is simple and fast to compute.
This is the main reason why several papers use port based traffic classification for
the validation purposes [73, 127, 124]. However, the port based method becomes
insufficient in many cases [57], since no specific application can be associated to
a dynamically allocated port number, or the traffic classified as web may easily be
something else tunneled via HTTP. The port based method is a standard and common
method but due to the above problems it cannot be considered to be reliable.

1.2 Signature based classification - Deep Packet

Inspection

Intrusion Detection Systems (IDS) have enjoyed a spectacular rise. Since Dorothy
Denning first proposed the concept in 1986 [75], there were relatively few products
until 1998, when a number of vendors began offering commercial network monitoring
IDS, e.g., [44, 43]. The IDS market grew rapidly through 2004 when major virus out-
breaks occurred on Internet [56]. The IDS vendors realized this time that supporting
only port based analysis of the traffic is insufficient to defend against virus spreading
and they began to look deep into the packets. That is how the term 'Deep Packet
Inspection’ was born.

To make protocol recognition feasible, only specific byte patterns are searched in
the packets in a stateless or stateful manner (see Figure 1.1). These byte signatures
are predefined to make it possible to identify particular traffic types, e.g., web traffic
contains the string 'GET’, eDonkey peer-to-peer (P2P) traffic contains *e3 38°. The
common feature of the signature based heuristic methods is that in addition to the
packet header, they also need access to the payload of the packets. Current papers
use DPI techniques mainly for the validation of their proposed algorithms [110, 91].

DPI-algorithm types. Due to their ability to make finer distinctions than sim-
ple string matching, regular expressions are today the primary method for defin-
ing Intrusion Prevention System (IPS) [88] signatures. Regular expressions provide
space-efficient representation of the signatures. If they fit in the cache close to the
arithmetic unit, the one-by-one comparison to the traffic stream can be fast if the
rule set is small.

Matching the expression individually is too slow thus a compact representation
of the whole signature set is beneficial in terms of signature matching speed. One
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Figure 1.1: Deep Packet Inspection — analysis of encapsulated content over many
packets [55]

representation is the Deterministic Finite State Automate (DFA) [111]. DFAs
match a set of regular expressions by consisting of a number of states each of which
has a transition table with 256 pointers to other states. During matching a ’current
state’ variable is repeatedly updated and it moves between the states of the DFA.
Some of these states are marked as ’accepting states’ and indicate that the signature
matches. DFAs are not a compact way of representing regular expressions, but they
have two major advantages: there is a fast matching procedure, and it is possible to
compose the DFAs corresponding to multiple signatures into a combined DFA that
recognizes all signatures in a single pass. The basic processing steps of a DFA are
very simple. The DFA reads a byte from the input, uses it to index into a transition
table pointed to by the current state variable, and the value it reads out is the next
state. If this is an accepting state the DFA raises an alert which is handled by other
parts of the system. These steps are repeated until the end of the input is reached.
When complex DFAs representing individual signatures are combined, the com-
posite DFA is much larger than the sum of the sizes of the DFAs for individual
signatures and often exceeds available memory. One approach is to reduce the mem-
ory footprint combines signatures into multiple DFAs rather than one [126]. This
induces a space-time trade-off between memory and inspection time: the larger the
memory budget, the fewer DFAs are required (and thus the faster the matching).
The core reason for the state space explosion of DFAs is that the only way for
them to differentiate between two input strings is to have them lead to distinct states.
Extended Finite State Automates (XFAs) [7] are similar to DFAs, but they also
use a small scratch memory in which they store bits and counters that indicate the



progress of the matching operation. Individual states have small programs associated
with them that update the scratch memory. When the XFA reaches an accepting
state it checks the scratch memory and it raises an alert only if certain conditions
are met. The use of the scratch memory allows XFAs to eliminate all major causes
of state space explosion.

The per byte processing of an XFA is more complex than that of a DFA, but
when compared against multiple DFAs representing the entire signature set, XFAs
are typically still faster. The basic scratch memory operations performed by XFAs
are setting or resetting a bit in a bitmap and setting, incrementing or testing a
counter. When processing a byte the XFA may perform multiple such operations on
separate bits and counters. To improve performance XFAs also use a special type
of counter: the offset counter. For some types of signatures the counter would need
to be incremented for each input byte (for example the signature may need to see
whether the number of non-newline characters after an SMTP keyword is above a
threshold required to trigger a buffer overflow). Instead of using a traditional counter
that would need to be explicitly incremented on each byte, XFAs use offset counters
that work as follows: after the keyword is recognized, the packet offset at which the
alert should trigger is stored in a sorted list; if a newline is seen before that offset, the
program associated with that state disarms the offset counter, otherwise the alert is
triggered when that offset is reached.

The advantage of DPI method is that in the case of well documented open pro-
tocols, the method can work well. Thus an accurate decision can be ensured with
well-defined signatures. On the other hand, only extensive experiences with real
traces provide enough feedback to select the best performing byte signatures. The
signatures have to be kept up to date, otherwise some applications can be missed,
or the method can produce false positives. Finally, this method cannot deal with
encrypted content.

The architectures of network devices performing signature matching have to bal-
ance a large number of often contradictory goals when designing the signature match-
ing module: meeting performance targets, minimizing the unit cost, staying within
the power budget and form factor imposed by the overall architecture of the device,
minimizing time to market and maximizing the flexibility to update functionality af-
ter the device is deployed. The platforms typically considered are: ASICs, FPGAsS,
network processors, and general purpose processors. Table 1.1 shows a comparison of
different metrics for these platforms.

ASICs are typically used in the highest speed devices because they are the only
platform able to meet the high performance requirements. At slightly lower speeds
FPGAs become a viable alternative if flexibility is valued much, but they consume



Parameters Application- Field- Single Instruc- | Network General
Specific Inte- | Programmabletion Multiple | processors purpose
grated Circuit | Gate Array | Data (SIMD) micropro-
(ASIC) (FPGA) architectures cessors

Cost Highest Medium Low Medium- Low

Low
Power Efficiency Highest Low- High Medium Lowest
Medium

Area Efficiency Highest Worst High Medium Low

System design

Flexibility Worst Medium High Medium Best

Design time Highest Medium Medium Low Lowest

Performance

Peak performance Highest Medium Medium Medium Lowest

Application Performance | Highest Medium High Medium Lowest

Table 1.1: Implementation alternatives for signature matching [19]

significantly more power than ASICs. Network processors and multicore processors
targeted to network applications offer lower throughput, but they have cost and power
advantages. General purpose processors are the platform with the lowest performance,
but best in terms of cost, flexibility and time to market. Note that the price of a
general purpose processor may be higher than that of a network processor or an
ASIC, but all networking devices that have intrusion prevention functionality already
contain a general purpose processor, so if the existing processor can be used for
signature matching, the added cost is zero.

1.3 Connection pattern based classification

The basic idea in connection pattern based classification is to look at the commu-
nication pattern generated by a particular host and to compare it to the behavior
patterns representing different activities or applications. For instance Figure 1.2(a)
shows a large number of clients connecting to e-mail servers that is how groups are
formed, while Figure 1.2(b) shows P2P hosts connecting to each other. The first work
in this field is presented in [90] describing the working mechanism of the classification
algorithm on P2P traffic. That work was extended in [91] (BLINC) in which a general
method applicable on a wide range of applications was presented. The connection
patterns describe network flow characteristics corresponding to different applications
by capturing the relationship between the use of source and destination ports, the
relative cardinality of the sets of unique destination ports and IPs as well as the
magnitude of these sets.



(a) E-mail traffic (b) P2P traffic

Figure 1.2: Traffic Dispersion Graphs [16]

Tiofotou et al. [16] argue that they took one step further than host-based granular-
ity in [91] and their method operates on aggregated sets (graphs) of related nodes (see
Figure 1.2(a), 1.2(b)). Practically they take the whole network traffic and construct
graphs of nodes being the communicating hosts and edges constructed on different fil-
ters. Such filters can be edge on first packet, edge on first SYN packet, etc. The whole
graph is later analyzed with quantitative graph description properties, e.g., node de-
gree distribution, joint degree distribution, rich club connectivity metric, etc.

The advantage of the connection pattern based methods is that packet payload
is not needed during classification thus it can deal with encrypted content. These
methods imply straightforward visualization of the data. On the other hand, the
application specific behavior patterns are often difficult to find, especially if multiple
application types are used simultaneously on the same host. The methods require
long warm-up time and lack local decision. In order to identify a communication
pattern reliably, the methods need a lot of flows coming from and going to a host.
There is no chance to identify hosts by the time their communication flows begin
to accumulate. These methods have high memory usage as every occurred host is
collected. For example, in case of P2P applications the number of seen hosts per user
can accumulate e.g., by 20 in every second. The CPU load can be also considerable
during the calculation of certain graph metrics.

In current practical solutions [16] the data is sampled to reduce memory require-
ments. An other common practice is the usage of simplified graph metrics: in [91]
node degree is collected to a wired-in limit, thus limited variable sizes can be applied.



1.4 Statistics based classification

Machine Learning (ML) algorithms are used to map instances of network traffic flows
into different network traffic classes. Each flow is described by a set of statistical
features and associated feature values. A feature is a descriptive statistic that can be
calculated from one or more packets - such as mean packet length or the standard
deviation of inter-arrival times. Each traffic flow is characterized by the same set of
features, though each will exhibit different feature values depending on the network
traffic class to which it belongs.

1.4.1 ML-algorithm types

ML algorithms that have been used for IP traffic classification generally fall into the
categories of being supervised or unsupervised. Unsupervised [80] (or clustering)
algorithms group traffic flows into different clusters according to similarities in the
feature values. These clusters are not pre-defined and the algorithm itself determines
their number and statistical nature. This is useful in case of the analysis of a yet
unknown/uncommon traffic.

For supervised algorithms [103, 127, 102, 78, 64] the class of each traffic flow
must be known before learning. A classification model is built using a training set of
example instances that represent each class. The model is then able to predict class
membership for new instances by examining the feature values of unknown flows.

1.4.2 Feature reduction

In ML-based techniques feature reduction is an important issue. In practical IP classi-
fication tasks we need to decide which features are most useful given a set of working
constraints. For instance, calculating Fourier transform statistics for thousands of
simultaneous flows may not be feasible. In addition, the representative quality of a
feature set greatly influences the effectiveness of ML algorithms. Training a classifier
using the maximum number of features obtainable is not always the best option, as
irrelevant or redundant features can negatively influence algorithm performance.

The process of carefully selecting the number and type of features used to train
the ML algorithm can be automated through the use of feature selection algorithms.
Feature selection algorithms [114] are broadly categorized into the filter or wrapper
model. Filter model algorithms rely on a certain metric to rate and select subsets of
features. The wrapper method evaluates the performance of different features using
specific ML algorithms, hence produces feature subsets ’tailored’ to the algorithm
used.
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[ Feature Description [ Abbreviation ]
Minimum forward packet length minfpktl
Mean forward packet length meanfpktl
Maximum forward packet length maxfpktl
Standard deviation of forward packet length stdfpktl
Minimum backward packet length minbpktl
Mean backward packet length meanbpktl
Maximum backward packet length maxbpktl
Standard deviation of backward packet length | stdbpktl
Minimum forward inter-arrival time minfiat
Mean forward inter-arrival time meanfiat
Maximum forward inter-arrival time maxfiat
Standard deviation of forward inter-arrival stdfiat
Minimum backward inter-arrival time minbiat
Mean backward inter-arrival time meanbiat
Maximum backward inter-arrival time maxbiat
Standard deviation of backward inter-arrival stdbiat
Protocol protocol
Duration of the flow duration
Number of packets in forward direction fpackets
Number of bytes in forward direction fbytes
Number of packets in backward direction bpackets
Number of bytes in backward direction bbytes

Table 1.2: Table of flow features recommended for use by [120]

In [103] Moore et al. used 248 flow features to differentiate between application
types. With feature reduction about 20 features (see Table 1.2) were selected which
are required for traffic classification. In [120] it was examined what happens with the
accuracy of ML algorithms if the feature set is even more reduced. It was found that
reducing the features set to 7 (see Table 1.2 in bold), the algorithms suffer only minor
accuracy degradation.

It is interesting to note that there are theoretical limitations of some of the fea-
tures, however it is neglected in most of the papers or the feature reduction mech-
anisms are happened to filter them out by chance. For example, in [10] Hjelmvik
mentions that using inter-arrival times is very common in academic literature for the
traffic classification field, probably because it is a flow measure that doesn’t require
access to the application layer data. Hjelmvik [10] suggests not using inter-arrival
times for several reasons. One reason is that the same type of session would have
different inter-arrival times depending on the bandwidth and latency properties of the
link between the client and server, hence the measurement might in some cases tell
the observer more about the link properties than about the used protocol. Another
reason is that inter-arrival times do not really have much to do with the design of
a protocol, i.e. no RFC or protocol specification defines what would be acceptable
values for inter-arrival times. Every single client or server application will therefore
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have somewhat unique inter-arrival times. This might be good if one wanted to do
application identification (for example to see if a web server runs Apache or IIS)
but not in order to do protocol identification. The inter-arrival times can also vary
depending on the CPU speed and load of the client and server machines.

1.4.3 Class weighting

The number of samples in a training data set for a given traffic class influences the
ML-methods to optimize their weights toward the more frequent samples [67]. If
samples contain an equal number of traffic flows for each of the network applica-
tion classes then class probabilities become equally weighted. Although this may
negatively impact algorithms that rely on prior class probabilities, it prevents algo-
rithms from optimizing towards a numerically superior class when training (leading
to overly optimistic results). It is a trade-off between optimizing MIL-algorithms to
general applicability or trace-dependent traffic mixes.

1.4.4 ML-algorithm performance

According to [120] the difference in the accuracy of the ML-based methods is negligible
comparing to the difference in their computational performance. As the complexity
of the ML-algorithms differs a lot, their performance regarding build time and clas-
sification speed can also differ a lot. In [120] Williams et al. found that algorithms
has to take a trade-off between build-time and classification performance: the fastest
algorithm during traffic classification was C4.5 [26] but its built-time is the one of the
highest in class.

The advantage of ML-based traffic classification is that flow-level information is
enough during classification. This type of classifier is a best-effort classifier with high
classification completeness. The drawback of these methods is that pre-classified
input trace is needed for supervised learning algorithms.

1.5 Information theory based classification

A useful aid in traffic classification is introduced in [124] and [95] which are based
on information theoretic approaches and can group the hosts into typical behaviors
e.g., servers, attackers. The main idea is to look at the variability or randomness of
the set of values that appear in the five-tuple of the flow identifiers, which belong
to a particular source or destination IP address, source or destination port (e.g., see
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Figure 1.3: Behavior clusters based on Relative Uncertainity values [124]

Figure 1.3). The information theoretic approach cannot be used for flow level traffic
classification in the same way as the other methods. It is just an aid in traffic
classification and arises the problem that it can only specify very broad application
types but not capable of classifying specific applications. This method intensively
uses the five-tuple identification of the flows without other additional information.

1.6 Combined methods

A couple of different approaches have been proposed in the literature but none of
them performs well for all different application traffic types present on the Internet.
Thus, a combined method that includes the advantages of different approaches is
proposed in [C1] in order to provide a high level of classification completeness and
accuracy. The pros and cons of the classification methods are discussed based on the
experienced accuracy for different types of applications. The classification method
in [C1] is based on the classification results of the individual methods and uses a
complex decision mechanism to conclude the end result of the classification. As a
consequence, the ratio of the unclassified traffic becomes significantly lower. Further,
the reliability of the classification improves as the various methods validate the results
of each other.

Kim et al. [92] repeats the same comparison of different traffic classification meth-
ods including the evaluation ML-based techniques. They found that port-based classi-
fication still works for a number of protocols. Thus they extended the common traffic
characteristics feature list (see Table 1.2) with port numbers and used Support Vector
Machine (SVM) classifier to combine them. Zhang et al. [128] describe the implemen-
tation issues of a multi-phase traffic classification system, how the data-structures are
constructed to store the output of several traffic classification methods.



[ Method [ Advantage [ Disadvantage
Port based fast inaccurate
DPI accurate resource consuming, signature
database need constant update,
privacy issues, encrypted content
Connection pat- | no need for packet payload, can deal | long warm-up time, lot of memory
tern with encrypted content needed

Statistics based

no need for packet payload, can deal
with encrypted content

pre-classified trace is needed for train-
ing

Information theory
based

no need for packet payload, can deal
with encrypted content

inaccurate due to overlapping applica-
tion clusters

Combined methods

high accuracy and completeness

time frame synchronization issues, dif-

13

ferent input requirements

Table 1.3: Table of advantages and disadvantages of traffic classification methods

Hjelmvik [10] presents a protocol identification scheme called the Statistical Proto-
col Identification (SPID) algorithm, which identifies the application layer protocol by
using statistical measurements of flow data as well as application layer data (payload
analysis). The SPID algorithm utilizes Kullback-Leibler divergence measurements to
compare probability vectors created from observed network traffic to probability vec-
tors of known protocols. In [10] the traffic characteristic features are complex derived
measures compared to the feature list presented in Table 1.2.

The advantage of the combined methods is that the accuracy of these methods is
significantly higher than stand-alone traffic classification systems. The difficulty dur-
ing the application of these methods is that the applied traffic classification methods
may require different input and all of these has to be available during the process
e.g., packet level information for DPI and flow-level information for connection pat-
tern based classification. An other issue is that the traffic classification methods may
work in different time-frame and their results has to be synchronized. For instance,
DPI is processor intensive task, while a port matching is not.

The summary of the advantages and disadvantages of the methods can be found
in Table 1.3.

1.7 Off-the-shelf products

There are off-the-shelf traffic shaping products in the market [9, 20, 22, 21]. They
provide wide range of functionality including firewalls, traffic prioritization based on
QoS classes and also charging e.g., in the case of [9]. To support these functionalities
these products imply traffic classification methods. One of the main requirements
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Figure 1.4: Typical applications Offered by DPI vendors [14]

of these products is that they have to operate in real-time introducing the least
possible latency in the trespassing traffic. In this meaning they have to perform in
more restricted constraints, e.g., they have to apply fast algorithms, they cannot keep
much information in memory about previous activities of a specific user, etc. It is also
important that they can hardly rely on unreliable guesses on a given traffic type as
in case of misclassification the users would complain. For instance, there are network
operators which enforce P2P traffic shaping on their network. If a non-P2P traffic is
classified as P2P and filtered by the operator the user feels uncomfortable.

To fulfill the above requirements it is very likely that most of the products use DPI
methods during traffic classification. It is out of the scope of this work to 'reverse-
engineer’ how these products work and try to compare them to each other.

A Dbrief overview of current off-the-shelf products and their functionalities are
shown in Figure 1.4.



Chapter 2

Novel framework for traffic

classification and validation

J1, C1, C2, C3]

First, we deal with the problem of the validation of traffic classification algorithms.
Several different classification approaches can be found in the literature. However, the
validation of these methods is weak and ad hoc, because neither a reliable nor widely
accepted validation technique nor reference packet traces with well-defined content
are available. The validation is typically done with another specific classification
method.

2.1 Validation of traffic classification mehods [C3]

A classification method can be convincingly validated only by an active test, for which
a number of requirements are fulfilled, such as:

e It should be independent from classification methods, i.e. the validation of a
classification method by another one must be avoided,

e The test should provide reference information about each packet that can
be compared to the result of the classification method under study,

e The test should be deterministic, meaning that it should not rely on any
probabilistic decisions,

15
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e Feasibility: it should be possible to create large tests in a highly automated
way, and

e The environment where the active measurements are collected should be real-
istic.

2.1.1 Related work

Sen et al. [110] validated their constructed signature database by manually checking
the false positive ratio of their technique. Their approach was to investigate TCP
connections which were identified as P2P connections. If in fact the content of the
connection did not belong to a P2P protocol they counted the connection as a false
positive. By the term ’active measurements’ they mean that specific traffic type is
generated on purpose, thus the kind of traffic is expected can be exactly known at
a certain point in the measurement. This is the most common way of developing
signature databases as this method ensures that the traffic is sterile, i.e., only a
specific application is measured at a time. The measurements they used are not
public, therefore others cannot use them as reference.

Karagiannis et al. [91] validated their method by using signature based classi-
fication. As there are no commonly accepted and well performing byte-signatures,
authors constructed their own signature database.

In [73] Crotti et al. used port based classification method while in [79] Erman et
al. used payload based classification method to create training and evaluation data
set from the measurements collected at their campus network. In [127] Zander et
al. used port based classification for validation of their method. They assume that
for the ports they use in the study the majority of the traffic is from the expected
application. In this case, it is most likely that few 'wrong’ flows would decrease the
homogeneity of the learned classes. Therefore their evaluation results can be treated
as lower bound of the effectiveness. They also do not consider traffic of the selected
applications on other than the standard server ports. Xu et al. [124] validated the
identified clusters by checking the found dedicated port of the hosts with the port-
application database used for port based classification.

Authors of [78] worked with commonly available traffic traces, but these traces
contained only packet headers which excludes such reliable validation methods which
are based on packet payload. In [64] the traffic classification method was applied
online without capturing the original data due to the lack of capacity to store the
massive amount of data which is the consequence of high traffic speeds. This makes
impossible to validate the traffic classification by others.
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Figure 2.2: The working mechanism of the introduced driver

2.1.2 Proposed validation method

The two main requirements on the realization of the method are that it should not
deteriorate the performance of the terminal and the byte overhead of marking should
also be negligible. The preferred realization is a driver that can easily be installed on
terminals. The position of the introduced driver can be seen in Figure 2.1. It takes
place right before the network interface thus each packet exchanged between the ter-
minal and the network has to pass through it. We have implemented a prototype,
which is a Windows XP driver based on the Network Driver Interface Specification
(NDIS) library. The kernel NDIS library abstracts the network hardware from net-
work drivers and provides an API through which intelligent network drivers can be
efficiently programmed. If the sending and receiving functions of the NDIS IP proto-
col driver are hooked, all TCP and UDP packets can be intercepted and filtered.

To meet our requirements the driver is designed to work in the following way. In
the case of a passing through packet the following process takes place (see Figure 2.2):
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1. The packet is examined whether it is an incoming or outgoing packet. In case
of an incoming packet the process ends without marking the packet as it is not
beneficial to mark incoming packets.

2. In case of an outgoing packet the size of the packet is examined. If the current
packet size is already the size of Maximum Transmission Unit (MTU), the
extension of the packet with marking would lead to IP fragmentation. To avoid
this the process continues with only those packets which are smaller than the
MTU decreased with the size of marking. Initiating messages in protocols are
typically small e.g., the SYN packet of a TCP packet is only a flag, thus there
is practically no loss (unmarked flow) with the introduction of this condition.

3. As there is no information in the operating system about those 'network con-
nections” which use other protocols than TCP or UDP, the process continues
with only TCP or UDP packets.

4. According to the five-tuple identifier of the packet it is checked whether there
is already available information about which application the flow belongs to.
The driver has to cache this information because querying the operation system
about the existing network connections is very resource consuming and can not
be done at high network speeds. We used a hash as the data structure for
the cache as it can be directly addressed by the searched data. If there is no
information on the flow in the cache yet, the operating system is queried to sup-
ply the established network connections and the process IDs of the responsible
applications. The process IDs are state specific information in the operating
system. To get a universal name about the application, the process IDs are
connected to the application’s executable name as can be seen in Figure 2.1.

5. When all information is prepared for the marking of the packet, there is a final
chance to decide whether the driver should mark the packet or not. The packet
marking can be done for all of the packets in the flow, randomly selected packets
of the flow, only the first packet of the flow or it is also possible to switch off the
marking for specific applications. There is an option for the random selection
of packets to be marked to enforce the first packet of the flow to be marked
or avoid the first packet to be marked. The sense of these options is to make
an optimal trade-off between performance, network transparency and to ensure
high chance of recordable marked packets in the case of network loss.

The marking is done by extending the original IP packet with one option field. We
selected the Router Alert option field, because the existence of this field is transparent
for both the routers on the path and also for the receiver host (according to RFC
2113 [28]). If one uses another option field, it should be carefully checked whether
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the marking is conform to the security policy of the given network, otherwise the
marking can be easily removed by an edge router in the border of the access network.
In the option field, the first two characters of the corresponding executable file name
are added, thus increasing the size of the packet with 4 bytes. The packet size field in
the IP header is also increased with 4 bytes and the header checksum is recalculated.
As already discussed above, the driver does not mark packets larger than (MTU-4
bytes).

2.1.3 Validation

The validation was done by using the method in real network conditions. The method
worked transparently for the communication parties.

A reference measurement [35] has been created as a proof-of-concept of the intro-
duced validation method. For the sake of simplicity, the measurement took place in
a separated access network. Our driver has been installed onto all computers on this
network. The duration of the measurement was 43 hours. The captured data volume
in the network is 6 Gbytes, containing 12 million packets. The measurement con-
tains the traffic of the most popular P2P protocols: BitTorrent, eDonkey, Gnutella,
DirectConnect; VoIP and chat applications: Skype, MSN Live; FTP sessions, file-
transfer with download manager; e-mail sending, receiving sessions; web based e-mail
(e.g., Gmail); SSH sessions; SCP sessions; FPS, MMORPG gaming sessions; stream-
ing radio; streaming video and web based streaming. In Figure 2.3 the traffic mix of
the measurement can be seen. Both the volume and the flow number ratio of different
applications are presented.

In Figure 2.4 an example of the marked packets can be seen. The IP header shows
the increased size of the packet (without the option field, the value where currently is
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Figure 2.4: A marked packet of the BitTorrent protocol

46 would be 45) and the option field is highlighted, where the last two fields could be
used to place the marking. The marking shows that the generating application was
the uTorrent [37] BitTorrent client (by the first two characters in its name).

2.1.4 Application

The two key metrics that can characterize the performance of a traffic classification
method are accuracy and completeness [91]:

o Accuracy means the fraction of traffic identified correctly in the sense that it is
associated to the application type which indeed generated it. The classification
accuracy values of an examined method show the ratio of the correctly classified
traffic compared to all the traffic classified by the examined method for the given
application. This can be calculated by Algorithm 1. Using a more common but

less precise denotion: A = TPZ%, where TP and F'P are representing the

number of true positive and false positive decisions for a flow considering an
examined method.

o (Completeness means the fraction of traffic which is categorized by a particular
method. It is the fraction of the traffic which the method is capable of associ-
ating to one of the application types. The classification ratio values shows the
ratio of flows classified as a specific application type by the examined method
and the application marked in the validation trace. This can be calculated by
Algorithm 2. Using a more common but less precise denotion: C = ;ﬁiﬁﬁ with
the same denotations as in A.

The perfect classification is the (A,C) = (1,1) case. During the classification both
of these metrics are intended to be kept around the perfect classification values. The
following example shows the accuracy and completeness of two applications classified
with one specific method (e.g., A) comparing to the reference trace (e.g., A*).
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A - Ax, A - Ax, A - Bx, B - Bx, 7?7 - Bx
Accuracy: A: 2/3 B: 1/1, Completeness: A: 3/2 B: 1/3

Algorithm 1: Calculation of Accuracy

Input: Input flows F, Examind method M, Examined application a, Application marked in the validation
trace R
TP = 0;
forall f € F do
if M§ == R} then
| TP++;

W N =

TPFP = 0;

forall f € F' do

if MJ‘} == 1 then
L TPFP + +;

N owm

©

return TP/TPFP;

Algorithm 2: Calculation of Completeness

Input: Input flows F', Examind method M, Examined application a, Application marked in the validation
trace R
TPFP =0;
forall f € F do
if MJ% == 1 then
L TPFP + +;

W N =

TPFN = 0;

forall f € F do

if R? == 1 then
L TPFN + +;

[o N B IV

©

return TPFP/TPFN;

The accuracy and completeness of the classification methods measured on the
validation trace can be seen in Table 2.1. The payload based and port based method
were implemented by us, using an extended signature database of [2] to increase the
true positive hits, while the used port-database is a reduced version of [12] to reduce
the false positive hits (similar to [25]). BLINC is the original implementation of the
authors of [91]. In the case of chat, e-mail, filetransfer, P2P, streaming, web the
payload based method outperformed the other traffic classification methods. In the
case of system and tunneled traffic, the port based method was the most complete.

The experienced accuracy and completeness about the traffic classification meth-
ods is depicted in Figure 2.5. The most accurate methods are the strict protocol
parsers and their lightweight implementation, the payload based traffic classifier. The
most complete solutions are those methods which rely mostly on weak heuristics. In
this way, such methods can always classify the traffic thus their completeness will be
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Application Payload Port BLINC [91]
#flow vol #flow | vol #flow | vol
chat A 0.99 0.99 0.92 0.94 0.02 0.01
C 0.99 0.97 1.12 1.04 4.05 0.12
. A 0.99 1.00 0.99 0.99 0.01 0.01
e-mail
C 0.99 0.99 1.00 1.01 0.01 0.01
filetransfor A 0.99 1.00 0.53 0.56 0.01 0.01
C 0.99 0.99 0.23 0.30 0.01 0.01
Pop A 0.07 0.77 0.08 0.14 0.01 0.01
C 0.08 0.77 0.22 0.14 0.01 0.01
streaming A 0.78 0.89 0.20 0.25 0.01 0.01
C 0.88 0.92 0.34 0.21 0.01 0.01
system A 0.64 0.70 0.99 0.99 0.85 0.57
C 1.03 1.07 0.99 0.99 1.15 0.76
web A 0.99 0.99 0.91 0.99 0.28 0.41
C 6.57 3.31 6.52 3.32 0.96 0.23
tunncled A 0.99 0.99 0.72 0.90
C 0.62 0.11 1.01 0.92

Table 2.1: Accuracy & completeness of the classification methods

validation trace

Signature based
classification

Port based
classification

Statistics based
classification

Connection pattern
based classification

Completene

Information theoretic
classification

measured on the

Simple heuristics based
classification method

Accuracy

Figure 2.5: The accuracy and completeness rank of different traffic classification

methods

high, however their accuracy is low. It should be noted that Figure 2.5 is a general
overview of the accuracy and completeness of current methods but it is not intended
to mean that the trade-off between these metrics always exist. E.g., in case of a pay-
load based classifier the short byte signatures may decrease the accuracy but increase
the completeness. On the other hand well-constructed simple heuristics which are
really typical of the traffic — e.g., P2P traffic has parallel UDP and TCP connections
—, can be an accurate method. To handle these cases in general is difficult.
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2.2 Combined traffic classification method [J1, C1,
C2]

Before this work, we have found that papers searched for one ultimate solution to cope
with the traffic classification problem in general. We proved that traffic classification
methods vary in their accuracy per application types. A complex decision mechanism
is needed to provide high accuracy and completeness in all real-world situations.

To combine existing traffic classification mechanisms decision trees were chosen
to exploit their following advantages: a) decision trees can be implemented and used
efficiently b) decision trees are simple to understand and interpret. The ML technique
for inducing a decision tree from data is called decision tree learning. During decision
tree construction algorithms for discrete data sets the cost function are information
gain related in general which are not directly related to the traffic classification prob-
lem. The main problem with them that application types having less flows than other
are neglected, e.g., gaming traffic comparing to P2P.

2.2.1 The proposed combination of classification methods

The idea is to combine the results of multiple independent traffic classification mod-
ules with a decision mechanism in order to more accurately classify a flow. The
suggested system consists of several modules as it can be seen in Figure 2.6.

The input of the system is a packet level network traffic trace. This trace is
the direct input of the statistics based classification method and the signature based
method as information such as e.g., packet interarrival time, packet size distribution,
packet payload, etc. are available in the packet level trace but it is not available in
the flow level trace. The input of the port based method, the information theoretic
approach and the connection pattern based method is the flow table, which contains
a record for every flow present in the trace. It is possible to classify traces with-
out payload but in that case the results of the signature based method can not be
taken into account during the final classification mechanism, which can decrease the
accuracy of the final decision.

The flows in the flow table are classified using all of the methods separately.
After the flow level classification with the classification modules, the final decision
mechanism combines the results with an intelligent decision. Beside these modules the
system can be extended with other classification modules as well, in order to handle
the continuously emerging new applications. In that case the decision mechanism
may need to be modified based on the information about the accuracy of the newly
added specific classification module.
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Figure 2.6: The traffic classification modules used in the combined method

2.2.2 Heuristics based modules

The classification process starts with classifying all the flows with the independent
modules. The output of the statistics based classification and the connection pattern
based classification methods are not the direct input of the final intelligent decision
mechanism, instead they are preprocessed, ’fine-tuned’ with additional heuristics to
reach the most accurate application type without examining application specific port
or bitstring information.

Statistics based classification. The statistics based classification method is
one of the methods which can serve information corresponding the application with-
out taking into consideration the five-tuple of the flow. As our presumption is that
no previous information such as preclassified trace segment is available during classi-
fication we can not use Bayesian classification which requires an accurately classified
training trace. We used a collection of basic heuristics which can give hints about the
different application types based on statistical properties of an examined flow, such as
e.g. the packet interarrival time distribution, packet size distribution, average packet
size, etc. The following application types are the possible outcome of this method:

e interactive traffic (e.g. telnet session)

e control flows (e.g. part of such protocols as streaming, FTP, P2P-BitTorrent,
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DirectConnect, where the clients maintain a flow with the server during the
whole communication)

e streaming (e.g. Windows Media Player on-line media broadcast)
e VoIP (e.g. H.323, Skype)
e file transfer (e.g. download from an FTP server)

We came across with the following special cases when the statistical method fails to
accurately determine an application type. If the statistical method is probed against
P2P applications, it may classify P2P traffic as file transfer, streaming or VoIP appli-
cation. From the statistical method’s point of view, the difference between streaming
and file transfer is small, unless we consider the protocol (UDP for streaming, TCP
for filetransfer), so we usually examine the two application types together. The other
case is when a flow which has similar upload and download traffic volume in both di-
rections can make our statistical method give such a hint that the flow is VoIP traffic
though actually it belongs to P2P traffic. This can be explained by the situation that
in several P2P protocols the peers have a value representing the upload/download
ratio. Those peers are more likely to be accepted by other peers to connect which
have high upload/download ratio. To improve the data distribution efficiency, the
protocols (e.g. BitTorrent) enable peers to upload a file chunk to the same peer in
the same time where they download from thus results in a VoIP like communication
among the peers. We can see that the application specific heuristics have serious role
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in the classification of these application types. We constructed the decision mecha-
nism to take these cases into consideration during the processing of the output of the
statistical method.

Connection pattern based classification.  Another non-classical method
which uses the degree of parallelism of flows between hosts is the connection pattern
based classification method (BLINC [91]). BLINC can classify web, e-mail, DNS,

P2P, chat, filetransfer, streaming, gaming and attacking network activity.

Application specific heuristics. We use the statistics based classification and
connection pattern based classification methods together with further heuristics to
combine their results and get as exact application type as possible without examining
application specific port or bitstring information. As the statistical method is usually
capable of classifying the traffic but the result frequently happens to be too general
or fall into other application type which exhibits similar statistical properties as the
one which has been selected, thus it needed to be further classified with BLINC and
additional heuristics.

Classification of the traffic of emerging applications e.g. P2P or streaming is very
important. To identify P2P applications we introduced a connection pattern based
heuristic, which uses a novel approach compared to BLINC [91] and [90]. If we look
through the P2P applications we can find that nearly none of them are completely
P2P, namely the clients register themselves at server like nodes (supernodes). E.g. in
case of BitTorrent, a tracker server is operated which tracks the file parts in the
torrent system. As every client has a control flow with the P2P supernode, and flows
between each other, triangles can be identified when looking at the communication
pattern of the nodes.

The main difference between BitTorrent and DirectConnect is that BitTorrent
does not maintain the tracker updating flow, but after the updating process it drops
the flow and periodically establishes a new one. This mechanism gave a hint to intro-
duce a heuristic for P2P classification which uses the characteristics of the periodical
behavior of control flows. Thus, control flows can be used for classification in the
following way: those IPs are collected together which have started flows between two
IPs repeatedly with any frequency e.g., higher than a minute. As e-mail applications
also check mail servers regularly, e-mail has to be excluded from this examination.
Similarly, presence protocols also communicate with a frequency but they use one sin-
gle flow. The packet sending frequency appears inside the flow between the packets,
and do not create new flows.

Other useful heuristic in P2P application identification is to search for those flows
that go between two IPs both on UDP and TCP as it is very typical for P2P ap-
plications (this heuristic is used with success in other works as well [90]). File/user
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searches and status/queuing updates go on UDP protocol, while the filetransfer goes
on TCP between the peers. In P2P applications the source port of every peer, where
the UDP flows originate from, is typically one dedicated port. Such a heuristic which
finds the dedicated P2P ports is also used with success.

To detect flows belonging to streaming application, we found the following
heuristic: if a streaming data flow goes from srcIP A, srcPort B, dstIP C, dstPort
D (UDP) then its control flow can be found at srcIP C, srcPort X, dstIP A, dstPort
B+1 (UDP). We mark the flows that match for this criteria, and if we find that the
control flow is also a streaming flow then the streaming data flow is also classified as
streaming traffic.

If more specific application class can not be determined, a possible output of the
heuristical methods can be the relayed flow class. The introduction of the relayed
flow search is a novel connection pattern based heuristic compared to BLINC [91].
A relayed flow is such a flow that a host communicates with another host but the
communication goes through an intermediate node. To collect these communications
we mark flows if a flow exists with srcIP A, dstIP B, transferred byte length C,
transferred packet number D, then there is another flow close in time which has a
srcIP B, dstIP E, transferred byte length C, transferred packet number D. In our
prototype the transferred byte length C was considered to be equal if the transported
data volume through the examined flows has a difference below 5%. (The same was
used for the number of packets.) The search was executed only among those flows
which have transmitted more than 10 Kbyte of data. The presence of relayed flows
is a very characteristic feature of several chat and VoIP applications which are able
to connect two clients behind firewalls. To solve this problem they both connect to a
relay node with no firewall and this node relays the data from one client to the other.
E.g. Skype, the P2P VoIP application works like this.

In this section we combined the results of the statistical classification method with
BLINC and further heuristics. During the classification the methods can confirm each
other’s results and the combined method further specifies the application types.

2.2.3 The final decision of the combined classification method

After the execution of all the independent classification modules and having managed
to process the statistics based classification and connection pattern based classifica-
tion output, we are ready to reach a final decision on the application type of every
flow. In this section we introduce how the heuristic, the port and the payload based
classification results can be combined in the most appropriate way.
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The novelty of the final decision mechanism is that it has been constructed on the
basis of the empirical accuracy of the classification methods, where the more accurate
method is taken into account with higher priority. This final decision mechanism
involves majority decision and novel heuristics which select the most appropriate
result.

The operation of the final decision mechanism can be seen in Figure 2.7. The sig-
nature based method is capable of finding the most specific feature of an application,
the signatures of the application layer protocol, so its results are considered with the
highest priority during classification. The connection pattern based method is the
less accurate one, that is why its results are considered the weakest sign during classi-
fication. The decision mechanism is constructed to use these signs from the strongest
to the weakest direction as it can be seen on the connections of the comparison boxes
in Figure 2.7. We accept the decisions of the modules if the majority of the modules
state the same for the given traffic type.

If the classification result is a very common application type (e.g. web, P2P)
then the port list and the signatures belonging to this common application type
are checked. This step may reveal the specific application which is responsible for
generating the flow (e.g. identifying Kazaa as the subtype within the P2P application

type).

During classification the simplest case is that if only one method’s result is avail-
able then we have to accept that. As a preprocessing of the output of the signature
based and port based classification modules we do the following. As several P2P
protocols use the HTTP protocol for communication, if the payload based method
result is P2P and the result of the port based method is web or vica-versa, then we
convert both of the results to P2P.

Packet payload available.  We compare the results of the port based and
the payload based methods and if several matches occur as flows may have been
constructed from different types of packets, we decide on the strictest one. This case
can occur e.g., when the inspection of the first packet of a P2P application suggests
that it is a simple HTTP request with the '"GET’ signature then it is revealed in later
packets from the "hash’ signature that it is actually a P2P application. Thus two
types of applications appeared on the same flow in different packets and we decide for
the stricter one. We used the following sequence regarding the strength of support of
the results of the decisions:

e the statistical and connection pattern based method have a common sequence:
(the strictness in ascending order) filetransfer, streaming, VolP, interactive ap-
plications, web, P2P, other
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e the payload and port based method have a common sequence: (the strictness
in ascending order) web, chat, P2P, other

If the outcome of this comparison is web, we tag it with the result of the heuristical
method to suggest a subclass. As an example, if a chat application uses HTTP
protocol and port 80 to communicate to the chat server, and the heuristical method
(e.g., BLINC) classifies it as chat, then the final classification will contain this result.
If the result of the payload based method exists but the final class can not be decided
because the port based result and the payload based result differ then we leave the
decision to the advanced port based classification mechanism.

Server and dedicated port identification. The usual port based classifica-
tion method has been extended with a decision strength to save the information on
the accuracy of the port based classification for every decision. The decision strength
can be introduced by the extension of the port based system with the result of the
information theoretical classification method presented in [124]. This method can be
used to search for servers and server ports as well. BLINC can find the servers as
well: it uses simple thresholds, therefore it can find servers only with plenty of flows
while the information theoretic approach can work with smaller number of flows as
well. The port based classification results are extended with a number which tells
how strong the belief is:

1. The flow is marked with code 1 if the information theoretical classification
method finds either the source or destination IP of the flow as a server IP.

2. The flow is marked with code 2 if the information theoretical classification
method finds neither the source nor the destination as a server IP, but one of
the ports is under 1024 (as these ports are usually belong to services)

3. The flow is marked with code 3 if the information theoretical classification
method finds neither the source nor the destination as a server IP, and both of
the source and destination ports are over 1024

4. The flow is marked with code 4 if the information theoretical classification
method finds neither the source nor the destination as a server IP, and both of
the source and destination ports are over 1024 and our port-application database
contains both ports

To find the application of a dedicated port, the execution of the port based method
is followed by an additional heuristic which collects those flows where the port is
marked with strength 1 (as server), but the application is not known based on the
port number. For every IP, for every given port which has such a flow, the results of
the payload based method is collected and the most specific application among the
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results of the payload based method carrying the highest transported data volume is
selected. The result of the port based method is considered as the previously selected
application with strength 1 from now on. With this heuristic every dedicated port of
an [P which is used by e.g., P2P application or Skype and have any flow classified by
the payload based method can be marked as the port of that specific application.
There are two possible cases when the port based classification is used in different
ways: if the strength is 3 or 4 than the result of the payload based method is compared
to the result of the heuristic method. If the strength is 1 or 2, the method uses the port
based method output instead of the payload based method output. If the port based
method has no specific output but the strength is either 1 or 2, as the information
theoretic approach suggested it as a server port, then the algorithm advises it for
manual inspection, and it classifies it according to the result of the heuristic method.

After the previous steps, the next task is to loop through on all the bidirectional
flows and if the two directions of a bidirectional flow are classified for different types
of application then the stricter is chosen and both directions of the flow are set to
that.

Inter P2P user traffic classification. In the case of P2P applications, Win-
dows SMB service, and the passive FTP protocol the high volume of data goes through
a flow having dynamically allocated port numbers. To classify them we would need
to parse the whole protocol, that is why we use a simpler method: we collect those
IPs where P2P, Windows messages and filetransfer occurred and the unknown flows
which go among a group of these IPs are classified as the specific application that
the IPs belong to. This procedure is similar to the one presented in [90] to mark the
possible P2P peers. With this method we use again the concept that the unreliable
heuristics are only accepted if it is supported by the outcome of other methods as
well or if no other information is available at all.

2.2.4 Automatic decision tree construction and the evalua-

tion of the final decision tree

The evaluation of the final decision tree was performed by creating decision trees with
machine learning methods. In data mining and machine learning, a decision tree is a
predictive model, a mapping from observations about an item to conclusions about its
target value. In a decision tree structure, leaves represent classifications and branches
represent conjunctions of features that lead to those classifications.

We evaluated the proposed final decision module in the following way:
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1. The validation trace was traffic classified by all the methods independently.
2. For every flow the transmitted data volume has become the weight of the flow.

3. For every flow, the generating application was extracted from the packet mark-
ings in the validation trace.

4. A decision tree based on these data was created by the method of [27] in which
case the input was the results of the different classification modules and the
expected output was the result of the generating application based on the vali-
dation trace.

5. For every flow, the decision of the proposed final decision module was extracted.

6. A decision tree was created by the method of [27], in which case the input was
the results of the different classification modules and the expected output was
the result of the proposed final decision module.

7. The two resulting decision trees were compared.
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Figure 2.8: A part of the constructed decision tree

We used a machine learning based decision tree construction method of [27] which
was set to optimize on information gain during the partitioning of the output clusters
based on the results of the different traffic classification results. The constructed
decision tree by the method of [27] can be seen in Figure 2.8. The entry point of the
decision tree is the port based classifier module. Etc.

The constructed decision tree differs from our proposed algorithm. The reason
for the difference is that the method of [27] practically neglected any other traffic
than P2P and optimized the decision tree for P2P traffic. The weighting of flows by
the transmitted data resulted in that P2P traffic dominated the learning set of the
algorithm. We repeated the construction of the decision tree without using weights
but in that case the number of P2P flows caused the same result.

To overcome this problem, papers [103], [127] use same number of input flows
of different classes or the statistically oversampling — creating flows artificially— of



32

those application classes where the input sample is low. The problem with this
approach that some of the applications has very limited number of flows. Statistical
oversampling helps only in those cases where the magnitudes are in the same order
of magnitude. In our case the number of flows of e.g., gaming and P2P may not even
fall into the same magnitude.

An other method was used to evaluate the final decision mechanism. The decision
tree was constructed in the same way as above in this section (Steps 1-3) but the
output of the final decision was also fed into as input parameter. The idea behind
this validation step was that if our proposed method comes up as the root of the
constructed decision tree than it means that the information gain is the highest from
it comparing to all the separate methods.

Figure 2.9 shows the result of the decision tree construction. The result meets our
expectations that the final decision module was placed to the root of the constructed
decision tree.
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Figure 2.9: A part of the constructed decision tree with the proposed combined
decision included
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2.2.5 Automatic decision tree construction

In the previous section we used the common decision tree construction methods for
discrete data. The common among these methods is to consider the distribution of
values of the candidate subclasses and optimize for information gain resulting in more
and more homogeneous classes. As the distribution of the values in the subclasses
depends on the number of different values, the application types with few samples
get neglected.

We propose to optimize on traffic classification metrics directly during decision
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tree construction. Our proposal is to regard all applications and traffic classifica-
tion methods with equal weight. To optimize on both accuracy and completeness
we define the target function as the Euclidean-distance from the perfect classifica-
tion (A,C) = (1,1) of the calculated average accuracy and completeness of a spe-
cific traffic classification method m € M on a set of flows F containing applica-
tion set A: f(F,M,A) = ming,en{((1,1) — |7}|ZaeA (A% (F),Co (F))), ((1,1) —
ﬁ Y aea (AL (F),Cp (F))), ...}, with the same denomination as in Section 2.1.

Algorithm 3: Automatic Decision Tree Construction function (ADTC)

Input: flows F', Methods M, Applications A

Mmin = f(F7 M7A);

if |M \ muuin| > 0 then

3 Atmp = D(mpin(F));  /* Collect the possible outputs of the input set of
flows F' of method My, */

4 forall a € A_tmp do
5 L F_tmp <+ FNm2

N =

& in i /% Collect the flows of F having output a regarding
method my,,;, into F_tmp */

ADTC(F tmp, M \ mpin, Atmp);

The decision tree construction algorithm can be followed in Algorithm 3. This
is a recursive process, the conventional way as decision tree construction is done for
discrete values. In Step 1 the optimal method out of M with the minimum Euclidean-
distance from the ideal classification is determined for the input set of flows F. The
selected method is saved to m,;,. If the set of remaining methods is not empty
(Step 2) then the possible decisions for the input flows F' of method m,,;, is gathered
to A_tmp in Step 3. The input flow set F'is grouped into several flow sets F'_tmp each
containing one specific decision for the possible application type with m,,;,. A new
automatic decision tree construction iteration is started for these set of flows F'_tmp.

Figure 2.10 shows the constructed decision tree with the automatic decision tree
construction process for the validation trace. (The numbers in the bullets are ids and
have no other meaning.) The first edge from the root towards the 'rate’ node shows
that first all the traffic is clustered via the traffic characteristics based method. Its
result is later grouped into "VoIP’ and 'na’ ("result is not available’) classes which are
further clustered by the 'pa’ (payload based DPI method) and "p2p’ (inter-p2p traffic
classification module). etc. The leaves shows the most frequent application type of
the validation trace for the specific cluster, while the edges going to the leaves show
the percentage of the specific application comparing to the total number of other
applications in that cluster. This ratio is calculated based on the flow number. The
overall average hit ratio of the clusters considering all the applications with equal
weight is 93%.
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Figure 2.10: A part of the constructed decision tree with Automatic Decision Tree
Construction /po — port based classification, pa — payload based classification, se —
server/dedicated port search, p2p — inter p2p communication tagging heuristic, rate
— traffic characteristics based classifier/ (the numbers in the bullets are ids and have
no other meaning)

Note that the most important contribution of the proposed decision tree con-
struction algorithm is the introduced target-function. The decision tree construction
algorithm converges to a locally best decision tree. This is not the globally best deci-
sion tree most likely. All of the possible decision combinations should be evaluated to
achieve a globally best decision. This would be a very processor-intensive and time
consuming solution. One possible approach to speed-up the search and to try out
several locally best solutions choosing the best performing among them is the usage
of random forest algorithms [86].

2.2.6 Validation

We validated the combined traffic classification method with the proposed validation
mechanism in Section 2.1, with the addition that the classification of VoIP applica-
tions has been extended with ideas from [106]. The improvement of both classifica-
tion completeness and accuracy can be observed in all application types. Figure 2.11
shows that e-mail, filetransfer, streaming, secure channel, and gaming traffic has been
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Figure 2.11: The results of the combined classification method compared to the ref-
erence measurement

identified very accurately. This is due to the fact that these applications use well-
documented protocols, open standards, and do not constantly change. In the case of
those protocols which use encryption, the session initiation phase is critical as this
phase can be identified the most accurately. In such common protocols as SSH or
SCP it can be done with full success, however in such proprietary protocols like Skype
the identification fails for several flows.

In the case of classification of P2P applications there are several problems: one
thing to note is that P2P applications created plethora of TCP flows containing 1-
2 SYN packets probably to disconnected peers. This is the primary reason of the
large number of unclassified P2P flows, while the unclassified P2P volume is low. As
there is no payload in these packets, the signature based methods can not work. The
flows are initiated from dynamically allocated source ports towards not well-known
destination ports, thus the port based methods also fail. The server search and P2P
communication heuristic methods (see Section 2.2.3) also fail because there are no
other successful flows to such IPs.

Some small non-P2P flows were also misclassified into the P2P class. Fortunately,
the number of such flows is small both in flow number and byte volume. We real-
ized that the reason behind is the not fully proper content of the port-application
database. Creating too many port-application associations easily results in the rise
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of the misclassification ratio.

The constant change of P2P protocols also causes some inaccuracy in the classi-
fication: there are new features added to P2P clients day-by-day, and their working
mechanism can be typical for a selected client not the whole protocol itself.

Another problem of traffic classification is a matter of philosophy. There is traffic
which is the derivation of other traffic: the simplest case is the DNS traffic which is
the result of any traffic which uses domain names instead of specific IP addresses. For
example, web creates DNS traffic though users do not want to create DNS traffic on
purpose. There are more complicated cases: e.g., MSN uses HT'TP protocol for trans-
mitting chat messages, which do not need to be considered as web. Furthermore, the
MSN client transmits advertisements over HTTP, but this cannot be recognized as
deliberate web browsing. This raises the question whether such HTTP flows from the
MSN application which are classified as web would have to be considered as misclas-
sification, or it is acceptable that they are classified as web. In this comparison, to be
fully objective, only that kind of traffic was considered as hit where the classification
outcome and the generating application type (the validation outcome) agreed. For
example, the chat on the DirectConnect hubs which has been classified as chat could
have been considered as actually correct but in this comparison it was considered as
misclassification.

The high VoIP hit ratio is due to the successful identification of both MSN Mes-
senger and Skype. Skype is difficult to identify: for some of the Skype flows the
problem is the same as in the case of P2P applications, further Skype is a propri-
etary protocol designed to ensure secure communication thus it is difficult to obtain
a good protocol description. However, authors of [106] found a characteristic feature
of Skype: the application sends packets even when there is no ongoing call with an
exact 20 sec interval. In Section 2.2.3, there is a P2P identification heuristic which
was designed to track any message which has a periodicity in packet sending thus the
extension of the original method in Section 2.2.3 for the specific 20 sec periodicity
of Skype was straightforward. The validation showed us the deficiency of the clas-
sification of Skype, thus with a simple extension of the algorithm it became proper
for accurate Skype traffic identification as well. In this way the idea of Section 2.2.3
has been validated as it proved to be robust for the extension with new application
recognition, and also the validation mechanism proved to be useful.

As a summary, Figure 2.12 shows the improvement of both accuracy and complete-
ness of the introduced combined classification comparing to the individual methods
(see Section 2.1.4 for details). The improvement of both of the measures can be
observed in all application types.
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Figure 2.12: The improvement of accuracy and completeness of the introduced com-
bined classification comparing to the individual methods

2.2.7 Application

The method is applicable for analysis of traffic mixture of network traces. Due to
the speed limitation of some applied algorithms the traffic classification can be done
mainly offline.

The presented methods can be used for analysis of traffic mixture of operational
networks. A result of such analysis is given below. The analyzed trace is a three day
long measurement collected in an operational mobile broadband network. Figure 2.13
shows the traffic mix in volume. The types of applications used by subscribers have
a large influence on the network traffic. It can be seen that in the network the web
browsing and P2P application take most of the bandwidth. Due to the fact that
web browsing is downlink dominant, it contributes with fewer amounts to the uplink
direction.

The share of the P2P traffic and the web traffic stays constant during daytime
and the share of the P2P traffic comparing to other traffics grows for the night and
early morning hours. The hours of the growth of P2P traffic volume share coincide
the hours of the growth of the uplink traffic volume share. Apart from the web and
the P2P traffic, there is a considerable amount of streaming traffic. Due to the fact
that the streaming traffic is downlink dominant, it only contributes to the downlink
traffic share. Other applications such as e-mail or FTP give only a few percent of the
total traffic.

Figure 2.14 shows the upload/download traffic ratio over time. The uplink/downlink
volume share shows the ratio of data sent and received by subscribers. The share of
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Figure 2.14: Upstream/downstream profile over time

the uplink traffic stays constant slightly above 1% of the total traffic during daytime
and grows for the night hours. This is the effect of the missing of web application
during night which is downlink dominant, thus its traffic does not contribute to the
downlink traffic at night.

2.3 Summary

In this chapter we introduced a new active measurement method which can help in
the validation of traffic classification methods. The introduced method is a network
driver which can mark the outgoing packets from the clients with an application
specific marking. The main advantages of the new method are that it is based on
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realistic traffic mixtures, and it enables a highly automated and reliable validation of
traffic classification.

With the introduced method we created a measurement and used this to validate
the state of the art traffic classification methods. Examining the results of the different
traffic classification methods, their accuracy varies for different application types.
Basically, none of them can provide a solution that is capable of identifying correctly
all traffic types present in various networks. We have showed the advantages and
drawbacks of the different types of traffic classification methods.

Using this knowledge we introduced a novel traffic classification method. The
novel traffic classification method combines the different traffic classification methods
and introduces a set of new heuristics, aiming at improving both the completeness
and the accuracy of the traffic mixture identification process. The main benefit of
the novel approach from the point of view of operators and administrators is that
the ratio of the unclassified traffic decreases significantly. As another advantage,
the reliability of the classification process improves, since the various methods can
confirm the results of each other. Moreover, the application types can be identified
more specifically, by applying the various methods successively. The proposed traffic
classification mechanism was validated by our introduced validation method. The
traffic classification method has been proved to be working accurately but also some
deficiencies in the classification of P2P applications and Skype has been identified.



Chapter 3

Characteristics of gaming traffic

[J2, J4, J5, C4, C5]

Gaming traffic analysis is important for traffic classification due to its emerging pene-
tration, and for simulator supported server architecture design. Game traffic depends
on two main factors, the game protocol and the gamers’ behavior. Based on popular
real-time multiplayer games in this chapter we investigated the latter factor showing
how a set of typical game phases — e.g., player movement, changes in the environment
— impacts traffic on different observation levels. The nature of human behavior has
such a high impact on traffic characteristics that it influences the traffic both at a
macroscopic — e.g., traffic rate — and at a microscopic — payload content — level. The
role of player activity can be important for modeling status update message intensity
coming from game server while environment changes can imply server exchange.

Increasing online game popularity causes increasing loads on game servers. It
is believed that understanding player behavior can aid in the understood of their
impact on Quality of Service (QoS), network traffic characteristics, and it also helps
in developing efficient protocols and architecture optimization techniques. The design
of an accurate player model for Massively Multiplayer Online Games (MMOGs) makes
it possible for future research to predict and simulate player behavior and population
fluctuations over time. Further it makes it feasible of the evaluation of existing traffic
models and architecture designs.

Obtain player behavior and gaming environment information is difficult. As far
as we know before our work there were no papers dealing with this problem obtaining
this information from Massively Multiplayer Online Role Playing Game (MMORPG)
traffic based on non-intrusive measurements. Other works modify the game itself, turn
on some client side logging which is later collected or reverse engineer the protocol

40
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messages and parse the packets. Our traffic characteristics based method can be
applied for a wide range of games as it is protocol format independent, it builds on
the common traffic characteristics of this game genre.

Emerging Massively Multiplayer Online Real Time Strategy games (MMORTS)
require complex game server architecture to make the transmission of the state in-
formation of a huge number of units generated by a lot of players feasible. This
architecture design is supported by network traffic simulations based on the accurate
characterization of player behavior [125]. However, these characteristics of player be-
havior in Real Time Strategy (RTS) games have not been investigated yet, thus, this
is the main motivation of this work. In particular, we introduce a method that can
identify the war periods in real-time strategy game sessions based on non-intrusive
measurements thus, it is possible to analyze a vast number of game plays.

3.1 User behavior detection algorithm for MMORPG
traffic [J2, J4, J5, C4]

In [82] Fernandes et al. showed what happens when an avatar performs different
actions in the virtual world, at different places and under different network condi-
tions. Our work extends the investigation of gaming traffic of [82] in the function of
time gaining information about gaming environments, further we redefine the player
activity applied in [68] to gain information about player behavior. Our work aims
at deriving detailed character movement and gaming environment information as
e.g., [82] but obtaining this information from non-intrusive measurements without
the requirement of the detailed knowledge of the whole protocol as in e.g., [115] or
[99].

This chapter discusses in details how player movement and gaming environment
changes affect the traffic characteristics at a macroscopic level. Detection of player
actions would make it possible to answer such interesting questions as e.g., whether
the self-similar property of human behavior appears in the traffic as well due to
the player actions. We need a method to collect the necessary statistics on player
actions from data sources containing bulk information. As there are a number of
different games with proprietary protocols, a deep packet inspection method is not
generally applicable. A statistical method would be desirable as it is general and
works for even new upcoming games as well. It would make it feasible to analyze vast
number of gaming sessions in non-intrusive measurements obtained at high network
aggregation level. In current literature there is no such method which can collect the
necessary statistics, thus, we propose a method which builds on heuristics to deduce
the movement or idle state of the player and its surrounding area conditions from
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passive measurements.

We observed the internal structure of the network traffic when the player is in
moving or stalling state and the environment around him when it is crowded with
other players or deserted. This observation has been examined and validated with
several methods. It was found that even if a heuristic method based on statistical
properties of the traffic has several fallbacks it can be applied on the recognition
of game states with high hit ratio. The proposed method was thoroughly validated
on network traffic of World of Warcraft [38] and Silkroad Online [54]. It was also
tested on Guild Wars [51], Eve Online [47] and Star Wars Galaxies [49] to check how
generally applicable the method is. Although this list does not contain every possible
MMORPGs but we argue that the observed traffic characteristics are common among
MMORPGs, thus the proposed player state detection method may be applicable for
most MMORPGs.

We examined the similarity of ingame player and real world human behavior. It
cannot be expected that the two environments would completely be the same, but
some properties which were found earlier in connection with human activities are
expected to appear in the gaming environment as well.

3.1.1 Related work

Recent research of networked games focuses on modeling low time-scale characteris-
tics, such as packet inter-arrival times and packet sizes, to develop efficient control
methods of network traffic and optimally utilize gaming servers. Since the popularity
of multiplayer online games rapidly increases there is an urgent need to develop more
realistic traffic models.

Recent MMORPGs follows historically after First Person Shooter (FPS) games.
They are close to each other in gaming experience and server status update mecha-
nisms. Claypool et al. [71] discovered the dependence of server traffic bandwidth on
ingame events. In their later work [62] they managed to refine their measurements
and divided UT2003 [46] into the fundamental user interaction components of move-
ment and shooting, sub-dividing movement up into simple and complex movement,
and sub-dividing shooting based on the precision of the weapons being shot. In [112],
Svoboda et al. created a traffic model differentiating game-states focusing on such
problems which will be critical to networks with shared resources. Basically they dif-
ferentiated active and idle game periods which are related to the problem of proper
radio resource allocation. Cricenti et al. [72] condensed the result of ingame events
as a correlation in packet sizes of Quaked [53] traffic. They proposed an ARMA(1,1)
model to capture the time series behavior of the gaming traffic. In [115] Tan et al. pro-
posed the Networked Game Mobility Model (NGMM), for synthesizing mobility in
FPS networked games. NGMM utilizes application level aspects of networked game
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traces to statistically model FPS games.

Today a large part of the gaming traffic is generated by MMORPGs, thus several
works dealing with this type of traffic appeared. In [94] Kim et al. analyzed Lineage II.
It was one of the world’s largest MMORPGs in terms of the number of concurrent
users at that time. They found that the bandwidth usage of the server traffic is about
ten times larger than the client traffic. This asymmetry is due to the fact that the
server transmits all the information to construct the visual environment for the clients
in the same region.

Kim et al. [107] provided the first look onto player behavior analysis through a
measurement study on World of Warcraft [38]. Their goal was to answer the following
questions: how does the population of the virtual world change over time, how are
players distributed in the virtual world and how do they move in the virtual world.
They found that player distribution appears to occur on a power-law distribution,
and players move to only a small number of zones during each playing session. In
particular, certain locations which have rare equipments tend to be popular places to
visit. Further, large cities which have a wide range of services also tend to be popular.
Thus, players will tend to congregate in popular locations.

In [82] Fernandes et al. showed what happens when an avatar performs different
actions in the virtual world, at different places and under different network condi-
tions. The Second Life [48] client makes intensive use of network resources. They
identified the reasons of high bandwidth consumption e.g., ingame music, numerous
unique character clothes, etc. deriving from several game servers. Liang et al. [99] col-
lected mobility traces of 80k avatars spanning more than 20 regions over two months
in Second Life. They analyzed the traces to characterize the dynamics of the avatars
mobility and behavior. They extracted character position information by parsing
update packets from the servers. They discussed the implications of their findings
in connection with the design of peer-to-peer networked virtual environments, mobil-
ity modeling of avatars. Their measurements suggest that a hybrid mobility model
that incorporates both random way-point mobility model (for outdoor) and pathway
mobility model (for indoor) would be suitable.

Chen et al. [68] found that the characteristic features of MMORPGs are the strong
periodicity, temporal locality, irregularity, and self-similarity. The self-similarity prop-
erty was explained by the existence of a hidden on-off process according to the authors.
Their hypothesis was that on-off periods are due to the player active and idle periods.
They defined a player active if the player sends packets above a threshold and idle
if the packet sending rate of the player is below a threshold. Authors of [69] found
that MMORPG bots traffic is distinguishable from human players by the regularity
in the release time of client commands, the trend and magnitude of traffic burstiness
in multiple time scales, and the sensitivity to network conditions.

Our work can extend the above studies with several aspects. [69] provided us with
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the proof that human behavior is present in the network traces at macroscopic level.
We argue that the self-similarity property of the gaming traffic, which was found in
[68] and was modeled with an on-off model does not fit due to the impact of human
behavior. In this work we show that player behavior in the MMORPG traffic has
Long-Range Dependence (LRD)! properties. [68] hints that the traffic rate changes
of the game may be due to player actions, but the detection heuristic has not been
validated and is not precise as will be shown later in this section.

Our work extends the investigation of gaming traffic of [82] in the function of
time gaining information about gaming environments, further we redefine the player
activity applied in [68] to gain information about player behavior. Our work aims
at deriving detailed character movement and gaming environment information as
e.g., [82] but obtaining this information from non-intrusive measurements without
the requirement of the detailed knowledge of the whole protocol as in e.g., [115] or
[99].

3.1.2 The proposed user behavior analysis method

We introduce methods for user behavior analysis in this section. Our constructed
methods are based on the analysis of active measurements. In the term active mea-
surement we mean that we measured the traffic on the client side generated by a
player, thus the user actions can be controlled. Chen et al. [68] studied game traffic
characteristics with the help of power spectrum diagrams to reveal periodicity in the
traffic. However, the power spectrum does not grab the characteristics of the traffic
in the function of time. We decided to apply wavelet analysis [101] on the MMORPG
traffic to exploit the following features: (a) one major advantage afforded by wavelets
over power spectrum analysis is the ability to perform local analysis, (b) the other
advantage is the capability of revealing aspects of data like trends, breakdown points
and discontinuities in higher derivatives.

We created several active measurements in a controlled environment by capturing
the generated network traffic of World of Warcraft [38] and Silkroad Online [54] and
manually log the time of the different states of the player. After the measurement, we
compared network characteristics and the ingame activity of the player. Examples
from this experiment are shown in Figure 3.1 and Figure 3.2. The figures depict the
bandwidth characteristics of the traffic coming from the server in the function of time.
The two games have similar characteristics though World of Warcraft has about the
twice the network bandwidth consumption as Silkroad. Observations on the traffic
characteristics could be made in connection with player activity and the environment

!Practical meaning: the rate of decay of statistical dependence in a time series is slower than an
exponential decay. See [63] for details.
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changes:

e Moving/Stalling: The player moving actions imply constant location changes,
which implies constant update of the environment information around the player.
The player moves on areas with refreshed state and with obsolete information,
thus update information occurs intensely but with variable frequency. During
stalling, the state update regularity is independent from the player and syn-
chronized by the server with more regularity. Our observation was that the
character movements increase the noise in the traffic rate time series.

e [nside/outside city: The density of the gaming environment of other players
influences the number of independent actions which need state update at the
player in their vicinity. Entering to a crowded environment induce a level-shift
upward in the traffic rate, while leaving it results in a level-shift downward.
Note that ’city’ naming convention refers to the observation that the densely
populated areas are usually in a city in the gaming environment, however it
refers to any densely populated area.

To grab both of these characteristics in time we used wavelet decomposition (see
Algorithm 4 for the Matlab [39] skeleton code of the algorithm in details):

e Reconstruction of the signal from the low frequency component gives hint about
the gaming environment (densely populated city/extinct desert)

e The high frequency component gives hint about user activity (stall/run)

In Figure 3.3 the wavelet decomposition of the traffic presented in Figure 3.1 can be
seen. It can be noted that the moving and stalling states are well-distinguishable on
the high-frequency component: in case of moving, it becomes noisier. The environ-
ment changes can be well-tracked on the low-frequency component.

To improve the accuracy of the method we extended the wavelet decomposition
with a state-machine which follows the changes in the environment. It tracks whether
the player is inside city or outside city and does not let sudden changes in the environ-
ment if temporal transients occur in either of the frequency components. Figure 3.4
shows the defined states and state transmissions in the proposed detection algorithm.
The skeleton code follows these states and state transitions. The high frequency com-
ponent change makes a state transition between stalling and moving, while the low
frequency component change results in a state transition between the environments.
The environment change is only possible with the player moving. This model lacks
the possible state transition between stalling in and outside the city. This could occur
when a player uses teleport. In this case the state machine gets into the proper state
in a few additional steps, but keeps the false state hit ratio low.
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Algorithm 4: MMORPG state recognition algorithm
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Input: rate
Output: out
nx = length(ina); out = zeros(size(ina));
[C5,L5]=wavedec(ina,5,’db1’);A5 = wrcoef(’a’,C5,L5,’db1’,5);
[C1,L1]=wavedec(ina,1,’db1’);A1 = wrcoef(’d’,C1,L1,’db1’,1);
medF=mean(abs(A1l));maxF=max(Al);
phase_length=30 /depends on the wrcoef paratmeteres/;
state=0 /init=stalling, just where?/;
if (abs(A5(1)-min(A5)) < abs(A5(1)-maxz(A5))) then

L state=4;

else

L state=2;
for i=2:nz, do
frek_min=abs(abs(A1(i))-0);
frek_max=abs(abs(A1(i))-medF);

if (state==4) AND (frek-maz<frek-min) then
L state=3 /stalled outside, started to move/;

else if (state==2) AND (frek_-maz<frek-min) then
L state=1;

else if (state==3) AND (frek-min< frek_-maz) then
L state=4 /stalled and started/;

else if (state==1) AND (frek-min<frek-maz) then
L state=2;

if (state==1) AND (A5(1)<A5(i-1) AND p<0.5) then
L state=3 /it moved out to the desert/;

else if (state==3) AND (A5(i)>A5(i-1) AND p>0.5) then
L state=1;

out(i)=state;

p=polyfit([1:phase_length*3],ina(i-phase_length:i+-phase_length),1);
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[ Difference “ 0 [ 1 [ 2 [ 3 ]
Manual logging 4% | 14% | 8% | 4%
Video processing || 68% | 19% | 10% | 3%

Table 3.1: The difference of the MMORPG state recognition algorithm and the
ingame video processing algorithm

The algorithm was constructed to adapt to the analyzed traffic, thus, no fix thresh-
olds regarding the typical bandwidth have to be set. The advantage of this feature is
that any MMORPG game traffic can be analyzed without previous parameter tuning.

It is important to note that the method is independent of the packet directions.
We analyzed the server traffic in this section, but due to the per packet TCP ACKs,
the client traffic is correlated to the server traffic. Thus client traffic also shows the
presented traffic dynamics, though on a lower level. The advantage of server derived
traffic is that its characteristics are more determined: the server is programmed to
update player state in a designed manner that is less influenced by random network
effects. The client-server traffic considering together can also fit into the presented
algorithms.

3.1.3 Validation

We collected and examined 9 hours of MMORPG traffic (World of Warcraft [38]
and Silkroad Online [54]) for the validation phase. The validation of the proposed
method has been performed in several steps. In the first step we created several
active measurements in a controlled environment by capturing the generated network
traffic of the game at the client side and manually log the time of the different states of
the player. After the measurement, the proposed method was applied on the network
traces, and the states which were indicated by the proposed method and the logged
states were compared. A state is the estimated action of the character in a given
environment in a 10 sec period. The definition of the states and their values are
showed in Figure 3.4. In Table 3.1, the 'manual logging’ titled row shows that in
this phase of the validation 74% of the states were exactly recognized and 14% of the
states were missed with a nearby state. Nearby state means that the state can be
reached within one state transition.

Second, we focused on Silkroad Online and World of Warcraft to check the ac-
curacy of the method thoroughly and in bulk measurement in an automated way.
The following different methods can be collected to create game play logs:

e Capture network traffic, and parse the protocol e.g., [115]. Our aim was to ana-
lyze wide-spread MMORPGs. In the case of MMORPGs, the wide-spread ones
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Figure 3.5: Analysis of a Silkroad ingame video

are all commercial games meaning that the protocols are proprietary and prac-
tically reverse engineering and complete reimplementation of the game server
would be required to catch the ingame events.

e Use ingame scripting languages e.g., [107]. There is no wide-spread ingame
scripting language which is supported by most of the MMORPGs. This is
not a general applicable method to analyze several MMORPGs with the same
technique.

e Use key and mouse movement loggers. The advantage of this method is its
completely game independence. On the other hand it is difficult to track the
ingame events with this technique as the key and mouse events can refer to other
commands than character movement. Therefore a complex parsing mechanism
would be required to find out the player actions. Further it is unfeasible to
extract the ingame environment from the key and mouse logs.

e We decided to capture ingame video. The ingame video provides straightforward
information about the character movement and the surrounding environment
of the player. This technique is game independent and the required code to
extract the necessary information is simple. One drawback of this method is
that neither space nor processor efficient as the live measurement generates huge
video files that have to be processed later.

Several measurements were taken in Silkroad Online and World of Warcraft by
capturing the network traffic and the ingame video during game play. The recorded
video files were processed by a heuristic algorithm to create automatically player
action and game environment logs to replace the manual work for bulk measurements.
Our ingame video analysis code and an example ingame video can be found at [41].

The heuristic algorithm grabs the characteristics of the ingame screens of both the
environment and the moving activity. As an example outside the city, the characters
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march through grassy fields and forests where majority of the pixels has green color
or a gradient of green. Our prototype implementation counts the number of greenish
pixels of every frame of the recorded ingame video file. (We are aware of that the
implementation is not completely general in its current status, as e.g., a desert area
where the environment is not greenish would mislead the algorithm. With a more
complex color processing mechanism, our idea would be not restricted to specific
gaming environments.) The ratio of the greenish pixels can be seen in the function of
time in Figure 3.5. We used the HSL color space (hue, saturation, lightness) to check
if a pixel is greenish. HSL color space makes it possible to test whether the color
falls into a given hue range, but its saturation and lightness can take different values
which is due to e.g., the day/night visual effect in the games. Figure 3.5 shows that as
the character started inside the city with running around for 15 min, the green pixels
ratio—the green and non-green pixels ratio on a given screenshot—is low and remains
low for that period even if small fluctuations occurred. As the character stops, the
green pixel ratio remains relatively constant. After the 30" minute the player leaves
the city and there is a significant rise of the green pixel ratio as in enters to the
nature. The varying number of trees, grassy fields, roads, monsters, etc. results in
fluctuations in the green pixel ratio, but the mean value remains high.

The player activity — whether player stalls or runs — is tracked by the comparison
of the pixels around the legs of the player in two neighboring frames. The ratio of
the differing pixels is low in case of stalling and high in case of moving. Figure 3.5
shows that in the first 15 minutes the character was running around, thus this ratio
remained high. As the player stopped the ratio dropped and the mean of this value
remained low during stalling. The above two metrics make it possible to track the
activity of players and the game environments by creating simple limits. It is evident
from the results that as the metrics can temporary fluctuate, it is advisable to smooth
them e.g., by calculating their sliding mean value.

In Table 3.1 video processing’ titled row shows that 68% of the states were iden-
tified exactly and 19% of the states were missed by a nearby state. The validation
showed that the algorithm misses mainly the city/outskirts transitions. It is clear
that the term city is not perfectly proper as the buildings in the city and walls are
just visual effects, thus the high bandwidth is in connection with the densely pop-
ulated areas not the exact location if it is inside the city or not. It would be also
possible to analyze the client generated traffic to aid in state recognition. This can
be a task of further work.

In the third phase of the validation process, we created several active measure-
ment traces of the following MMORPG games beside World of Warcraft [38] and
Silkroad Online [54]: Guild Wars [51], Eve Online [47] and Star Wars Galaxies [49] to
check how generally applicable the method is. We found that the method performs
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well in cases where the player population is high and the character actions gener-
ate considerable traffic. This states well for World of Warcraft, Silkroad Online, Star
Wars Galaxies and Guild Wars as well. In the case of Guild Wars one can ask whether
the method is affected by the game rule that leaving a city results in that only the
members of the guild and the non-player-characters remains around the player. We
measured that the traffic characteristics does not alter considerably. Our algorithm
is inaccurate in the case of Eve Online and the explanation for this needs further
investigation. We observed low traffic rate in our traces which makes it difficult to
differentiate between the states.

3.1.4 Application

The method can provide network simulators with player behavior parameters. The
LRD property of the gaming traffic was revealed and it was also showed that the
popular explanation for the presence of Long-Range Dependence (LRD) by heavy-
tailed player behavior periods [68] cannot be held. Barabdsi [60] showed that the
human activity patterns display bursty dynamics with interevent times following a
heavy-tailed distribution. Crovella [74] showed that self-similar property of network
traffic is caused by user 'think time’. In this section we show that human behavior
can result in a non-heavy-tailed but strong-correlated process causing the same LRD
effect.

We measured the network traffic of an operational third generation (3G) mobile
broadband network. The measurement point was a middle-point interface, containing
the subscribers outgoing and incoming traffic. Current 3G networks are fully capable
of supporting broadband applications e.g., P2P, VoIP, gaming, streaming, etc. having
the measured average RTT in [52], [59] far below 1250 msec which was measured to
provide acceptable user experience in MMORPGs [83]. These applications exist in 3G
mobile environment as it was shown in [C2]. We preprocessed the measurement with
filtering out the MMORPG traffic from the total traffic with the method introduced
in [C1]. Then we analyzed the filtered traffic with the methods presented in the
previous sections. The examined traffic is a three-day-long passive measurement,
which contained about 200 World of Warcraft flows and 100 other MMORPG flows.

In Figure 3.6 we can see the cumulative distribution function of the duration of
filtered MMORPG traffic. It can be seen that though the average game length is
about 90 minutes, we can find even 5-hour-long games. It is interesting to compare
the session durations to e.g., [107] where authors found that 50% of the population
remains online for 10 minutes or less. Their hypothesis was that players login to see
if other friends or guild members are online and then leaving if not. Probably our
measured player population was more determined to play and stay ingame.

Table 3.2 shows the ratio of time spent in different states in MMORPGs in the
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Figure 3.6: Distribution of the duration of filtered MMORPGs

WoW MMORPG
<1h (%) [ >1h (%) | <1h (%) [ > 1h (%)
City run 23 20 19 19
City stall 35 42 29 35
Out run 30 27 25 30
Out stall 12 11 27 16

Table 3.2: The ratio of total time spent in a specific state by the players

case of the flows less than one-hour-long and more than one-hour-long. With this
differentiation it is possible to check if longer MMORPG sessions are the consequence
of longer "away from computer’ status of the players. We found that the state ratio do
not significantly altered which means that these players take some rest during game
play but remain active in most of the time. A possible explanation of the high ratio
of stalling state can be explained by the socialization activity of players according to
[50]. [50] says that a major part of the players like to use MMORPGs to chat and
catch up with friends and not only play.

We intended to compare the observed player behavior characteristics in the gaming
environment with real world data. Chen et al. [68] suggested that gaming traffic has
Long-Range Dependence (LRD) and possibly self-similar property. They constructed
an on-off model for the traffic and their hypothesis was that it may fit due to the
impact of human behavior with the changes of active and idle states of the players.
We argue that to unfold the origin of LRD property of the traffic is a difficult and
often impossible task [74]. LRD property can be the result of a superposition of
heavy-tailed on-off periods [122], TCP propagation property [118], the competition
of TCP sources but it may also be caused as an artifact by non-stationarity.

Figure 3.7(a) shows the sojourn time? ccdf of the moving and stalling periods in
Wow traffic. It can be seen that the ccdf resembles to an exponential distribution,

2The amount of time the player remains in the same state
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meaning that the distribution is not heavy-tailed. This excludes the explanation that
the LRD property is the result of the heavy-tailed distributions of the movement state
durations.

On the other hand, we checked the autocorrelation function of the time series of
the states and it was found that the decrease of the correlation vs the lag is slow
resulting in strong autocorrelation. Cross-checking this statement, we reconstructed
the analysis performed in [68] by examining the time-series of the states in the func-
tion of time with the R/S plot [63] method. This time-series is such abstraction of
the original traffic in which every effect — e.g., transport layer characteristics: TCP
properties, packet sending rate, packet size — is eliminated and let us focus on the
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state change events of the player. Chen et al. in [68] performed similar analysis except
that they defined a player active if the player sends packets above a threshold and idle
if the packet sending rate of the player is below a threshold. This property was found
to occur due to the environment changes in our experiments. In our analysis we used
our more sophisticated state definition. Figure 3.7(b) shows examples of the R/S plot
of several WoW time-series constructed by the analysis of the filtered WoW traffic
with our proposed method. The R/S plots also support the high correlation property
of the time-series of the player states. The estimated H-parameter distribution for all
the filtered and analyzed WoW traffic can be seen in Figure 3.7(c) with an average
of 0.89.

3.2 Battle event detection in RTS games [C5]

Current wide-spread Massively Multiplayer Online Games (MMOGs) are implemented
mainly as heavily centralized client-server architecture. However, this architecture has
several limitations like poor scalability. To overcome such drawbacks an intensive re-
search has been initiated to focus on more decentralized or even peer-to-peer support
systems.

In case of MMOGs a single game server cannot handle all game events efficiently,
requiring the world to be divided into several smaller parts which are served by a
cluster of game servers [125]. In case of Massively Multiplayer Online Role Playing
Games (MMORPGs) it is a straightforward approach as the player can only be at
one place at a time. Player movement across territory boundaries is handled by the
handover of the player instance between the different gaming servers.

Providing Real Time Strategy (RTS) game service to a high number of simultane-
ous players (MMORTS) causes the problem of server load balancing becoming even
more complex. The player can manage hundreds of units spread across the virtual
world. It is inefficient to transmit all the information around every single unit of the
player. Cecin et al. [66] propose to obtain up-to-date data from the server only in
those cases when the player is actually concentrating on the specific territory. The
ingame events on the surrounding area of the left-alone units are simulated. The
authors argued that the economy, military build-up and combat related tasks are
following each other therefore, information about the duration of these tasks is vital
to make efficient network traffic simulations possible. In [66] Cecin et al. argued that
there had not been such published work yet thus, they applied guessed parameters
based on their own gaming experiences. The motivation of our work is to find effi-
cient methods to extract this necessary information for MMORTS player and network
simulation. Therefore, we believe that our results contribute to establishing a solid
base for the architecture design of upcoming MMORTS games.
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This chapter focuses on the issue to establish the possibility to answer the above
questions. We need a method to collect the necessary statistics from data sources
containing bulk information. In some papers authors use game server logs (Lee et
al. [97], Feng et al. [81]) as an input for further analysis. In RTS games any player can
be the candidate to host the game server thus logs should be collected from plenty
of end users which makes this approach less feasible. Another possible approach is
to monitor the network traffic. As there is a number of different games e.g., a deep
packet inspection method is not generally applicable as it would be valid for only one
specific game. A statistical method would be desirable as it is general and works for
even new upcoming games as well. It would make it feasible to analyze vast number of
gaming sessions in non-intrusive measurements obtained at high network aggregation
level.

In current literature there is no such method which can collect the necessary
statistics thus we propose a method which builds on heuristics to deduce the battle
events from passive measurements. We observed the internal structure of the network
traffic when the forces are collected and sent into battle and also when the battle is
over. This observation has been examined and validated with several methods and
found that even if a heuristic method based on statistical properties of the traffic has
several fallbacks it can be applied on the recognition of battles with high hit ratio.

3.2.1 Related work

In [71] and [70], Claypool showed that RTS games traffic rate is influenced by the
number of players. They argued that there are exact level shifts in the bandwidth
in case of various numbers of players. The analysis of the effects of player behavior
on the traffic characteristics of RTS games are currently missing. In this section we
show that there are other effects than player number which can be discovered in the

network traffic of RT'S games. (For further related work in multiplayer games see
Section 3.1.1.)

3.2.2 Impact of war on traffic characteristics

Current client-server gaming environments works by clients sending information about
the actions of its own player. The server assembles and distributes this information to
make each client determine the state of the gaming environment. Each machine with
identical set of information could process the data on its own and the environment
would appear exactly the same for every player. In case of First Person Shooter (FPS)
games or MMORPGs the number of commands a player can issue is similar during
the whole game (apart from that in case of improving the capabilities of the character
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Figure 3.8: Cossacks measurement traffic intensity (packets/10 sec)

the player has a wider variety of choices).

In this section we will show that in case of RTS games, the number of commands
the network has to transmit is in parallel with the number of units the user can
manage. On the other hand, the number of commandable units is in connection with
the state of the player’s economy. A good example for how these factors influence
the network traffic rate can be examined in the case of battles. Cossacks [6] was
chosen for traffic analysis because it operates with grand armies containing several
hundred units. We created a packet capture and the ingame video was recorded in
parallel. Later the actions during game play and the packet rate were correlated. The
battles can take several minutes long and during this time, the user manages the unit
formations, attacks or withdraws and during the battle the player will lose most of
the units. It was expected to see these effects in game traffic.

Figure 3.8 shows that on 10 sec timescales, mainly the gamer actions and the game
world status (the players built-up economy, army) defines the structure of the traffic
rate function. During peace time the players can not attack each other, thus they
only build economy. However, the initial phase of the game has several falls in the
traffic, which is the result of the lack of resources of the players during game play and
can not do anything but wait for the finish of the construction of a building. During
the game play progression the players establish a stable economy and the network
traffic becomes smooth.

The battles result in typical changes in the gaming traffic. In the initial phase of
the battle, the armies are collected and the units are marched to the front line which
generates a local peak in the traffic rate. During the battle, as the units die, the
traffic falls parallel. The biggest traffic rate fall occurs in the case of the final battle
when the army of one of the players is fully destroyed. After the battle the winner
player occupies the loser’s city with its surviving army. This implies low-rate traffic.
The game soon ends and the collected statistics of the game play are sent, resulting
in a higher traffic rate again. Comparing the reconstruction phase of the game when
no battles but rebuilding of the economy takes place, there are no falls or peaks in
game traffic.
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3.2.3 Detection of war

Summarizing our findings in the previous section, the battles in the traffic rate of
Cossacks induce an increase in the beginning of the battle due to the collection of
available forces. The end of the battle induces a fall in traffic rate due to the mass
losses in commandable units. This raises the question how general the problem is.
The battle in an RTS game means a local peak in the traffic rate, then a decreasing
trend ending with local minima.

Algorithm 5: RTS battle recognition algorithm

Input: rate, time-window: N

Output: out

nx = length(rate); m = N/2;

xv= (1: 1: length(rate))’;

allmean=mean(rate); for i=1:nz do

if (1—m)>=1) & ((i+m) <=nz) then

p = polyfit(xv(i-m:i+m),rate(i-m:i+m),1);
f = polyval(p,xv(i-m:i+m));
varianceV (i)=var(rate(i-m:i+m)-f);
meanV (i)=mean(rate(i-m:i+m));
out(i) = p(1);

© OO N

10 varianceAvg = slidingavg(varianceV, N) /sliding average calculation/;
11 meanAvg = slidingavg(meanV-allmean, N);

12 outAvg = slidingavg(out, N);

13 outvar = slidingvar(out+min(out), N) /sliding variance calculation/;
14 varmin = maxima(-varianceAvg) /select local minimas/;

15 meanmax = maxima(meanAvg) /select local maximas/;

16 outmin = maxima(-outAvg) /select local minimas/;

17 for i=1:length(outmin) do

18 findsl = find(abs((outmin(i) - varmin) < N));

19 findsl1size = size(findsl);

20 if findslsize(1) > 0 & outvar(i) > 0.02 then

21 finds2 = find((abs(outmin(i)-meanmax) < N));
22 finds2size = size(finds2);

23 if finds2size(1) > 0 then

24 L newout(outmin(i)) = 100 /mark battle/;

To grab these specific characteristics we calculated a linear regression in a sliding
window for the traffic rate of the server (see Algorithm 5 for the Matlab [39] skeleton
code of the algorithm in details). The indicators of the battle are the following
properties:

e [s there a slope? — Local minima in the gradient (p;): We searched the coef-
ficients of a polynomial p(z) of first degree that fits the data, p(x(i)) to y(i),
in the least squares sense. x(i),7 = n..n + k stands for the examined time in-
terval where n is the start of the examined time interval, and k is the length
of the sliding window; y(i) is the traffic rate in the i** time. The result 7 of



o8

100H regression —
—— regressionvar /|
mean .
— —variance / i
501 -+ battle I

H H / - 3

0 A ; -
.50 / : \ i / ! 1 [ 1 ! 1 1 AN

0 50 100 150 200 250 300 350 400 450

time (10x sec)

Figure 3.9: Analysis of Cossacks traffic and the effect of battles during gameplay
/battles are indicated with the vertical poles/

p(r) = p1x + po is a row vector of two-unit-long containing the polynomial
coefficients in descending powers.

e [s there an increase in the rate? — Local maxima in the mean rate of the traffic
in the sliding window

e Does the linear fit well? — Local minima in the variance of the difference between
the fitted polynomial and original time series: min{|y(i) — p(z)|},i = n.n+ k

e [s there a unusual jump in the rate? — The standardized variance of the gradient
is above a limit: 6{piz} > c,i=n..n+k

In Figure 3.9 the analysis of the traffic of Figure 3.8 can be seen. It can be noted
that at about 2300 sec there are two local minimas of the gradient function: local
minima in the variance of the difference between the fitted polynomial and original
time series and local maxima of the mean packet rate. The gradient variance has local
maxima at about 2100 s. The effects do not occur in the same time and the sliding
window shifts them away from each other and this has to be tolerated. We checked
the constellation of all the positive occurrences of the properties in the length of the
sliding window range, which was chosen to 30 time-unit (30x10sec).

3.2.4 Validation of war detection

During the validation we focused on the validation of the accuracy of the algorithm.
With the validation such special cases can be revealed when the proposed algorithm
makes mistakes. With the validation it is also possible to reveal how generally appli-
cable is the proposed algorithm. The validation is difficult due to several reasons: the
games can not be modified and extended to be capable of different logging activities
and a mass number and wide variety of logged gaming activity from different players
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is difficult to obtain. In order to overcome these difficulties the validation of the
proposed method has been performed in several steps.

In the first step we created several active measurements in a controlled envi-
ronment by capturing the generated network traffic of the game and manually log
the time of the battles. After the measurement the proposed method was applied
on the network traces. The battles which were indicated by the proposed method
and the logged battle events were compared. Overlapping periods of battle periods
in the validation and the results of the algorithm are regarded as true positives. In
the validation phase 15 hours of RTS gaming traffic were collected and examined.
In this phase of the validation 33 out of 36 battles (92%) were detected and 3 (8%)
of the indicated battles were false positive. As this phase of the validation showed
promising results we extended the validation process to be able to validate with more
samples.

In the second step of the validation process we introduced an automatic method
to quantify the size of the battles and to recognize battles automatically not only from
the network traffic but from the game itself. It became clear that during gameplay
it is not straightforward how a battle is characterized, in other words which events
should be considered as battles: there are several cases when the units fire at each
other, when players send scouts and they are caught, but these events are not huge
battles just small conflicts. Our goal was to quantify the size of battles and this was
done in the following way: the program structure of the Cossacks was examined and
we managed to locate the list of sound effects of the game. All but unit dying effects
were removed from the game to get rid of the e.g., unit control and management
sounds. During play, beside the network traffic capture, the ingame sounds were
recorded, which only contained the unit loss sounds due to our modification. The
unit loss sounds are characteristic feature of a battle, furthermore, the power of the
mixed sounds — as there can be more unit loss parallel — and how frequently these
sounds occurred shows the size of the battle. The considerable size of the battle can
be tracked by a simple limit on the power of the audio. As an example in Figure 3.10
the recorded audio and the calculated power levels of the same Cossacks gameplay of
Figure 3.8 can be seen.

We created several measurements with Cossacks, but to examine how generally
the method is applicable we extended the validation for different games. We used
Spring [34] to validate thoroughly the proposed method in bulk measurements in
which case the traffic is generated by different players. The extraction of the sound
effect files was also possible in Spring thus the record of the sound effects was possible.
To obtain bulk measurements we used [32] which is a collection of replay files of the
game. Replays are automatically recorded for every game in Spring and the players
are able to upload the interesting games to [32]. During the watching of the replay
the original game is practically replayed with its sounds and as it is possible to host
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Figure 3.10: The recorded audio and the calculated power levels of the same Cossacks
gameplay of Figure 3.8

the replay for others to join to see, thus the network traffic is also replayed. In this
phase of the validation 33 out of 38 battles (87%) were detected and 4 (11%) indicated
battles were false positives.

What we learned. 1t is clear from the validation that our proposed algorithm
makes mistakes sometimes, thus such events as e.g., the loss of the scouts is hardly
ever detected. It was experienced that the reason for the mistakes is that a significant
number of units has to be commanded and lost during a battle to make the method
capable of detecting the battle event. In Figure 3.11 the cdf of the power level of
the audio of all the battles in the RTS measurements comparing to the power level
of the audio of recognized battles can be seen. As the cdf plot of the power level
of the recognized battles are under the cdf plot of the power level of all the battles
occurred in the game it is clear that the proposed algorithm can mainly identify the
big battles.

The other aspect which would cause the algorithm to make mistakes is such a play
style which neglects the management of the army. Our method builds upon the signif-
icant effects of the micromanagement in the game. The lack of the micromanagement
activity would result in smooth game traffic. The high detection ratio showed us that
the existence of big battles and intensive micromanagement is a realistic precondition
in the RTS games.

In the third step of the validation process it would be important to examine how
the proposed method is applicable in general. We collected some traces from [15]
and also created active measurements from several other games from the RTS genre.
Cossacks [6], TA Spring [34], Warcraft 3 [15], Command & Conquer Generals [15],
C&C 3 [3], Age of Mythology [15], Starcraft [15] were also examined. The bigger the
armies in a given game, the more confident the method is in finding the battles. The
main battles were found in all of the enumerated games by the method, but certainly
not all smaller scaled confrontations. One exception is Starcraft, where the proposed
method does not work as it has unique game traffic characteristics among the RTS
games in the sense that its traffic is similar to an FPS game, thus the battles and
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environment do not affect the rate. We are aware that in spite of the fact that the
method works in most cases, this examination could be made more complete which
can be the be the subject of further work.

3.2.5 Application — Comparison with real wars

A straightforward idea is to use parameters for player behavior simulations obtained
from real world. We found that a possible candidate of an important simulation
parameter is the battle length of the gaming world. We used this parameter and
compared it to real world data.

We filtered out the gaming traffic from the total traffic of an operational broadband
network with the method introduced in [C1] and analyzed the filtered traffic with the
methods presented in the previous sections. The examined traffic is a three-day-long
passive measurement, which contained about 20 Warcraft 3 flows and 30 other RTS
flows (e.g., [6], [3], etc.) containing 296 battles total. In this section we discuss one
of the examinable parameters as an example. The questions which can be raised and
answered from the revealed data is not restricted to these parameters of course.

In Figure 3.12 the distribution of battle lengths in RTS games can be seen. The
short duration battles dominate the datasets for the Warcraft 3 games. In other
RTS games the distribution is more scattered along the different time lengths. We
compared the characteristics of the observed RTS games to real world data. We
obtained the data about the war activities of the real world from the Correlates
of War project [108]. The homepage of the Correlates of War project [5] seeks to
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facilitate the collection, dissemination, and use of accurate and reliable quantitative
data in international relations. We used the inter-state and intra-state dataset, which
identifies interstate and intrastate wars and their participants between 1816 and 1997.
In Figure 3.12 it can be seen that the short duration battles dominate the datasets
both in the real and gaming world.

The ccdfs are depicted in lin-log scale and it can be seen that the tail of the
distributions are exponential both in the gaming and real world. To compare the
battle durations of the gaming and real world environment, the qg-plot of the two
data series was depicted in Figure 3.13. There is a break point at 0.7 year of the real
world and 2.25 minute of the gaming environment. If the data series are divided by
these limits and replotted the two qg-plots it could be seen that the distributions are
similar to each other in these intervals as they fall onto a linear.

Potential reasons. The potential reason for the short gaming session dura-
tions (see Figure 3.12) can be the difference of experience between the average or
weaker than the average players. A weaker player is usually not able to withstand for
long the attacks of a more experienced player. Comparing the tail of the duration of
the real world battles and RTS sessions it is clear that renewal resources models the
real world battles better than Warcraft 3 non-renewal resources as there is no such
cut-off in real world cdf as in the case of Warcraft 3.

The exponential tail of the distributions in Figure 3.12 can be interpreted in the
following way: when two armies fight against each other, when they both reach a 20%
loss, both retreat and continue at a later time. A longer tailed distribution can occur
in such a case that during the battle when one of the armies feel a disadvantageous
situation it instantaneously retreats with as small loss as possible, so there is not
significant loss in the armies thus the chance of a new battle remains the same as it
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was before the battle.

The break point of the qg-plot in Figure 3.13 supports the idea that people tend
to take part in only short duration battles as the long battles are expensive and risky.
Other reason for the preferred short duration battles both in gaming and real world
environment can be due to the difficulties in controlling the armies in the long run
after the battle started and the armies smashed together. To overcome this, the
armies are regularly retreated to reorganize the scattered soldiers both in the real
world and gaming world environment.

3.3 Summary

In the first part of this chapter, the traffic of the MMORPGs is examined with special
focus on the effects of player behavior at a macroscopic level on the gaming traffic.
By understanding how the gaming traffic is influenced by the activity of the players
and the changes in the gaming environment, detection methods based on time series
analysis are introduced to grab specific events and states during the game play.

The proposed methods were applied on traffic traces obtained from live operational
broadband networks in order to analyze the player behavior in real network situation.
Both the user actions and the environment around the player were recognized in the
MMORPG network traffic.

The collected data in the gaming environment was compared to data obtained
from the real world environment. We revealed the LRD property of the gaming
traffic and we also showed that the popular LRD explanation by heavy-tailed periods
cannot be held. We also demonstrated that the player behavior affects the traffic
characteristics at a macroscopic level.

Complex game server architecture is required by the growing number of Mas-
sively Multiplayer Online Real Time Strategy (MMORTS) games to make the enor-
mous number of state information transmission feasible. The architecture design is
supported by network traffic simulations based on accurate player behavior charac-
terization.

The major contribution of the second part of this chapter is to make these sim-
ulations possible by extracting the necessary parameters with a method identifying
battles from passive measurements. The proposed method is based on the analysis
of game traffic characteristics. The method grabs the increase in bandwidth in the
gathering of forces phase of the battle and the fallback in bandwidth due to the mass
loss of units during the battle. The proposed method was validated in several steps
and proved to be a general method to work well with the majority of games in the
RTS game class.
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The suggested method was also applied on traffic traces obtained from live oper-
ational broadband networks in order to analyze the player behavior in real network
situation. It was found that the distribution of battle durations shows similarities in
the gaming and real world environment. We demonstrated that the gaming environ-
ment models the real world well but it is not a complete copy of that. This means
that parameters obtained from real world can be used to some extent but the most
exact results can be obtained by the investigation of the gaming environment.

Another significant contribution of this chapter is in connection with traffic mod-
eling and traffic profiling work. We showed that the player interaction can so strongly
influence the traffic characteristics of a game that it can not be regarded as an ap-
proximately fix rate UDP stream as it is used in previous works but more detailed
game genre specific traffic models are needed.



Chapter 4

Dynamic signature for Deep

Packet Inspection [J2]

Current DPI methods search for fix byte signatures in the packet payloads. On
the other hand, there are several protocol fields, e.g., especially in connection with
gaming traffic, the player movement segments are always changing values — dynamic
signatures. There can be found other dynamic signature types e.g., timestamps or
sequence numbers in any general protocols.

To the best of our knowledge studies focusing on the structure of the packets of
the game protocols do not exist yet. We examine how the effects of human behavior
can be tracked in network traffic at packet level. Player behavior and movement
related packets encode the ingame location of the players. We found that this packet
level information shows similar statistical properties that characterizes human motion
models.

The challenge was to specify the length of the fields, the direction of the fields
and to differentiate them from a simple increasing sequence. There can be use cases
when other methods can not deal with the content e.g., packets with Protocol Header
Encryption, than a movement field. In DPI methods dealing with static fields, there
is no recognizable fix signature in it.

4.1 Related work

In this chapter the protocols are analyzed at packet content level. As far as we know
studies focusing on the structure of the packets of the game protocols do not exist
yet. Tan et al. [115] and Liang et al. [99] extracted the structure of the gaming
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protocol from the source code of the game [115] or manually with several empirical
experiments [99]. In [107] Pittman et al. used a scripting language [40] which is
supported by World of Warcraft to automate ingame activities and extracted the
positions of every character they encountered during game.

The most related papers in literature focus on automatic signature generation
with fix protocol signature subsequences. In [84] Haffner et al. explore automatically
extracting application signatures from IP traffic payload content. In particular, they
apply three statistical machine learning algorithms to automatically identify signa-
tures for a range of applications. In a similar manner in [93], Kim et al. introduce
a system which ranks packet content according to its prevalence, and only generates
signatures as needed to cover its pool of suspicious flows. Consequently, it is designed
to minimize the number of signatures it generates. Their offline evaluation on real
network traces reveals that their system can be tuned to generate signature sets that
perform well on worm detection. It is interesting to note that automatic signature
generation can be extended for even polymorphic worms which are able to alter their
form on the network to deceive pattern recognition engines. Such a method is pre-
sented in [98]. Ma et al. [100] present three classification techniques for capturing
statistical and structural aspects of messages exchanged in a protocol: product dis-
tributions of byte offsets, Markov models of byte transitions, and common substring
graphs of message strings. They compare the performance of these classifiers using
real-world traffic traces from three networks in two use settings, and demonstrate that
the classifiers can successfully group protocols without a priori knowledge. They ana-
lyzed common plain-text protocols like e.g., SMTP, DNS, SSL. Park et al. [105] used
Longest Common Subsequence (LCS) for the signature extraction step. The LCS is
extracted from sample flows to be the signature of the given application. The algo-
rithm compares two samples to get the longest common subsequence between them,
and then compares it with other samples iteratively to refine it. They managed to
produce signatures for several P2P protocols as well e.g., LimeWire, BitTorrent, Fi-
leguri. Our work focuses on the creation of an algorithm which can automatically
grab the dynamically changing fields of the protocols. The requirements were to test
player behavior in unknown protocols in an efficient way which resulted in a simplified
character movement model comparing to player movement models in e.g., [115] for

FPSs and [99] for MMORPGs.

Considering current DPI methods specific structures of the composition of fix byte
signatures and 'do not care’ segments are searched in the packet payloads (see Section
for details). There are several cases when there is a variable in the packets at a fix
position. Our idea was to focus on the 'do not care’ segments and analyze them. This
dynamic signature can be recognized by statistical methods.

The dynamic signature proved to be especially useful applying on game traffic.
Wide-spread MMORPGs e.g., World of Warcraft [38] uses protocol header encryption



67

[zl lclz e deledededelw Jw Jwlw]..|

Figure 4.1: Dynamic signature in a packet

which makes it difficult to recognize them by current DPI methods. The dynamic
signature analysis makes it possible to grab other features of the gaming protocol and
recognize them even if it is unfeasible to construct a well-defined signature for the
protocol headers. Games which transmit location information in coordinates were
well recognizable by the proposed method. The payload segment which encodes the
location of the players in the gaming environment shows such statistical properties
that characterize human motion models. Our presumption was that such variables
which statistically fit to motion models but actually containing not motion related
information are rare. It is important to note that some games are evolving basic
encryption or obfuscation of payloads. Payload obfuscation or a payload compression
may modify the statistical nature of different fields in the payload. This is not the
scope of our current work.

4.2 Definition of ’Dynamic signature’

We define the following three signature types: In a packet (see Figure 2.4 as an
example) there can be the usual fix signatures — flags (F) —, ’do not care’ segments (7)
and dynamic signatures on every byte position. We define the following field types
as a dynamic signature:

e Strong correlation (C): There is a strong temporal correlation in the specific
byte segment among the sequence of the packets. The increments of the packet
values are random.

e Walk (W): There is a strong correlation in the specific byte segment among
the sequence of the packets. Further, the values in the sequence of packets are
random. These two properties make the time series similar to real world human
motion models, thus it is considered as walking. In our method this field is
considered as a fractional Brownian motion process.

o Sequence number (S): These fields are used in protocols typically for e.g., se-
quence numbers or timestamps.

e iz (F): These fields are used in protocols as fixed headers or flags.
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Figure 4.2: The coordinate values in the active measurement depicted in 3D and
projected to XY plane

In the case of every dynamic signature the length of representation is important.
In the example packet in Figure 2.4 the value in the 'walk’ field is represented on
four-byte-long.

An MMORPG example. We created several experiments with active mea-
surements in World of Warcraft [38] to examine its traffic. We measured the traffic of
World of Warcraft and created an active measurement in such a way that the player
actions were planned before the measurements to let us synchronize the network
traffic with user actions. The analysis showed the high occurrences of 34-byte-long
packets suggesting the candidate packets responsible for character movement infor-
mation. We performed several experiments to find out how the packet is partitioned
and which fields of the packets refer to a specific data. In one of the active measure-
ments we moved with the character from a well-defined starting point, for 1 min to
north (according to the ingame compass), 1 min to south, 1 min to west and 1 min
to east. In another active measurement we run around in a big circle and finally we
checked if we take a bigger wandering and return to the staring point whether the
coordinates are in agreement with our expectations.

Figure 4.2 shows the reconstructed original path of the player. One derivation
of this experiment is that by starting and ending at the same coordinates with the
character, we can be sure that the coordinates are non relative, thus not only the
movement vectors are transferred to the server but they are absolute coordinates.
The other gained information is the relation of the packet sending time with the
moving coordinates and with the ingame timestamps.

The assumed partition of the packet fields and their function:
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e -6 byte: This is the protocol header encrypted part of the packet. This part
contains the movement packet identification flag, which would ensure us that
this is a movement packet.

e 7-10 byte: These are some kind of flags, which rarely change, and the values
they take are either 0 or 1.

e [1-14 byte: This part seems to be an ingame sequence number or timestamp as
it constantly increases.

e 15-18 byte, 19-22 byte, 23-26 byte: One of the 3D coordinates used by the game.

o 27-34 byte: We guess that this field is a character facing value.

4.3 Discussion on the ’Walk’ signature and the

player movement model

It was not straightforward that real world human walk models e.g., [96] could be
applied to player behavior in gaming environment. The control environment (joystick,
keyboard, mouse) can introduce constraint on the player behavior. The goal was to
construct such a model which a) can be efficiently tested, b) grab the characteristics
of coordinate changes of human motion, ¢) use few model parameters and d) not
game specific. Complex multidimensional models which describe human behavior
even more accurately are not suitable for this task.

Based on the main dependence characteristics of the character movement process
our presumption was that fractional Brownian motion (fBm) can describe the changes
of character movements. The intuition behind the fBm model was our expectation
that the character position coordinates exhibit high positive correlations. Therefore a
player keeps going in the same direction with high probability, thus a simple random
walk (e.g., Brownian motion) cannot describe its behavior.

We have chosen two independent fBm models, where one fBm would be fitted for
the X and another would be fitted to the Y coordinates. The modeling of the Z
coordinate was neglected due to the fact that the terrain serves as a constraint in this
case.

We think that our 'walk’ model applies for a broad range of games because our {Bm
based model captures generally both the randomness and correlations of the players.
Our model has a great potential for generalizations because tuning the parameter H
(see Section 4.3.1) we can set different correlations.
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4.3.1 Basic modeling definitions

A continuous time process W, is called fractional Brownian motion (fBm) with pa-
rameter H, 0 < H < 1, if W, is Gaussian and self-similar. The increment process
of fBm is called fractional Gaussian noise (fGn) [121]. The fGn exhibits positive
correlations if H > 0.5 and we want to capture the important positively correlated
character movement property by this process. This property means that if there is
an increasing pattern in the previous ’steps’, then it is likely that the current step
will be increasing as well.

In order to validate our model assumption we have carried out a time series scaling
analysis. We have used several tests but in this section we show only the R/S test
[121] and wavelet analysis [58] results. The R/S test can be applied in the following
way: given an empirical time series of length N (X, : k = 1,..., N), the whole
series is subdivided into K non-overlapping blocks. Now, the rescaled adjusted range
R(t;,d)/S(t;,d) can be computed for a number of values d, where t; = | N/K|(i—1)+1
are the starting points of the blocks which satisfy (t; — 1) +d < N.

where W (t;, k) = 30| Xy o1 — k(330 Xivjo1), k= 1,...,d. S*(t:,d) denotes the
sample variance of X3, ..., Xy, 14-1. For each value of d one obtains a number of R/S
samples, which decreases from K for larger values of d, i.e., djy; = md; with m > 1,
starting with dy of about 10. Plotting log R(t;,d)/S(t;,d) vs logd results in the R/S
plot. Finally, a least squares line is fitted to the points of R/S plot, where both the
R/S samples of the smallest and largest values of d are omitted. The slope of the
regression line is an estimate for H.

Scaling properties of traffic can also be efficiently investigated by multifractal
analysis via wavelet-based methods [58]. The discrete wavelet transform represents a
data series X of size n at a scaling level j by a set of wavelet coefficients dx (7, k), k =
1,2,...,nj, where n; = 27/n. Define the ¢ order Logscale Diagram (q-LD) by the
log-linear graph of the estimated ¢'" moment p;(q) = 1/n; > ", |dx(j, k)|? against
the octave j. Linearity of the LDs at different moment order ¢ suggests the scaling
property of the series, i.e. logapij(q) = ja(q)+ca(q) where a(q) is the scaling exponent
and c2(g) is a constant. In our test results we plot y; = logapt;(q) for ¢ = 2 which is
called the second-order logscale diagram (LD).

4.3.2 Preprocessing of data

The filtered gaming traffic of an operational broadband network (see Section 3.2.5
for details) was analyzed with the methods presented in the previous sections (Sec-
tion 4.3.1). An important assumption in statistical analysis and modeling is the
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stationarity. The character movement coordinates contain jumps which are the char-
acteristics of non-stationarity processes. With the inspection of the movement packets
of the World of Warcraft flows we found that there are several jumps in the coordi-
nate values which suggest that the character changed its location from one place to
another with very high pace. This can happen in case of the character used teleports.
To create time series holding the stationarity property for analysis, we constructed
first the time series of increments from the original (cumulant) time series of the co-
ordinates. For this increment time series we applied a filter and removed the outliers
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from the time series. Therefore we created a pre-processed stationary increment time
series from our original data.

4.3.3 Hurst parameter estimation — Validation of the player

movement model

First we applied an R/S test [121] for the increments. The test resulted in that the
average estimated H parameter is 0.73 for both the X and Y coordinates calculated
from 200 independent time series. The cumulative density function of the H param-
eter is depicted in Figure 4.3. As the linear fitting to the R/S plot is difficult to tune
and need a lot manual refinement, we decided to apply the wavelet based method
[58] because it is more robust than the R/S estimator. During the examination of
the time series of the increments, the wavelet method estimates H by the H = O‘T“
formula. The results for the different time series can be seen in Figure 4.3 where the
average H-parameter is 0.95 for X coordinate and 0.96 for the Y coordinate time
series.

An additional validation step has been performed by applying the wavelet based
H-estimators on the original cumulant time series, which were constructed by summa-
rizing the pre-processed increments. These pre-processed increments were obtained
by the above mentioned filtering process in order to keep the stationarity property
of the time series. The formula for the estimation of H changes to H = O‘T’l during
the examination of the cumulant data. The average H estimation resulted in 0.89
for the X coordinate and 0.9 for the Y coordinate time series. (The logscale diagram
is depicted in Figure 4.4). It can be clearly seen from the figure that the cumula-
tive character movement process is consistent with statistical self-similar process and
supports the fBm model assumption.

Therefore our presumption that the character movements can be well modeled
with two independent fractional Brownian motion for the X and Y coordinates has
been validated by the statistical test results of real data. An appropriate H parameter
is the average of all the estimation results from R/S, increment logscale and cumulant
logscale analysis over 200 samples. It resulted in H = 0.9.

4.3.4 Filtering out non-random processes

An important thing to note in connection with the estimated Hurst parameter is
that, such high values are typical of non-random processes e.g., in the case of a
process which has fix increments. To significantly differentiate this case from the
one where randomly distributed values occur in the increments, the randomness of
the values in the timeseries is examined. In the case of a moving packet, if the
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difference of two neighboring coordinates were examined it is likely that the size of
the character step would occur most of the cases. Therefore a sliding window has been
defined and the difference of the coordinates of the first and last element of the sliding
window is calculated. These difference values construct a time series, which has been
grouped into bins to make it possible to properly estimate the Relative Uncertainty
with the method which was used in [124], [95]. Suppose we randomly observe X for
m times, which induces an empirical probability distribution on X, p(z;) = 7%, x; €
X, where m; is the frequency or number of times we observe X taking the value
z;. Empirical entropy of X can be calculated by H(X) = —>__ _y p(xi)logp(z;).
Let Nx denote the number of discrete values X can take. The maximum entropy

is Hpaz(X) = logmin{Nx,m}. Relative Uncertainty can be defined as RU(X) =
HHa(j((;() With this normalization, the value of Relative Uncertainty is in the [0, 1]
range. The higher values mean less predictable behavior, the lower values mean more
deterministic behavior. In particular RU = 0 means that X has only one possible
value, while RU = 1 means that X is uniformly distributed.

In Figure 4.5 it can be seen that the average of the RU values is 0.87, and there is
not any occurrence of the RU below 0.5 meaning that the high value of the estimated
RU is a strong proof of the fact that differences of the coordinates in the moving

packets are randomly distributed.

4.4 ’Dynamic signature’ construction algorithm

In the previous section, a model for the character position has been constructed. This
model makes it possible to introduce a method in this section to identify the moving
packets based on time series analysis in MMORPGs. The presented method is not
restricted for this purpose. It can be applied more generally, where the same packet
structure is used for transmitting the same kind of information.

4.4.1 Temporal time-series construction

The working mechanism of the constructed algorithm (Algorithm 6) is presented on a
World of Warcraft traffic measurement. The preconditions during the examination of
a set of possible moving packets are that it is neither known if they are really moving
packets nor the fields where the different values take place. During the examination
of the values it is critical to know on how many bytes the values are represented.
The presented algorithm steps through all byte positions and creates time series of
all possible byte lengths (Algorithm 6 Steps 3,4).

In Figure 4.6 an example can be seen describing how the timeseries are constructed
from the raw packet data for the analysis (Algorithm 6 Steps 5-7): when the number
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original/1 byte length 2 bytes length 3 bytes length
num\hy’::Cpknegt 1 23| 4|5 6‘ 7 ‘ 8 28) 0281wy B 7 6
1 128 113 88| 244 o177y 1 1114279] 10944672 206157344
2 128| 113] 88| 244 | Q17167 Y60 1114279| 10944672 206157344
3 128] 113| 88| 245| TI17Y248) 94 Qo) tnerp®y? =4 1114 360| 16253022 301465694
4 128| 113 88| 245 Q17248 94 @6&46253022 301465694
5 128| 113]88) 246| 18] 70} 9 1179y 4587612 306577500
6 128| 113 88| 246| Q18] 7o) 92 1179718| 4587612 306577500
7 128| 113] 88| 247| (|18 163] 253 1179816| 11010301 313000189
3 128] 113] 88| 247| CIBA168) 253) 1179816] 11010301 313000189
9 128| 113] 88| 248| 0 wi Ii '\Dtﬂi 1245191 458& | 319226014
||

(28} IO*X+(28}1*Y+(28}2*Y

Figure 4.6: An example describing how the timeseries are constructed from the raw
packet data

is considered to be represented in 2 bytes, regarding one row, the values in the 2 bytes
representation output in the 6" column can be calculated by the (28)° x A+ (28)! « B
formulae where A is the value in the 6"* column and B is the value from the 7
column. The result of our model (see Section 4.3) was that we can consider the
coordinate values as the result of a fractional Brownian motion with H close to 1.
Therefore there is a strong correlation between the values of the same fields in the time
series. The same test should be performed during the search for this structure in an
unknown traffic. We knew that the original fBm in the examined World of Warcraft
traffic was represented on four bytes. We examined how the test results altered if
the original fBm ~ 22:0(28)”Xn, where 7 is the length of byte representation of the
value, is decomposed to the X,, components.

4.4.2 H-parameter examination — Application of the player
movement model

The algorithm searches for fBm-process candidates (Algorithm 6 Step 9). We made
several simulations regarding the Hurst-parameter test results of the fBm process
decomposing it into different byte-representation ranges. Figure 4.7 shows the result
of such simulation. The original timeseries is an fBm process with H = 0.8 parameter.
It can be seen that the variance of the fBm process determines the range where the
fBm properties can be observed after the decomposition. As the original process was
tested on its original representation range, the H-parameter testing method finds the
same H-parameter independently from the variance. The tested H-parameter of the
(28)° component falls below 0.5 in the case of o > 30, while the (2%)! component
tested H-parameter falls below 0.5 approximately in the case of o > 10%.
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Another important thing to note is that the H-value of the original process is
always higher than the decomposed one. This means that even if the variance of
the tested fBm process is so low that it falls in the range of a smaller component,
considering all components the test results in a better fit for the original process
meaning a higher H-value.

If we examine the H-test results on the different byte positions with different
length of representation of the World of Warcraft movement packets (see Figure 4.8)
it can be seen that considering the values as one-byte long numbers there is no proper
H-parameter (0.5 < H < 1). Considering the values at least two-bytes long, the
proper H-parameter appears at the 16, 20, 25 positions, meaning that the 16-17, 20-
21, 25-26 bytes are proper candidates of walking fields. Checking the H-parameter in
the next row, meaning that considering the representation longer in 3 bytes we can see
the same H-parameter for the 16-18, 20-22 positions but a non-proper value for the
25-27 bytes. This means that considering them longer does not deteriorate their fBm
property. World of Warcraft represents the coordinate values in the little-endian form,
thus the least significant byte is in the left most position. If we take into consideration
that the coordinates are represented in four-bytes-long, we can conjecture that the
least significant byte varies the most, and the others far less, going toward the most
significant value. Considering the byte representation longer in our case means that:

1. If the variance of the process falls into a more proper component, the H-value
will fit better to the original process

2. If the new byte value does not alter the H-parameter that means a constant
level-shift in the considered time-series
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Figure 4.8: The H-test results on the different byte positions with different length of
representation of the World of Warcraft movement packets

3. The most-significant value is not an fBm process any more thus the H-parameter
will drop.

In the 16-18, 20-22 positions the case 2. occurs, while in the 25-27 byte positions,
the case 3. Moving one column left, checking what happens if the longer byte-
representation is considered from a former position, we can see the increase of the
H-parameter falling into the case 3. Considering them longer (15-4), the case 2. oc-
curs, but for even longer byte representations case 3. occurs for (15-5), (15-6). When
the most-significant bytes of the considered time series is again a real fBm process —
which is the next walking field of the World of Warcraft packet — then the H-value be-
comes proper again. These considerations are implemented in the proposed algorithm
in Algorithm 6 Steps 22-30.

4.4.3 Analysis of randomness

High H-parameter can be obtained by testing the timeseries with fix increments which
are part of the gaming protocol message like sequence numbers or timestamps. The
H-parameter testing has to be extended with the examination of the randomness of
the candidate byte positions to differentiate a fBm-process and a sequence number.
To do this, the Relative Uncertainty (for details see Section 4.3) of the differences of
the coordinates in a sliding window is calculated, and if the value is less than 0.8 then
it is a sequence number with fix increments otherwise if RU is high it is considered
as a moving packet (Algorithm 6 Steps 13-17). The sliding window is necessary as
neighboring values can be fix in case of walking behavior — size of the step —, but
the coordinate distance differences in a sliding window show randomness due to the
movement in several dimensions. Regarding the size of the sliding window, the start
and the end values of the window should be big enough to avoid such a situation
that a character moving into the same direction creates fix increments among the
coordinates and the algorithm reaches a false negative decision. This consideration
results in a sliding window size bigger than 2 packets covering a few minutes period
in the movement of player e.g., about 120 packets which means 1 minute movement
in the same direction. In World of Warcraft, in case of moving in the same direction
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the client sends a packet in every 500 msec. In case of changes of direction the client
sends packets in 50-100 msec intervals with the current orientation of the player. Note
that the gaming environment is full of objects and monsters which the players try to
avoid thus moving into the same direction in minute time scales is unlikely.

To differentiate the sequence numbers from the fix values in a specific position,
the original time series is grouped into bins — the number of bins is selected in the
function of the examined range of values — and the relative uncertainty is calculated
for the binned values. If the RU is low then the examined values can be regarded
as fix values (Algorithm 6 Steps 18-20). The size of the bins should be a trade-off
between the processing speed and the accuracy of the estimation. In my specific
implementation I fixed the number of bins to 100 resulting in varying value ranges
covered by the bins.

Finally, the still empty fields are filled with the longest non-walking type fields
from the state and H-parameter test tables (Algorithm 6 Steps 31-36).

4.5 Application and validation — Signatures of some

popular applications

The method was validated with a common-practice applied in other papers [84], [93]
as well by analyzing open protocols, the RTP and the Gnutella protocol, which have
several dynamic fields in the protocol.

Several active traces of different applications have been examined by the intro-
duced algorithm. The list of results can be seen in Table 4.1. The meaning of the
columns of Table 4.1 are the following;:

1. Application — The first column refers to the examined application
2. Size — The second column refers to the total length of the signature
3. Signature — The third column shows the constructed dynamic signature

4. Endianess — The fourth column shows whether the value is represented in Big
or Little endianess

5. Ratio — The fifth column shows the ratio of this packet comparing to the total
number of packet in our traces of the given application

First, several games from the FPS, RTS and MMORPG genres have been exam-
ined. World of Warcraft [38] was the first target of our inspection and beside the
34-byte-long movement packet which was thoroughly examined in Section 4.2,4.3,4.4,
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Algorithm 6: Dynamic signature construction

Input: M{i][b]:=packets for examination, i: the i‘h packet, b: the byte position in the packet
Output: Outstate = @ /Output field type/, Outjengir, = @ /Output field length/

1 H, = © /Hurst-test results/;
2 S =@ /Guess for the field/;
3 forw=1, w<8 w++ do
4 for k=0, k<b, k++ do
5 X = zeros(size(M[:]));
6 T=M[|k:k+w—1];
7 forg=1,¢<w, ¢+ + do
8 | X=X +T(q) *((2%)971);
9 H,w][k] = waveletestimation(dif f(X));
10 Stemp = 0;
11 if 0.5 < Ho[w][k] < 1 then
12 L Stemp = 1 /fBm candidate H/;
13 RUdiff,window = calcRU(diffwindow (X)) (SeCtion 4-3);
14 if Stemp : =1 AND RU4; ¢ f window > 0.8 then
15 L Stemp := 4 /walking/;
16 else if RUg;ff window < 0.5 then
17 Stemp := 2 /sequence number/;
18 RUyg; s ¢ = calcgry (createyns (X, (28)*/100));
19 if RUdiff < 0.2 then
20 L Stemp =1 /fix/;
21 | Sw][k] := Stemp;
22 forw=1, w<8, w+ + do
23 for k=0, k<b, k++ do
24 if S[w][k] == 4 then
25 if Sjw—1][k+1] <4 OR (S[w—1][k+ 1] ==4 AND S[w — 1][k + 1] < S[w][k]) then
26 Outstatelk] := 4;
27 OUtlength[k] =ws
28 forj=k+1,j<k+14w, j++ do
29 Outstate[j] = 0;
30 OUtlength[j] =05

31 for k=0, k<b, k++ do

32 for w =8, w >0, w—— do

33 if 0 < S[w]k] < 4 then

34 if conflict(Outstate, Outiengtn) then
35 Outstatelk] := S[w][k];

36 L OUtlength[k] = S[’ll)] [k]v

another packet of 71-byte-length showed correlation structures. Our active mea-
surements showed that this packet is in connection with the visit of mission-giving
non-player characters in the gaming world. When the player approaches to such a
character and clicks on it, the mission which can be given by that character is sent
by the server. The correlation is due to the closeness of these mission givers around
a specific location e.g., in a city, and as the players visit them one by one, it induces
a correlation in the transmitted coordinates. Other MMORPGS were also examined
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[ Application [ Size [ Signature [ Endianess [ Ratio ]
Age of Mythology [1] 10 ?7{1} CCCCCCC{7} SS{2} B 19%
Command & Conquer 3 [3] 12 FFFFCCCCCCC{11} ?{1} L 25%
Command & Conquer 3 16 ?77°W{4} CCCWW{5} CC{2} 7CCC?{5} L 18%
C&C Generals [4] 23 WW{2} 7C{2} SSSSSSS{7} FCCCCC{6} CC- L 19%
CCC{5} ?7{1}

C&C Generals 31 WW{2} 7C{2} WCCCC{5} FFCCC{5} L 16%
?7?°CCW{5} FC{2} C{1} 7{1} CCC{3} CCCC{4}
?2{1}

Cossacks - Back to War [6] 32 CCCCC{5} FFCC{4} FC{2} FC{2} F{1} 7{1} L 4%
CW{2} CC{2} ?7CCC??CC?CC??{13}

Cossacks - Back to War 18 W{1} CCWWWWWWWC{10} SSS{3} CC{2} L 93%
?77{2}

Gnutella [11] 23 ?{1} SSSS{4} CCCFFFFF{8} 7{1} F{1} B 80%
?27777277{8}

MSN Messenger [17] varies | 77{2} SS{2} CCCW{4} CCCCCCC{7} 7{1} C{1} L 100%
?777{3}

Silkroad [54] 6 | CCCO{4} 7712} L 5%

Silkroad 20 {1} CC{2} 7777W7??C{9} C{1} 7{1} CC{2} L 4%
CC{2} 77{2}

Silkroad 30 | 77707TW{T] WO{2) 777T7TW{T) C{1} 777777{6} L 1%
C{1} ?77C{3} C{1} 77{2}

UT2003 [46] 20 | W{l} 77{2] C{1] 777{3} WC{2} 777CC{5} CC{2} L 7%
C{1} 777{3}

UT2003 22 | WWWWO{5] TWI7TWIWW?707{13] CCC{3} L 8%
?7{1}

World ot Warcraft [38] 34 ?77{2} C{1} 7{1} CCCWWW{6} WWWW{4} B 25%
WWWW{4} WWWW{4} WWWW{4}
WWWWCCC{7} 7{1}

World ot Warcraft 71 ?7777{4} CCCCC{5} WCCC{4} 77?7 {3} C{1} B 4%
7227W?{6} C{1} CC{2} CCCFFFFFFF{10}
?77{2} C{1} CC??{4} CFFFF{5} CC?{3} CCW{3}
?727{3} CC{2} C7{2} CW{2} 777{3} CCC{3} 7{2}

Table 4.1: Application signature patterns /C-strong correlation, F-flag, S-sequence
number, W-walk, ?-not specified/

by the algorithm, and Silkroad [54] was found to contain a fBm structure. It is inter-
esting to note that the values of the byte positions which were found to be fBm-like
do not show such characteristics as an absolute position value which was found in
World of Warcraft. We conjecture that these packets contain the movement vectors
not the actual positions.

Games from the First Person Shooter (FPS) genre have been also examined by
the introduced algorithm. FPS games are typical of transmitting movement vectors
rather than absolute positions. A good example was found during the examination
of the packets of UT2003 [46] (traces are available at [42]).

Games from the Real Time Strategy (RTS) genre have been also examined by
the introduced algorithm. Age of Mythology [1], C&C Generals [4] and Cossacks [6]
contain packets containing timestamps or sequence numbers which are responsible
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for maintaining the synchronization among the gaming clients. Beside this there are
other type of messages in the packets which seem to be in direct connection with
the gaming environment itself: probably the number of active units in the gaming
environment as it shows an increase overall the game session.

Our method can examine non-gaming applications as well. The traffic of a
Gnutella [11] client has been examined and it was found that there are similar packets
to the gaming protocols in terms of having the same size and same packet structure.
Two UDP packets of Gnutella were found to contain the correlation characteristics
in the time series of the packets.

Other applications generating varying packet sizes are also examined. MSN Mes-
senger [17] VoIP traffic can be analyzed by selecting one direction of the flow, than
the longest packet of the flow is selected and the smaller packets byte values are filled
with uniformly distributed random values. In this way the dynamic signature search
can be executed on the packets having varying size. MSN Messenger works with RTP
messages thus it is also a good candidate to validate our algorithm. The algorithm
finds the first two bytes of the RTP message where several flags take place. The
3-4 byte is the sequence number in the RTP message and it is found to be fBm-like
according to the algorithm. The next 4 byte is also found to be fBm-candidate: the
5-8 byte is the place of the timestamp. The next 7 bytes are considered as coherent:
the 9-11 byte is the place of the synchronization source identifier, which is a fix values
on its own, but 3 additional bytes are added to this by the algorithm. Examining the
payload of the MSN RTP packets, the first byte of the RTP payload seems to be fix,
and the second and third byte varies in small steps. Interesting to note that there
are other two byte fBm-like values at the 34-35, 36-37, 58-59, 82-83, 84-85 bytes of
the MSN RTP packet. We conjecture that this property is due to the used codec.

4.6 Summary

The contribution of this chapter is the introduction of a novel model and algorithm
to extend the Deep Packet Inspection traffic classification method. We focus on the
analysis of variable length byte signatures. The model captures the variation of the
dynamic byte segments and provides parameters for the algorithm.

The proposed algorithm considers the packets of the same flow as a time series and
examines the H-parameter of the values of the different byte positions. The algorithm
constructs protocol specific signatures of the examined traffic, which makes it possible
to identify the protocol in a traffic measurement even in those cases when the signature
in a protocol is not a fix value. As a proof-of-concept several proprietary gaming traffic
and known traffic types have been examined with the introduced algorithm and the
existence of the fBm-like structure is proved to exist in several cases.



Chapter 5

Wire speed traffic classification

with parallel architecture [J3]

Certain applications, most notably belonging to the class of peer-to-peer (P2P) ap-
plications, are difficult to identify by signature search either because there are no
appropriate signatures, or the signatures are difficult to match. Connection pattern-
based methods, e.g. [91, 16] provide a light-weight, albeit heuristic solution to this
problem.

In theory signature search and connection pattern-based methods could be com-
bined to increase classification accuracy: finding signatures need Deep Packet Inspec-
tion (DPI), and if no signatures are found, the connection pattern method can be
used. Or vice versa, if DPI marks the traffic of a host on a specific port as P2P,
further connections to this host-port pair are very likely to be also P2P even if DPI
has no results for them [113].

A serious downside of this combined solution is that it is not light-weight any more
and raises considerable challenges to implementation. Therefore, extending a simple
flow collector system with traffic classification capabilities needs more computing
power than what CPUs can offer. Today there is a trend to use commodity hardware
e.g., [33, 23] as it has low price/performance ratio, short development time and it
is easy to get familiar with. The requirement for a dedicated hardware would slow
down the wide-spreading of a particular method.

Not long ago, Graphical Processing Units (GPUs) have also become well pro-
grammable computing elements [8]. Furthermore, the current paradigm shift in pro-
cessor technology towards many core architectures' has already occurred in graphical

!The terms many-core and massively multi-core are used to describe multi-core architectures with
an especially high number of cores (tens or hundreds). In case of many-core processors the number
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Input Well-known » DPI Application »| Dedicated Port
port based hint Table
classification GPU aggregation Classified output

Figure 5.1: Steps of traffic classification with GPU

processing units a few years ago. Thus highly parallel algorithms can be experi-
mented there which will be later well suit for general processor architectures as well
when they become many core architectures. This chapter explores the conceptual
and architectural differences between GPU and CPU based traffic classification.

This chapter addresses certain, key algorithmic challenges of such a combined
solution, namely high-speed signature search and connection pattern-based classifica-
tion. Beyond describing these tasks, we show how to implement them on GPU and
present measurement results on the efficiency of the proposed system.

The contributions of the chapter are the following (see also Figure 5.1):

e We propose a memory optimized technique for signature matching. It involves
a modification of the Zobrist hashing algorithm [129] to encode the application
signatures. We store the dictionaries in the cache of the GPU and apply the
same encoding to check which application a packet may belong to. Due to
the compactness of the hashing algorithm the data sets of the proposed DPI
method reside in the fast cached memory of the GPU providing high efficiency,
in contrast to [19] where the signatures do not fit to the cache. The details of
the method are presented in Section 5.1.2.

o We propose a fast-speed aggregation and update method to support connection
pattern-based identification. We aggregate all the information necessary for
the classification of flows into one data structure providing the best-available
hint all the time. A Dedicated Port Table (DPT) stores the number of times
a specific host-port pair was identified as the source or the destination of a
specific application. In order to avoid a per-packet update of DPT, we propose
to aggregate this information in the GPU by an extension to the parallel prefix
scan [85]. This method provides massive parallelization and high efficiency with
GPU. The details of the method are presented in Section 5.2.

Finally, Section 5.1.7 and 5.2.4 presents evaluation of the GPU based algorithms.
We show that we can possibly reach beyond 6 Gbps traffic classification rate using
commodity hardware.

of cores is so large that traditional multi-processor techniques are no longer efficient.
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5.1 Deep Packet Inspection with Graphical Pro-

cessing Unit

In order to perform DPI a common solution is to express patterns as sets of regu-
lar expressions and convert them into finite state automate (FSAs), mathematical
models that represent (potentially infinite) sets of strings. The behavior of FSAs
is easy to emulate on computing devices to perform the actual matching procedure.
Regular expressions are supported by the vast majority of pattern-matching tools
and represent the de-facto standard in the field. Two different kinds of finite-state
automate are known from the literature, deterministic (DFA) or non-deterministic
(NFA). While automate theory proves them equivalent in terms of expressiveness,
their practical properties are different: NFA traversal includes, by definition, non-
deterministic choices that are hard to emulate on deterministic devices such as all
current processors; on the other hand DFAs, while fast to execute, can be less space-
efficient, requiring very large amounts of memory to store certain peculiar patterns
that are rather common in practice (the so-called state space explosion) [61]. In gen-
eral, software-based NFA implementations suffer from a higher per-byte traversal cost
when compared with DFAs: intuitively, this is because multiple NFA states can be
active at any given step, while only a single one must be considered when processing
DFAs. So far the focus of software research has mainly been on DFAs as they provide
a relatively easy way to achieve fast processing speeds and high throughputs; there
have been many efforts aimed at solving the inherent downsides of this model and
avoid the aforementioned memory explosion. At the same time, NFAs have often
been relegated to the design of hardware devices (e.g. FPGAs) where it is possible to
easily emulate their behavior, and for use where high throughput is not the primary
concern (e.g. many general purpose pattern-matching libraries). [18]

In our work we applied a different approach to achieve high packet processing speed
by introducing restrictions on the grammar the method is capable of searching for. In
order to achieve high processing speed with a GPU-based solution, the memory access
overhead should be minimized. Our goal was to store the signatures on a minimized
memory footprint to achieve this. State machines are processor-efficient methods
for signature matching but not space-efficient [19]. Use of hashes results in data
compression, but it is difficult to perform wild-card character matching. E.g., typical
solutions store the same signature with all the possible wildcard values in the hash
[76]. This results in the boom of the hash table and in false positive hits as well.

The fast cached memory of the GPU is small, thus to make it possible to store a
high number of signatures compression is desirable. The compression has to support
wildcards.



84

5.1.1 Related work

According to [65], the most resource consuming task is signature matching in traffic
classification systems. String matching can be accelerated with ASICs, FPGAs [77,
119] and previous generations of videocards [87, 89, 109] (as texture operations), but
they are difficult to modify and extend with new signatures and functions, which
would be essential for traffic classification systems.

In [19], the deterministic finite automate (DFA) and the extended finite automate
(XFA) based signature matching was analyzed. The authors found that the G80
GPU implementation was 9x faster than the Pentium4 CPU implementation. They
emphasized the problem that data structure of the automate (in the order of MBytes)
does not fit in the cache of current GPU architectures which would be essential for
optimal operation. The packet processing speed of this solution was about 80,000
packets/sec (with FTP, SMTP and HTTP signatures).

In [116], the signature matching of an Intrusion Detection System (IDS) was done
with GPU providing system throughput of 2.3 Gbps with synthetic traces and 600
Mbps with real traffic. In [117], Vasiliadis et al. further developed the work of [116]
by reimplementing the DPI engine to the new CUDA architecture [8]. The overall
system throughput increased by 30% on real traffic compared to [116]. [123] further
refined the problem of load balancing the signature matching procedure of a large
dictionary for multiprocessors. They proposed pattern set partition and input text
partition together to fully utilize GPUs during the pattern matching.

Note that in [19, 116, 117, 123] the main tasks were to implement IDS on the
GPU. This requires (a) the recognition of a huge set of protocol signatures with
their numerous exploitation signatures, (b) find the signature anywhere in the byte
stream, and (c) false positive hit is not allowed. IL.e., the proposed methods for traffic
classification task should not be directly compared to the above methods. As it can
be seen later, our methods outperform them in raw packet processing speed, but on
a more focused problem set of traffic classification (see Section 5.1.7 and 5.2.5 for
details).

5.1.2 Signature Matching in GPU

In case of DPI, application specific bitstrings are searched in the packet payloads.
DPI is a well-parallelizable task considering either the analysis of several packets in
parallel or several signatures on the same packet. Moreover, traffic classification has
a more focused requirement set comparing to an IDS functionality:

e The 'only’ goal is to identify the applications, so less signatures is needed fo-
cusing on handshake messages typically found in the first few packets of the
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(a) Input applica- (b) Bitmask of (d) Encoded sig-
tion signature dic- applications sig- (c) Alphabet-position nature database
tionary (S) natures (B) dictionary (o) (E)

App#1 | a’b 101 [ [ o [ 1 T 2 ] [o101

App#2 | aaa 111 a || 1100 | 1011 | 1000 1111

App#3 | 7a? 010 b |[ 1010 | 1110 | 1001 1011

App#4 | 77a 001 1000

Table 5.1: Input data of the DPI method

flows. For example, it is enough to identify an SMTP protocol from the first
EHLO message and there is no need to parse any of its later messages.

e In most cases the signatures can be found in the first few bytes, thus the method
can focus only on them.

In order to achieve high processing speed with a GPU-based solution, the memory
access overhead should be minimized. Our goal was to store the signatures on a
minimized memory footprint to achieve this. State machines are processor-efficient
methods for signature matching but not space-efficient [19]. Use of hashes results in
data compression, but it is difficult to perform wild-card character matching. E.g.,
typical solutions store the same signature with all the possible wildcard values in the
hash [76]. This results in the significant increase of the hash table size and in false
positive hits as well. In the following paragraphs we propose an encoding method,
which eliminates the above problems. I.e., the input and output data of the DPI
process occupy only the fast access memory of the GPU and the method provides
wildcard support.

5.1.3 Zobrist hashing

Our proposal applies the idea of Zobrist hashing [129]. This technique was developed
for creating hash codes in board games and storing the states of the players. Each
piece has a unique identifier corresponding to its actual position on the board. The
hash code of the actual state is calculated by XORing the unique position identifier of
each piece. Instead of storing the whole board in each step of the game, only the hash
values should be stored. I.e., the hash itself stores the data and not only a pointer to
an external data field.

5.1.4 Input data for string matching

The proposed string matching technique uses the following input data (see Table 5.1
for illustration).
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e The application signature dictionary is denoted by S (see Table 5.15.0(a)). One
element of this dictionary, S7 denotes the j* character of the i application.

e The list of bitmasks of non-wildcard characters in the application signatures
is denoted by B (see Table 5.15.0(b)). One element of this list, B; denotes
whether the j%* character of the i** application is wildcard or not.

e The alphabet-position dictionary is denoted by a and represented as a matrix
(see Table 5.15.0(c)). The rows of the matrix represent the characters of the al-
phabet. The columns represent the positions of the characters in the signatures.
One element of this matrix, &éj denotes the character code of the j** character

(3

of the 7" application. These codes are represented as random numbers with a
bigger range than the size of the dictionary in order to minimize the collision
of encoded signatures.

e The encoded signature database calculated from the above input data and de-
noted by E (see Table 5.15.0(d)).

The encoded signature database of a particular application is calculated by XOR-
ing together the codes of its characters if their corresponding bitmask is 1. In general
it can be written as F; = @ﬁgﬁl(ag ; ® B}). For illustration, let us see a specific
example based in Table 5.1: e.g., a?b is encoded into: 1100 & 1001 = 0101.

5.1.5 The proposed string matching method

The proposed string matching method is as follows. Each thread of the GPU deals
with the content of one packet. This choice is a direct consequence of the Single
Instruction Multiple Data (SIMD) architecture. Further, the GPU can deal efficiently
with thousands of lightweight threads [8]. This is a big difference to an e.g., x86
architecture where the threads are monolithic and both task switching and scheduling
are complex tasks.

The content of packets is considered as character strings. Apply the same pro-
cedure on these character strings as on the application signatures: the codes of the
characters are XORed together according to the corresponding bitmasks. If the en-
coded packet data matches with the corresponding encoded application signature,
then the packet is considered to belong to the particular application. The hit by the
DPI process sets the proper bit of the specific application to 1 in the Packet Hit List
(see Figure 5.2 and Section 5.2 for further discussion).
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Packet Hit List (PHL)

Application-
| packets identifier Mat?:eld Biltmask
DPI, port-based 1 srcID1,srcPortl,dstiD1,dstPortl| 100010000

Packets e
classification on GPU/ > srclD1,srcPort2,dstiD2,dstPort2| 000000000

| L’ 3 srcID2,srcPort3,dstID1,dstPortl 001000110

Figure 5.2: Input/output of signature matching on GPU

5.1.6 DPI data structures in GPU memory architecture

The global memory (uncached) space is filled with the array of network packets.
During the initialization of each thread, the corresponding array of the packet bytes
are copied from the global memory to the registers or to the shared memory (cached)
of the thread. Thus global memory access does not reduce the speed of arithmetic
calculations with the same data.

The constant memory space is cached so a read from constant memory costs one
memory read from device memory only on a cache miss, otherwise it just costs one
read from the constant cache. The pre-calculated input data structures are loaded
into the constant memory space (the alphabet-position dictionary, the bitmasks and
the encoded signatures). The allocable constant memory size is 64 Kbytes for the
whole kernel in the test configuration (see Appendix). If we consider our example
implementation where the signature database consists of 4 byte long values, then
about 10 thousands of signatures could fit into the constant memory.

5.1.7 Validation — Evaluation of the GPU based DPI method

Compression vs. accuracy. The collision probability of the encoded signature
database (i.e., misclassification of packets, false positive hit) can be analyzed as a
function of the length of the signatures and their representations in the alphabet-
position dictionary.

The size of the alphabet-position dictionary is a*p, where a is the possible number
of characters and p is the possible number of positions (i.e., length of the signatures).
To represent the signatures completely collision free, each character of the alphabet
should be represented with log, a bit, and the character coding should be rotated
according to the position. I.e., the size of one element of the dictionary should be
m > plog, a. In our case a = 256, i.e., m > 8p. In practice, however, much smaller m
can provide negligible collision probability. Our experiments show in case of m = 16
(2 bytes) the collision probability falls below 10~* independently of p if there is no
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m 10 11 12 13 14 15 16
p=16 | 0.2527 | 0.0867 | 0.0250 | 0.0069 | 0.0017 | 0.0004 | 0.0001

Table 5.2: The collision probability of the compression

more signatures than unique signature representations (i.e., here 2™ = 65536). For an
illustration, see Table 5.2 showing the collision probability in case of 1000 signatures
of 16 characters for m = 10...16 (note that 2™ > 1000 indicates m > 10), which is
a feasible practical setup [19].

Performance. The proper initialization setup of the GPU kernel regarding the
number of threads processed parallel by a multicore unit on the GPU has a high
impact on the overall performance [8]. We created several measurements with different
setups where the parallel processed packet batch size was varied from 16k to 500k
packets. In case of CPU, the batch size would be the number of packets processed
one-by-one without the interruption of any other operation, while in the case of GPU
it means the number of parallel threads.

In the performance tests, the following implementations of the DPI task were
analyzed:

e regexp: A perl-based implementation of the DPI method with standard regular
expressions.

e CPU: The CPU-based version of the proposed DPI method.

e GPU: The GPU-based version of the proposed DPI method without shared mem-
ory caching of the packet headers and payloads.

e GPU_shared: The GPU-based version of the proposed DPI method with shared
memory caching of the packet headers and payloads.

In our tests we replayed recent traces captured in live broadband mobile networks
during busy hour traffic. The current traffic mixture of broadband mobile networks
is similar to those presented in [36, 13]. The applied signature database contained
an extended version of [2] consisting of approx. 300 signatures in total. The average
signature length is 16 bytes characterizing 35 different application protocols grouped
into 16 application types. Table 5.3 summarizes the performance tests focusing on the
average packet processing speed. Note that the processing time is linearly increasing
with the increase of input signature list. The slowest solution is regexp. Over this,
CPU provides 5 times faster solution. GPU provides additional 2 times speed increase.
Additional magnitude of speed can be gained by GPU_shared with exploitation of
cached shared memory. In this latter case, the global memory is processed in small
well-cacheable data blocks.
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y | regexp| CPU [ GPU | GPU_shared |
Average [thousand packets] 14 72 138 1844
Relative variance f(batch size) |%] | 1.1% | 3.1% | 25% 0.2%
Relative variance f(payload) [%) 49% 36% 3% 27%

Table 5.3: DPI performance comparison — Packets processed per second

In practice, the batch size has only effect on the GPU [8]. Since the memory access
overhead in the shared memory case is 2 magnitudes less than the global memory case,
thus the effect is visible only in the GPU case without the shared memory. Regarding
the payload dependence, the signature matching process for a specific packet ends in
case of a hit in the signature database. Depending on the position of the signature
in the signature database the threads finish in different times. According to [8],
the threads in the same block are scheduled to run parallel thus they wait for each
other to finish. This means that the slowest thread would determine the run time of
the block. Therefore the more the parallel the solution is, the less variance occurs.
Summarizing the results, the GPU-based shared memory version of the proposed
method introduces a performance increase of two orders of magnitudes compared to
the original regular expression based method. The average packet processing speed
of the GPU is approx. 1,800,000 pkts/sec. This speed can be translated into network
line speed by calculating with 500 byte average packet size which results in 6.7 Gbps
speed.

5.1.8 Application

The method is capable of compressing a set of regular expressions and doing wire-
speed DPI.

5.2 Flow classification based on the Dedicated Port
Table

Some specific traffic types are difficult to be identified simply based on DPI without
considering flow groups and their history. For example according to [91], in case
of small P2P flows trying to establish connection to non-existent peers, partially
encrypted P2P traffic or Skype. In this section we propose how to combine efficiently
the DPI and port based classification methods for flow classification on GPU.
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f(ID, Port) | Matched Bitmask £(ID, Port) Matched Bitmask f(ID, Port) 80 4662 | 6881

1 srclD1,srcPortl|  2F3415 100010000 GPU 2F3415 100010000 GPU 2F3415 0 0 1
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Figure 5.3: Dedicated port search

The purpose of the DPT is to store the application hints of host-port pairs based
on their communication history and provide the traffic classification engine with the
best available hint all the time. The DPT is represented as a list of records containing
the number of hits per application for each host-port pairs. The DPT is created and
updated as follows.

5.2.1 Starting from per-packet application hits

The starting point of the process is the Packet Hit List (PHL). Whether a packet
comes from an application or not is a yes/no question, thus the PHL is represented
as a bitmask. In order to deduce per host per port information, each record of
PHL is split into source and destination identifiers (hash(srcID, srcPort), hash(dstID,
dstPort)), for illustration see Figure 5.3.

The number of stored application types and the size of the application-matched
bitmasks are the results of a trade-off due to the memory addressing of the GPU.
The GPU can handle 2 or 4-byte long data most efficiently [8], thus 16 or 32 possible
application categories can be distinguished in these cases. l.e., if P2P is chosen as
one category, its 'variants’ like BitTorrent and Gnutella cannot be differentiated later.
But our experiences support that 16/32 application types are practically enough to
cover the main types such as P2P file sharing, web browsing, streaming, VoIP, etc. If
needed, this part of the algorithm can be extended to support more application types
by switching to longer non-hardware supported data length representation. However,
this solution results in performance degradation. An alternative solution is to switch
between signature lists. Once the packets filled in the global memory are evaluated
based on the first list, then these packets can be evaluated based on a second, third,
ete. lists.

The theoretical speed of the proposed DPI engine with current hardware is ap-
prox. 2 million packets/sec (see 5.1.7 for the performance test) that is 20k flow pre-
suming 100 packets/flow in average [36]. This means that a 2-bytes-long hash repre-
sentation will not fully occupy its array on the GPU which is stored only for one DPI
iteration per batch. Since the duration of the flow is approx. 60 sec [36] there are 60
times more flows to be stored in the DPT (hosted in the main memory). Therefore
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Figure 5.4: The aggregation of packet information with parallel reduction

the hash representation on the CPU side can be increased to 3 bytes which results in
a 256 times larger hash array occupying in the order of 100 MBytes memory.

In order to avoid the overhead of frequent GPU initializations, we propose to store
the PHLs in a Packet Hit Buffer (PHB) in the operative memory until the aggregation
phase.

5.2.2 Aggregating the per-packet application hits

Before updating the DPT, we propose to aggregate the PHB based on parallel re-
duction. The idea of parallel reduction is to slice a big problem to smaller tasks,
distribute it to processing units and execute the computation of the partial tasks
parallel. The algorithm proceeds to recursively reduce the problem size.

The reduction of the PHB is more efficient if its input is sorted. The sorting
ensures that the same [srcID; srcPort] and [dstID; dstPort] pairs come after each
other. This way the shared memory blocks of the GPU will contain application
information about packets that likely belong to the same [host; port] pair. Therefore
the chance of effective aggregation per block is high. We have applied parallel radix
sort [85] to create a Sorted PHB (SPHB) based on the hash value of the packets.

The SPHB is aggregated with parallel reduction into the Aggregated Packet Hit
Buffer (APHB) similarly to the parallel prefix sum [85]. Extending [85], we propose
to use conditional aggregation while sweeping through the data structure. The idea
is to handle the SPHB as a balanced binary tree and sweep it from the leaves to
compute the aggregated sums.

The steps of the aggregation can be followed in Figure 5.4 and Algorithm 7. The
input of the algorithm is the SPHB extended with a counter in each row. This counter
is initialized to 1 and it represents the number of successfully aggregated packets (i.e.,
rows). In the first step in Figure 5.4, each thread compares the hash keys of the two
rows they are responsible for. If the keys are equal then the aggregation occurs by
summing the aggregation counters and the proper application hit array elements. The
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results are stored at every second row. In the following step, every second thread does
actual work, comparing and adding data in the recently updated rows, and storing
them in every fourth array position. This is repeated until there is no more row left
untouched. The advantage of parallel reduction with such a data structure is that
there are no concurrent memory reads or writes. The threads have to be synchronized
after each step to ensure memory content consistency.

Operations are performed in place in the shared memory, thus no additional mem-
ory allocations are needed. If the binary tree has n leaves and log(n) levels, then only
O(n) operations are needed by the algorithm (it performs (n — 1) adds).

Algorithm 7: Packet Aggregation

Input: SPHB
Output: APHB
1 for d =0,d <logyn —1,d+ + (for the size of n see Section 5.2.4) do
for k =0,n — 1> k, k+ = 291 parallel do
if 2[k + 2% — 1].hash == z[k + 29t — 1].hash then
L z[k + 291 — 1].counter+ = x[k + 2¢ — 1].counter;

for i = 0,i < size(bitmask),i+ + do
| alk+27" — 1.applil+ = z[k + 2¢ — 1].app[il;

O U N

5.2.3 Sequential update of the DHT

The APHB is moved back to the operative memory and the DPT is updated sequen-
tially by adding the corresponding applications hit values to the rows of the DPT.
The update is started from the last row of each block of the APHB since these rows
have the highest aggregation level. The counter of these rows shows how many rows
should be jumped upwards to get to the next useful row to be included in the DPT.
The speed of updating the DPT is also increased by the fact that the SPHB remains
sorted after the parallel reduction. This results in good spatial locality of the hash
values in the DPT, which means high hit rate in the L2-cache of the CPU during
update [104]. Also note that when querying the DPT during traffic classification,
the best matching application for a [host; port] pair can be obtained in one step, if
the application hit list in the DPT is a heap, where the number of hits for different
application types is in decreasing order.

A flow is classified by querying the DPT for the most probable application type
corresponding to the [srcID; srcPort] pair and the [dstID; dstPort] pair, and comparing
their results. In case of equivalence the application type is unambiguous. In case of
difference, we decide for the more probable and more specific category.
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5.2.4 Validation — Evaluation of GPU based aggregation

We can measure the compression ratio of the aggregation as the size of the APHB
divided by the size of the SPHB. When evaluating the compression ratio, the following
issues should be considered:

o [deal compression: All possible items are aggregated, i.e., every element occurs
only once.

e Parallel reduction: Due to the binary tree based execution model, this solution
cannot, aggregate nodes from different branches of different roots. So this so-
lution provides lower compression ratio than the ideal case by definition. For
illustration see Figure 5.4.

o Practical HW constraints: The number of SPHB rows that can be aggregated in
a block of the GPU is limited by the maximum number of threads per block (rec-
ommended maximum is 512) and the size of the shared memory (16 Kbytes) [8].
In our example, a row is stored on 19 bytes (2 bytes for the hash key, one for the
aggregation counter and 16 for the application hit counter). Thus at most 862
rows could fit in the shared memory. But the number of leaves of the binary
tree is the power of 2 and each thread examines 2 rows at the same time, so
only 512 rows with 256 threads can be handled per block. I.e., if X adjacent
rows could be ideally aggregated to 1 row, the GPU can aggregate it to [ X /512]
rows.

In an example from a live traffic trace, the SPHB contained 256,000 rows. By ideal
aggregation, APHB could be aggregated into 4,560 rows meaning that the compression
ratio is 1.78%. By using the GPU, the APHB could be aggregated to 41,095 rows
meaning a compression ratio of 16%. However, the aggregation ratio can be improved
by repeating the aggregation several times. The compression ratio as a function of
the number of iterations is showed in Figure 5.5. It can be seen that the initial
compression ratio can be approx. halved in the next few iterations resulting a total
compression ratio of 8%.

The next question is the performance of the aggregation, i.e., how much time the
aggregation needs. Our experiments show that the aggregation tasks of the GPU are
more than 4 magnitudes faster than the DPT update done by the CPU (hash insert
and update). That is, the aggregation causes no practical overhead in the overall
traffic classification process.

5.2.5 Total system throughput

In this section we discuss the overall performance of the capture and classification
system in case of one CPU core and one GPU. The task of the CPU is to obtain the
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Figure 5.5: The compression ratio of the GPU based aggregation in the function of
execution iteration number

data from the Network Interface Card (NIC), compress the data, feed the GPU with
the data and create a classified flow log. The GPU is responsible for the classification.

According to our test (see Figure 5.6), the proposed system can classify real-time
traffic at approx. 1.7 Gbps per CPU core. The components of the CPU load are as
follows.

e 20% CPU load to capture the traffic: we use our own developed kernel module
(similar to [24]) to avoid the built-in packet handling mechanism of the kernel.
This results in a significant reduction of CPU load during the NIC read.

e 70% CPU load to create flow logs: the output of the kernel module is passed to
a user level process which collects the packets into flows.

e 10% CPU load is connected to the feeding of the GPU and process the classified
data.

Note that the GPU is idle in most of the time, thus it is able to serve several
traffic classification threads parallel. The current bottleneck is the CPU part of the
process. With a multicore environment, the achievable speed scales up to the number
of processors linearly achieving an approx. 6.7 Gbps total system throughput in a 4
core environment.

5.2.6 Application

Beside the proposed use case, the method can be a building block of a wire-speed
multiprocessor flow aggregation module further offloading the CPUs.
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Figure 5.6: Total CPU load as a function of network speed

5.3 Measurement setup

The measurements were done on a PC with two Dual-Core Intel Xeon Processor
5130/2.00 GHz, Intel Pro/1000 NICs, Asus ENGTX260 video card. The operation
system was a 32-bit Ubuntu Linux 8.04 with 2.6.26-1-686 kernel and NAPI supported
driver. The applications were compiled with gcc-4.1. The perl is an 5.10.0 multi-
threaded version. The CUDA API used the CUDA SDK 2.0 with an NVIDIA Driver
for Linux with CUDA Support (177.73) and the CUDA Toolkit for Ubuntu 7.10. The
NICs were bridged by brctl, thus they appeared as one virtual adapter towards the
system.

5.4 Summary

This chapter discusses a GPU assisted solution to reach multi-Gbps speeds on com-
modity hardware. A modification of Zobrist hashing for signature matching problem
was introduced, which uses compact signatures allowing fitting the entire dictionary
into fast memory of the GPU. The achievable speed was measured over 6 Gbps for a
typical traffic mix. The connection pattern analysis method utilizes a parallel-prefix-
sum algorithm adapted to GPU, which is four magnitudes faster than the CPU based
aggregation. It was also shown, that when the above algorithms are placed in a
commodity PC, the system performance including traffic capture, flow aggregation,
GPU algorithms, and GPU communication allows an overall typical speed exceeding
6 Gbps.



Chapter 6

Summary of thesis results

Accurate identification and categorization of network traffic according to application
type is an important element of numerous network management activities such as
flow prioritization, traffic shaping/policing, and diagnostic monitoring. Traffic clas-
sification aims at identifying the traffic mixture in the network. Several different
classification approaches can be found in the literature. However, the validation of
these methods is weak and ad hoc, because neither a reliable and widely accepted val-
idation technique nor reference packet traces with well-defined content are available.
In Section 2.1, a novel validation method is proposed for characterizing the accuracy
and completeness of traffic classification algorithms. The main advantages of the
new method are that it is based on realistic traffic mixtures, and it enables a highly
automated and reliable validation of traffic classification. As a proof-of-concept, it
is examined how state-of-the-art traffic classification methods perform for the most
common application types.

A couple of different traffic classification approaches have been proposed in the
literature, but none of them performs well for all different application traffic types
present in the Internet. Thus, a combined traffic classification method that includes
the advantages of different approaches is needed, in order to provide a high level
of classification completeness and accuracy. The pros and cons of the classification
methods are analyzed based on the experienced accuracy for different types of ap-
plications. Using the gained knowledge about the strengths and weaknesses of the
existing approaches, a novel traffic classification method is proposed in Section 2.2.
The novel method is based on a complex decision mechanism, in order to provide
an appropriate identification mode for each different application type. As a conse-
quence, the ratio of the unclassified traffic becomes significantly lower. Further, the
reliability of the classification improves, as the various methods validate the results
of each other. The novel method is tested on several network traces, and it is shown
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that the proposed solution improves both the completeness and the accuracy of the
traffic classification, when compared to existing methods.

Game traffic depends on two main factors, the game protocol and the gamers’
behavior. Based on a few popular real-time multiplayer games this work investigates
the latter factor showing how a set of typical game phases — e.g., player movement,
changes in the environment — impacts traffic on different observation levels. The
nature of human behavior has such a high impact on traffic characteristics that it
influences the traffic both at a macroscopic — e.g., traffic rate — and at a microscopic
— payload content — level.

By understanding the nature of this impact a user behavior detection algorithm
is introduced in Section 3.1 to grab specific events and states from passive traffic
measurements. The algorithms focus on the characteristics of the traffic rate, showing
what information can be gathered by observing only packet header information. As an
application of our method some results, including a detailed analysis of measurements
taken from an operational broadband network, are presented.

Emerging Massively Multiplayer Online Real Time Strategy games require com-
plex game server architecture to make the transmission of the state information of a
huge number of units generated by a lot of players feasible. This architecture design
is supported by network traffic simulations based on the accurate characterization
of player behavior. However, these characteristics of player behavior in RTS games
have not been investigated yet, thus, this is the main motivation of this work. In
particular in Section 3.2, we introduce a method that can identify the war periods
in real-time strategy game sessions based on non-intrusive measurements thus, it is
possible to analyze a vast number of game plays. Some early results comparing the
real and gaming worlds are also presented.

A novel model and an algorithm are introduced in Section 4 to extend the Deep
Packet Inspection traffic classification method with the analysis of non-fix byte signa-
tures, which are not considered in current methods. The model captures the variation
of the dynamic byte segments and provides parameters for the algorithm. The in-
troduced algorithm exploits the spatial and temporal correlation by examining and
extracting the correlation structure of the traffic and constructing signatures based
on the observed correlation. The algorithm is evaluated by examining proprietary
gaming traffic and also other known non-gaming protocols.

Section 5 discusses necessary components of a GPU-assisted traffic classification
method, which is capable of multi-Gbps speeds on commodity hardware. The major-
ity of the traffic classification is pushed to the GPU to offload the CPU, which then
may serve other processing intensive tasks, e.g., traffic capture. Two massively paral-
lelizable algorithms are presented suitable for GPUs. The first one performs signature
search using a modification of Zobrist hashing. The second algorithm supports con-
nection pattern-based analysis and aggregation of matches using a parallel-prefix-sum
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algorithm adapted to GPU. The performance tests of the proposed methods showed
that traffic classification is possible up to approximately 6 Gbps with a commodity
PC.
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