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Abstract--This paper reports some results on state-based 
analysis of TCP connections. During a connection, TCP 
stays in either of the following states: Slow Start, 
Congestion Avoidance, Fast Retransmit (Recovery) and 
Time Out. We use simulation to examine TCP state by state. 
We have developed a tool to investigate the behavior of TCP 
in different periods. At this stage, our tool can detect the 
beginning and the end of each period, collects some useful 
statistics for our state-based model. We also report some 
interesting observations while investigating TCP behavior at 
states, such as the evidences and the causes of the difference 
between the congestion window and the number of packets 
outgoing in the network.  
 
Index terms—TCP, modeling. 
 

I. INTRODUCTION 
 
TCP modeling can be found in two main approaches: 
packet level and fluid level. One of the motivations for 
the packet level approach is the possibility of applying 
existing discrete-time models [1], [2], [5], [10]. 
Respectively, the motivation for fluid level model is the 
possibility of applying existing continuous-time models 
[3], [6], [7], [8], [9]. In both approaches, good points 
have been addressed and important, subtle results have 
been achieved. In [6], T. Ott et al used stochastic 
differential equations to model TCP behavior and first 
suggested the square-root formula. J. Padhye et al in [1] 
extends the model in [6] to capture Time Out. This model 
is widely accepted as one of the most accurate models for 
TCP Reno (in the case of bulk data transfer). We can also 
mention here the chaotic nature of TCP as suggested and 
examined in [3]. However, as TCP modeling is 
application-sensitive, a general purposed TCP model that 
is precise, yet simple, is still unavailable. This makes the 
TCP modeling task still very challenging. Another  
 
 
 

                                                           
   

issue of TCP modeling is the types of modeling: black-
box modeling and white-box modeling.  
Black-box modeling approaches usually start from a 
theoretical model while white-box modeling approaches 
try to mimics TCP inherent operations based on some 
statistics. An example of white-box modeling is the well-
known ON/OFF model for voice traffic. It has two states: 
IDDLE and SPEAK. If the speaker speaks, then it is in 
SPEAK state, and it is in IDDLE state otherwise. A 
natural question arises then: How about TCP?  Our state-
based model of TCP follows white-box modeling 
approach. We model TCP by its states. During a 
connection, TCP stays in either of the following states: 
Slow-Start, Congestion Avoidance, Fast Recovery, 
Exponential Back-off. TCP can jump from one state to 
another state in response to external events such as 
packet loss or Time Out. We consider how much time 
TCP stays in each state and the distribution of time 
elapsed at each state. We then consider the jumping 
probability from one state to another state. From the 
statistics, we can build a model to estimate TCP 
throughput. We have developed our technique in a tool 
called TCP_ASD (TCP Automatic State Detection) that 
automates state analysis of TCP connections. This paper 
reports some results achieved from the tool and 
simulations of TCP.   
 
The remainder of the paper is organized as follows. In 
Session 2 we describe the simulation setup that we use 
throughout this paper. In Session 3 we describe our state-
based model of TCP in more detail. Session 4 describes 
the TCP_ASD tool. Session 5 presents some results from 
our analysis. Session 6 concludes the paper.     

II. SIMULATION SETUP 
 
For our analysis, we used a simple simulation setup as 
above. The access link bandwidth was set to 8 Mb/s, the 
access link delay was set to 1 ms. The bottleneck link 
bandwidth was set to 800 Kb with 100 ms delay. The 
packet size was set to 1000 bytes. 
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Figure 1. Simulation Setup  

The receiver advertised window is set to 45 (big enough 
in order not to infer to our simulation). In this paper, we 
only examine TCP performance with Drop-Tail router. 

 

III. A STATE-BASED MODEL OF TCP 
We consider the dynamics of TCP state by state. After 
the hand-shake period, TCP starts in Slow-Start. In this 
period, the congestion window is increased in an 
exponential manner. From Slow-Start, TCP can jump 
into either of the following states: Fast Recovery, 
Congestion Avoidance and Exponential Back-off, 
depending on the external events. If the congestion 
window gets the slow start threshold without packet loss, 
then TCP will enter Congestion Avoidance. We call the 
probability that TCP jumps from Slow-Start to 
Congestion Avoidance by psc If packet loss happens then 
on the arrival of the third duplicate ACK, TCP will 
retransmit the lost packet and enter Fast Recovery. We 
call the probability that TCP jumps from Slow-Start to 
Fast Recovery by psf . Otherwise it enters Time Out. We 
call the probability that TCP jumps from Slow-Start to 
Exponential Back-off (or Time Out) by ps . Let’s suppose 
now that TCP is in Fast Recovery.  
 
 

 
                 Figure 2. The model 
 
Similarly, from Fast Recovery, TCP jumps to Congestion 
Avoidance with probability pfc  and to Exponential Back-
off with probability pfe . From Congestion Avoidance, 
TCP jumps to Exponential Back-off with probability pce 
and to Fast Recovery with probability pcf   . From 
Exponential Back-off, the only possibility for TCP is to 
jump to Slow-Start (with pes). We also consider the 
distribution of time elapsed in each state. If the time spent 
at each state is exponentially distributed, then we have a 
Markov chain. The states of the Markov chain are the 
states of TCP itself. From the Markov chain we can 
derive the stationary behavior of TCP, such as throughput 
of TCP, as well as the exact dynamics of TCP. 
 

IV. TCP AUTOMATIC STATE DETECTION TOOL 
 
Our tool has two major parts. The first part is responsible 
for running simulation and preprocessing the data. This 
part also collects useful information from the simulations 
of TCP connections such as the congestion window and 
slow start threshold (cwnd_ and ssthresh_). The second 
part is responsible for actually producing the results. We 
have  implemented (in C++) a number of our algorithms 
[4] to illustrate a number of TCP metrics such as number 
of out-going packets, number of forward-going packets. 
The TCP_ASD tool uses the dynamics of the congestion 
window to detect state changes of a TCP connection, 
collects some statistics such as sojourn time at states, 
bytes sent at states for our state-based model. We also 
examine different TCP versions such as TCP Tahoe, 
Reno, New-Reno, and SACK. Finally the MATLAB 
scripts part is responsible for illustrating the dynamics of 
the mentioned processes.  
 

  
 

 
 

         Figure 3. Flow diagram of our tool 
 

V.  SOME RESULTS 
 

5.1 State detection 
Figure 4 illustrates how state change is detected. The 
connection starts with a Slow Start. After the third 
duplicate ACK arrives, the congestion window is halved 
and TCP enters Fast Recovery. The receipt of the 
recovery ACK gets TCP out of Fast Recovery. At this 
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point there are two possibilities: Congestion Avoidance 
or Time Out. If only one packet is lost in the window of 
packets, then Congestion Avoidance follows. If multiple 
losses occur, then Time Out (or Exponential Back-off) 
follows.  . 

 
 

Figure 4. State detection of TCP 
 
When the timer expires, the congestion window is set to 
1 and Slow Start begins and the congestion window is 
increased in an exponential manner. If the congestion 
window gets the slow start threshold, TCP enters 
Congestion Avoidance.   
 
5.2 Sojourn times 
 
The first thing to mention here is that TCP state at 
Congestion Avoidance period in most of its time in our 
simulations. Since New Reno and SACK provides 
mechanisms to handle multiple losses in a window, there 
is no Time Out there. But it is not without cost. 

 
 

 
Figure 5. Sojourn times 

 
As we can see in the Figure 5, the time New Reno and 
SACK stayed at Fast Recovery is significantly bigger that 
Reno. And we know that in Fast Recovery, there is not 
much effective data transmission (goodput). In our 
simulations with TCP Tahoe, no Time Out occurred. This 
is because TCP Tahoe is not so aggressive. Every single 
packet loss results in an empty pipe and Slow Start again.  

 
5.3 Bytes Sent 
 
We observe that Congestion Avoidance carried most of 
the data in a TCP connection. An important observation 
here is that New Reno and SACK did indeed improve in 
Fast Recovery (more data sent during this period). Since 
every single loss in Tahoe causes the TCP Slow Start 
again, the bytes sent in Slow Start in Tahoe is 
significantly bigger than other versions.  
 

 
 

Figure 6. Sent bytes 
5.4 Rates 
 
Now let us consider the rate of sending data at each state.  
 

 
 

Figure 7. Rates 
 
We observe that in Congestion Avoidance, TCP Tahoe 
outperformed other versions of TCP. It is not without 
cost. It performed worst in Slow Start. 
 
5.5 An important observation on the number of out-
going packets 
The measurement of the number of  out-going packets 
(the pipe) is quite straightforward: upon each 
acknowledgment at the sender, the pipe equals the 
number of packets sent but not yet acknowledged till that 
time, including the packets that are sent just after 
receiving that acknowledgement. If a packet is dropped at 
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the router, we should deliberately subtract the pipe by 
one since one packet has left the pipe. There are two 
kinds of slow start to consider. The first slow start is the 
slow start right after the handshake period and slow start 
after time out. Slow-Start in the first period appears to 
behave normally in this period (see Fig. 8).  The lower 
figure shows how packets are sent and ACKs are 
received at the sender. The upper figure shows the 
dynamics of the cwnd and out-going packets. We have 
two things to mention here. First, the congestion window 
increases in an exponential manner after each round trip 
time as long as TCP stays in Slow-Start. 
 

 
Figure 8. Normal slow start 

 
Second, in this period, the cwnd and out-going packets 
are indeed the same because they are integers (1,2,4,8,16 
until TCP sender senses packet loss). The conclusion 
(observation) for this part is that the dynamics of the 
number of out-going packets exactly reflects the 
dynamics of the congestion window process. This period 
ends when the cwnd reaches the threshold (ssthresh_) or 
a packet loss occurs. In our simulation, this slow start 
ended after spent 5RTT+ and when 3 dup ACKs 
received. The second type of slow start we consider in 
this paper is the slow start after time out. This slow start, 
by specification, should behave like normal slow start. 
However, in presence of interesting coming ACKs from 
the receiver, it behaves somewhat differently.  
In this slow start, unlike the first slow start, there is a 
difference between the cwnd and the actual number of 
packets in the network (packets in pipe). Our tool tries to 
specify this number and give us the evidence and reason 
for this difference. The evidence of the difference is clear 
from the Figures 9 and 10. We find that the reason for the 
difference is due to the packets that already left the 
network and are cached at the sender’s buffer but are not 
yet processed because of loss packets in between, we call 
them the “holes”. We can also observe “ACK jump” 
effect in this period. Notice that this is not delayed ACK, 
since we deactivated this option in our simulations. This 
is because the sender sends   the packets that are already 
cached at the receiver buffer. In this Slow Start the 
congestion window evaluation is 1, 2, 3, 5, 
and so on, after each round trip time. The actual number 
of out-going packets are 0, 2, 4, 5, and so on. 

Clearly, the increase is not in an exponential manner. 
There is a difference between this metric and the 
congestion window. The sender, however, doesn’t have 
that knowledge, and resends these packets using slow 
start mechanism, causing the difference (Fig. 10).  Now 
let us take a closer look at our case. The following 
packets are dropped at the router: 22  24
 26 28 30       34 36 38
 40 42 44. The following packets are 
cached but not yet processed at the receiver: 23   25
 27 29 31 32 33 35
 37     39 41 43. After receiving 3 
duplicated ACKs for packet 22, the sender resent packet 
22 (Fast Retransmit) and halves its congestion from 22 to 
11 and enters Fast Recovery. However,  it does not 
receive enough additional duplicated ACKs to inflate the 
window. The arrival of ACK number 23, the sender exits 
Fast Recovery and the cwnd becomes 11,0909, but by 
this time, the pipe is already empty. TCP sender enters 
Time Out. As the Timer expires, the TCP sender exits 
Time Out and sends packet number 24 (loss packet) 
entering Slow Start phase. The last sent packet was 
packet number 44.  The first thing to be observed here is 
on “needlessly resent packets”. Upon receiving ACK 
number 25, the sender sends two packets: 26, 27. 
However the packet 27 was already cached at the 
receiver, so we called it “needlessly resent packet”. We 
can observed in Fig. 9 that packets number 29, 31,
 32, 33, 35, 37, 39, 41,
 43 are all “needlessly resent packets”. The 
second thing to be observed here is the ACK “jump”. As 
we can see in Fig. 9 , packet 24 is not ACKed. Instead, 
two ACKs arrive for packets. This is not because of delay 
ACK as we mentioned above. It is also due to packets 
cached at the receiver. The third thing to be observed 
here is “3 dupACKs but NO retransmission”, which 
seems to be not “normal” in TCP performance. This is, 
again, can be traced back to the fact that some packets are 
resent but were already cached at the receiver. 
 
The conclusion for this part is two fold: First, in Slow 
Start phase, for the first Slow Start the cwnd perfectly 
follows the number of out-going packets. For Slow Start 
after Time Out, the cwnd does not increase in exponential 
manner and does not always match the number of out-
going packets. However, the difference is minor. We also 
presence observations in this Slow Start and gave 
explanation for them. Basically, all can be traced back to 
the fact that, TCP needlessly resends the packets that are 
already cached at the receiver. 
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Figure 9. Slow start after Time Out 

 
 

Figure 10. Out-going pakets vs. cwnd 
 

VI. CONCLUSION 
We have presented a state-based analysis of TCP through 
simulations. We have developed a tool for our analysis. 
We used the tool to collects useful statistics for our state-
based model of TCP. Finally, we showed an important 
observation of TCP dynamics. Analysis and validation of 
our state-based model is left as our future work. 
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