
 1

Abstract--This paper reports some results on state-based
analysis of TCP connections. During a connection, TCP
stays in either of the following states: Slow Start,
Congestion Avoidance, Fast Retransmit (Recovery) and
Time Out. We use simulation to examine TCP state by state.
We have developed a tool to investigate the behavior of TCP
in different periods. At this stage, our tool can detect the
beginning and the end of each period, collects some useful
statistics for our state-based model. We also report some
interesting observations while investigating TCP behavior at
states, such as the evidences and the causes of the difference
between the congestion window and the number of packets
outgoing in the network.

Index terms—TCP, modeling.

I. INTRODUCTION

TCP modeling can be found in two main approaches:
packet level and fluid level. One of the motivations for
the packet level approach is the possibility of applying
existing discrete-time models [1], [2], [5], [10].
Respectively, the motivation for fluid level model is the
possibility of applying existing continuous-time models
[3], [6], [7], [8], [9]. In both approaches, good points
have been addressed and important, subtle results have
been achieved. In [6], T. Ott et al used stochastic
differential equations to model TCP behavior and first
suggested the square-root formula. J. Padhye et al in [1]
extends the model in [6] to capture Time Out. This model
is widely accepted as one of the most accurate models for
TCP Reno (in the case of bulk data transfer). We can also
mention here the chaotic nature of TCP as suggested and
examined in [3]. However, as TCP modeling is
application-sensitive, a general purposed TCP model that
is precise, yet simple, is still unavailable. This makes the
TCP modeling task still very challenging. Another

issue of TCP modeling is the types of modeling: black-
box modeling and white-box modeling.
Black-box modeling approaches usually start from a
theoretical model while white-box modeling approaches
try to mimics TCP inherent operations based on some
statistics. An example of white-box modeling is the well-
known ON/OFF model for voice traffic. It has two states:
IDDLE and SPEAK. If the speaker speaks, then it is in
SPEAK state, and it is in IDDLE state otherwise. A
natural question arises then: How about TCP? Our state-
based model of TCP follows white-box modeling
approach. We model TCP by its states. During a
connection, TCP stays in either of the following states:
Slow-Start, Congestion Avoidance, Fast Recovery,
Exponential Back-off. TCP can jump from one state to
another state in response to external events such as
packet loss or Time Out. We consider how much time
TCP stays in each state and the distribution of time
elapsed at each state. We then consider the jumping
probability from one state to another state. From the
statistics, we can build a model to estimate TCP
throughput. We have developed our technique in a tool
called TCP_ASD (TCP Automatic State Detection) that
automates state analysis of TCP connections. This paper
reports some results achieved from the tool and
simulations of TCP.

The remainder of the paper is organized as follows. In
Session 2 we describe the simulation setup that we use
throughout this paper. In Session 3 we describe our state-
based model of TCP in more detail. Session 4 describes
the TCP_ASD tool. Session 5 presents some results from
our analysis. Session 6 concludes the paper.

II. SIMULATION SETUP

For our analysis, we used a simple simulation setup as
above. The access link bandwidth was set to 8 Mb/s, the
access link delay was set to 1 ms. The bottleneck link
bandwidth was set to 800 Kb with 100 ms delay. The
packet size was set to 1000 bytes.

Some Results on State-based Analysis of TCP
Tuan-Anh Trinh, Mihály Krizsán and Sándor Molnár

High Speed Network Laboratory
Department of Telecommunications and Telematics
Budapest University of Technology and Economics

H-1117, Magyar tudósok körútja 2, Budapest, Hungary

E-mail: {tuan,krizsan,molnar}@ ttt-atm.ttt.bme.hu

Some Results on State-based Analysis of TCP

2

Figure 1. Simulation Setup

The receiver advertised window is set to 45 (big enough
in order not to infer to our simulation). In this paper, we
only examine TCP performance with Drop-Tail router.

III. A STATE-BASED MODEL OF TCP
We consider the dynamics of TCP state by state. After
the hand-shake period, TCP starts in Slow-Start. In this
period, the congestion window is increased in an
exponential manner. From Slow-Start, TCP can jump
into either of the following states: Fast Recovery,
Congestion Avoidance and Exponential Back-off,
depending on the external events. If the congestion
window gets the slow start threshold without packet loss,
then TCP will enter Congestion Avoidance. We call the
probability that TCP jumps from Slow-Start to
Congestion Avoidance by psc If packet loss happens then
on the arrival of the third duplicate ACK, TCP will
retransmit the lost packet and enter Fast Recovery. We
call the probability that TCP jumps from Slow-Start to
Fast Recovery by psf . Otherwise it enters Time Out. We
call the probability that TCP jumps from Slow-Start to
Exponential Back-off (or Time Out) by ps . Let’s suppose
now that TCP is in Fast Recovery.

 Figure 2. The model

Similarly, from Fast Recovery, TCP jumps to Congestion
Avoidance with probability pfc and to Exponential Back-
off with probability pfe . From Congestion Avoidance,
TCP jumps to Exponential Back-off with probability pce
and to Fast Recovery with probability pcf . From
Exponential Back-off, the only possibility for TCP is to
jump to Slow-Start (with pes). We also consider the
distribution of time elapsed in each state. If the time spent
at each state is exponentially distributed, then we have a
Markov chain. The states of the Markov chain are the
states of TCP itself. From the Markov chain we can
derive the stationary behavior of TCP, such as throughput
of TCP, as well as the exact dynamics of TCP.

IV. TCP AUTOMATIC STATE DETECTION TOOL

Our tool has two major parts. The first part is responsible
for running simulation and preprocessing the data. This
part also collects useful information from the simulations
of TCP connections such as the congestion window and
slow start threshold (cwnd_ and ssthresh_). The second
part is responsible for actually producing the results. We
have implemented (in C++) a number of our algorithms
[4] to illustrate a number of TCP metrics such as number
of out-going packets, number of forward-going packets.
The TCP_ASD tool uses the dynamics of the congestion
window to detect state changes of a TCP connection,
collects some statistics such as sojourn time at states,
bytes sent at states for our state-based model. We also
examine different TCP versions such as TCP Tahoe,
Reno, New-Reno, and SACK. Finally the MATLAB
scripts part is responsible for illustrating the dynamics of
the mentioned processes.

 Figure 3. Flow diagram of our tool

V. SOME RESULTS

5.1 State detection
Figure 4 illustrates how state change is detected. The
connection starts with a Slow Start. After the third
duplicate ACK arrives, the congestion window is halved
and TCP enters Fast Recovery. The receipt of the
recovery ACK gets TCP out of Fast Recovery. At this

EUNICE 2003 Budapest, Hungary

 3

point there are two possibilities: Congestion Avoidance
or Time Out. If only one packet is lost in the window of
packets, then Congestion Avoidance follows. If multiple
losses occur, then Time Out (or Exponential Back-off)
follows. .

Figure 4. State detection of TCP

When the timer expires, the congestion window is set to
1 and Slow Start begins and the congestion window is
increased in an exponential manner. If the congestion
window gets the slow start threshold, TCP enters
Congestion Avoidance.

5.2 Sojourn times

The first thing to mention here is that TCP state at
Congestion Avoidance period in most of its time in our
simulations. Since New Reno and SACK provides
mechanisms to handle multiple losses in a window, there
is no Time Out there. But it is not without cost.

Figure 5. Sojourn times

As we can see in the Figure 5, the time New Reno and
SACK stayed at Fast Recovery is significantly bigger that
Reno. And we know that in Fast Recovery, there is not
much effective data transmission (goodput). In our
simulations with TCP Tahoe, no Time Out occurred. This
is because TCP Tahoe is not so aggressive. Every single
packet loss results in an empty pipe and Slow Start again.

5.3 Bytes Sent

We observe that Congestion Avoidance carried most of
the data in a TCP connection. An important observation
here is that New Reno and SACK did indeed improve in
Fast Recovery (more data sent during this period). Since
every single loss in Tahoe causes the TCP Slow Start
again, the bytes sent in Slow Start in Tahoe is
significantly bigger than other versions.

Figure 6. Sent bytes
5.4 Rates

Now let us consider the rate of sending data at each state.

Figure 7. Rates

We observe that in Congestion Avoidance, TCP Tahoe
outperformed other versions of TCP. It is not without
cost. It performed worst in Slow Start.

5.5 An important observation on the number of out-
going packets
The measurement of the number of out-going packets
(the pipe) is quite straightforward: upon each
acknowledgment at the sender, the pipe equals the
number of packets sent but not yet acknowledged till that
time, including the packets that are sent just after
receiving that acknowledgement. If a packet is dropped at

Rate

0

100

200

300

400

500

Slow-start Fast
Retransmit

Congestion
Avoidance

Timeout

kb
ps

TAHOE
RENO
NEWRENO
SACK

Sent bytes

0
200
400
600
800

1000
1200
1400

Slow-start Fast
Recovery

Congestion
Avoidance

Timeout
kb

yt
e

TAHOE
RENO
NEWRENO
SACK

Time in states (%)

0%

20%

40%

60%

80%

100%

TAHOE RENO NEWRENO SACK

Timeout
Congestion Avoidance
Fast Recovery
Slow-start

Some Results on State-based Analysis of TCP

4

the router, we should deliberately subtract the pipe by
one since one packet has left the pipe. There are two
kinds of slow start to consider. The first slow start is the
slow start right after the handshake period and slow start
after time out. Slow-Start in the first period appears to
behave normally in this period (see Fig. 8). The lower
figure shows how packets are sent and ACKs are
received at the sender. The upper figure shows the
dynamics of the cwnd and out-going packets. We have
two things to mention here. First, the congestion window
increases in an exponential manner after each round trip
time as long as TCP stays in Slow-Start.

Figure 8. Normal slow start

Second, in this period, the cwnd and out-going packets
are indeed the same because they are integers (1,2,4,8,16
until TCP sender senses packet loss). The conclusion
(observation) for this part is that the dynamics of the
number of out-going packets exactly reflects the
dynamics of the congestion window process. This period
ends when the cwnd reaches the threshold (ssthresh_) or
a packet loss occurs. In our simulation, this slow start
ended after spent 5RTT+ and when 3 dup ACKs
received. The second type of slow start we consider in
this paper is the slow start after time out. This slow start,
by specification, should behave like normal slow start.
However, in presence of interesting coming ACKs from
the receiver, it behaves somewhat differently.
In this slow start, unlike the first slow start, there is a
difference between the cwnd and the actual number of
packets in the network (packets in pipe). Our tool tries to
specify this number and give us the evidence and reason
for this difference. The evidence of the difference is clear
from the Figures 9 and 10. We find that the reason for the
difference is due to the packets that already left the
network and are cached at the sender’s buffer but are not
yet processed because of loss packets in between, we call
them the “holes”. We can also observe “ACK jump”
effect in this period. Notice that this is not delayed ACK,
since we deactivated this option in our simulations. This
is because the sender sends the packets that are already
cached at the receiver buffer. In this Slow Start the
congestion window evaluation is 1, 2, 3, 5,
and so on, after each round trip time. The actual number
of out-going packets are 0, 2, 4, 5, and so on.

Clearly, the increase is not in an exponential manner.
There is a difference between this metric and the
congestion window. The sender, however, doesn’t have
that knowledge, and resends these packets using slow
start mechanism, causing the difference (Fig. 10). Now
let us take a closer look at our case. The following
packets are dropped at the router: 22 24
 26 28 30 34 36 38
 40 42 44. The following packets are
cached but not yet processed at the receiver: 23 25
 27 29 31 32 33 35
 37 39 41 43. After receiving 3
duplicated ACKs for packet 22, the sender resent packet
22 (Fast Retransmit) and halves its congestion from 22 to
11 and enters Fast Recovery. However, it does not
receive enough additional duplicated ACKs to inflate the
window. The arrival of ACK number 23, the sender exits
Fast Recovery and the cwnd becomes 11,0909, but by
this time, the pipe is already empty. TCP sender enters
Time Out. As the Timer expires, the TCP sender exits
Time Out and sends packet number 24 (loss packet)
entering Slow Start phase. The last sent packet was
packet number 44. The first thing to be observed here is
on “needlessly resent packets”. Upon receiving ACK
number 25, the sender sends two packets: 26, 27.
However the packet 27 was already cached at the
receiver, so we called it “needlessly resent packet”. We
can observed in Fig. 9 that packets number 29, 31,
 32, 33, 35, 37, 39, 41,
 43 are all “needlessly resent packets”. The
second thing to be observed here is the ACK “jump”. As
we can see in Fig. 9 , packet 24 is not ACKed. Instead,
two ACKs arrive for packets. This is not because of delay
ACK as we mentioned above. It is also due to packets
cached at the receiver. The third thing to be observed
here is “3 dupACKs but NO retransmission”, which
seems to be not “normal” in TCP performance. This is,
again, can be traced back to the fact that some packets are
resent but were already cached at the receiver.

The conclusion for this part is two fold: First, in Slow
Start phase, for the first Slow Start the cwnd perfectly
follows the number of out-going packets. For Slow Start
after Time Out, the cwnd does not increase in exponential
manner and does not always match the number of out-
going packets. However, the difference is minor. We also
presence observations in this Slow Start and gave
explanation for them. Basically, all can be traced back to
the fact that, TCP needlessly resends the packets that are
already cached at the receiver.

EUNICE 2003 Budapest, Hungary

 5

Figure 9. Slow start after Time Out

Figure 10. Out-going pakets vs. cwnd

VI. CONCLUSION
We have presented a state-based analysis of TCP through
simulations. We have developed a tool for our analysis.
We used the tool to collects useful statistics for our state-
based model of TCP. Finally, we showed an important
observation of TCP dynamics. Analysis and validation of
our state-based model is left as our future work.

VII. REFERENCES
[1] Jitendra Padhye et al, Modeling TCP Reno
Throughput: A Simple Model and its Empirical
Validation, SIGCOMM’98.

[2] A. Kumar, “ Comparative Performance Analysis of
Versions of TCP in a Local Network with a Lossy Link”,
IEEE/ACM Transactions on Networking, 1998.

[3] A. Veres, M. Boda, The Chaotic Nature of TCP
Congestion Control, INFOCOMM 2000, Tel Aviv,
Israel.

[4] T. A. Trinh, T. Éltető, On Some Metrics of TCP,
LCN 2000, Tampa, Florida, USA, November 2000.

[5] N. Cardwell, S. Savage, T. Anderson, Modeling TCP
Latency, INFOCOMM 2000.

[6] T. Ott, J.H.B. Kemperman, M. Mathis, The Stationary
Behavior of Ideal TCP Congestion Avoidance, Bell Lab
Technical Report, 1996.

[7] V. Misra, W. Gong and D. Towsley. A Fluid-based
Analysis of a Network of AQM Routers Supporting TCP
Flows with an Application to RED, SIGCOMM 2000.

[8] Schwefel, Behavior of TCP-like Elastic Traffic at a
Buffered Bottleneck Router, INFOCOMM 2001.

[9] Steven Low et al, Dynamics of TCP/RED and a
Scalable Control, INFOCOMM 2002.

[10] Peerapol Tinnakornsrisuphap, Armand Makowski,
Limit Behavior of ECN/RED Gateways Under a Large
Number of TCP Flows, INFOCOMM 2003.

