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Abstract

There is now a substantial literature demonstrating that
traffic arrival proceses in packet switched networks can be
characterised as long-range dependent and asymptotically
self-similar. The goal of this paper is to explain these terms
for traffic engineers, who are not interested in detailed
mathematical proofs, but have to face datasets with long-
range dependence during their work. The different terms
occurring in this field are defined, and their connections are
explored in the light of the latest results. The importance of
the new results are highlighted using examples of practical
importance.

1. Introduction

For our purposes a dataset or time series is formed by
calculating the number of bytes or packets traversing a link
in a telecommunication network in neighbouring intervals
of the same duration. This dataset can be viewed as a sam-
ple path of a stochastic process. Analyzing the statistical
properties of this process is necessary for efficient traffic
management and dimensioning.

It was found in earlier works ([16, 13, 6]) that in contrast
to traditional telephone networks, where the traffic can be
described by traditional stochastic processes, the traffic of
packet switched networks is highly self-correlated, and so
has a so-called long-range dependent, or asymptotic self-
similar nature.

This long-range dependence influences among other
things queuing and multiplexing performance ([12, 14, 10])
and makes the dimensioning of networks difficult.

Although many papers deal with the mathematical and
the practical aspects of long-range dependence it was found

that in view of our latest results ([8]) the mathematics be-
comes simpler, easier to understand, and these results also
have some practical consequences worth knowing.

The rest of this paper is organised as follows: Section 2
introduces the stochastic processes and their basic descrip-
tors, like the autocovariance and autocorrelation functions.
In section 3 the exact definitions of self-similarity, long-
range dependence, etc. will be given and their connection
explored. In section 4 some practical consequences of the
new results will be highlighted, while section 5 summarises
and concludes the paper.

2. Preliminaries

In this paper no measured traffic traces will be analysed,
rather those mathematical models will be investigated that
can serve as a model for them.

Real life datasets are in general not stationary for their
whole length, but stationary intervals can usually be iden-
tified. In fact all of the mathematical analysis tools require
one or other type of stationarity so this assumption ought to
be verified in each case.

It is however important to understand the stationary mod-
els before turning our attention to the more sophisticated
non-stationary ones, therefore in this paper all mathemati-
cal models will describe stationary processes.

Definition 2.1 (Second-order stationarity)
A discrete time stochastic process
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For simplicity, without loss of generality it will be as-



sumed that the process has zero mean. Apart from the ex-
istence of a finite variance no assumption is made on the
marginal distributions of the process. In the following the
term stationarity will mean second-order stationarity.

Stationarity enables to define the autocovariance func-
tion as

Definition 2.2 (Autocovariance function)
The autocovariance function (ACVF) of a stationary pro-
cess �����	 is defined as! �#"� %$'&)(�* ���#+, -���#"� �.0/

Normalising ! by ! ��+, , which by definition is equal to1
, the variance of � , yields the autocorrelation function,2 �0"� 3&547698;:476=<>: . Normalisation hides the “size” of the variation

it gives a qualitative description of the covariances.
The autocovariance function plays an important role in

our analysis because in this paper we only concentrate on
second-order properties, and it is the autocovariance func-
tion that unambiguously characterises the process for our
analysis.

Self-similarity (see definition 3.1) corresponds to the in-
variance of the qualitative behaviour of the process when
viewed at different time scales. Going to a coarser time
scale from a finer time scale can be achieved by recalculat-
ing the sum, or average of the values in neighbouring non-
overlapping intervals. This operation will be called aggre-
gation and the aggregated process ( � 6@?A: ) is defined as� 6@?A: ���	 A$'& BC ?%DEFHG ?�6=D�IKJ	:�LMJ ���@NO ;/

The variance, ! , and 2 functions of � 6@?A: will be denoted
by
1 6@?A: , ! 6@?A: and 2 69?%: respectively.1 6@?A: , also called as aggregated variance or, variance-

time function, can be expressed in terms of ! �#"� as follows:1 6@?A: & PRQOS � J3T �VU TXWYWZW[T �]\C ^ U`_ (1)& BC U ?�IKJEFHG < FEa9G I F ! ��b� (2)

For the traditional so called short-range dependent pro-
cesses the dataset gets asymptotically uncorrelated as the
level of aggregation increases, that is for each fixed "�c&d+2 6@?A: �#"e ?f + . The variance of ��� C  has a fast decay1 6@?A:hgji J? .

The traffic traces measured in packet switched networks
behaves differently. Even for large values of Ck2 6@?A: �0"� 
does not vanish, and the decay rate of variance can be mod-
elled as

1 6@?A:lgmi C�n , where oqpr�#+�sYt B  .

This influences among others queuing behaviour, makes
an estimation of the mean of the traffic volume more unre-
liable, and so makes the dimensioning and management of
the network difficult.

3. Results

We start with the definition of self-similarity.

Definition 3.1 (Second-order self-similarity (SS))
A process is (exactly) second-order self-similar if 2 6@?A:hu 2
for all C & B , v , w�sY/Z/Y/ .

As it can easily be justified by some simple algebra and is
well-known [5] the fractional Gaussian noise (fGn) satisfies
definition 3.1 of self-similarity.

Fractional Gaussian noise is a Gaussian process (all
finite distributions are Gaussian) with an autocorrelation
function of 2 �0"� x& JU7y U?{z C UH|{} �0"� , where y U is the double-
differencing operator defined as:

y Ua z�~ ��b- } ���� �&��� � v ~ � B  $���&X+~ �0v� lt�v ~ � B  $���& B~ ��� T B  �t�v ~ ���� T ~ ����t B  �$���� B /
and the parameter ��p�* +�s B . is the famous Hurst parameter.

Because the exact distributions of the random variables
play no role in this paper, we will use fractional noise (FN)
instead of fGn, which has the same autocorrelation function,
but the requirement of Gaussianity has been dropped.

It hasn’t been investigated before whether there are any
other SS processes, and if yes whether they can also appear
in communication networks and what influence they may
have. Such an investigation is also useful for a better un-
derstanding of the nature of the already known fractional
noise.

Contrary to the common belief that there are no other
SS processes besides FN [5], our investigations revealed a
new kind of self-similar process, which was named almost
periodic [9] because of the visual periodicity of its autocor-
relation function, as depicted in figure 1.

Definition 3.2 (The almost periodic fixed point family AP�`� � )
The autocorrelation function of a AP�`� � process is 2 �#"� �&JU y U� z[~ ��� � �0�[ } �0"� , where ~ ��� � ����� \  V&�� \ , where � is non-
negative integer, � is a prime number that is not an integer
divisor of � and ��p���+�s B  .
Theorem 3.1
Members of the AP�`� � family are self-similar.

In [8] it was also shown that besides the well known frac-
tional noise family and the newly discovered AP family no
other self-similar processes exist.
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Figure 1. Autocorrelation function of AP �;�  Z¡ ¢
Having a quick look at the very complicated definition of

the autocorrelation function of AP processes it can immedi-
ately be seen that they are not likely to appear in telecom-
munication networks. We can thus conclude that associ-
ating fractional noise with self-similarity was wrong from
the mathematicians but acceptable from the traffic engineers
point of view, and also that having a clear view in this topic
is beneficial for both of the above.

Because of their greater importance in the following we
will concentrate on fractional noise and related processes.

Besides the exactly self-similar processes, where £¥¤@¦A§ is
independent of ¨ , there exists the class of asymptotically
self-similar (ASS) processes, where £�¤@¦A§ changes with ¨ ,
but ©@ª9« ¦¬¯® £e¤9¦%§%°²±7£�³ , is the autocorrelation function of
an exactly self-similar process.

Definition 3.3 (Asymptotic second-order self-similarity (ASS))
A process is asymptotically second-order self-similar (to£´³ ) if ©@ª9« ¦¬¯® £e¤@¦A§�µ0¶�·x°²±�£�³�µ0¶�· , for all ¶�¸�¹ .

It can be shown that in this case £e³ is SS.
The importance of asymptotically self-similar processes

lies in the fact that the traffic volume measured on telecom-
munication networks belongs to a subset of them, namely
the class of so called long-range dependent (LRD) pro-
cesses. The difference between LRD and ASS is not always
clear, and in some papers they are even treated as equal.
Furthermore several different definitions of long-range de-
pendence can be found in the literature.

Definition 3.4 (LRD1)
LRD1 processes are those whose ACVFs obey ºhµ0¶�·m»¼�½ ¶ ¢>¾�¿�¢ , ÀÁ¸�µ#Â�ÃÅÄ´ÆZÇ�· , and ¼;½ is a positive constant.

This definition is the simplest and most frequently encoun-
tered. For example it is used in [5, 2, 13, 1].

This definition can be generalised by allowing arbitrary
slowly varying function (see definition 3.7) in place of the
constant ¼�½ .

Definition 3.5 (LRD2)
LRD2 processes are those whose ACVFs obey ºhµ0¶�·m°¼�½ µ0¶�·	¶ ¢H¾�¿�¢ with ÀÈ¸Éµ�Â�ÃÅÄ´ÆZÇ�· and ¼;½ is a slowly varying
function.

Slow and regular variation was originally introduced for
continuous time functions [3].

Definition 3.6 (Regular variation in continuous time)
A function Êµ�Ë¥· is slowly varying if for all ÌÍ¸�Î�ÏÐ µ�ËÑÌ	·Ð µ�Ë¥·ÓÒÔ Ç�Æ (3)

where Î Ï is the set of positive real numbers. A functionÕ µ�Ë�· is regularly varying with index Ö if for all ÌÍ¸�Î ÏÕ µ�ËÑÌ	·Õ µ�Ë¥·ÓÒÔ Ì	×�Ã (4)

It is clear that regular variation with index Â is slow vari-
ation. It is not complicated to show that

Theorem 3.2
The continuous time function

Õ µ�Ë�· is regularly varying
with index Ö if and only if

Õ µ�Ë�·V° Ð µ�Ë�·-Ë × , where
Ð µ�Ë¥·

is slowly varying.

Examples for slowly varying functions include any func-
tion that converges to a positive constant, or the logarithm
function.

It makes sense to define slow and regular variation in dis-
crete time. Some authors define them analogously to equa-
tions (3) and (4) where ÌA¸ØÎ Ï is replaced by Ù�¸Ø¹ Ï , andÕ

is said to be regularly varying ifÕ µ�ÙK¨�·Õ µ�¨�· ¦Ô Ù × Ã (5)

This definition although simple and straightforward has a
drawback. Equation (5) imposes much less constraint on the
function than its continuous counterpart equation (4). As a
result of this the class of functions defined by (5) is to big,
including functions with some undesired behaviour. There-
fore nice properties of the continuous time regular variation
like the cumulative sum of regularly varying functions re-
mains regularly varying, the ratio of neighbouring values
converges to Ç , etc. do not carry over. To save most of the
convenient properties discrete time regular variation will be
defined in a more restrictive way as follows [7]:

Definition 3.7 (Discrete regular variation (DRV))
A function Ú defined on ¹ Ï is regularly varying with indexÖ if there exists a continuous time regular varying functionÛÚ such that Úhµ�Ù�·3° ÛÚhµ�Ù�· for all Ùr¸�¹ Ï .



Unfortunately none of the above definitions for long-
range dependence were found to be flexible enough to cap-
ture all processes that have such a slowly decaying autocor-
relation function that ÜÑÝ9Þ%ß does not vanish even as àâáäã .
Therefore we propose using the definition of [8], which
says:

Definition 3.8 (LRD)
All asymptotically self-similar processes that converge to
FNå with æ�çrè#é�êÅë´ìZí�î are long-range dependent (LRD).

Later on it will turn out that LRD is not equivalent to
LRD2.

The first part of the following theorem appeared in sev-
eral places, including in [2] and [15].

Theorem 3.3
For LRD1 processesï Ý9Þ%ß�ðjñ�ò à�ó å�ô óæqè0õ�æ÷öøí�î ê (6)

The result can be extended to LRD2 processes asï Ý@ÞAß ðjñ ò è�à�î à�ó åùô óæqè0õ�æ÷ö�í[î ê (7)

Although equation (6) appears in many places, its proof
is either omitted or is only valid for a special case of LRD1
processes, or uses some additional unproved lemma. Equa-
tion (7) and its proof can be found in [8].

Definition 3.9
A stochastic process that satisfies

ï Ý@ÞAß ðdñ ò è�à�î ÞAú�ûýü�úå Ý9ó å�ôKþ ß
with ækÿXéeê ë and ñ ò è�à�î is slowly varying will be called a
process of slowly decaying variance (SDV).

SDV processes are in fact regularly varying. The word
“slowly” in this definition should not be confused with slow
variation. It only highlights, that the variance has a slower
decay than in the case of traditional short-range dependent
models.

The connection between slowly decaying variance and
asymptotic self-similarity is given by the following

Theorem 3.4
All processes having a slowly decaying variance are asymp-
totically self-similar, converging to FNå .

Theorem 3.4 together with (7) means that LRD2 is a sub-
set of LRD. The question naturally arises whether the above
statements can be reversed. The quick answer is that there
exist processes with slowly decaying variance, which are
not LRD2, and it is not known yet whether there exist any
processes which converge to FNå , with æÁÿøéeê ë but do not

?
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Figure 2. Connection of long-range depen-
dence, slow-decay of variance (SDV) and
asymptotic self-similarity (ASS). All pro-
cesses that satisfy 	�è�
�î ð ñ;ò è�
�î
 ó å�ô ó (LRD2)
also satisfiy

ï Ý9Þ%ß ð ñ ò è�à�î ÞAú�ûýü�úå Ý9ó å�ôKþ ß (SDV), and
these processes are ASS converging to FNå .
In the first case the converse is not true, while
in the second case it is not known yet.

have slowly decaying variance. This is depicted in figure 2.

In detail:
To show that LRD contains LRD2 as a subclass a process

will be constructed that is a member of the set LRD � LRD2.
Let ��þ and � ó be independent copies of an FNå process
with ACVF 	�� , æ ç è�éeê ë�ìYí�� . We define ��è��	î , ��ç�� by
deterministically alternating between the two copies:� è��	î���� � ��þ�è�� ��õ�î;ì!� even� ó è#" ôKþó î�ì$� odd
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Odd lags compare different processes and
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as illustrated in figure 3. It can be shown that � is a second-
order stationary process, with ACVF	54�è�
�î6� � 	7��è�
8��õ�î;ì$
 evené�ì 
 odd ì



and after some algebraic transformations using (2) we get:9;:=<�>? @BA CD 9FE :=<FG D >IH J evenCDLKNMNOPQPSRUTWV�X�Y[Z�X�\7MNOPQPSR^]WV�X=Y[Z[XD _ H`J odd
H
(8)

where
9 E

is the aggregated variance function of FN.
Equation (8) shows that the aggregated variances of a

(
9;:=<�>? ) behave asymptotically as CD 9 E :�<�G D > the aggregated

variances of the fractional noise, and so according to theo-
rem 3.4 a is LRD but obviously not LRD2.

Although this example might first seem awkward its ex-
istence shows that LRD2 and LRD are not equivalent, and
there is no reason (yet) why other examples could not be
constructed. In section 4 an example will be given of how
the process a can appear in a teletraffic network.

To explain the difference between processes that con-
verge to FNb , with ced$fhgSi (LRD processes) and pro-
cesses of slowly decaying variance a sufficient and neces-
sary condition for being ASS to FNb is presented.

Theorem 3.5
A process is ASS to FNb if and only ifj=k�l<Fmon 9 :=pq<�>9 :=<�> @sr D b1t D H
for each rvuxw \ .

This looks very similar to the definition of the continu-
ous time regular variation and in fact it can easily be shown
that also in discrete time if y is regularly varying with indexz then it satisfies (5). It is also clear that there are functions
satisfying (5) that are not regularly varying [7]. But it is
not trivial whether such a function can appear as an aggre-
gated variance time function. The autocorrelation function
has to satisfy the constraint of positive semi-definiteness [4],
which is a simple consequence of the positivity of the vari-
ance of any finite linear combination of some values of the
process.

Definition 3.10 (Positive semi-definiteness)
the function { is positive semi-definite if|

C~}N��� ��} pU� � {��������W� � � d�fhg (9)

where � @ � � C H � D H g�g#g H � p ��� is any constant real vector of
length r .

Positive semi-definiteness excludes many of the discrete
time functions to be valid as an autocorrelation function
and so also many functions cannot appear as aggregated
variance functions. So the question is whether there are
any functions that satisfy (5), are not regularly varying, and
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Figure 4. Hurst parameter estimation using
the Variance Time Plot method

the corresponding autocorrelation function is positive semi-
definite. Although this has not been investigated before,
we believe that even if such functions exist they are highly
pathological and not likely to appear in practical situations.

4. Consequences

The effect of long-range dependence on various QoS pa-
rameters have already been studied and reported in [12, 14,
10]. In this section we only concentrate on the effects of the
new results, using practical examples.

Several statistical tests and estimators have already been
developed to detect the presence and estimate the parame-
ters ( c , �~� ) of long-range dependence and asymptotic self-
similarity. In view of our new results, it is possible to high-
light some possible hazards during the interpretation of the
output of these estimators.

In our example one of the simplest estimators, the vari-
ance time-plot will be investigated, although similar exam-
ples could also be constructed for some other estimators too.
Variance time-plot is based on equation (6). Using numeri-
cal methods

9 :�<�> is estimated and is plotted against J in a
log-log scale, as visualised in figure 4.

If the process in question was LRD1 with Hurst parame-
ter c , then the tail of the plot should be a straight line with
slope �qc��.� . So first the straightness of the tail should be
judged. If it is straight its slope has to be measured and the
Hurst parameter has to be estimated. In fact this particular
estimator is statistically not very reliable, meaning roughly
that very long traces are needed to get a reasonable esti-
mate, and also that non-stationarities migh easily mislead
the estimator 1 [11].

1Other, more sophistcated estimators perform much better in these as-
pects.
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But in view of our results we can identify two other
shortcomings of this estimator.
Example 1a:

Assume that the process in question is LRD2 but not
LRD1. In this case, even if a perfect estimation of � ��¡�¢
is assumed, the tail of the slope will never be a straight
line. This estimator is not suitable to detect the presence
of LRD2.

This drawback is common to all estimators that restrict
attention to LRD1, such as the R/S plot, or the periodogram
plot [2].
Example 1b:

Variance time-plot is able to detect if a process is of
slowly decaying variance or not. It is a common mistake to
assume that SDV implies LRD1 or LRD2 and so conclude
LRD1 from the straightness of the tail of the plot.

It has to be noted however that the presented drawbacks
do not mean that the estimators are useless or wrong. They
only show that the interpretaion of the output of the esti-
mator might include some hidden hazards, which can be
eliminated by careful analysis.
Example 2:

This example shows a possible scenario, mentioned in
Example 1b, where the process is SDV but not LRD.

Let £¥¤q¦�§h¨ and £�©W¦�§h¨ be two independent traffic streams,
carrying e.g. real-time variable bitrate multimedia informa-
tion. Here £#ª ¦�§h¨ denotes the amount of bytes transmitted in
timeframe « §¬�®�¯¥¦�§±°s²¥¨�¬³®¥¨ of process ´ . These two streams
are fed into a network that lacks any type of congestion con-
trol, and are deterministically multiplexed to form a single
output stream, µ¶¦�·�¨ , with double bitrate where

µ¶¦�·�¨¹¸»º £ ¤ ¦�·^¼q½¾¨~¯ · even£ © ¦¦�·À¿Á²¥¨Â¼q½�¨�¯�· odd

is the amount of bytes transmitted in timeframe « ·;Ã�Ä© ¯�¦�·Å°²¥¨ÆÃ�Ä© ¨ as illustrated in figure 5.
Now if both £ ¤ and £ © were LRD1, with Ç ¤ and Ç © ,

where Ç ¤ È Ç © then similarly to the example presented af-

ter theorem 3.4 it can be shown that µ¶¦�·�¨ will be LRD and
so SDV with ÇÉ¸ÊÇ.² , but it will definitely not be LRD2,
and so it will show different queueing and statistical be-
haviour. Therefore if such sort of deterministical multiplex-
ing is present in the network it is advisable to analyse the
traffic traces before entering the multiplexer. If the traffic
can only be measured after multiplexing the input streams
have to be separated to gain an accurate view of the traffic
statistics.

5. Conclusions

In this paper the recent complete definitions of exact and
asymptotic self-similarity, discrete regular variation, and
several forms of long-range dependence were reviewed and
summarised with practical implications discussed. All pos-
sible self-similar processes were presented. It was shown
that a regular variation of the autocovariance function re-
sults in a regular variation of the variance-time function,
and a regular variation of the variance-time function results
in being asymptotically self-similar. It was also shown that
the converses are not necessarily true. Practical examples
were presented to highlight the importance of the results
from the traffic engineers point of view. It was shown that
care should be taken when interpreting the results of traffic
analysis tools.
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