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Abstract

Multimedia services offered by packet switched networks call for new solutions in the areas
of traffic characterization, traffic modeling and traffic management. Traffic characteriza-
tion should realistically describe the multimedia traffic and capture its inherent burstiness
on many time scales. Traffic modeling should capture the multiple burst levels of multi-
media traffic. Traffic management should find effective and scalable schemes for resource
reservation utilizing the fine granularity of quality of service requirements of multimedia
teleservices.

According to these problem statements, the objective of my dissertation is threefold.

I introduce a framework for characterizing the resource demand and burstiness of mul-
timedia traffic on several time scales, in a simple way. I propose to characterize the input
traffic with the Leaky Bucket curve, which gives a deterministic bound on buffer and delay.
This metric directly provides the relationship between the buffer and bandwidth require-
ments of a rate limited, finite length traffic trace. Furthermore, I propose the Leaky Bucket
Slope curve for visualizing the burst structure of traffic trace. Finally, I establish an analytic
model based on the Multilevel On-Off traces, which enables the quantification of burst size
and inter-burst time in a measured traffic trace.

I propose a hierarchical source model, which is capable to reproduce the burst structure
of a VBR traffic source by imitating the internal traffic generation process of the end system.
First I consider the multimedia traffic source as a ‘black-box’ and analyze only its traffic.
Than I evaluate the impact of internal mechanisms in the ‘white-box’ traffic source on the
traffic characteristics and achieve a three level, hierarchical model.

I propose a performance evaluation framework for benchmarking resource reservation
schemes. I distinguish per hop and per reservation performance metrics in this framework
and define new metrics for characterizing the greediness and the effectiveness of reservation
schemes. I propose different new reservation protocols, which optimize one of these metrics
or utilize service specific information for better reservation performance.
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Kivonat

A csomagkapcsolt halézatok multimédia szolgdltatisai j megoldasokat kovetelnek a for-
galomjellemzés, forgalommodellezés és forgalommenedzsment teruletén. A multimédia for-
galom valdsighii leirdsa és sajatos csomésodasi tulajdonsiganak tobb idéskalan vald visz-
szatiikrozése jelenti a kihivédst a forgalomjellemzés szamara. A forgalommodellezés 1j fela-
data a multimédia forgalom Ossztett csomodsoddsi szintjeinek leirdsa. A forgalommenedzs-
ment teriiletén pedig hatékony és skalazhaté eréforrasfoglalé eljarasokat kell taldlni, amelyek
kihasznaljak a multimédia szolgaltatasok valtozatos mindségi kovetelményeit.

Disszertaciém harom célt tiiz ki e feladatoknak megfelelGen.

Bemutatok egy keretrendszert, amely egyszeri modszert kindl a multimédia forgalom
erOforrasigényének és csomoésodisinak tobb idoskalds jellemzésére. A bejové forgalmat az
ugynevezett ,,Lyukas Vodor” gorbével irom le, amely egy determinisztikus fels6 korlatot
hataroz meg a taroloméret és késleltetés tekintetében. Ez a mérték kozvetleniill megadja a
kapcsolatot egy savkorlatozott, véges hosszisagi forgalom-minta taroléméret- és sdvszélesség-
igénye kozott. Tovabba a forgalom csomdsodasi szerkezetének szemléltetésére az ugynevezett
,,Lyukas Vodor Meredekség” gorbét ajanlom. Ezt kovetéen egy analitikus modellt allitok
fel a ,, Tobbszinti On-Off” mintik alapan, amely lehetévé teszi a csomdéméret és a csomok
kozt eltelt id6 szdmszerlsitését. Végezetil szadmos alkalmazdssal érzékeltetem moddszerem
hasznédlhatésagat.

Ajénlok egy hierarchikus forrdsmodellt, amely képes visszaadni egy valtoz6 bitsebessegii
forgalom-forras csomdsodasi szerkezetét a végberendezés belso forgalomgerjesztd folyamatai-
nak utanzasa segitségével. A multimédia forrast el6szor ,,fekete doboznak” tekintem és
csak annak forgalmat elemzem. Ezutdn, mintegy ,,fehér dobozként”, kiértékelem a forras
bels6 folyamatainak hatasat a forgalom jellemzoire és egy haromszintii, hierarchikus modellt
allitok fel.

Ismertetek egy teljesitmény kiértékeld keretrendszert eréforras foglald eljarasok vizsgala-
tdra. Ebben a keretrendszerben ugrasonkénti és lefoglalasonkénti teljesitmény mértékeket
kiillonboztetek meg és 4j mértékeket allitok fel az erdforras foglald eljardsok mohdsagénak
és hatékonysiganak jellemzésére. Tovabba tobb 1j erdforrads foglalé protokollt ajanlok,
amelyek optimalizaljak ezen mértékek valamelyikét illetve a szolgdltatasra vonatkozd in-
forméciét hasznaljak fel a jobb hatékonysag elérése érdekében.
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Chapter 1

General Introduction

1.1 Background

A wide spectrum of traffic modeling and management techniques is available for the sin-
gle service of the telephony system [9, 11]. However, those techniques are generally not
applicable for the versatile multimedia services offered by packet switched networks, which
provoked intensive research in the last decades.

Traffic characterization provides parameters for describing the traffic in the traffic con-
tract on one hand, and it supports traffic engineering with estimating the required network
resources on the other hand. Multimedia services impose tight requirements on the delay,
delay variation, loss and throughput performance of the network. In order to meet these
constrains, preventive traffic control is proposed based on a traffic contract [35, 66]. In this
traffic contract the requested connection or flow is described by a traffic descriptor, which
consists of a set of traffic parameters [76, 66, 36]. The network can use the traffic descriptor
(i) for deciding on admission of a new connection/flow (admission control), (ii) for check-
ing whether the characteristics of an accepted connection are as declared (usage parameter
control) or (iii) for enforcing the contracted characteristics in the traffic source (shaping)
[34] or at the edge of a network domain (traffic conditioning) [69]. The fundamental prob-
lem is to find adequate traffic parameters for describing the traffic, since these parameters
should be easy to control and significant in determining required resources. Moreover, traffic
characterization has to reflect the complex burst structure of multimedia traffic.

Another challenge is to establish models for multimedia traffic sources. Apart from ap-
proximating models, which aim to support the analysis of multiplexing performance [5, 38,
44], a large group of traffic models targets a specific traffic source [106, 107, 108, 109, 110].
Source models can provide a simplified description of the source behaviour for setting up
traffic control processes, they can precisely imitate the source in simulations or replace ex-
pensive multimedia terminals in measurements. Regarding the model building technique,
the most common modeling approach is black-box modeling [9, 10, 11] that focuses on the



traffic and not on the traffic source. This technique tries to capture certain traffic character-
istics (e.g. moments of interarrival time) by tuning the parameters of an independent traffic
generation process. One drawback of these models is that they usually have a huge number
of input parameters. Another problem that it is difficult to modify the behaviour of the
traffic source, especially in a realistic way. These limitations do not hold for white-box mod-
eling, which is fairly rare in the literature [43]. This approach utilizes the a’ priori knowledge
of the traffic generation process and focuses on the emulation of internal processes in the
traffic source, yielding a more accurate source model. Comprehensive overviews of traffic
modeling can be found in [8, 9].

Traffic management aims for eliminating congestion in the network, balance the traf-
fic load and protect against failures [76, 8]. Traffic management schemes can be classified
into two classes, reactive or feedback control schemes [101, 102] and proactive or resource
reservation algorithms [103, 19, 66, 15]. Reactive approaches detect and react dynamically
to congestion inside the network by relying on the feedback information from the network,
while proactive approaches eliminate the possibility of congestion by reserving network re-
sources for each connection. There are numerous ways of reserving resources for multimedia
services. The usage of signaling protocols for this purpose is widespread in ATM and IP net-
works (see [13, 14, 15, 16, 17, 18, T4]). Others propose to code the QoS demand in the packet
header [19, 20, 21] or rely on a centralized resource manager [31, J3, C16, C18, C17, C15].
The critical issue is the scope and scalability of these alternatives, which require a perfor-
mance framework for evaluation.

1.2 The Structure of the Dissertation

Chapter 2 presents the Leaky Bucket Analysis — a framework for characterizing the resource
demand and burstiness of ATM traffic —, demonstrates its applicability on deterministic
and measured traffic traces, and describes its application for traffic modeling, resource
dimensioning, shaper design, queuing behaviour analysis and analysis of multiplexing gain.

Chapter 3 describes a hierarchical source model based on the white box modeling con-
cept. This model can synthesize the traffic of a VBR traffic source by imitating the operation
of VBR encoding, process scheduling and protocol encapsulation in a multimedia worksta-
tion. At the end of this chapter the validity of this model is investigated using the Leaky
Bucket Analysis.

Chapter 4 presents a performance evaluation framework for resource reservation schemes
including traditional and novel performance metrics and demonstrates the application of
this framework on different reservation schemes, such as sender-oriented, receiver-oriented
protocols and others using a central resource manager or service specific information.

I have primarily assumed ATM as networking technology in the first two thesis groups,
while IP in the last one. However, most of the techniques I apply here can be adapted to
other packet switching and multiplexing technologies.



Chapter 2

Leaky Bucket Analysis and its
Applications

2.1 Introduction

This chapter introduces the Leaky Bucket Analysis (LBA) that is a traffic characteriza-
tion framework providing deterministic traffic descriptors for resource dimensioning and
burstiness analysis.

There are different methodologies for classifying traffic characterization approaches.
Firstly, the goal of traffic characterization can be either to track the arrival process or
to provide a bound on the traffic volume. Secondly, stochastic and deterministic analysis
methods can be distinguished. The stochastic analysis focuses on the statistical characteris-
tics of the traffic, while the deterministic approach is based on a deterministic algorithm or
rule. Thirdly, the traffic characterization can be either static (time invariant) or dynamic
(time variant). From the eight possible combinations of these categories, I give an overview
on stochastic burstiness metrics and different deterministic bounds.

2.1.1 Stochastic Burstiness Metrics

Regarding the arrival process, one of the most remarkable property of multimedia traffic is
the burstiness. Burstiness expresses the clustering phenomenon of arrivals, i.e. when arrivals
tend to form clusters with relatively short inter-arrival times within the cluster separated by
relatively long intervals. It has a strong relation to the correlation structure of the traffic.
A simple class of stochastic burstiness metrics takes only the first-order properties into
account. These metrics are based on different characteristics of the marginal distribution
of the inter-arrival time. The most frequently used metric of this class is the peak to mean
ratio, while a popular, second-order burstiness metric is the squared coefficient of variation
[11, 76]. More complex burstiness metrics use second-order properties of the traffic. The
indices of dispersion [80, 81] and generalized peakedness [82] are the most well known metrics



of this class. The former include the correlation properties of the traffic, while the latter
incorporates the reaction of a system to a given traffic via the complementary holding time
distribution of the system [83]. Other authors [84, 85] follow the concept of self-similarity
and propose the Hurst parameter, or fractal parameters as burstiness metrics. For a short
overview on stochastic burstiness metrics and related traffic models refer to [2, 7].

The advantage of many stochastic burstiness metrics is that they capture the correlation
of arrivals and also the time dependent variations of the arrival process. Although stochastic
characterization approaches usually yield analytically tractable formulas, it is necessary to
make special (sometimes unrealistic) assumptions for this purpose [79]. Moreover, the
number and complexity of the parameters needed to describe the traffic does not suit to
the simple parameters of actual traffic control algorithms [42].

2.1.2 Simple Deterministic Bounds

The bounding traffic characterization assumes that the entering traffic is unknown, but
satisfies certain regulatory constraint (e.g. maximum queue length or loss rate). In other
words this approach aims to bound the traffic rather than exactly characterize the arrival
process. The exact traffic pattern for a connection is unknown, the only requirement is
that the volume of the traffic should be bounded in certain ways. Although bounding
characterization can either be deterministic or stochastic, I consider only the former case.

Non-probabilistic or deterministic bounding characterization defines a deterministic traf-
fic constraint function. The traffic constraint function bounds the maximum number of bits
that may be generated by the source over a given time interval. The least upper bound of
this function is also referred to as the minimum envelope process [35] or empirical envelope
(98, 88].

A simple deterministic bound can be specified using the Leaky Bucket (LB) algorithm.
This simple bound is used both in the ATM traffic descriptor [66, 76] or in the ‘flow specifica-
tion’ of IP/RSVP messages [15, 57]. Since the LB parameters are used as traffic descriptors,
the LB algorithm can also be used for traffic regulation, i.e. for Usage Parameter Control
[34, 96, 97] and traffic shaping [46, 93, 95]. These are independent applications of the same
algorithm. I consider the LB only as a traffic descriptor in this work. Apart from the Leaky
Bucket, Rathgeb analyzes other deterministic bounding metrics, such as ‘jumping window’,
‘triggered jumping window’, ‘moving window’ and ‘exponentially weighted moving average’
(EWMA) and compares their performance [47]. His results emphasize that LB and EWMA
are better traffic descriptors, because the window based mechanisms are not flexible enough
to cope with the short-term statistical fluctuations of the source traffic.

The main limitation of the Leaky Bucket descriptor is that it provides a bound on bursti-
ness only for a single service rate. The complex burst structure of multimedia traffic and
the multi-rate nature of modern packet switched networks calls for a traffic characterization
method which can capture the burst structure on many time scales.



2.1.3 Extended Deterministic Bounds

The single working point defined by the LB parameters should be replaced by a more
sophisticated traffic constraint function in order to extend the scope of the deterministic
bound.

Cruz proposed an envelope as the burstiness constraint for the traffic stream entering
the network [2]. The traffic is conforming to his (o, p) model, if during any interval of length
u, the number of bits in that interval is less than o 4 pu. His original model is based on
the fluid flow approximation. The parameters ¢ and p can be viewed as maximum burst
size and the long term bounding rate of the source, respectively. Using this calculus (o, p),
he also obtained delay and buffering requirements for the network elements and derived
the burstiness constraint satisfied by the traffic that exits the element. Extending the
original work, Cruz introduced the concept of Service Curve in [3] based on a discrete time
model. This result is a corner stone of the Network Calculus framework by Le Boudec [4],
which provides a set of rules and results that can be used for computing tight bounds on
delays, backlogs, and arrival envelopes in a lossless setting applicable to packet networks.
An alternative deterministic traffic constraint function is proposed in [89], where a traffic
stream satisfies the (Xiin, Xave, I, Smaz) model, if the inter-arrival time between any two
packets in the stream is more than X,,;,, the average packet interarrival time during any
interval of length I is more than X, and the maximum packet size is less than Spq;.
Furthermore, a traffic stream satisfies the (r,7") model [90, 91] if no more than r - T' bits
are transmitted on any interval of length 7. Rather than using one bounding rate, the
Deterministic Bounding Interval-Dependent (D-BIND) model [92] uses a family of rate-
interval pairs where the rate is a bounding rate over the corresponding interval length. For
an overview see [8].

The main benefits of deterministic bounding characterizations are that they are both
general and practical. They can characterize a wide variety of bursty sources. In addition,
it is sufficient for resource management algorithms to allocate resources by knowing just
the bounds on the traffic volume.

2.1.4 Dynamic Deterministic Bounds

I have considered deterministic bounds with time-invariant traffic constraint function previ-
ously. Although this approach provides a very accurate traffic characterization for a source,
its practical significance is decreased by the fact that such function can only be effectively
policed by a large number of leaky buckets. Since current packet-switched networks employ
simple LB mechanisms for traffic policing, the use of the minimum envelope process does
not facilitate traffic policing.

Extending the static (p, o) model, Cruz introduces a dynamic traffic constraint function
in [1]. He uses dynamic burstiness measures for describing the relationship between the
traffic entering a server and the traffic exiting the server for characterizing end-to-end
network delay. Moreover, he presents new classes of service disciplines, which support
delay guarantees as well as efficient statistical sharing. The dynamic envelope metric of



Cruz overlaps with the work of Parekh and Gallager, who consider generalized processor
sharing service disciplines [86, 87]. The delay calculus of Cruz is extended based on the time
varying filtering theory under the (min, +) algebra in [99] and an optimal and implementable
solution is provided for the general constrained traffic regulation problem with both delay
and buffer constrains. Finally, Konsta proposes a dynamic envelope, that enables traffic
regulation that also considers delay and buffer constrains and minimizes the number of
discarded packets [100].

Following the deterministic bounding approach, I have established a traffic characteri-
zation framework, called Leaky Bucket Analysis, that provides a deterministic bound on a
traffic trace on different time scales in a discrete time framework. It directly provides the
relationship between the buffering requirement of a trace and the service rate. Moreover,
it visualizes the burst structure of the trace and — with the help of a special deterministic
traffic model, the so called Multilevel On-Off trace — quantifies the burst size and the burst
interarrival times in the trace.

The rest of this chapter is organized as follows. Section 2.2.1 presents the Leaky Bucket
Analysis (LBA) framework by defining the deterministic traffic descriptors and related met-
rics. Section 2.2.2 illustrates this traffic characterization method on artificial, deterministic
traffic traces, while Section 2.2.3 demonstrates the applicability of LBA on real ATM traffic
traces captured by measurements. The robustness of LBA as a tool for characterizing a
specific traffic type is investigated in Section 2.3. The deterministic metrics of LBA are
fitted to two analytic models. The first model produces a recursive traffic pattern, called
Multilevel On-Off Trace, while the second is a two-level fluid flow model. These models
are described in Section 2.4.1 and Section 2.4.2, respectively. Finally, several applications
of LBA are presented in Section 2.5 such as resource dimensioning, shaper design, queuing
behaviour analysis and analysis of multiplexing gain.

2.2 The Leaky Bucket Analysis

In this section, I describe and illustrate a deterministic traffic analysis method for charac-
terizing bursty traffic sources, called the Leaky Bucket Analysis (LBA) [B1, C1, C3].

Let us consider discrete cell arrivals and departures in a discrete-time queuing model with
FIFO service discipline and no priority scheduling according to the following definitions.

Definitions

Arrival Function Let the series ay,as,...,ay (N € Z*) denote the absolute arrival
time of cells in a traffic trace of length T'. The arrival function of this trace can be defined
as:

p(k) =Y 6k —a), k=0,1,2,...,T, (2.1)



where k£ denotes the discrete time and 0(k) is the Kronecker delta function which equals to
one, if £k = 0, and otherwise equals to zero. As a short form, I will refer to a traffic trace of
length T', containing N arrivals as u(T, N).

Cumulative Arrival Function In order to express the amount of cells, which have arrived
in the interval [1, k] the cumulative arrival function can be used:

k
m(k):Ze(k—ai):Zu(j), k=0,1,...,T, (2.2)

where €(k) is the ‘step function’ which equals to one, if k£ > 0, and otherwise equals to zero.

Service Function The service function can be defined similarly to Equation (2.1), using
the series of absolute service times ¢ in the queue:

L]
n(k,t)=> 6(k—jt), k=0,1,...,T, te{1,2,3,...,T}h (2.3)
j=1

The selected set of service time corresponds to serving one incoming cell in every
1,2,3,... time slot'. Because of this choice, the service rate (i.e. the reciprocal of ser-

vice time) is r € {1, %, %, i, cee %} in this framework.

2.2.1 The Leaky Bucket Curve

The basic metric of the Leaky Bucket Analysis is the Leaky Bucket Curve? that specifies
the upper bound for the queue length ¢ when a finite trace of length 7' is served at rate r
in a G/D/1 queuing system:

£0,r) = 0, (2.4)
Ek+1,r) = max{f(k,r)—i—u(k:)—n(k,;),0}, k=0,1,... T,

= k,r)}, e{1,3+ 1 ..., 5}, 2.5
q(r) ke{glf}ffj}{f( )} r € 213014 T} (2.5)
where ¢(r) denotes the discrete Leaky Bucket (LB) Curve.

The dual pair of the LB curve, i.e. the maximum queue length as a function of service
time ¢ can be given as:

q'(t)=q(}), t€{1,2,3,... ,T}. (2.6)

!This kind of deterministic service process is widely used in actual ATM switches.

?Burstiness Curve or Backlog Curve might be a more intuitive name for this curve. I have chosen
the notion, Leaky Bucket Curve, since the most practical application of this curve is to determine proper
parameters for the Leaky Bucket based ATM usage parameter control process.




It is very impractical to handle a series of value pairs (i.e. {r;,¢q(r;)}), especially in case
of drawing graphs. Thus I also define the Leaky Bucket Envelope curve that is a continuous
function of 7, which intersects the points of the LB curve:

~

q(*) = q(rp) — (v —-f)ggfé)_j;ﬂﬁfﬁl

"A—TB

<=

S

<1, (2.7)

Nl

_ 1 _ 1
TA_W’ TB—E-

[15e}]

For the sake of simplicity, I will omit the notation of continuity
in case of the service rate and service time.

in the figure labels and

Properties of The LB Curve

By analyzing the expressions (2.1), (2.3), (2.4) and (2.5), we can recognize the following
properties of the LB envelope curve:

e non negative,
e monotone decreasing,
e and convex.

Several traffic patterns may have the same LB curve, because the max() function is not
unambiguous. Moreover, the following equations hold for the edges of the LB curve:

lim ¢(r) = N, lim ¢(r) = 0. (2.8)

r—0 r—1

The ¢(r) curve is non negative due to the [-]* function. In order to prove that it is also mono-

tone decreasing, let us analyze Equation (2.4). Denote K); n € {1,2,... ,k}, U, K} C
{1,2,... ,k} the disjunct time intervals before ¥ where the argument of the [-]* function is

non-negative, i.e. where £(k) + p(k) —n (k, 1) > 0. First I consider one such a region and
prove the monotonity. Since the queue length function £(k) is zero in any other time slot
k & K, we can omit those terms and rewrite Equation (2.4):

0, vk : leC,J{,
B=) S Wi -nG:)) = © s - X 0Gh), vk ke,

jexk jex+ jexy

The last expression is monotone increasing with the service rate, because there are more
service events in case of higher service rates even if the K regions may be shifted.

Thus the point series of ¢(r), i.e. the maximum of the whole expression is monotone
decreasing;:

n(k, ) 20k, 5) if i< = q(r) > q(r). (2.9)

)y 7y



Illustration

The left side of Figure 2.1 illustrates the Leaky Bucket curve for two traces captured from
video traffic. The continuous lines depict the LB envelope ¢(r), while the dots highlight
the discrete ¢(r) function. Three operating points are marked by diamonds. The two LB
curves practically coincide in operating point A, highlighting that cell loss can be avoided
by allocating a buffer of 300 cells and service rate of 4700 kbps for both of the sources.
However, the two sources have very different buffer demand, if they are served at 2900 kbps
(see operating points B and B’, respectively).

I introduce the following notions for referring to the two end regions of the LB curve:

1. the peak-end is on the right where the service rate is close to the peak rate of the
trace and the curve is almost horizontal,

2. the mean-end is on the left where the service rate is close to the mean rate of the
trace and the curve is almost vertical.

3500
= I o)
gsooo 2
£ ]
© 2500 k)
3 s
(0]
S 2000 a3
> (0]
c &
£ 1500} »
>
£ a
3 1000} IR
= =
~ &
< 500f 2
0 n n n n n n n
0 2000 4000 6000 8000 1000012000 0 20 40 60 80

r - Service Rate [kbps] t - Service Time [cell time]

Figure 2.1: Leaky Bucket Envelope and Leaky Bucket Slope curves of two measured video
traffic traces

It is very well pronounced in the figure, that the LB envelope curves consist of linear
segments, with breaking points between them. For instance, the points between 7000 kbps
< r < 12000 kbps fit very well to a linear segment and there is a breaking point around
r = 7000 kbps. In order to analyze this feature, let us express the slope of the LB Envelope
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curve in each r; € {1, %, %, %, . ,%} point, using (2.7):
) — ol 1
o(r;) = M’ ri=1, 1= 7 (2.10)
Ti = Titl - +1
i=1,2,...,T.

Since the LB curve is monotone decreasing, its slope is negative. Moreover, the compu-
tation of a metric is faster and easier, if it has a discrete argument. Thus I define the Leaky
Bucket Slope Curve based on Equation (2.10) using ¢ in the argument:

oy = 1) ~ (25|

ti — 1 , tp =1, tig1 =1t + 1, (2.11)
titit1
i=1,2,...,T.
Using ¢'(t) = ¢(}) and that ;11 = t; + 1 we get
sty =t(t+1)|q"(t) — 't +1)|, t=1,2,... ,T—1. (2.12)
An important property of the LB slope curve is:
lim s(t) =T. (2.13)

t—o00

Since the slope of the LB curve usually changes with several orders of magnitude from
the peak-end to the mean-end, I plot the LB slope on logarithmic scale. The right side
of Figure 2.1 depicts the LB Slope curves of the previous two traces. The A, B and B’
operating points are also noted on the LB slope curves. The slope curves emphasize the
operating regions where the two sources have similar behaviour in the queue and also those
where they differ. Moreover, the size and interarrival time of bursts in the trace can be
directly read from the log (s(¢)) curve, as it will be described in Section 2.4.1.

Although plotting ¢(r) and s(t) with different X-axis may be confusing for the first
glance, I have proposed that, because in this way the operating regions are represented by
linear sections on the LB curve, and horizontal plateau on the LB slope curve.

The Leaky Bucket Analysis

The Leaky Bucket Curve and Leaky Bucket Slope Curve can be used for characterizing the
rate and buffer demand and the burst structure of rate bounded, finite length traffic traces,
w(T,N). Leaky Bucket Analysis denotes traffic characterization based on these curves and
on the presented framework.

In general, it is fairly complex to analyze the expression of the LB curve, i.e. Equations
(2.4) and (2.5) mathematically. However, it is very straight forward to build a discrete
event simulator, which can calculate the maximum queue length for different service rates
based on these formulas. The equation of LB Envelope (2.7) is also complex, but any
mathematical program can easily draw the ¢(r) graph using the point series of ¢(r).
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Related Metrics

There are further interesting metric definitions in connection with the Leaky Bucket curve.
The LB Distance quantifies the distance of the LB curves of traces Al and A2:

<r<1. (2.14)

Nl=

d(r) = qa1(r) — Gaz(r),

This factor can be used for analyzing how much more buffer is needed for one trace than
for another or for validating traffic models (see section 3.4).

Mazimum Delay is another practical metric, which can be easily retrieved from the LB
curve by drawing trajectories to each working point (i.e. the line intersecting the origo and
a certain point of the LB curve). The slope of the trajectory gives the maximum delay:

)

o(r) = q(r)

r

<r<l. (2.15)

Nl=

Mazimum Delay Ratio expresses the proportion of maximum delay of two traces:

_ qau(r)
Gao(r)’

<r<1. (2.16)

Nl

¢(r)

This metric can be used in advanced scheduling algorithms that are aiming for a fix pro-
portion of delay among different traffic classes [86].

2.2.2 Leaky Bucket Analysis of Deterministic Traffic Traces

The aim of this section is to illustrate how the LB curve can characterize deterministic
traffic traces.

I have synthesized several deterministic traffic traces, all with 7" = 500500 and N = 1000,
and fed them into a G/D/1 queue. Than I have calculated and plotted the ¢(r), ¢*(¢) and
s(t) curves for the domain 1 < ¢ < 1000 therefore 0.001 < r < 1.

Constant Bit Rate Trace

The arrival rate is constant in the Constant Bit Rate (CBR) trace. The cumulative arrival
function m(k) increases linearly, due to the regular arrivals a;y+; = a; + «, where a = %
is constant® (see Figure 2.3). Figure 2.2 depicts the LB Envelope Curve, its dual pair and
the LB Slope curve for the CBR trace. It can be seen in this figure that ¢(0) = 1000 and

s(t) = T.

®Since £ = 500.5 is not integer, I repeated a pair of {a1 = 500, az = 501} in this CBR sequence. That

is the reason of having two peaks of equal size in the PMF(«) plot.
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Figure 2.2: ¢(r), s(t) and ¢'(t) for a CBR, Trace
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Figure 2.3: Cumulative arrival function and interarrival times of the CBR Trace
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Figure 2.5: Cumulative arrival function and interarrival times of the Accelerating trace
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Accelerating Traces

After the CBR trace, it is interesting to investigate other special traces, for which the
histogram of interarrival time has several peaks of the same size (see Figure 2.5). Thus I
constructed the Accelerating Trace family in which the interarrival time increases linearly:

o =ay +|ci|, i=1,23,...N, (2.17)

where the constant ¢ determines the decreasing rate of the slope of cumulative arrival
function (i.e. the arrival rate). According to Figure 2.4, the ¢'(¢) curve of the accelerating
trace is linear, and the ¢(r) curve is hyperbolic. Figure 2.12 depicts LB curves of several
accelerating traces with different ¢ constant (¢=1, 2 and 5 for ACC1, ACC2 and ACCS5,
respectively). It is pronounced that as larger the ¢ coefficient of an Accelerating trace is,

as smaller is the slope of its ¢!(¢) curve. One can also see that tlim s(t)="T.
—00

Simple On-Off Traces

A popular traffic pattern in teletraffic theory is the On-Off Trace [74, 75]. The illustrated
On-Off trace contains 999 ‘back-to-back’ cells with an interarrival time of gy = 1 and
one cell, which follows the burst agjence = 499501 cell times later. Both the ¢(r) and
q'(t) curves emphasize that this trace requires the most buffer space, i.e. this is the most
bursty (see Figure 2.6). Noteworthy is that while the Accelerating Trace produced a linear
q'(t) curve, the On-Off trace yields a linear ¢(r) curve. Therefore these traces can be
considered as "dual pairs” from the LB curve’s point of view. Figure 2.7 demonstrates that
the cumulative arrival function reaches its maximum suddenly.

Multilevel On-Off Traces

Based on the simple On-Off trace, I define another special traffic pattern. An L-Level
Multilevel On-Off Trace L-level MOO 1is a deterministic trace, which consists of L levels of
embedded bursts (see Figure 2.8). The burst on the first level consists of one cell and a
silence period, which may be zero, if the peak rate equals to the line rate. The parameters
of a MOO trace are N; denoting the number of cells in the burst on the burst level ¢ and
T; expressing the interarrival time of bursts on the burst level i (i = 1,2,... ,L).

The basic equations for the parameters of MOO can be read from Figure 2.8:

T =T +Ts1 =Ty + Ts1, (218)

where n; = 1 and Ty = 1 by definition. Based on (2.18) the time factors can be retrieved
for the other burst levels successively:

Ty = noTh + Tsg = no(niTy + Ts1) + Tsp = noni Ty + neTsy + Tso,
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Figure 2.6: ¢(r), s(t) and ¢'(t) for an On-Off trace
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Figure 2.7: Arrival function and interarrival times of an On-Off trace
T3 = n3Ty + Ts3 = nz(noni Ty + noT's1 + Tso) + Tsz3 = nzngni Ty + nznoTsy + n3Tse + Tss,

and so on for each burst level. These equations can be generalized:

i i
T, = Toi+TmNi+ > Tsjm [ =
j=2 k=

N,

] i =1.2.... L.
Nj7 Z )= 7

7
= TpNi+ > T
j=1

In order to simplify the formalism, I introduce Ny =1 and Ty = 1:

1
T, = j}_o: Tsjﬁj. (2.19)
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Figure 2.8: L-Level Multilevel On-Off Trace

The next step is to derive the equations of the LB Envelope curve for an L-level MOO.
One can realize by looking at Figure 2.8 that the slope of the cumulative arrival function
(i.e. the arrival rate) decreases step-wise from burst level to burst level. The average arrival
rate is higher during the Tps interval than during the T'p3 interval. This also means that
the rate of buffer build-up (i.e. the LB Slope) is constant, if the service rate is smaller than
the average rate in the respective burst. Denote (r;) the average rate in the first, second,
etc. burst:

(rp) = ==, (2.20)

The maximum queue length is a linear function of the service rate between two consecu-
tive average burst rates. Therefore the LB curve ¢(r) of a MOO trace is a piece-wise linear
function with breaking points at each rate r; = (r;).

A typical LB Curve of an MOO trace is presented in Figure 2.9, indicating that the
LB Curve of an L-level MOO consists of L linear sections with breaking points at r; =
r1,72,...,7 and slopes si,s9,...,sr, where s; = {s(t,7) : % <t < ffl—i} Different
sections represent different time-scales and different burst level of the MOO trace. Each
burst level can be identified as a horizontal plateau on the LB Slope curve.

Denote rg = 1 the full link rate. Let us determine the queue length in the breaking
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Figure 2.9: Leaky Bucket Envelope and LB Slope Curves of a Multilevel On-Off trace

points using (2.5) and Figure 2.8:

r
q(ro) = 0, q(r1) = Ny, q(rs) = Ny — f(NQ - N), (2.21)
The piece-wise linear LB curve can be deducted by describing each linear section, start-

ing from the peak-end of the curve (i.e. 7 = ry). The equation of the i** linear LB envelope
section is:

[
Ny — N,
Cj(r,z’):NM—rZ%, rig1 <r<r;, i=0,1,2,..., L. (2.22)

r=1 z

The equation of the LB slope curve is:

"\ Nys1— N,
sri)=> T2 g <r<n, i=0,1,2,... L, (2.23)
Ty
=1
where 77, is the long term average rate of the trace p(7r, Nr). Similarly, the dual pair of
4(r) and s"(r) as a function of service time ¢ are:

1< N, T T;
th(t,z'):NiH—;ZTx(X;’l—l), L<t< L i=0,1,2,...,L, (2.24)
r=1 z

7

N, T T

s(t,i):ZTx(]ffﬂ—l), S<t< R i=0,12,... L (2.25)
r=1 z
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Figure 2.10: ¢(r), s(t) and ¢*(t) for a 5-level MOO trace
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Figure 2.11: Cumulative arrival function and interarrival times of a 5-level MOO trace

I have performed the Leaky Bucket Analysis for a 5-level MOO trace. The results in
Figure 2.10 validate the previous statements. Four linear (hyperbolic) sections can be seen
on the ¢(r) (¢*(t)) curve, while the LB slope curve highlights the four breaking points that
separates the five burst levels.

Comparison

Let us compare the ¢'(t) curves of different deterministic traffic traces as a summary of
this section. It can be seen in Figure 2.12 that the one level On-Off trace requires the
most resources, i.e. it is the worst case, while the CBR trace is the best case. These traces
represent the two extremes, which give an upper and lower bound for the LB curve of any
other u(T, N) trace. The CBR trace can be considered as a special Accelerating trace with
¢ = 0 on one hand, or as a special one-level MOO trace with 77 = « on the other hand.
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Figure 2.12: Comparison of deterministic traces

Moreover, the Accelerating trace can be considered as a special MOO trace with N burst
levels, each consisting of one burst (n; = 1;Vi = 1,2,... N) and with linearly increasing
burst interarrival time (T; = |ci];Vi = 1,2,...N). I have started to extend the Leaky
Bucket Analysis framework based on this observation and construct the linear space of
MOO traces. My intuition is that this linear space always has such an element of which LB
curve can approximate the LB curve of any arbitrary u(7, N) trace with an accuracy of €.
Section A in the Appendix introduces this idea.

2.2.3 Leaky Bucket Analysis of Measured Traffic Traces

I have performed the Leaky Bucket Analysis on traffic traces captured in measurements.
In particular, I have characterized the burst structure of more than 200 finite length, real
traffic traces using the LB and LB Slope curves in case of 24 different configurations. This
section presents the results for some of those traces. The measurement experiments and
the main statistics of the captured traffic traces are summarized in Appendix C.

Multiplexed VBR Video Sources

Traffic of multimedia workstations connected via the Stockholm Gigabit Network (an ATM
MAN) was multiplexed with CBR background traffic [C5]. Long traces of both traffic types
were captured before and after multiplexing. LB curves of a shaped single multimedia
source (a) and the aggregate traffic of four workstations (b) are depicted in Figure 2.13.
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Figure 2.13: Multiplexing VBR video sources: (a) single VBR source before multiplexing
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The four sources were shaped to 34 Mbps (80354 cps) each, in order to avoid congestion
in the first switch. Naturally, this peak rate limitation does not hold for the aggregate
traffic (b) as it is pronounced in the LB slope graph where the first plateau is shifted to the
left. The applied shaping rate can be identified by the place of the second jump in the LB
slope curve of trace (a) (see marker). There were several ATM switches and SDH add/drop
multiplexers on the way of the traffic from the source to the measuring point. The LB slope
of trace (b) has more and shorter plateau than trace (a), which means that these active
ATM and SDH devices destroyed the burst levels of the original VBR traffic by splitting
and merging the bursts on different levels.

VBR Video Traffic

The Leaky Bucket Analysis is also applicable for tracking the effect of modifying the pa-
rameters of the multimedia traffic source. The impact of the input video sequence and the
video frame rate on the LB curve is investigated in this section. Further analysis have been
published in [B1, C3, C2, C1].

Figure 2.14 depicts the LB envelope curves of six VBR, video traces. These traces have
very different mean cell rate (see Table C.3 in Appendix A) and their LB curves are far from
each other for service rates less than 16000 cps (6.7 Mbps). For instance, trace (f), which is
an almost ”still picture video”, is less bursty than the other traces. On the other hand, the
LB envelope curves converge for higher service rates, as it is also highlighted by the first two
plateau of the LB slope curves that coincide for service time ¢ < 21 cell time. A possible
explanation is that the input video sequence influences only the long term (low service
rate) burstiness of the traffic trace, while the multimedia terminal regulates the short term
burstiness (for high service rates). Moreover, the video application has a very deterministic
nature. It produces video frames on a given frame rate. These frames are sliced first into
Maximum Transfer Units (MTU), than packed into IP packets and segmented into ATM
cells by the protocol stack. This results in a multilevel burst structure, where only the
size and timing of top-level burst (i.e. video frame) is different. This observation is further
analyzed in Chapter 3. Another observation is that the number of cells in the trace (see
Table C.3) determines the value of s(7'), as expected.

The effect of changing the frame rate as parameter of the video application can be seen
in Figure 2.15. It is visible that the LB curves are shifted along the r-axis, but the level of
plateau coincide in the LB slope graph. This indicates that the burst structure is similar
and only the timing of bursts differ on the highest burst level, i.e. the video frame level.
Another interesting observation is that the (m) and (n) curves are much closer to each other
than to curve (1), although the elbow of the LB curves (which indicates the mean rate) is
linearly proportional to the frame rate. A possible explanation to this phenomenon is that
there is a finite upper limit of the performance of multimedia workstation, and it can not
really support real-time pictures (25 fps) only about 22 fps.
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Internet Traffic

Internet traffic is in the spotlight of many recent research activities. The Appendix lists
several traffic traces from a number of traffic types. In this section the traffic of file transfer
(FTP), Ping and aggregated LAN are analyzed.

A large size file was downloaded during the FTP session (Figure 2.16). The LB slope
curves of trace (q) and (r) indicate the very simple on-off like bust structure. It is also
interesting that repeated measurements yield traces with very similar characteristics. This
observation is supported by a number of trials [C5].

The Ping UNIX command was used with four different sizes of transferred message (128,
256, 512 and 1024 cells). The queue length for the peak-end is proportional to the message
size in case of the four traces (s), (t), (u) and (v). It is noticeable in Figure 2.17 that the
LB slope curve of each Ping trace begins with a value which corresponds to the packet size
setting of the trace, i.e. 164, 240, 475 and 1180 cell times for the (s-v) traces, respectively,
although these values does not exactly follow the 1:2:4:8 ratio. The deviation is due to the
fact that LBA captures the worst case behaviour of the traffic (exactly as the ATM switch).

Internet traffic of interconnected LANs was also measured on the Swedish University
Network (SUNET). Since these traces contain more than 83 million cell arrivals, the s(7')
value is very large (see Figure 2.18). Although the traces were taken at different time, it
is interesting to recognize the similarity among the curves from independent measurements
in both graphs. The mean cell rate varied between 3000 and 9000 cps. The burst structure
is very disperse, similarly to the other aggregate trace of four video sources (b) in Figure
2.13.

2.2.4 Relationship Between the Measured Traces and the MOOQO Traces

A pronounced similarity can be noticed by comparing the LB curve of measured traffic
traces presented in the previous section with the LB curve of deterministic MOO traces in
Section 2.2.2. Denote qr(r) and gaoo(r) the LB curve of the measured traces and that of
the MOO traces, respectively.

Firstly, we can see that the basic properties of the LB curve (see section 2.2.1) are valid
for both types. Specifically, both LB envelope curves (§r(r) and §proo(r)) are non negative,
monotone decreasing and convex. Moreover, the extension of the curve’s mean-end leads
to the total number of cells in the trace (i.e. }5% G(r) = N), while the peak-end approaches

zero at the peak cell rate (rp) of the source!. Another observation is, that both Gr(r)

and garoo(r) are linear in the region where the service rate is below the long term average
rate of the trace (i.e. 0 < r < ry). The slope of the corresponding linear section (sy) is
determined by the length of the traffic trace (7).

Secondly, there are two special properties that are also valid for both types:

“The peak cell rate is equal to the full link rate ro in case of unshaped traffic.
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P1. Both Gr(r) and garo0(r) have a few breaking-points with semi-linear® sections among
them. Each of these sections can be determined by its slope (s;).

P2.  The number of linear sections in ¢r(r) and §aproo(r) correspond to the number of
burst levels (L) in the traffic trace.

As we have seen in Section 2.2.2, these two properties are not valid for every finite traffic
trace u(T, N). For instance the LB curve of the Accelerating Trace has no linear sections,
and its slope is steadily increasing from the peak-end toward the mean-end. However,
my measurement experiments on a broad set of traffic types validates these properties.
The very likely reason of this is the ‘On-Off nature’ of active traffic devices, namely that
network interface cards, routers, switches, shapers, etc. temporarily store the traffic in
buffers of different sizes and read out traffic from these buffers at a fix rate. The size of
different buffers determine the burst size on different burst levels, while the buffer drain
rates determine the mean rate on the different burst levels. I utilize this observation for
establishing a traffic model in Section 2.4.1.

2.2.5 The Leaky Bucket Analysis and Other Deterministic Bounds

The LB curve of the proposed LBA framework is a deterministic traffic constraint func-
tion that specifies an upper bound on the burstiness of the traffic entering a network node.
Moreover, it can be used for burstiness analysis with the help of the LB slope curve. One of
the major designing goal of LBA was to achieve a computationally simple approach. Thus
there is only one bounding variable, namely the queue length, that has to be maintained
for calculating this metric, unlike in case of other deterministic bounds, which are based on
a different parameter set and thus require the maintenance of several variables [2, 89, 90].
The special selection of service rates (i.e. that r € {1, %, %, e ,%}) also targets simplicity,
because floating point operations could be avoided in this way. According to my measure-
ment based experiments, the loss of accuracy in the region » — 1 due to this selection is
negligible, because the mean rate of the trace (and thus the mean-end of ¢(r)) is far from
the link rate in the practical cases. In the followings I compare the LBA to the ’arrival
curve’ and ’service curve’ concepts of [3].

Cruz defines the R(k), R(k) € I function that denotes the number of packets flowing
on the link during the discrete time slot k. Moreover, he defines the arrival curve b(-) as
an upper bound on the arriving traffic volume:

R(j+1,k) <bk—j) Vikel, j<k (2.26)

®Due to the discrete nature of gr(r), neighboring points do not exactly fit to a line only by allowing a
small threshold of Ag = £2 cells (this threshold is not the same as ¢ in section 2.4.1). But since the LB
curve has usually very pronounced breaking points and the points beyond those breaking points deviate
with one or more orders of magnitude from the regression line, it is straightforward to group the points into
a few semi-linear sections.
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E
where R(j +1,k) = > R(l).
I=j+1

For the packets départing from the network element, Cruz defines a non-decreasing
non-negative function, called service curve S(-). A network element guarantees a service
curve of S if for any k there exists j < k such that the queue is empty B(j) = 0 and
Rout(j + 17k) < S(k _.7)

Therefore Cruz considers both arriving and departing packets per network element using
these concepts and aims for deriving end-to-end performance metrics for a whole network.
The goal of LBA is different, because it aims for characterizing the arriving traffic with
special respect to its burstiness structure in order to support resource allocation for traffic
sources attached to a network element. By comparing the arrival curve b(k — j) and the
LB curve ¢(r) bounds it is apparent, that the former limits the volume of traffic in a time
window of size k — j, while the latter bounds the queue length in a G/D/1, FIFO system,
which is evenly served at a service rate of r. The advantage of this queueing system is
that the parameters of both the standardised ATM Usage Parameter Control and the ATM
Connection Traffic Descriptor are based on that [35, 66], thus the LBA can directly provide
those parameters, unlike the service curve concept.

2.3 Robustness Study of the Leaky Bucket Analysis

In the previous section, I used the Leaky Bucket Analysis for characterizing a single traffic
trace. This section investigates how robust the LBA is, if it is used for characterizing
different traces of the same traffic type.

An important feature of a practical characterization method is that it highlights the es-
sential characteristics of the traffic and hides the unnecessary variations. Therefore an ideal
tool gives bagically the same descriptors to each traces of a specific traffic type, indepen-
dently from the length of the trace and the time when it was captured. Let us investigate
the impacts of these two factors on the LB curve.

2.3.1 Repeatability

VBR Video Traffic

Many traces were captured from the same traffic type, using the same quality settings in
order to examine the repeatability of the LBA method. The traffic types are different
from the perspective of determinism of cell generation. Stored VBR video traffic is easily
reproducible, since the input video sequence can be repeated and most of the processes
transforming and transferring the data inside of the multimedia workstation are of deter-
ministic nature (see Chapter 3). That is why it can be assumed that traces taken from a
VBR video traffic source have roughly the same characteristics. This fact is noticeable in
Figure 2.19 which depicts the relative error ratio of ¢'(t) calculated for traces of the same
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source from different trials. This metric for two of M measured traces can be expressed as:

a5 (t)] . .
Ejp=2—p~—7—+ Vi, ke {1,2,..M}; j#k. (2.27)
j Qk(t)

Safety margins can be defined by giving accuracy thresholds and the service time regions
where they are valid. The safety margins are indicated by bold lines and the maximuimn,
minimum and mean error curves are drawn in the following figures.

The relative error has a peak between 20 < ¢t < 30 in case of video traffic (see Figure
2.19). This corresponds to 40 ms, i.e. the interarrival time between video frames (25 fps).
As described later, the real frame rate is determined by the scheduling system and the upper
limit of the terminal’s performance. This is a reasonable explanation for the degradation of
repeatability in this region.

Internet Traffic

In spite of VBR video traffic, one can only assume that the sources have similar behaviour in
a statistical manner in case of Internet traffic. Therefore to have a robust statistical average,
hundreds of traces should be taken from the same traffic. Repeating the measurement is
quite easy in case of simple "Internet sessions” like Ping and FTP. According to Figure
2.20, the behaviour of these sources is also very deterministic. The only jump of relative
error can be seen around the elbow of the LB curve (compare with Figure 2.17).

The safety region of acceptable error threshold (50%) is much shorter for aggregated
Internet traffic, than for simple sources (see Figure 2.21). The main reason is the much
higher number of independent processes which are generating or influencing the traffic.
Considering the accuracy threshold of 200% it is interesting that any bandwidth can be
allocated, if the buffer requirement is doubled.

2.3.2 Effect of Trace Length

I investigated the effect of trace length on the shape of the LB curve. Thus I have captured
several traces from the same traffic type, but with different length and analyzed the LB
envelope and LB slope curves. Figure 2.22 presents the LB slope curve of three traces on
a linear scale. Each of these traces has been captured from the same type of traffic, but
the second trace has half and the third trace has a quarter of the length of the first trace,
respectively.

The results confirm Equation (2.13). The mean-end slope is proportional to the trace
length for each trace. The most important observation is that the rest of the LB curves
do not significantly differ. I have repeated this test for several other traffic types and got
similar results. Based on my experiments, the LBA is robust against changing the trace
length in the measurements, if the trace is longer than a threshold, which is in the range of
105-108 cell times, depending on the traffic type.
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2.4 Models Based on the Leaky Bucket Curve

In this section I establish two traffic models using the Leaky Bucket Curve for finding the
model parameters.

In the wide sense, the LB curve itself is a model of the traffic trace. However, this
model represents only the worst case behaviour of the respective traffic source (see Section
2.5.3). Thus I used the LB curve as ‘model fitting rule’ and established two traffic models
which can approximate the LB curve of measured traces. In the first one, I have selected a
special subset of traces, namely the MOO traces. In the second one, I have used fluid flow
modeling.

2.4.1 Multilevel On-Off Model

Based on the similarities between the LB curves of MOO traces and measured traces, a
straightforward idea is to approximate the LB curve of the measured trace with a piece-
wise linear function, which corresponds to an MOO trace. The resulted MOO trace is a
model that captures the queuing behaviour of the measured trace.

I have developed a procedure for setting the parameters of a multilevel on-off model
that can be used for approximating the LB and LB slope curves of a measured traffic trace
(T, N) [B1, C1]. The steps of this procedure are illustrated on the GT10 trace (see Chapter
3):

1. Capture a sample trace of length T from the traffic of the investigated traffic source.

2. Calculate the points of the LB curve q(r) by post-processing the captured cell stream
according to Equations (2.4) and (2.5).
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3. Calculate the LB slope curve s(t) according to Equation (2.12).

The LB and LB slope curves of the GT10 trace are presented in Figure 2.24.

. Identify the almost linear sections in the LB curve.

It was shown in Section 2.2.4, that the points of the LB curve can be grouped into a
linear section between two breaking points r; and r;41:

T)Q(Tiﬂ) —q(ry)

ripr<r<r, +=0,1,2,..., L, (2.28)
Titl = Ti

q(ryi) = q(ri) — (ri —

where L denotes the number of breaking points.

These breaking points can be easily found, as they appear as vertical jumps on the
LB Slope curve. This observation can be expressed by the following equations:

to = 1, (2.29)
t) — s(t;—
t; = min t:w>s , 1=1,2,...,L,
t>t;-1 s(t)

where ¢; = L+ denote the breaking points, ¢ denotes an arbitrary, small threshold®.
The general approx1mat10n process is illustrated by Figure 2.23. According to Figure
2.24, there are three such jumps in the s(¢) of GT10 — around ¢ =~ 1, ¢t ~ 20 and
t =~ 340. This means that L = 3. By zooming out these graphs, one can precisely
read the values of the {¢;}, {r;} series. I wrote these values in the first two columns
of Table 2.1. I have chosen ¢ = 20 cell times for the GT10 trace.

Table 2.1: Parameters of the MOO model for the GT10 trace

i || t; [cell time] | r; [cell per cell time] | Nj [cell] | T [cell time]
1 1 1 172 172

2 20 0.05 581 11620

3 332 0.003 22872 7842534

. Plot the §;(r) linear sections using Equation (2.22), the breaking points {r;;q(r;)} and

L retrieved in the previous step.

If we compare the empirical and approximated curves in Figure 2.24 and 2.25, respec-
tively, we can see that the proposed approximation emphasizes the main burst levels
without loosing the information represented by the g(r) curve.

. Read the burst size N; from the ¢(r) graph.

The first level burst consists of one cell Ny = 1 by definition, while the burst size on
the ith burst level is determined by the intersection of the extension of the (i — 1)th

SIf £ is very small, there are traces where the number of jumps equals to the number of cells in the trace,

(i.e. L — N), which is impractical.
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linear section of the LB envelope and the vertical axis. This corresponds to inserting
r = 0 in Equation (2.28):

N; = §(0,i—1), i=1,2,...,L—1. (2.30)

7. Calculate the interarrival time of bursts on the ith burst level using:

T,=t;-N;, i=12...,L. (2.31)

Using these equations, the series of {Tj; N;} — i.e. the parameters of the MOO model
—, can be successively obtained. The resulted values are presented in Table 2.1 for the
GT10 trace.

Is the MOO Model Applicable for Every Traffic Type?

If we analyze the LB Slope curves of different traffic types (see Figures 2.14, 2.15, 2.16, 2.17
and 2.18), we can see that the traces captured directly at the traffic source yield smoother
and more distinct plateau than the traces of aggregate traffic. Thus the presented modeling
approach is more suitable for the former type. On the other hand, the latter type may be
modeled with Accelerating traces (compare Figure 2.4 and 2.18).

2.4.2 Fluid Flow Model

Measured ATM traffic traces were analyzed in [C3] and a simple model was proposed for
VBR video traffic based on the LB curve. Furthermore, a method was given for fitting the
LB curve of the measured trace with the queue length of a two level fluid model.

Motivation For Fluid Flow Modeling

Video traffic is generated by encoding subsequent video frames composed by several packets.
The data rate is in the order of several Mbps, while the packet length is less than 100 kbits
(in our situation a packet consisted of 172 cells). Thus, we can move from cell scale to larger
time scales and the discrete nature of data can be ignored. Therefore I chose the fluid flow
model for our modeling purposes.

The simplest model which can capture the basic characteristics of video traffic is a two
state fluid flow model, where the source generates continuous bit streams at different data
rates.
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The Fluid Flow Model

In this model the fluid arrival rate at time ¢ is denoted by A(t) has the form A(t) = r(Z(t))
where Z(t) is a Markov process and 7(z) is a deterministic function. Now assume that
the Markov process Z(t) has two states with generation rates r¢ and r1, and ryp < ¢ < 11
where c is the service rate. The transition intensities of Z(¢) are denoted by A (from state
0 to state 1) and u (from state 1 to state 0) as it is shown in Figure 2.26. By solving the
Chapman-Kolmogorov equations for the partial distribution functions the complementary
queue length distribution, i.e. an estimation of the cell loss probability, can be obtained
[12]:
A TL=T0 gy (c—ro)p— (r1 —c)A

Ao =PriX >0} = e T - ae—ry -

There are four parameters to set in the model: the two transition rates (A and p) and
the two generation rates (rg and r1). The purpose is to set these parameters such that the
model can capture the LB curve. A problem arises from the nature of stochastic models,
namely there is no point to speak about maximum queue length because there is a non
zero probability of having any queue length in the model. Thus, instead of considering the
maximum queue length curve, I relate the curve corresponding to a specified quantile of
the queue length (i.e. the queue length, which is exceeded by a specified probability) in the
model to the LB curve of the measured traffic trace. This curve can be expressed using a
targeted cell loss rate (e.g. [ = 107%) and the long term average rate rj; of the trace:

2(c) = —% In <zﬁ) . (2.33)

I have established the following model fitting algorithm for capturing the LB envelope curve
with a two level fluid flow model [C3]:

1. The long term average rate (ras) of the trace should be estimated by 7 = 2, where
N denotes the number of cell arrivals in the captured trace of length T'.

2. The burst tolerance related buffer size (N¢) should be read from the LB curve of the
measured trace using the sustainable cell rate (i.e. No = ¢(rs)) and this point should
be fitted with the queue length curve of the fluid model at a given cell loss probability
(1) using Equation 2.32.

3. The parameters rys, rg, and N¢ determine ¢ (see Equation (2.32) and Appendix B)
and the transition intensities can be derived from:

(r1 —rs)(rs —ro)
(rs —ro) (222 ) = (ry — 1)

rn —Tm
A—

A= ¢ , (2.34)

. 2.35
v — T ( )
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4. The two remaining parameters, ro and 1, can be tuned in order to get the best curve
fitting for the rest of the curves. Alternatively, it is also possible to set them as rg to
be zero and r; to be the peak cell rate.

The derivation of the parameter fitting equations are given in Appendix B. The above
model has the advantage that it is a rather simple model with very simple fitting proce-
dure. It also has the nice feature that it directly captures the important queuing behaviour
(i.e. ¢(r)) instead of only the statistics of the arrival process coupled with a nontrivial
queuing problem.

Validation of The Model

The Susie and Noise video traces were investigated for modeling purposes in case of high
resolution, 10 fps performance setting (Fig. 5, 6). After performing the leaky bucket analysis
of the measured video traces to get the maximum queue length curves and choosing the
service rate related to the queue length b = 500 as sustainable cell rate with ¢ = 10~ cell
loss requirement, I obtained the model parameter settings presented in Table 2.2.

Table 2.2: Parameters of the fluid flow model for the Susie and Noise traces

rm [cps] rs [cps] A 1 ro [cps] r1 [cps]
Susie 4 450 50 252 9.74 269.44 2 224 66 022
Noise 12 926 26 863 3.40 218.80 12 500 40 347

The LB curve of the Susie and Noise traces, and the queue length (related to the 10°
quantile) of the model are plotted in Figures 2.27 and 2.28. After repeating the model
validation for several different traces, we concluded that the model can accurately capture
the curves and can be used as source traffic model of the investigated video traffic.

2.5 Applications of the Leaky Bucket Analysis

This section illustrates the applications of the LBA. The LB curve can directly provide us
lots of practical information. For instance, we can select the ‘ATM four-tuples’ (i.e. Peak
Cell Rate (PCR) — Cell Delay Variation Tolerance (CDVT), Sustainable Cell Rate (SCR)
— Maximum Burst Size (MBS) pairs) using the LB curve, we can dimension the buffer of a
shaper or of a switch, and determine appropriate shaping rate, as discussed below.

2.5.1 Resource Dimensioning

The previous sections illustrated how the LB curve can be directly used as a traffic descrip-
tor. Apart from this, it can also be applied as a tool for determining the standard ATM
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Figure 2.28: Fitting the fluid flow model to the Noise trace
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Connection Traffic Descriptor [66, 34]. Let us compare first the constraint given by the
latter and the demand represented by the LB curve of a traffic trace [B1]. The three first
parameters of the ATM source traffic descriptor, i.e. the PCR (rp), SCR (rg) and MBS
(Ng) and the CDVT (7) determine only a line, while the LB curve gives several linear sec-
tions in most cases (except in the case of one-level on-off trace). In oder words, the traffic
contract corresponds to a one-level MOO and thus it represents higher resource requirement
than the LB curve (see bold line in Figure 2.29).

A
q(r) Fu mean cell rate
N 7 sustainable cell rate
I peak cell rate
7 full link rate
N total number of cells
1 Ny maximum burst size
; T cell delay variation
p tolerance
1
n
n
n I~
D \0\ r
Iy )

Figure 2.29: Leaky Bucket Curve of a u(T, N) traffic trace and operating line determined
by the ATM traffic descriptor (in gray)

Another interesting curve, the delay tolerance vs. service rate graph can be obtained by
dividing the maximum queue length values in the graph in Figure 2.29 by the correspond-
ing service rates (see definition of d(r) in Equation (2.15)). In this way we get a similar,
new graph that represents a series of tolerance — rate pairs for the Usage Parameter Control
(UPC). From the ¢(r) or 6(r) curves the traffic parameters of the ATM connection descriptor
can be directly selected. The proper setting of these parameters are necessary for appro-
priate resource allocation, but the way how to chose them is far from being straightforward
[46, 75].

We can use the LB curve for setting {rs, Ng} by choosing a service rate, buffer size pair
{r,q(r)} from or above the LB curve in the region rp; < r < rp. The closer this point
is to the LB curve, the less conservative is the selection. The selected maximum queue
length value can be interpreted as a minimum buffer capacity needed in the network for
avoiding cell loss for the given source. By choosing a point toward the peak-end, we can
optimize for saving buffer size, while the points toward the mean-end yield larger buffer but
less link capacity for the traffic source. Furthermore, we can consider a delay constraint by
drawing trajectories into the LB graph (see d, in Figure 2.30) and selecting a point below
that line. The targeted cell loss rate can be a further parameter to consider. The LB curve
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estimates the maximum queue length for zero loss, but it is possible to derive similar curves
for specific loss rates (see Section 2.5.4).

The advantages of setting the traffic descriptor based on LBA are that (i) it is simple
and intuitive to obtain the traffic parameters, (ii) it is straightforward to consider different
various optimization criteria and (iii) it is clear how conservative the selection is, because
the LB curve predicts the operation of the UPC (that also monitors the maximum queue
length, but only for one or two service rates).

LB Curve or ATM Traffic Descriptor?

There is a tradeoff between the number of parameters for describing a connection and the
efficiency of resource dimensioning. In most of the cases, the naive user is not able to
determine even the simple parameters of the ATM traffic descriptor. However, for a well
known traffic source (e.g. for a specific video sequence in a Video on Demand service), it
is straight forward to estimate the characteristic points of the LB curve. Therefore the
applicability of the LB curve as traffic descriptor depends on the situation.

2.5.2 Selection of Shaping Rate

Traffic shaping provides a means to control the burstiness [34, 12]. It is believed that such
shaping will be needed in ATM networks for users to meet declared traffic agreement with
the network, e.g. regarding a connection [67, 76]. A popular shaping method uses the leaky
bucket algorithm to read out cells from the shaper’s buffer [68, 46, 93, 95]. The shaper
limits the maximum number of cells that can be transmitted over a certain time period.
This section considers the LB curve and not the LB shaper and it demonstrates how the
LBA can be used for determining the shaping rate.

A common approach for achieving acceptable link utilization of an ATM link is peak
rate allocation combined with ATM traffic shaping at the source [93, 66]. The appropriate
value of the ATM shaping rate for a source depends on which quantities are to be optimized.
For instance, if the only parameter of interest is bandwidth utilization a value close to the
average rate of the source would provide the optimum value for a shaping rate [94]. This
simple approach does not take the shaping delay into consideration, although that is an
important factor in case of multimedia applications. Thus another possible strategy is to
consider both the shaping delay and the maximum utilization, therefore choose the lowest
shaping rate which still gives acceptable delay. A further important aspect is that the
shaper (i.e. which may be implemented in an edge node or in the interface card of the
source terminal) should have enough buffer space for performing the shaping.

These three constrains can be taken into consideration for selecting a shaping rate by
using the LBA. Figure 2.30 depicts the LB curve of the investigated traffic with trajectories
Fy, Fy, Fy — representing the maximum delay in three working points —, and other important
characteristics:

ras the long term average rate of the traffic trace.
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q1 the maximum buffer size, which value is governed by the shaper or switch implemen-
tation.

ro the peak rate which represents the upper bound of shaping rate. It is determined by
the required bandwidth utilization. Since the corresponding maximum queue length
(g2) is low, a low delay (d2) belongs to this working point.

ds the maximum of acceptable shaping or buffering delay. This value is determined by
subjective evaluation of the application.
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Figure 2.30: Selecting shaping rate

Using these constrains I propose the following guidelines for setting shaping rate [C2]:

e The buffer size should be dimensioned based on the delay constrain (ds) and the upper
buffer limit (q;):

b S min{QSa QI}

e The actual shaping rate (r,) should be selected considering the 737, 7o and g1 (= 1)
constrains:

max{ry,ray} <rs <Tro.

The performance of the LBA based shaper design has been investigated in [C2]. The
results have shown that the link utilization can be increased by a factor of 37-70 depending
on the traffic type while still maintaining a shaping delay that is acceptable for the in-
vestigated desk-top multimedia application. Other measurement experiments (see Section
2.2.3) have shown that the LBA is applicable not only for selecting, but also for detecting
the shaping rate.
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2.5.3 Characterization of Multiplexing Gain

This section analyzes the performance of statistical multiplexing using the Leaky Bucket
Analysis. [Cl1]

The goal is to characterize the multiplexing gain as a function of service rate. Assume
that the traffic of NV sources are multiplexed according to round-robin scheduling scheme.
Denote ¢;(r); i = 1,2,... ,N the LB curve of the input traces before the multiplexer and
agg(r) the LB curve of the traffic aggregate after multiplexing. In the worst multiplexing
case, the output link is shared among the input sources and the buffer requirement is the
sum of ¢;(r) (i.e. the largest bursts of each source arrive in a correlated manner). The LB
distance between this worst case and the actual gq44(7) characterizes the multiplexing gain:

N
d(r) = (Z qn(%)> — Gagq(T) (2.36)
n=1

I have characterized the multiplexing gain with this approach based on traffic measure-
ments in [C1]. Figure 2.13 depicts the LB curve of a single VBR source before multiplexing
(curve (a)), the calculated LB curve for the worst case and the LB curve of four multi-
plexed VBR sources (curve (b)). The area between the latter two curves emphasizes the
multiplexing gain.

2.5.4 Cell Loss Estimation

With a small extension, the LBA can be used for analyzing the queuing behaviour of a
traffic trace. In particular, the empirical queue length distribution can be calculated for
a measured traffic trace on the top of the ¢(r) curve which represents only the maximum
queue length. We can express the empirical probability mass function of queue length (o)
by considering Equation (2.4):

T
1
@(a,t):fgl(ﬁ(k,t):a), 1<o<N, 1<t<T, (2.37)

where ¢ denotes the service time, o denotes an arbitrary queue length value and 1(-) is the
indicator function, which equals to one if the argument is true, otherwise it equals to zero.
The cell loss probability can be estimated using the overflow probability:

q
g, t) mPr{¢(k,t) > gy m 1= p(ot), 1<q<N, 1<t<T, (2.38)

=0

where the expression on the right corresponds to the empirical complementary probability
distribution function (CPDF) of the queue length. Both of these equations are easy to
compute using discrete event simulation. As an illustration, I have calculated the empirical
probability mass function of queue length ¢(o,t) for the ‘Noise’ trace. Figure 2.31 presents
this three dimensional function for different service rates.
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Figure 2.31: PMF of the queue length for different service rates
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Figure 2.32 presents the empirical CPDF of the Noise trace. The cell loss probability
l(q,t) can be estimated using Equation (2.38) and in this way a set of LB curves can be
retrieved corresponding to different loss probabilities [ = . Instead of the original zero loss
curve (i.e. the LB curve), the adequate ¢7(r) curves can be applied for the analysis. Figure
2.33 presents queue length vs. service rate curves for different cell loss values for the Noise
trace. Noteworthy is that the v = 107% and v = 10~ curves are very close to the LB curve
(v = 0) that not a single worst case pattern determines the LB curve in real cases. I made
this observation for many other measured traffic traces.

In Section 3.4 T have applied this approach for validating a traffic model and numerically
calculated cell loss probability for measured traffic traces and the traces generated by my
model.
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2.6 Summary

This chapter presented the Leaky Bucket Analysis — a framework for resource dimension-
ing and characterizing the burstiness of ATM traffic —, demonstrated its applicability on
deterministic and measured traffic traces, and described its application for traffic modeling,
resource dimensioning, shaper design, queuing behaviour analysis and analysis of multiplex-
ing gain.

The evaluation of the Leaky Bucket curve g(r), its dual pair ¢'(t) and the Leaky Bucket
Slope curve s(t) in Section 2.2.2 has shown that the LBA is capable to visualize the resource
demand of a trace. For instance, I validated the well known result that the simple On-Off
trace is the worst case, while the CBR trace is the best case among finite length traffic
traces p(T, N) regarding resource demand. It has been also discussed that other traffic
traces can be considered as a special instance of the family of Multilevel On-Off traces or of
Accelerating traces, which have linear ¢(r) and ¢!(t) curve, respectively. Section 2.2.3 has
demonstrated that the Leaky Bucket Analysis can characterize how the resource demand
and the burst structure of VBR video traffic changes due to traffic shaping, multiplexing,
changing the video sequence or the video frame rate. It has been illustrated that the LBA
can also reflect the ‘On-Off nature’ of file transfer application and the size of a Ping message.
The robustness of LBA against the variations in the traffic of a certain traffic type and the
length of captured trace has been investigated in Section 2.3, and accuracy thresholds have
been given for single and aggregated Internet and VBR video traffic using the relative error
ratio of ¢'(t). This analysis emphasized that the LBA could characterize specific traffic
types too, not only a single traffic trace.

The deterministic metrics of LBA have been fitted to two analytic models in Section
2.4. The first model has utilized that the burst structure of measured traffic traces and
MOO traces are similar. Section 2.4.1 has proposed a procedure for setting the parameters
of a MOO trace based on the breaking points in ¢(r) and the place of plateau in s(¢). The
second model has been a two-level fluid flow model. Section 2.4.2 has described how the
model parameters can be determined using the long term average rate, the sustainable cell
rate, the maximum burst size and the targeted cell loss probability, and it has presented
numerical results for VBR video traffic.

Section 2.5 has described several applications of LBA. Section 2.5.1 has discussed how
the LB curve can be used for selecting the parameter set of the ATM connection traffic
descriptor counsidering different optimization criteria, such as saving buffer space, better
link utilization, keeping a delay constraint or a targeted cell loss rate. Section 2.5.2 has
proposed guidelines for determining traffic shaping rate based on the delay tolerance of the
application, the size of buffer in the shaper device, the average traffic rate and the targeted
link utilization. LBA was applicable both for selecting and detecting the shaping rate.
Section 2.5.3 has illustrated that the LBA is applicable for queuing behaviour analysis by
visualizing the gain of statistical multiplexing for four VBR video sources, while Section
2.5.4 has presented an extension of the LB curve for non zero cell loss rate.

The Leaky Bucket Analysis was designed for ATM networks. If we want to generalize
the results for another networking technology, e.g. for IP/Ethernet encapsulation, the major
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difficulty would be to handle the variable size of IP packets. Moreover, the benefits of the
related MOO model would be also less pronounced due to the simpler multilevel burst
structure of IP /Ethernet traffic.

The Leaky Bucket Analysis has the following advantages:

directly provides the parameter 4-tuple of the ATM connection traffic descriptor,
applicable for buffer and link dimensioning,

characterizes traffic burstiness on several time scales,

visualizes the burst structure,

simple to compute for measured traffic traces,

applicable for selecting the shaping rate based on different constrains,

traffic modeling based on fitting directly these characteristics has the advantage that
we avoid the classical way of modeling steps (statistical analysis of arrival process -
modeling of arrival process - solving the related queuing problem) but rather we are
focusing on directly to capture the queuing behavior.



Chapter 3

Hierarchical Model for Multimedia
Traffic Sources

3.1 Introduction

This chapter presents a hierarchical source model for generating Variable Bit Rate (VBR)
multimedia traffic. This model captures the inner operation of a multimedia workstation,
in particular VBR encoding, process scheduling and protocol encapsulation.

The designers of modern packet switched networks require traffic models for multimedia
traffic sources, in order to dimension the network and to achieve acceptable service quality
and optimal usage of network resources [39, 40]. Variable Bit Rate video has an important
role in multimedia teleservices. The measurement based characterization of VBR video
traffic and the related networking problems have been of increasing interest in the last decade
of teletraffic research [40, 42, 24, 46, C5]. A plenty of studies focus on the characteristics
of the output of a particular video source in a practical context [106, 107, 108, 109, 110].
A number of different models have been proposed for VBR video traffic, ranging from
autoregressive processes [41, 49] through different Markov type models [105, 38, 44] including
the family of Markov Modulated Poisson Processes [10] to fractal models [45, 48]. An
overview can be found in [11, 9, 8].

All of these approaches are common in the modeling technique that a specific stochastic
process is chosen and the parameters are set by a particular method to fit some statistics
of the real traffic source. This methodology can be regarded as a black box modeling ap-
proach, which is based merely on the characteristics of measured traffic. The black box
analysis focuses on the traffic and not on the traffic source and tries to reproduce certain
traffic characteristics (e.g. moments of interarrival time) by tuning the parameters of an
independent generation process.

One disadvantage of the black box approach is that only very special video services
can be characterized with a small number of parameters, and a large set of parameters
are required in general [38, 42]. For instance, [105] analysis a special, low bit rate video

42
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conference and uses the first two moments of the per frame bit rate and the coefficient of an
assumed exponential autocorrelation function as fitting parameters to a Markovian model to
evaluate the performance of a network multiplexer. However, such statistical parameters are
not adequate in other cases, because the distribution of output rate can vary substantially
for different minutes long segments of the same video sequence [107, 108].

Another drawback of the black box models is that it is difficult to modify the behaviour
of the traffic source especially in a realistic way. In most of the cases the behaviour of the
traffic source is determined by a few, simple parameter, such as frame rate, picture size, etc.
The black box concept can not directly incorporate such simple parameters in the model.

An alternative method is the so-called white box modeling approach, which attempts
to reproduce the detailed behavior of the source by imitating its inner working [43]. This
approach utilizes the a’ priori knowledge of the traffic generation process and focuses on the
emulation of internal processes in the traffic source, yielding a more accurate source model.
The white box approach has received little attention from the video modeling community so
far. However, we believe that this non-traditional modeling concept can be very successful
in practice, because it can capture the impact of encoding and encapsulation procedures on
the generated data traffic.

I have combined the white and black box modeling approaches in previous work [J1, C7].
Apart from introducing a hierarchical traffic model, those papers give a comprehensive
source analysis study and reveal the very nature of measured video traffic by performing
traffic intensity analysis and correlation structure analysis. This chapter summarizes the
essence of my previous work in this area.

The chapter is organized as follows. The main characteristics of the traffic are summa-
rized in Section 3.2. The hierarchical source model is described in Section 3.3, while its
validation is given in Section 3.4.

3.2 Multimedia Source Characterization

This section summarizes the main steps of the black box source analysis, which are necessary
for the understanding of the hierarchical model. The complete source characterization is
published in [J1, C7].

I have recorded the ATM cell stream generated by a multimedia workstation, which
received standard video sequences from a video cassette recorder, encoded them using dif-
ferent VBR encoding schemes and transmitted the packetized video and audio information
trough a multilayer network interface. In this chapter, the source analysis and the model
are illustrated using the "Popple”, 7Susie” and ”Girl with Toys” video sequences with 10
and 25 fps frame rate (i.e. the traces PL10, SU10, GT10, PL25, SU25 and GT25). The
measurements and the main statistics of these traces are described in Appendix C.
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3.2.1 Traffic Intensity Analysis

The most native way of traffic characterization is to measure its intensity, i.e. the amount
of cell arrivals within a given time window. The traffic intensity of recorded ATM traffic
traces is analyzed at different time scales, in order to investigate the burst structure. The
following figures show traffic intensity of a short trace from the PL25 video sequence on
different burst levels. Each column represents the number of arrivals in one time window
of 58330, 750, 38 and one cell times in Figure 3.1,3.2, 3.3 and 3.4, respectively.
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Figure 3.1: The cell arrival intensity of the PL25 sequence on scene level. Scale of the
graph: 38 sec, mean rate in the graph: 2251 kbps, size of time window: 58330 cell times.

The complete PL25 sequence is shown in Figure 3.1. The two level shifts are caused by
two high speed zoom periods with an intermediate period of partial motion in the picture
field. Figure 3.2 magnifies the next time scale (i.e. video frame level) and shows the arrival
pattern of seven video frames of varying size with three audio packets in between. The
internal structure of a frame (i.e. IP packet level) is shown in Figure 3.3. Finally, we show
a single packet in Figure 3.4 that contains 172 ATM cells arriving at practically full link
rate.

Based on the traffic intensity analysis the multi-level burst structure of examined VBR
traffic is well pronounced, as it is shown in other works [B1, 24, 30]. Observing these figures
noteworthy is the regular arrival of frames, packets and cells at different time scales. Audio
packets arrive also in a regular manner as it is illustrated in Figure 3.3. By plotting similar
figures for the other video sequences we can say that the size of video frames depend on
the content of video sequence while the structure of frame internal packets looks very much
the same for each frame. Based on these observations our hypothesis is that the generation
of frames and packets is independent thus these burst levels can be distinguished in our
model. Based on my measurements, I have distinguished four burst levels in the ATM
traffic stream generated by a VBR multimedia source (see Figure 3.5); namely the cell,
packet, frame and scene levels. We introduce the following notation for describing the
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Figure 3.2: The cell arrival intensity of the PL25 sequence on video frame level. Scale of
the graph: 490 ms, mean rate in the graph: 3.26 Mbps, size of time window: 750 cell times.
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Figure 3.3: The cell arrival intensity of the PL25 sequence on IP packet level. Scale of the
graph: 24.5 ms, mean rate in the graph: 9.45 Mbps, size of time window: 38 cell times.
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Figure 3.4: The cell arrival intensity of the PL25 sequence on cell level. Scale of the graph:
654 ms, mean rate in the graph: 133.4 Mbps, size of time window: 1 cell time.
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multilevel burst structure:
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Figure 3.5: Notations regarding the burst levels in VBR ATM traffic

Figure 3.5 depicts the interarrival time and duration of frames (T, Tyyr) and packets (T5,
T,p) and the silence periods between frames and between packets (T and Ty,), respectively.
Ny and Nj denote the number of ATM cells in a frame and a packet, respectively. Ny
denotes the size of the last packet in a frame, which is usually shorter than other packets
(it contains the last fragment of the frame), while Np,yqi, refers to the packet containing
an audio transfer unit (which is much smaller than a video packet).

3.2.2 Silence Period Analysis

Beside the traffic intensity analysis (i.e. analysis of busy periods) the other native way of
gaining information about the traffic is to calculate the probability mass function (PMF)
of the cell interarrival times (CIT). This latter method can be considered as analysis of
the silence periods (T, Ty, and Ty.). The probabilities are estimated by counting the
occurrence of CITs of different lengths in the captured trace. The values are smoothed by
a moving average technique before drawing figures. The PMF of CITs is depicted in Figure
3.6 and the complementary probability distribution function (CPDF) is presented in Figure
3.7.

The silence periods can be divided into three groups according to Figure 3.6, which
characterizes the GT25, SU25 and PL25 sequences. The longest interarrival times (above
8000 cell times) represent the frame silence periods (Ty). The medium values (around
4000 cell times) correspond to the silence periods within the video frames, i.e. between
consecutive packets (Ts,) while the smallest values (below 10 cell times) express the short
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Figure 3.6: Probability mass function of cell interarrival times (GT25, SU25, PL25)

silent periods inside the packets (Ts.). The evaluation of each group is given below.

Frame Level

In case of GT-PL10 sequences, the video frame rate is 10 frame/sec thus the theoretical
frame interarrival time (Tj) is around 36 679 cell time. For the GT-PL25 sequences with
25 frame/sec, the theoretical frame interarrival time (Tj) is 14 672 cell time. Two markers
in Figure 3.7 indicate these values. Theoretically, the silence period between frames can not
be longer than the frame interarrival time (since Tyr = Ty — Ty from Figure 3.5). However,
it is clearly shown in Figure 3.7 that there are several silence periods longer than 36 679 and
14 672 cell times for the GT-PL10 sequences and GT-PL25 sequences, respectively. That is
in terms of frame rate, the investigated terminal platform is not able to produce frames on
the theoretical rate (i.e. 10 and 25 fps). Moreover, the moderate declination of the CPDF
curves in Figure 3.7 indicates that the frame generation time and duration varies. Another
phenomenon to be noticed in Figure 3.7 is that the maximum silence period (i.e. Tsfmaz) 18
significantly shorter for the PL sequences than for the others, probably due to the higher
traffic intensity and larger size of video frames.
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Figure 3.7: Complementary distribution function of cell interarrival times (GT10, SU10,
PL10, GT25, SU25, and PL25)

Packet Level

In case of SU25 sequence, the probability of normal packet silence period (3000 < T, < 5000
cell time) is less than in case of PL25 (see Figure 3.6). The reason is that there are more
frames, which consist of more than one packet in case of the more intensive PL25 sequence,
thus there are more intra-frame packet silence periods in the captured cell stream. The mean
packet silence period read from Figure 3.6 is around 4000 cell time for SU25, GT25 and
around 3400 cell time for PL25. The packet silence period can be recognized also in Figure
3.7 in form of a sudden declination on the CPDF curves. By comparing the beginning of
the CPDF curves in the CIT range of 2000-5000 cell time it is visible that the packet silence
period is the same for the GT-PL10 and GT-PL25 sequences. Thus another hypothesis is
that the frame rate setting (i.e. 10 fps or 25 fps in our paper) has no impact on the packet
generation.

Cell Level

Figure 3.6 highlights that the probability of silence periods with length shorter than three
cell times are high (see the peak at the left part of the graph). The reason is that most of
the cells are transmitted back-to-back in the unshaped traffic stream. Although physical
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layer information was discarded by the measurement instrument, the traces of SDH over-
head information can be observed too in form of discontinuities within the packets, resulting
silence periods of two—three cell times.

3.2.3 Packet Silence Period Regression

The relationship between the packet silence period (T,) and the packet size (N,) is analyzed
in this study on the packet level. One can observe in Figure 3.2 and 3.3, that the packet
silence period is shorter for the last packet in the frame. Thus our next hypothesis is that
the multimedia terminal can produce a shorter packet faster than a larger one. We can
confirm this assumption by investigating the relationship between the length of the k"
silence period (denoted by Tfp) and the size of the packet generated right after that period
(denoted by N;f“). Figure 3.8 presents the relationship between these factors and the
empirical distribution of the packet silence period for the PL25 sequence.
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Figure 3.8: Linear regression between the packet size and packet silence period

It is very pronounced that there is a linear relationship between these factors, therefore
we can establish a linear approximation:

Ti =Nyt 4+ (3.1)
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where Tskp denotes the length of the k' silence period and N]?H denotes the size of the
packet generated right after that silence period. The « and S constants can be determined
by regression from the corresponding Ty, and N, value pairs. In our case, the value of
a is 18,5 and S is 323 and at least 50% of the predictions are contained by the +200
cell times wide environment of the regression line (see dotted lines in the figure). I have
got very similar values for the other sequences, proving that the packet level statistics are
independent from the video content. Related works [29, 30] confirm this observation and
Equation (3.1) for TCP/IP over ATM traffic.

The [J1, C7] papers provide further methods for black box traffic analysis. The next
step is to map the observations of the black box analysis to the internal behaviour of the
traffic source, i.e. perform a white box analysis.

3.3 Three-Level Hierarchical Model

After analyzing the VBR traffic, the next step is to look into the ’black box’ and make
a ‘white box’ analysis. The video and audio data from the video recorder is processed in
three information processing stages in the multimedia workstation, before it is transmitted
into the network. The first stage is video encoding, followed by the scheduling' and en-
capsulation of video frames, as it is highlighted in Figure 3.9. The traffic characteristics
on the frame level influence the encoding and scheduling stages, while the packet and cell
level characteristics have an impact on the encapsulation process. These relationships are
described in this section.

For capturing the behaviour of the three information processing stages, I have established
a three-level hierarchical model for VBR ATM traffic source. The three stages of this model
are:

1. a two-state, discrete time, Markovian model for characterizing the scene level be-
haviour and the encoding,

2. a Gaussian noise model for characterizing the frame scheduling,
3. a deterministic, finite state machine for modeling the encapsulation.

The Encoding Model takes a sequence of captured frames {N }“}, the probability mass
function of frame size P{Ny} and the long term average rate R as input, and generates
video frames of different size as output. The Scheduling Model takes a synthetic frame
sequence from the encoding stage as input and assigns timing to each frame according to
the application’s frame rate setting, i.e. produces a frame interarrival time series {Tjr}. The
Encapsulation Model receives frames of different size and timing from the scheduling stage
and produces cell departures with certain packet and cell level characteristics.

In order to avoid using complex, high-order Markov models, I propose a simple, two
state model for the encoding stage, because long-term correlation does not have significant

'Here I refer to the process scheduling in the operating system and not packet scheduling in a router.
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Figure 3.9: The internal operation of a VBR multimedia traffic source and the three stages
of the hierarchical model

impact on cell loss in most switch scenarios [22, 24, 25, C6] and the short-term correlation
can be efficiently captured by a two state Markov model. T have chosen a simple Gaussian
model for the scheduling stage, because that was the simplest but suitable choice for cap-
turing the stochastic nature of frame scheduling according to the frame interarrival time
analysis on measured traffic traces [C7]. Finally, I modeled the encapsulation process with a
deterministic process, because the network card that performs the encapsulation works as a
state machine on one hand, and the structure of frame internal bursts is very deterministic
according to the black box analysis on the other hand.

The three model stages are cascaded and the resulted hierarchical system is validated
as one model (see Section 3.4).

3.3.1 Parameterization of the Encoding Model

The parameters of the encoding model can be set by analyzing traffic traces captured from
the investigated VBR source. I propose the following algorithm:

1. Capture a trace of cell interarrival times from the output of the VBR traffic source

under test.
As an illustration, we investigate the PL25 trace.



52

. Perform a silence period analysis by classifying the silence periods into three groups

based on their length.

I propose three groups, because we have seen in Section 3.2.2, that there are four
burst levels in this type of traffic yielding three kinds of silence period (T, s, and
T,r). This three groups correspond to the cell, packet and frame levels (see Figure
3.5), respectively. The packet and frame silence periods are indicated in Figure 3.6.

. Determine the lower threshold of each silence period group.

For the PL25 trace, Tseimin = 3 celltimes, Ty, = 3500 celltimes and TS min = 38000
celltimes.

. Retrieve the parameters of the Markov model:

(a) derive a series of video frames {N}“} by filtering out silence periods which are

shorter than Tsfmin and joining individual cells to form o frame between the
identified frame silence periods,

(b) calculate the empirical probability mass function P{N;} and the long term aver-
age rate R of the video trace.

For the PL25 trace R = 2.25 Mbps.

. Plot P{N;} and determine a threshold N7 that divides the probability mass into an

upper and lower quantiles with a proportion of 1:9. State 1 of the Markov model is
assigned to the upper quantile, while state 2 is assigned to the lower quantile.

The threshold N7 is indicated by a marker on the P{Ny} graph of PL25 trace in
Figure 3.10. Based on my experiments with numerous traffic traces I propose the
‘1:9’ rule for setting up the threshold. However, the algorithm is not sensitive to this
choice and any proportion from 3:7 to 1:19 are applicable.

. Set the transition probabilities p12, po1 according to the ratio of the number of state

transitions to the total number of transitions in the {NJIS} sequence:

K-1
1 \ ;
P12 =2 d1 (N]’f > Nj ANFH < Nf> , pu=1-=pu, (3.2)
k=1

K-1
1 ) )
p= Y 1(N}€<Nf/\NJ’f“>Nf>, p22 =1—pa, (3:3)
k=1

where NJIS denotes the size of frame k, K denotes the total number of frames (that
equals to the number of transitions) in the trace and 1(-) is the indicator function,
which equals to one if the argument is true, otherwise it equals to zero.
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7. Calculate the frame size for both states.
The model generates Nyy cells in state 1, where Ny is the sample mean of the upper
quantile and Ny cells in state 2:

P11+ p22 P22
T Np R

Nep =TyR .
/2 v b1 P11

(3.4)

The unit time of the Markov model is determined by the scheduling model, i.e. the next
component of my hierarchical model.
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Figure 3.10: Probability mass function of frame size for PL25

3.3.2 Parameterization of the Scheduling Model

An application running in a non-real-time operating system can not transmit data into the
network on a constant rate, due to the contention among concurrent applications [77]. The
Gaussian nature of the scheduling process is well pronounced, by plotting the PMF of the
frame interarrival time. Apart from the empirical PMF, the probability density function of
the modeling Gaussian process is also depicted in Figure 3.11.

The parameters of a Gauss model can be set by fitting its probability density function
to the empirical PMF. Denote T3 the normal variable which is my model for the frame
interarrival time. The parameters of the Gauss model G(m, o), i.e. the sample mean and
sample variance of T;r should be determined by taking the {TZ’}} sequence resulted from the
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Figure 3.11: Probability mass function of frame interarrival times for PL25 (solid line) and
the probability density function of the Gauss model (dotted line)

first three analysis steps in the previous section and applying:

K K

1 1
m=T ZTZI}a o = K_1 Z(TZ’} —m)?, (3.5)
k=1 k=1

where K denotes the total number of frames in the trace and TZ’} represents the interarrival
time of frame k.

3.3.3 Parameterization of the Encapsulation Model

Based on the regular arrival of cells within packets, and packets within frames, I established
a deterministic state machine for modeling the encapsulation. The parameters of this state
machine can be determined by the following algorithm:

1. Perform the first three steps of the algorithm described in Section 3.5.1.

2. Produce a packet stream {Np;Tip} by filtering out silence periods, which are shorter
than Typpmin and joining individual cells to form a packet between the identified packet
silence periods.

3. Determine Npmay from the {Np} sequence.
For the PL25 sequence Nppq; = 171 cells.
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4. Finally, make a linear regression analysis for determining the « and B constants in
Equation (3.1).
I have used the Matlab [104] program for performing linear regression between the y =
{NF*1} and x = {T%} vectors by finding the coefficients of a first degree polynomial
p(x ) that fits the data p(x) = y in the least squares sense?. The value of « is 18,5
and /3 is 323 for the PL25 sequence (see Figure 3.8).

Sending one frame

| Np = min(Npmax, X) |

p—

| send a packet of N, cells
I
| Tdf: Tdf+ Np; X=X- Np
I
Np = min(Npmaxa X)

Figure 3.12: Deterministic model for the encapsulation of a video frame

The state machine reads a sequence of { Ny, Tjs} pairs as input. Figure 3.12 depicts the
flowchart of sending one frame with this state machine. The parameters «, 8 and Nppeq
are constant and can be set using the presented algorithm. N,, Ty, Ty, Tsp, and z are
local variables of the state machine whose value is computed in runtime. The encapsulation
model generates a cell interarrival time sequence, i.e. a synthetic traffic stream.

2Matlab uses the Vandermonde matrix for polynomial regression, but the method of regression is not
critical from the algorithms’ point of view.
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3.4 Validation of the Hierarchical Model

I have validated the proposed hierarchical traffic model in terms of estimating the maximum
queue length and the cell loss rate. The following tests have been performed on 27 measured
video sequences and the corresponding synthetic traces generated by my hierarchical model.

3.4.1 Queue Length Estimation

I used the Leaky Bucket Algorithm for characterizing the queue length for the original and
synthetic traffic traces. 1 use the metrics and notation introduced in Chapter 2. Results
are plotted for the PL25 and G'T25 traces in Figures 3.13 and 3.14.

We can see in these figures that my model very accurately captures the breaking points
as well as the slope of the LB curve. The peak-end of the LB curves are fully matched,
while the LB distance is relatively high toward the mean-end. The latter represents the
scene level, which was not targeted by my hierarchical model.

Therefore my source model can be used for replacing the real VBR traffic source and in
this way emulating the buffer build up in the ATM switch.

3.4.2 Cell Loss Estimation

It was presented in Section 2.5.4 that the LBA can be used for cell loss estimation. In order
to show the performance of buffering, the CPDF of queue length is presented for both the
PL25 traffic trace and the model-generated traffic in Figure 3.15.

This figure shows that the tail of the CPDF is close for the original and synthetic PL25
sequences in case of different service rates. In other words, my model can reproduce the
CPDF of queue length curve of the investigated VBR video sources and thus it can be used
for cell loss estimation. Note, that these results confirm that my model is able to capture
those characteristics of the traffic which are important from the queuing point of view. I
infer the general validity of this modeling technique based on our study of a relatively large
number of video sequences and performance settings.

Is this Model Platform Dependent?

An interesting question is, whether the presented model building technique is applicable
for other multimedia platforms. One of the key issues in my modeling concept was that
different burst levels in the traffic correspond to different stages of the traffic generation
process within the source host. Thus I constructed a hierarchical model that consists of
three independent model stages for the encoding, scheduling and encapsulation, respec-
tively. I designed and parameterized these models based on the analysis of a particular
multimedia platform. However, most of the common VBR encoders, operating systems
and hardware/software components (constituting the protocols stack) influence the traffic
generation process in a similar way.
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Therefore one can repeat the black box analysis steps for the traffic generated by the
new platform, and modify the encoding, scheduling and encapsulation models accordingly.
For instance, the multimedia terminal had UDP/IP/ATM protocol stack for a set of the
traffic traces, which I have analyzed. Although the payload size of ATM cells (48 bytes)
differs from that of Ethernet packets (1500 bytes), the 8192 bytes large Maximum Transfer
Units generated by the multimedia application [J1] have to be divided into several segments
in both cases. This affects probably only the Np, Nppez, @ and 3 parameters of the
encapsulation model, and the rest of my hierarchical model does not need to be changed.

Therefore I think that my model building technique can be successfully adapted to
other coding schemes (e.g. M-JPEG or MPEG), other operating systems and other network
protocol stacks (e.g. IP over Ethernet).
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3.5 Summary

This chapter proposed a hierarchical source model based on the white box modeling concept.
This model can synthesize the traffic of a VBR traffic source by imitating the operation of
VBR encoding, process scheduling and protocol encapsulation in a multimedia workstation.

The main characteristics of the multimedia traffic have been evaluated in Section 3.2
by performing traffic intensity analysis and silence period analysis on different burst scales
ranging from cell level to scene level. This black box analysis has emphasized that there
are four burst levels in the multimedia traffic — scene, video frame, packet and cell levels —,
which appear periodically in a regular manner. Another observation has been that, while
the scene and video frame level characteristics strongly depend on the video content, the
packet and cell level characteristics (such as packet size, packet interarrival time, etc.) are
unchanged. This section also highlighted that the frame interarrival time varies and its
mean is determined by the video frame rate setting. Moreover, a linear relationship has
been found between the packet silence period and the size of packet generated after that
period.

The observations and numerical results of the black box analysis have been extended
based on the knowledge of the multimedia terminal’s internal operation resulting in a hi-
erarchical model. This model consists of three model stages according to the terminal’s
three independent traffic generation procedures, i.e. encoding, scheduling and encapsula-
tion. The video encoding procedure has been modeled with a two-state Markov process,
while the scheduling of application transfer units has been modeled with a simple Gaussian
process and a deterministic model has imitated the data encapsulation in the protocol stack.
Apart from describing the hierarchical model, Section 3.3 has also proposed algorithms for
setting the parameters of the three models based on a measured trace from the investigated
traffic source.

The model has been validated by LBA and cell loss analysis in Section 3.4. The results
have shown that the queuing performance of original traces (in terms of maximum queue
length and estimated cell loss) is successfully reproduced by the synthetic traffic of our
model.

Applications

A possible application of our model is to emulate the behavior of a particular VBR source
and reproduce its traffic. In this case, the only variable input parameter of our model
is the {N ]]f} sequence, which represents the scene level characteristics of particular video
content, while other parameters are fixed. Such emulated sources can be utilized in large
simulation or measurement scenarios. Alternatively, one can determine the required ATM
traffic contract parameters for a given source, perform multiplexing analysis using real and
emulated sources, or predict cell loss rate using this model. Network dimensioning and
designing control methods (e.g. Call Admission Control) are further applications of this
model.
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Advantages

The main advantages of the proposed model building technique compared to previous mod-
els are the following:

We map the results of black box traffic analysis to our knowledge of the traffic gener-
ation procedure. This white box approach yields a model which behavior is very close
to that of the real source.

We present a relatively simple algorithm for traffic generation where the parameters
of our model can be easily set based on measurements.

The model targets to capture directly the queuing behavior (i.e. leaky bucket curve,
queue length and cell loss) of the real source. We avoid the complexity due to fitting
different statistical characteristics and investigating a rather complex queuing model.

We restricted the use of statistical assumptions about the traffic and set our model pa-
rameters directly from measurements. The modeling concept is verified by comparing
queuing performance of the synthetic and captured traffic traces.

The proposed white box model represents a good compromise between stochastic
source models and measurement-based source emulation. Stochastic models are rela-
tively simple to parameterize, but the synthesized traffic is very far from the original
and it usually captures only the scene level characteristics. Measurements yield very
good accuracy, but they are too expensive and require the storage and play back of a
huge amount of data.



Chapter 4

Resource Management for
Multimedia Services

4.1 Introduction

The previous chapters presented methods for characterizing the resource demand and de-
signing source model for multimedia traffic. In this chapter I focus on the management of
network resources for multimedia services.

The key issue in resource management is how to assign the proper amount of network
resources (such as bandwidth, buffer, scheduling priority, drop precedence, etc.) to the
traffic streams in order to achieve the targeted quality of service. This topic is addressed in
both the Internet and ATM communities; especially in case of multimedia applications.

The usage of signaling protocols for reserving the resources before the beginning of data
transfer is widespread (see [13, 14, 36, 15, 16, 17, T5]). One part of resource reservation
protocols, such as the Stream Protocol family (ST [62], ST-II [14] and ST2+ [63]), sets up
permanent, “hard”, reservation states in routers. Main drawbacks of hard-state reservation
are the complex failure recovery and limited robustness [16]. Other protocols use ”soft
states” (e.g. the ReSerVation Protocol RSVP [57], or Dynamic Reservation Protocol DRP
[16]), which are released if no refresh message arrives within a certain period of time. Some
soft-state protocols are “lightweight” regarding the complexity of allocation scheme and
the design of protocol messages (e.g. YESSIR [17], Boomerang [C11, T5]). In a further
reservation concept, known as Ticket protocol, the amount of already reserved resources is
estimated by counting the refresh messages [18].

Reservation protocols can be differentiated based on their strategy for reservation setup
as well. Earlier schemes (such as CSS7 [78] and q.2931 [13]) basically assume that the desti-
nation terminal is always available, thus reservation shall be started in the network, hop by
hop. In spite of this sender-oriented approach, some newer reservation schemes (e.g. RSVP)
also consider multicast sessions, where the destinations (or receivers) can gradually join to

61
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a reservation session. Receiver-oriented protocols also allow the destination host to de-
termine the resources for the reservation or reject it. From all these and many other IP
resource reservation protocols, only RSVP could attract real industrial interest, although
the Integrated Services (IntServ) architecture [36] is not hardly coupled to RSVP and it
can cooperate with other mechanisms as well [64, 65]. A common property of these reser-
vation protocols is that the amount of resources to be reserved is specified in simple terms,
typically with the peak bit rate or with the parameters of a leaky bucket (or token bucket)
[J3].

Another fundamental way of resource management is to assign resources to the traffic
during the forwarding of packets instead of preliminary reservation. The Differentiated
Services (DiffServ) architecture [69] of the Internet Engineering Task Force (IETF) describes
the basic concept. While the IntServ architecture provisions resources per hop and per
end-to-end traffic flow, the traffic is ordered into a few traffic classes (called Behaviour
Aggregate) in DiffServ, which traffic classes have pre-established resources per network
domain. Instead of explicit signaling, the QoS demand is marked in the packet header [70].
There are several extension proposed to this basic concept. Some of them would extend the
scope and interpretation of the marking [19, 20, 21|, others would combine signaling and
DiffServ [64] or propose an overlay architecture that dynamically provisions the resources for
the traffic classes using a centralized resource manager (often called oracle or Bandwidth
Broker [31]). This latter approach is similar to other methods of separating the service
management and data forwarding layers, especially in case of distributed multimedia services
[55, b4, J3, C16].

The critical issue is to determine the scope and scalability of these alternatives, and it
requires a performance evaluation framework. 1 describe a network scenario and summarize
traditional and new performance metrics for such a framework in Section 4.2. I evaluate
and compare the performance of different signaling and centralized resource reservation
schemes in Section 4.3. Finally, I analyze the service specific information and identify
additional parameters — namely the downgrade vector and the preference function — for the
reservation protocol, which parameters can enhance the efficiency of resource reservation
and evaluate different schemes that utilize such information in 4.4.

4.2 Performance Evaluation Framework

4.2.1 Network Scenario

I consider a network of N nodes in which host A initiates I resource (bandwidth) reservation
sessions toward host B on a fixed route (see 4.1). Moreover, each node handles background
reservation messages originated from x background hosts. The background requests have
a different route than N1-NN and each group of background sources loads only one node.
Furthermore, background requests can not be downgraded only blocked.

I distinguish two traffic classes, namely reservations are performed for Premium traffic,
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while no reservation is made for Best Effort traffic. The network nodes and host B can also
produce signaling messages as a consequence of receiving a message. A node may handle
several atomic messages regarding the same session. Thus I introduce the k = 1,2,... , K™
index that specifies the sequence number of a message on node n for session . Although
the atomic message primitives can have many different interpretation (e.g. reserve, probe,
release, renegotiate) each of these can be described with a parameter triple:

B el o™ B e (1,2, bpaets ol ol € RT (4.1)
i=1,2,... 1
n=201,... , N+1,

where bZ’i denotes the reserved bandwidth at node n after processing the message regarding

the reservation session 4; «,” is the arriving time and o, is the departure time of the

message (see Figure 4.1). The maximum bandwidth, i.e. the full link rate is denoted by
bmaz- Messages from Host A and Host B are indexed with n = 0 and n = N+1, respectively.

x background sources per node

Figure 4.1: The investigated network scenario

I assume downgrading, i.e. that the amount of demanded bandwidth is gradually de-
creased during the negotiation process in a reservation session, therefore subsequent signal-
ing messages request less and less:

WS Y k<l kil=1,2,... K" (4.2)

The nodes have a fix message handling time denoted by ¢} (n =1,2,... ,N). Peak rate
allocation is assumed in network nodes with no priority scheduling. Message handling time
for host A and host B are denoted by tg and tév +1 respectively. The propagation delay
of messages is neglected. Peak rate allocation is assumed in the nodes with no priority
scheduling. Both the foreground and background sources generate requests according to a
Poisson process with arrival rate A and mean holding time y. Poisson arrival and exponen-
tially distributed service time has been shown to be reasonable approximation for measured
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telephony traffic and this assumption has been used both for modeling personal commu-
nication services [58, 59, 52| and integrated voice, video and data calls [60, 53]. There is
only one requested network resource, namely the required bandwidth (i.e. Peak Cell Rate)
considered in this simplified scenario and the others, such as buffer size and number of ports
in switching elements are neglected.

4.2.2 Performance Metrics

This section introduces performance metrics for benchmarking resource reservation pro-
tocols using the presented notations. On one hand, the local impact of signaling can be
characterized using per hop performance metrics. On the other hand, per reservation per-
formance metrics can characterize the entire resource reservation setup process.

Per Hop Performance Metrics

Processing signaling messages loads the router. This effect can be quantified by different per
hop performance metrics, such as (i) the message handling time, (ii) the memory consump-
tion of the signaling message or (iii) the number of code lines in the corresponding handler
software [32]. The per hop message handling time can be expressed using the arrival and
departure time of a message to/from the router. Using the aforementioned notation the
average message handling time is:

I
1 : : :
= jE (o' —ap),  m=12..,N; k=12... K" (4.3)
=1

Extending the list of per hop performance metrics, I propose the Signaling Intensity
metric for quantifying the impact of the reservation protocol on the signaling handling
node:

1~
J”:fZK”", n=1,2,..., N. (4.4)
i=1

The signaling intensity gives the total amount of signaling messages handled by a node
divided by the total number of reservation sessions. Although Signaling Intensity is more
a design issue that puts requirement on the router’s control plane performance, it also has
some impact on reservation setup time. The unique feature of this metric is, that it takes
the number of atomic messages per reservation trial (i.e. K"™%) into account, and in this way
characterizes the effectiveness of the protocol.

Apart from load, it is important to quantify the greediness of the reservation algorithm,
because it has an indirect impact on the Best Effort traffic. In particular, the router may
reject (drop or delay) traffic from the Best Effort class, if there is a temporary reservation
for Premium traffic. If this reservation is partially released at a later stage, the dropping
of Best Effort traffic was exaggerated. I propose the Ouver-Provisioning Factor, or for short
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the OPF, for characterizing the impact of the greediness of reservation protocol on the
Best Effort traffic. The OPF gives the amount of excess resources, which are allocated and
later released (e.g. due to the lack of resources on subsequent nodes) before the end of the
reservation session:

I I Kmi_2
1 ) 1 X . X .
0" =73 0% =237 3 G - bl)(efy, — o), n=12.. N (45)
i=1 i=1 k=1

The OPF also describes how competitive is the resource reservation process in the Pre-
mium class. The more greedy a reservation scheme is, the less chance other request have
for being accepted by a specific network node. The main difference between the message
handling time ¢ and OPF metrics is, that the former characterizes the capabilities of a
single node independently from the network load, while the latter describes the interaction
of a reservation scheme and the resources in a node in case of a certain load situation.
The OPF provides more information, because it considers the timing and resource aspects
together.

Per Reservation Metrics

Traditional per reservation metrics are (i) the blocking probability, (ii) the reservation setup
time, (iii) the signaling overhead, (iv) the number of reservation trials and (v) different
fairness metrics. These metrics are of different significance in relation to overall network
performance and user satisfaction. Blocking probability and reservation setup time are the
most important, basic metrics of signaling performance [58]. A longer reservation setup time
or higher probability of blocking is less acceptable from the user’s perspective. Although
these factors are determined by the network load, a more effective reservation protocol
(e.g. which works faster) results less blocking probability [C9].

The reservation setup time quantifies the time that host A shall wait between issuing a
request and receiving the corresponding acknowledgement from host B:

T =Y, — oy (4.6)

Signaling overhead quantifies the bandwidth, which is taken by signaling messages from
the data traffic. It is a common belief that this factor is critical, but our results disprove it
[C11, C10]. Although the size of subsequent signaling messages may differ, higher signaling
intensity results larger signaling overhead. In spite of the previous metrics, the number
of reservation trials and fairness metrics can directly characterize the effectiveness of the
resource reservation protocol. The average number of reservation trials can be given as:

I
1 0,i
L= Z K% (4.7)
=1
By comparing this expression with (4.4), it is noticeable that L can be considered as the
signaling intensity for host A. As a consequence, it do not characterize the load on network
nodes unlike J".
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Based on my new per hop metrics, I propose the Quer-Provisioning Balance which
characterizes how much the over-provisioning factor depends on the topological location of
a node:

0"~ 4 3,0"
1
N 20"
This is a maximum, relative error type of metric which equals to zero in the best case.

Similarly, I propose the Signaling Intensity Balance for characterizing how much dependent
the signaling intensity is on the topological location of a node:

Jn — % ann
¥ "

(4.8)

0o = max
1<n<N

(4.9)

f#; = max
1<n<N

4.2.3 Application

Pudding’s probe is eating. Thus I have applied the proposed performance metrics for
analyzing different resource reservation schemes in both a simulation system and laboratory
measurements. [J3, J2, C14, C11, C10, C9, C8]

The results presented in this chapter are based on performance studies using a discrete
event simulator [T3] and an OPNET simulation module [72] that emulates the necessary
signaling and resource contention in a multi-rate network environment. Numerical results
were generated for the aforementioned network scenario. The confidence level of each sim-
ulation run was set according to model I =100,000 to 1,000,000 foreground reservation
sessions. Moreover, we have measured and calculated some of these metrics on a test net-
work consisting of Linux based router prototypes and real router products [C10, C8§].

During these tests I found that the over-provisioning factor is a proper performance
metrics for capturing the local and topology dependent impact of reservation on Best Effort
traffic classes and that the signaling intensity can characterize the effect of reservation
signaling on the network nodes. Some of my results are summarized in the following sections.

4.3 Resource Reservation Schemes

The introduction provided a summary of distributed and centralized resource management
techniques, the former based on signaling protocols and the latter based on a central resource
manager. This section analyzes these approaches on concrete examples, and presents a new
allocation scheme, which aims for minimizing the Over-Provisioning Factor.

4.3.1 Investigated Schemes

I have defined a new resource reservation scheme, called Hybrid Allocation that aims for
minimizing the OPF. This scheme is based on intelligent network nodes, which can interpret
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a downgrade vector' and send signaling messages both upstream and downstream in order to
immediately release the unnecessary resources. Furthermore, by keeping the basic features
of fundamental reservation techniques [13, 15, 31, C18] and modifying others, I have also
defined a sender-oriented and a receiver-oriented resource reservation scheme, called Forward
Allocation and Backward Allocation, respectively [J3]. The reservation strategy of these
schemes is the following:

e The Forward Allocation scheme reserves network resources upstream, from host A to
host B. This corresponds to a sender-oriented approach, such as I'TU Q.2931.

e In the Backward Allocation scheme, host A just informs host B about his resource
demand and than host B makes the resource reservation, downstream. This scheme
can be attributed to receiver-oriented, like RSVP.

e In the Hybrid Allocation scheme, each node receives a reservation setup message from
a central node. This strategy is somewhat similar to centralized schemes, such as the
SIGNE [C16] or Bandwidth Broker concept [31].

Forward Allocation

In case of Forward Allocation the protocol tries to grab the resources in the network before
reaching the destination host:

1. Host A generates a bandwidth request and sends it into the network.

2. Each network node allocates the requested bandwidth if it is available. If only less
bandwidth is available, it reserves that amount and downgrades the request to this
new value. Therefore the downgrading is independent from the downgrade vector (see
Section 4.3.2).

3. When the request message arrives to host B, it checks whether the implied bandwidth
level is meaningful for the application and downgrades it according to the downgrade
vector if necessary. If the bandwidth request is downgraded to zero, the reservation
setup is failed. If not, then the terminal resources are allocated in host B.

4. Host B sends back a confirmation message into the network in order to confirm the
reserved resources for the session and to release the extra bandwidth allocations along
the link.

5. When this message reaches the host A, the reservation setup is finished and the
application can be started.

1T define the downgrade vector in Section 4.3.2.
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Backward Allocation

In spite of the previous scheme, host B is considered as the most critical resource of the
teleservice. Moreover, and very simple nodes are assumed which are not able to downgrade
a request (like in RSVP).

1. Host A sends an informative request message to host B asking for the reservation of
guaranteed service.

2. The nodes forward the message without making reservation and host B checks and
allocates its available terminal resources. It selects a quality level according to its
allocated terminal resources and generates a reservation request based on that.

3. The network nodes try to allocate the requested bandwidth. If all nodes along the
path can allocate it and the message reaches host A, the reservation is set up and the
application can be started. However, if the available bandwidth on any node is less
than the requested, that node sends back a reject message to host B.

4. Host B downgrades the request according to the downgrade vector, releases the extra
terminal resources and sends a new, downgraded request. The procedure goes on
from step 3 until the reservation is established or failed (i.e. the requested bandwidth
reaches zero).

Hybrid Allocation

The aim of this allocation scheme is to minimize the over-provisioning factor in the network
and equalize the signaling intensity among the nodes. Thus intelligent network nodes are as-
sumed, which can interpret a downgrade vector and send signaling messages both upstream
and downstream, in order to immediately release the unnecessary resources. Another differ-
ence to the previous schemes is that a Central Resource Manager (CRM) is involved in the
reservation setup, which has information about the teleservice?. In this simplified scenario,
this service-specific information is equivalent to the downgrade vector.

1. Firstly, host A sends a session request to CRM using an application-layer signaling
protocol.

2. The CRM checks the policy and calculates the downgrade vector which will be sent
to the first node (N1).

3. The nodes check their resources and allocate the requested bandwidth if it is avail-
able. If not, they downgrade the request according to the vector; forward the new,
downgraded request to the next node and simultaneously send back a release message
for the extra reserved bandwidth to the previous nodes.

2 Apart from the Bandwidth Broker concept, the idea of central resource manager is reflected in the Policy
Based Networking framework [71] where the service specific information is expressed in a policy.
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4. When the last node (NN) is ready with the reservation, it informs the CRM about
the final bandwidth value. The CRM checks the resulted session using the policy
information and it sends an application-layer message to both host A and host B.

5. When this message reaches the hosts, the reservation setup is finished and the appli-

cation can be started.

It is apparent that the proposed Hybrid allocation scheme requires more complex net-
work nodes. However, the numerical results will show that it yields more economic usage

of the link capacity.

4.3.2 Numerical Results

I have compared the performance of these schemes using the aforementioned performance
framework and network scenario [J3]. This section summarizes the main results.

Movie on Demand Service

In [J3] I describe a simple Movie on Demand service and a central resource management
system, called SIGNE. In order to avoid the replication of that work, I summarize here only

the main parameters that I used in the simulation study (see Table 4.1).

Table 4.1: Parameters for the movie on demand service

Parameter Notion Value Comment
link rate binaz 155.2 Mbps

number of foreground sessions I 10% — 107

number of nodes N 10

signaling handling time for hosts 10, ¢V H 100 ms

signaling handling time for nodes " 10 ms n=12...,10
reservation arrival rate A 0.00I% Poisson process
reservation holding time % 100 s Poisson process

The mapping between user quality settings and the resource demand is described in
Section 4.4. Here is only the downgrade vector is given that specifies the discrete levels of
teleservice resources (i.e. bandwidth in this case) which are meaningful for the application:

d = [248 244 242 241 104 100 98 97 68 64 62 61 32 28 26 25| x 64 kbps. (4.10)
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Reservation Setup Time

The reservation setup time depends on the allocation scheme. It is a constant value for
Forward and Hybrid Allocations:

10
Th =N 423 "4 = 300 ms, (4.11)

n=1

while it is changing for the Backward scheme proportionally to the network load. It is well
pronounced in Figure 4.2, that the mean reservation setup time equals to that of the other
schemes for moderate network load (z = 50), while a much longer time (up to factor four) is
required in case of heavy congestion (z > 500), due to the repeated trials of the Backward
scheme. The probability mass function of the reservation setup time is also depicted in
four plots. The probability mass disperses as the congestion increases. There are discrete
time values which occur more than others, according to the basic time parameters of the
simulation model (such as switching time of 10 ms, terminal response time of 100 ms, etc.).
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Figure 4.2: Probability mass function of reservation setup time for Backward Allocation

Blocking Probability of Foreground Sources

The blocking probability is calculated for different load situations, i.e. different number of
background sources connected to each node. I defined blocking probability in this case as the
ratio of completely unsuccessful reservations and sum of reservation trials. Since resource
requests can be downgraded, reservations may be partially unsuccessful. By taking the
amount of requested and resulted resource into account, further performance metrics could
be defined (e.g. user satisfaction), which are somewhat similar to blocking probability.
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Three network load regions can be differentiated in Figure 4.3; the regions of small,
medium and large congestion. The blocking probability of the requests of foreground source
is practically the same in case of Forward and Hybrid Allocation schemes in each region.
The Backward Allocation performs worse in the region of small congestion (0 < x < 90),
but it has better results than the other two allocation schemes in case of medium congestion
level (90 < z < 200) and each curves coincide in the large congestion region (z > 200).
Since a blocking level larger than 1% is hardly acceptable by quality oriented applications
and each scheme has a larger probability of blocking in the second and third regions, one
could conclude that the Forward and Hybrid schemes are somewhat better in the important
cases.

Blocking Probability of the Foreground Source

107 10°
Number of Background Sources

Figure 4.3: Blocking probability of the foreground source vs. the number of background
sources

Blocking Probability of Background Sources

Each background source generates reservation requests for its node in an independent man-
ner. Therefore the average blocking probability of background requests connected to the
same node is evaluated in case of every node and different congestion situations. Results
for the first and last nodes (N1, N10) are depicted in Figure 4.4. There is no noticeable
difference between the blocking characteristics except the region of small congestion. The
Forward and Hybrid allocation schemes performs very similarly, since both method down-
grades the request according to the downgrade vector (although downgrading takes place
in the destination terminal or in the network nodes, respectively). Interesting is the phe-
nomena, that the Backward scheme has better results on the first node (N1) while higher
blocking probabilities on the last node (N10). The explanation is that the foreground source
loads the network nodes with atomic signaling messages in an unbalanced way in case of
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Backward allocation. The nodes closer to the destination terminal should process much
more messages than the first nodes due to the iterative allocation scheme, i.e. this is a loca-
tion biased protocol using the terms presented in [61]. The over-provisioning and signaling
intensity balance metrics also highlight this location bias (see later). The general conclusion
regarding the results of blocking probability is that the three schemes have a very similar
performance.

Blocking Probability of Background Sources

Node N1
=

Node N10
=)

107 10°
Number of Background Sources

Figure 4.4: Blocking probability of background sources vs. the network load

Over-Provisioning Factor

In Figure 4.5, the OPF is drawn for the second and eighth node as a function of the
network load. The practical interpretation of this graph is, how much amount of data could
have been transferred through the network in an optimal case, if the greedy reservation
protocol would have not blocked some resources. One could see previously, that the first
and last nodes are special either form the Backward or the Hybrid Allocation’s point of
view. The Backward approach does not allow downgrading in the nodes, thus there is no
over-provisioning on node N1. This location bias is the reason for taking N2 and N9 instead
of the edge nodes. Although the curves get closer to each other in the large congestion
region (z > 200), the Backward Allocation has clearly the worst and the Hybrid allocation
has the best results. The declination above z = 100 background nodes can be explained
by saturation in the network. It is well expressed by this figure, that the Hybrid scheme
can use the knowledge of the downgrade vector very well (i.e. the CRM can provide useful
information for reservation) and the immediate release messages yield less over-provisioning.

The location bias of the protocols can be characterized using the over-provisioning bal-
ance 0o metric. Table 4.2 presents the mean OPF (i.e. (O") = £ Y-, 0") and 6o for two
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Figure 4.5: Average over-provisioning as a function of background source number

Table 4.2: Mean OPF and over-provisioning balance

Over-Provisioning
Scheme x=100 x=1000
(o) bo | (O") | 6o
Forward 11.790 | 0.613 | 15.721 | 1.288
Backward || 157.035 | 0.043 | 42.356 | 0.270
Hybrid 1.950 | 1.327 | 1.499 | 2.033

load cases. Although the Hybrid scheme yields the least mean OPF in both cases, 6o in-
dicates the largest location bias for this scheme. These metrics show the opposite for the
Backward Allocation, which has very big (O™), but in a balanced manner.

Signaling Intensity

Since the signaling intensity is also dependent on the node’s position in the network, re-
sults are depicted for the two edge nodes (N1, N10) in Figure 4.6. In case of the first
node (N1), the number of signaling messages is the highest for the Hybrid scheme, but
only in the medium congestion region (90 < x < 200), and each curve declines in case of
high congestion. The reason of former observation is that the number and frequency of
downgrading and reallocation actions increases when the load is higher in case of Hybrid
Allocation, since the first node should process every reallocation message coming from the
upper nodes besides the three basic messages (reserve, allocate and release). The latter
phenomena is caused by the higher number of rejected reservation requests (i.e. shorter
setup procedures) in case of higher congestion. In spite of the above plot, the Forward and
Hybrid schemes result exactly the same characteristics for the last node (N10), while the
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Figure 4.6: Average signaling intensity as a function of network load

Backward curve has a jump in the medium congestion region. This observation underlines
the aforementioned fact, that the Backward allocation causes a very unbalanced load for
the nodes from the point of view of blocking probability and signaling intensity. Although
the Hybrid allocation requires somewhat more processing of atomic signaling messages in
case of the first node, this difference is very moderate.

Table 4.3: Mean signaling intensity and signaling intensity balance

Signaling Intensity
Scheme x=100 x=1000
M| 0y | I | b
Forward 2.976 0 2.080 0
Backward || 3.786 | 0.162 | 7.675 | 1.246
Hybrid 3.038 | 0.022 | 2.312 | 0.211

I have calculated the mean signaling intensity (J") = % > ,J" and the signaling inten-
sity balance 6; for two load cases with z = 100 and z = 1000 active background sources.
The results in Table 4.3 show that the Forward Allocation performs the best from this point
of view. It loads the nodes in an absolutely balanced way and it requires the least number
of atomic messages for a successful reservation (notice that J" = 2 is the optimum with
that scheme). The Backward scheme has the worst performance, with the largest location
bias and almost 8 messages per successful reservation for = 1000 . This latter result can

be explained by the increasing number of retries in case of high blocking.
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4.3.3 Conclusions

Let us summarize the main results of this investigation, using the Forward Allocation scheme
as baseline and comparing the performance of the other two schemes to that.

The Backward Allocation scheme has the same mean reservation setup time in case
of small network load, but it requires three-four times longer setup time in case of large
congestion. Moreover, the reservation setup time is not a fixed value, but it disperses
according to the message handling time and topology of network nodes. The blocking
probability of both foreground and background reservation requests is practically the same
for the Forward and Backward schemes. The Backward Allocation yields somewhat less
blocking on the nodes close to host A, and more blocking on nodes close to host B. This
scheme produces higher signaling intensity than the Forwarding Allocation scheme. This
scheme is the least location biased according to the over-provisioning balance metric, while
the most location biased from the signaling intensity’s point of view.

The Hybrid Allocation scheme has the same, fix reservation setup time as the For-
ward Allocation. Moreover, it results very similar blocking probability than the Forward
scheme for both foreground and background reservation requests, in a balanced manner.
It performs better regarding the over-provisioning factor and signaling intensity, but the
over-provisioning and signaling intensity balance metrics are somewhat worse for the Hy-
brid Allocation scheme than for the Forward Allocation. On the other hand, if we compare
the operation of these allocation schemes, it is obvious that the Hybrid scheme uses a more
complicated protocol than the other two, and it requires a central resource manager and
more intelligent network nodes. This approach tries to meet a trade-off between complexity
and over-provisioning. The centralized resource management promotes optimization, which
requires many iteration to achieve in the other cases.

Therefore the Hybrid Allocation has achieved its goal, because it yielded the least over-
provisioning factor in the network producing a relatively low signaling intensity. This section
has also illustrated that the OPF and signaling intensity metrics are useful, because they
provide different information than the reservation setup time and blocking probability.

The proposed Hybrid allocation scheme yields more economic usage of the link capacity,
but it requires more complex network nodes. Therefore the primary application of such a
scheme can be in network-bottlenecks (e.g. wireless access network), where the bandwidth
is more a scarce resource than the processing capacity.

4.4 Extensions Using Service Specific Information

This section investigates an intelligent allocation approach that utilizes the knowledge of
multimedia application and user behavior for signaling based resource reservation.

First the service specific information is analyzed and a mapping is defined for expressing
the demanded network resources as a function of the quality parameters of the applica-
tion. Based on this mapping, different resource allocation schemes are proposed in which
the signaling message carries service specific information, such as preference function and
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Table 4.4: Quality parameters and levels of video

Video
Quality Parameter | Resolution [Pixels] | Frame Rate [fps]
Level “Small” | “Large” | “Slow” | “Quick”
Value 192x144 | 384x288 10 25

Table 4.5: Quality parameters and levels of audio

Audio
Quality Parameter Audio Channel Sampling Rate [kHz]
Level “Mono” | “Stereo” | “Low” “High”
Value 1 2 24 48

downgrade vector.

The performance of these schemes is evaluated and benefits are highlighted in terms of
reservation setup time, blocking probability, over-provisioning and signaling intensity based
on simulation study [C14, J2].

4.4.1 Resource Vector of the Multimedia Application

Multimedia applications usually have several parameters, which influence the amount of
network resources they require for the targeted QoS. For instance, by altering video coding
parameters of a scalable MPEG application, its bandwidth requirement scales from 2.7,
3.085, 3.6, 4.32, 5.4, 7.2 up to 10.8 Mbps in discrete steps [56]. For describing a general
case, let us denote the ith independent quality parameter of the application by ¢;; the
number of independent parameters by N and the number of quality levels each parameter
can take by Ng,, i.e.,

q; € QZ = {Qi,lu"' 7qivNQi}7 7 = ]_7 ,N. (412)

As an illustration, let us consider a video-phone service that has two media, video and
audio, both having two independent quality parameters, such as resolution, frame rate, num-
ber of audio channels, and sampling rate (see Table 4.4, 4.5).

Denote K the number of independent network resource types (e.g. bandwidth, token
bucket size, route, priority, ...) that applications are competing for. Let us also define a
mapping function between the quality parameters and the network resource types (R) in
the following way:

i €ERj =Ri{Q1 x @y x...xQn}, j=1,...,K, (4.13)
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Table 4.6: Mapping between quality settings and resource set of video-phone service

User Quality User Quality Levels for Audio
Levels for Video | low sampling rate | high sampling rate
mono stereo mono stereo
small size
simple frame rate 25 26 28 32
small size
double frame rate 61 62 64 68
large size
simple frame rate 97 98 100 104
large size
double frame rate 241 242 244 248

where r; is the value of the jth network resource type and R; denotes the resource set
which contains the possible resource values that the application may take from the jth
resource type in case of different quality settings. The number of elements in each R; is
at most L = HZ]\LI Ng,, but it is much less in practical cases, because R; does not define
a one-to-one mapping and several combinations of the N parameters may result the same
resource requirement, i.e. the same value.

The elements can be sorted in descending order yielding K resource vectors:

ry = [Tk,177”k,27 - 7Tk,L]7 Tk > Tkj < 7 < j, (4.14)
ij=1,2,... 1L,
k=1,2,..., K.

In the previous example, the combinations of the two parameters and values yield four
discrete quality levels for both media, which levels require different amount of network re-
sources from the bearer network. These requirements are summed and given in the resource
vector. The peak cell rate demand for each quality settings can be determined from Ta-
ble 4.4-4.5, and are shown in Table 4.6.

Although these calculations are very simple, the resultant bandwidth requirements are in
the range of a real audio and a coded video channel [51, C5]. Instead of a single peak, mean
or minimum cell or bit rate (which are commonly used in standards), a set of bandwidth
values are given which the application can exactly use for data transport. But are these
values equally preferred by the service user?

4.4.2 Preference Function of the User

The rp resource vectors represent one type of special service specific information, which
is determined based on the capabilities of the multimedia application. Apart from this,
another type of service specific information can be retrieved by considering how much the



78

user prefers the application’s quality resulted by the different parameter settings. This
can be expressed by a preference index, i.e. a positive number which is assigned to each
combinations of the quality parameters. These preference values can be expressed by an N
dimensional vector-scalar function, called preference function:

p:P(ql,...,qN)E{O,l,...,NP}, (415)

where Np denotes the maximum preference index (e.g. 255).

One can assume in case of a video-phone service that users prefer the similar quality
settings for audio and video. It happens rather rarely that a user requests a high quality video
channel with mono, low sampling rate audio or vice-versa. Thus the 16 quality settings given
in Table 4.6 are not equally pleasant to the users. We made a small Gallup poll among a
group of colleagues in order to determine the preference function for the video-phone service.
Results are given in Table 4.7.

Table 4.7: User’s preference values

Video Audio
worse | bad | good | best
worse 4 2 2 1
bad 3 4 2 2
good 3 3 6 4
best 2 3 5 8

The goal of user’s preference function is three-fold in our case; (i) reservations are
initiated with resource requests selected from the available settings through the distribution
given by P, (ii) the user’s decision is also emulated through P, if downgrading happens inside
the network and (iii) the network node determines the next downgrading step using P in
the most advanced allocation scheme.

4.4.3 Downgrading the Reservation Request

Both types of the service specific information, i.e. the resource vector and the user preference
function, can be used for intelligent downgrading of reservation requests.

Decision on Downgrading

A subset of the elements of the rj vector can be ordered into a Downgrade Vector d, that
specifies the discrete resource downgrading steps that the application may require from the
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network, in a descending order:

di = [dk,1,dg,2,- - s diar,]  dii € Re (4.16)
i=1,2,... . M,
k=1,2,... K,

where M}, denotes the number of elements in the downgrade vector belonging to the kth
resource type. The dy downgrade vector expresses information that network nodes shall
consider during the reservation for the kth resource. The allocation of either more or less
resource than the quantities described in dy ;’s is just a waste of resource.

Another way for optimizing resource reservation can be achieved by taking the preference
function into account. The main idea is that even if the network downgrades to those
quality levels that bear with rational quality settings for the application, the user does not
necessarily accept the established reservation, if that quality level is less preferred than
another. Therefore a weight shall be assigned to each element of the downgrade vector
using the P function:

Wi — [wkjl,wkvz, e ,U)kka] wk,i == P(R;l{dkﬂ}) (417)
i=1,2,..., M,
k=1,2,... K.

If a request can not be admitted, the node considers both the downgrade vector and the
preference function for downgrading the request and selects that element of the wj whose
weight is the largest.

Admission Control

The basic idea of our admission control algorithm is to reject the incoming reservation
request if the available bandwidth in the node is less than the smallest element of the d
vector, otherwise accept it and allocate bandwidth according to the largest element of the
d vector that fits into the available capacity. If the available bandwidth at the jth node
is denoted by f;, then the admission control mechanism applied at the jth node can be
expressed as follows:

fj <min(d;) = reject request (4.18)
(2
idd; < fi = bj = max{di]di < fj; 1=1,... ,M},
(2

where b; denotes the bandwidth allocated on node j and I use the notion d; = dj; because
only one resource type, bandwidth is concerned here. If downgrading happens, a reservation
tear message is sent backward to the up-stream nodes in order to release excess reservations
resulting from recent downgrading. The tear message is also propagated along the backward
path.
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User Revision

The preference function is also utilized for modeling the behaviour of the user. If down-
grading happens inside the network, the user will decide whether the quality level of the
established service is still acceptable or not. The preference function can characterize this
decision, further referred as User Revision in this section.

4.4.4 Resource Allocation Schemes

This section presents two resource allocation schemes that uses the downgrade vector and
the preference function in different ways. These schemes are compared to an ordinary
resource allocation scheme, which is a simplification of RSVP [57, 15, C11]. For the sake
of fair comparison, I assume that admission control (AC) takes place in nodes and host A
initializes all reservation. Moreover, only one network resource is considered in the following,
namely the bandwidth. Others like switching capacity and buffer size are excluded from
the recent investigation.

Apart from the “baseline” allocation scheme (type 0), two enhanced allocation schemes
are proposed. The first (type 1) uses only the downgrade vector, while the second (type 2)
utilizes the preference function too, as service specific information. In spite of this principal
difference, the reservation request is processed for both according to the following rules:
(i) a reservation request is sent to the network with a downgrade vector; (ii) in the nodes
along the path AC is performed as described previously; (iii) if downgrading happens, a
tear message is sent backward along the path. The three basic allocation types are further
modified by disabling the user revision function (type 0* and type 1*). The different
allocation types are summarized in Table 4.8.

Allocation Type 0 This is the reference reservation model without any service
specific information for processing reservations. The reservation request is launched into the
network, and progresses forward until it finds a bottleneck link or reaches the destination. If
in a certain node there is not enough available bandwidth, it stops the reservation message
and sends a tear message to the previous nodes for releasing the total requested bandwidth.
This tear message also contains the bottleneck bandwidth. Host A, receiving this tear
message either tries a downgraded request considering both the preference function and the
bottleneck capacity or considers the request to be blocked.

Allocation Type 0%* This is a variant of Type 0, where the user always accepts an
established reservation when it meets any of the elements of the downgrade vector (i.e. user
revision is disabled).

Allocation Type 1 In this case, after a reservation request has been launched to the
network host A either gets a release message, that means the failure of the reservation re-
quest, or an acknowledgment message with the reserved bandwidth. As downgrading could
happen inside the network, the acknowledged bandwidth expresses the effective reservation.
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Table 4.8: Resource allocation schemes

. Service Specific Downgrading in . .
Allocation Type Informzﬂion the lg\IetWO;g'k User Revision
Type 0 No No Based on P
Type 0* No No No
Type 1 d Based on d Based on P
Type 1* d Based on d No
Type 2 d and P d and P No

Now the user - i.e. the preference function in our case - decides whether the acknowledged
allocation is acceptable or not. If no downgrading happened then the user accepts the
established reservation with probability 1. However, in case of downgrading, the user may
reject the reservation or choose a more preferred resource setting according to the prefer-
ence function. In either case, the excess bandwidth reservation is released and the necessary

bandwidth is allocated for the application by issuing allocate and tear excess® messages.

Allocation Type 1%* This type is similar to Type 1 except that user revision is
disabled, i.e. any non-zero allocation is accepted by the initiator user.

Allocation Type 2 In this case, not only the downgrade vector but also the pref-
erence function is included in the reservation request message. Hence, the user behavior is
modeled within the network nodes, so user revision is not required.

4.4.5 Numerical Results

I used the generic performance evaluation framework and simulation scenario that is de-
scribed in Section 4.2 with the downgrade vector and preference function given in the
previous sections, in order to evaluate these allocation schemes. This section summarizes
the main results of the simulation study [C14, J2].

Reservation Setup Time

Figure 4.7 shows the reservation setup time distribution for the type 0 scheme. It always
starts from 300 ms, that is the minimum reservation setup time, and flattens with the
increasing number of background sources. It is highly dependent on the actual network
load contrary to the type 2 scheme which gives a constant setup delay of 300 ms whatever
the network load is.

The mean reservation setup time of the five allocation schemes is presented in Figure 4.8.
Comparing type 0 to type 0*, a moderate improvement can be noticed, which means that

3note that the allocated bandwidth may be zero
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the free bandwidth determined by the random load situation in the network rarely matches
the resource demand of quality settings preferred by the user. Due to downgrading in the
nodes, setting up a reservation takes always a fix time (if it successes) for type 1, type 1*
and type 2.

Setup Retries

The difference between the performance of type 0 and type 0* can be further stressed by
visualizing the number of reservation setup retries (Figure 4.9,4.10). It can be seen that
more retries are needed to make a successful reservation, if there is a higher network load.
Moreover, type 0* requires much less retries for reservation setup than type 0. The reason
of this is that the user does not check the preference function, but accepts everything in
case of type 0*.
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Figure 4.9: Reservation setup retries for (type 0)
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Figure 4.10: Reservation setup retries without user revision (type 0*)
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Call Blocking Probability

In Figure 4.11 we show the foreground source’s blocking probability as a function of the
number of background sources. It can be seen that the blocking probability is an increasing
function of the number of background sources for each type, and the curvatures are almost
identical. It is also shown, that the advantage of instant downgrade capability of type 1 and
type 2 does not really influence the blocking probability, however it slightly remains below
the blocking probability of type 0 in case of large network load, while it is a little higher in
case of small network load.

Over-Provisioning Factor

Figure 4.12 shows the over-provisioning on node 2 and node 9 for allocation schemes type
0* and type 1*. It can be seen, that with the increasing number of reservation setup retries
(see Figure 7) the over-provisioning of the type 0* allocation increases. Moreover, the curve
of type 1* is always below of the type 0*. It means less waste of bandwidth which could
result in higher efficiency in sharp situations. It is obvious that the worst case node is the
first node next to host A, where the unnecessary reservations are kept longest. For node 8
— close to the destination —, the over-provisioning factor straightens and is smaller with two
magnitude for both allocation schemes. This unbalanced way of loading the network nodes
is often called location bias [J3].

Over-provisioning is also plotted for the allocation types in which the host A revises the
acknowledged bandwidth. Reservation types 1 and 2 resulted in smaller over-provisioning
than type 0, as it is pronounced in Figure 4.13. It is interesting that type 2 can utilize the
additional service specific information (i.e. the user preference function) for sparing with
excess bandwidth in case of small background load (n < 200), while type 1 performs better
than type 2 in case of more background calls. The over-provisioning on node 1 has the same
order of magnitude as in the previous case.

Signaling Intensity

Figure 11 presents the signaling intensity on the first (NO) and last node (N9) in case of type
0* and type 1*. Node 0 should handle more atomic signaling messages in case of allocation
type 0, while this difference is very small on node 9. Allocation type 1 causes less location
biased load regarding signal handling.

The same performance measure is plotted for the types implementing user revision
(Figure 4.15). Only a small improvement can be observed in case of this variant of the
baseline allocation type (i.e. type 0). Type 2 has the smallest location bias and less intensive
signaling.

It is noticeable, that the presented allocation schemes require signaling messages of
different size, because types 1 and 2 include the Downgrade Vector, type 2 the Preference
Function too, but type 0 does not transfer service specific information. Thus the overhead
due to signaling is maximal for type 2 and minimal for type 0.



Blocking Probability

™~

Type 0

100

200
Number of Background Sources

500

Figure 4.11: Blocking probability without user downgrade

Over-Provisioning Factor [kbyte]

Node N2

10

100

200 500

Node N9

100

200 500
Number of Background Sources

1000

Figure 4.12: Over-provisioning factor for type 0* and type 1* (solid and dotted lines)

Over-Provisioning Factor [kbyte]

-Type 2

100

500
Number of Background Sources

1000

Figure 4.13: Over-provisioning factor on node N2

85



Signaling Intensity

Node NO

100 200 500 1000

Node N9

Type 1*

100 200 500 1000
Number of Background Sources

Figure 4.14: Signaling intensity on nodes N1 and N10

Signaling Intensity

6 T T T
_5
z
g4
o
b4
3
100 200 500 1000
6
Type 1
24 ——
4 o
3 ~ /
o S .
22 Type 0,2 e \\
0 1 1 1 —
100 200 500 1000

Number of Background Sources

Figure 4.15: Signaling intensity on nodes N1 and N10 in case of user revision



87

4.4.6 Conclusions

Two intelligent resource allocation schemes were introduced and analyzed in this section,
which utilize service specific information, specifically the downgrade vector and the user
preference function, in order to minimize over-provisioning and reservation setup time. The
numerical results highlight that the service specific information results in (i) a fix and shorter
call setup time, (ii) less reservation trials, (iii) less over-provisioning and (iv) less intensive
signal handling in the nodes by maintaining (v) the same blocking probability [C14, J2].

Where is the Optimum?

Although the more intelligent schemes yielded better performance, the usage of further
service specific information is questionable. The more information is carried in signaling
messages the more complex their handling is in the hosts and network nodes. This effect
can be quantified by the Memory and CPU cycle consumption or the Signaling Message
Processing Time metrics. According to [C10] and our newer results, the admission control
process takes only about 8% of the total processing time of an RSVP message. Thus even if
we assume that the computational complexity (i.e. the time needed for admission control)
grows linearly with the number of resource values in a downgrade vector, this factor is
negligible. On the other hand, more information yields longer signaling messages, which
can be indicated by the signaling overhead metric.
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4.5 Summary

This chapter proposed a performance evaluation framework for resource reservation schemes
including traditional and novel performance metrics. Moreover, it demonstrated the appli-
cation of this framework on different reservation schemes, such as sender-oriented, receiver-
oriented protocols and others using a central resource manager or service specific informa-
tion.

The network scenario and notation of this framework have been introduced in Section
4.2. Performance metrics have been discussed in two groups, differentiating per hop metrics
and per reservation metrics. The former describes the local impact of signaling messages on
a network node, while the latter characterizes the entire resource reservation setup process
in the network.

Besides (i) message handling time, (ii) memory consumption and (iii) software com-
plexity, the Signaling Intensity metric has been proposed for quantifying the impact of the
reservation protocol on the signaling handling node. This metric takes the number of atomic
messages per reservation trial into account, and in this way characterizes the effectiveness
of the protocol. Moreover, I have proposed the Ouver-Provisioning Factor OPF for charac-
terizing the greediness of the reservation algorithm, which has an indirect impact on the
Best Effort traffic. This metric also describes how competitive is the resource reservation
process in the Premium traffic class.

Extending the list of traditional per reservation metrics, such as (i) blocking probability,
(ii) signaling overhead, (iii) reservation setup time, (iv) number of reservation trials and (v)
different fairness metrics, I have proposed the Qwer-Provisioning Balance and Signaling
Intensity Balance metrics for characterizing how much the OPF and signaling intensity
metrics, resp., depend on the topological location of a node.

I have proposed a new resource reservation scheme (called Hybrid Allocation) in Section
4.3, which aims for minimizing the over-provisioning factor in the network by downgrading
the reservation request and sending release messages from every network node. I have com-
pared the performance of this new scheme with a sender-oriented, and a receiver-oriented
scheme and I have proven that the Hybrid Allocation has achieved its goal. In particular,
it has yielded the least OPF in the network producing a relatively low signaling intensity.

The service specific information has been analyzed in Section 4.4 and a mapping has
been defined for expressing the demanded network resources as a function of the quality
parameters of the application. The main idea is that why shall we reserve a particular set
of resources, if the application can not utilize it or the user does not prefer the resulted
quality. Thus I have proposed the Downgrade Vector for expressing the multimedia applica-
tion’s capabilities and the Preference Function for characterizing the user’s behaviour. Two
intelligent resource allocation schemes have been introduced and analyzed in this section,
which utilize service specific information, specifically the downgrade vector and the user
preference function, in order to minimize over-provisioning and reservation setup time. The
numerical results has shown that the service specific information results in (i) a fix and
shorter call setup time, (ii) less reservation trials, (iii) less over-provisioning and (iv) less
intensive signal handling in the nodes by maintaining (v) the same blocking probability.



Chapter 5

Summary of the Dissertation

This dissertation covers various fields of traffic characterization, traffic modeling and traffic
managements for multimedia teleservices.

Chapter 2 presents the Leaky Bucket Analysis — a framework for resource dimension-
ing and characterizing the burstiness of ATM traffic —, demonstrates its applicability on
deterministic and measured traffic traces, and describes its applications.

The Leaky Bucket Analysis (LBA) provides the Leaky Bucket curve ¢(r), its dual pair
q'(t) and the Leaky Bucket Slope curve s(t) as deterministic bounds for quantifying and
visualizing the resource demand of a trace. Several deterministic traffic traces are analyzed
using the LBA, and the family of Multilevel On-Off (MOO) traces is introduced. The
analysis of measured traces demonstrates that the Leaky Bucket Analysis can characterize
how the resource demand and the burst structure of VBR video traffic changes due to traffic
shaping, multiplexing, changing the video sequence or the video frame rate. The robustness
of LBA against the variations in the traffic of a certain traffic type and the length of captured
trace is investigated and accuracy thresholds are given for single and aggregated Internet
and VBR video traffic using the relative error ratio of ¢‘(¢). This analysis emphasizes that
the LBA can characterize specific traffic types too, not only a single traffic trace.

The deterministic metrics of LBA are fitted to two analytic models. The first model
utilizes that the burst structure of measured traffic traces and MOO traces are similar. The
parameters of the MOO model are set based on the breaking points in ¢(r) and the place
of plateau in s(t). The second model has been a two-level fluid flow model.

Moreover, I describe several applications of the LBA, such as selecting the parameter
set of the ATM connection traffic descriptor considering different optimization criteria, se-
lecting and detecting the shaping rate, queuing behaviour analysis by visualizing the gain
of statistical multiplexing and cell loss rate estimation.

Chapter 3 presents a hierarchical source model based on the white box modeling concept.

This model can synthesize the traffic of a VBR traffic source by imitating the operation of
VBR encoding, process scheduling and protocol encapsulation in a multimedia workstation.

89



90

First the main characteristics of the multimedia traffic are evaluated by performing traf-
fic intensity analysis and silence period analysis on different burst scales ranging from cell
level to scene level. This black box analysis emphasizes that there are four burst levels in
the multimedia traffic — scene, video frame, packet and cell levels —, which appear periodi-
cally in a regular manner. Moreover, while the scene and video frame level characteristics
strongly depend on the video content, the packet and cell level characteristics (such as
packet size, packet interarrival time, etc.) are unchanged. That is also emphasized that the
frame interarrival time varies and its mean is determined by the video frame rate setting.
Furthermore, a linear relationship is found between the packet silence period and the size
of packet generated after that period.

The observations and numerical results of the black box analysis are extended based
on the knowledge of the multimedia terminal’s internal operation resulting a hierarchical
model. This model consists of three model stages according to the terminal’s three indepen-
dent traffic generation procedures, i.e. encoding, scheduling and encapsulation. The video
encoding procedure is modeled with a two-state Markov process, while the scheduling of
application transfer units is modeled with a simple Gaussian process and a deterministic
model imitates the data encapsulation in the protocol stack.

The model is validated using the LBA and the results show that the queuing perfor-
mance of original traces (in terms of maximum queue length and estimated cell loss) is
successfully reproduced by the synthetic traffic of our model.

Chapter 4 proposes a performance evaluation framework for resource reservation schemes
including traditional and novel performance metrics. Moreover, it demonstrates the appli-
cation of this framework on different reservation schemes.

Performance metrics are discussed in two groups, differentiating per hop metrics and
per reservation metrics. The former describe the local impact of signaling messages on a
network node, while the latter characterize the entire resource reservation setup process
in the network. Besides (i) message handling time, (ii) memory consumption and (iii)
software complexity, the Signaling Intensity metric is proposed for quantifying the impact
of the reservation protocol on the signaling handling node. This metric takes the number
of atomic messages per reservation trial into account, and in this way characterizes the
effectiveness of the protocol. Moreover, the Ouver-Provisioning Factor OPF is proposed for
characterizing the greediness of the reservation algorithm, which has an indirect impact on
the Best Effort traffic. This metric also describes how competitive the resource reservation
process is in the Premium traffic class. Extending the list of traditional per reservation
metrics, such as (i) blocking probability, (ii) signaling overhead, (iii) reservation setup time,
(iv) number of reservation trials and (v) different fairness metrics, the Over-Provisioning
Balance and Signaling Intensity Balance metrics are proposed for characterizing how much
the OPF and signaling intensity metrics, respectively, depend on the topological location
of a node.

A new resource reservation scheme is introduced for minimizing the over-provisioning
factor and its performance is compared with a sender-oriented, and a receiver-oriented
scheme. It is shown that the new scheme yields the least OPF in the network producing a
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relatively low signaling intensity.

Moreover, the service specific information is analyzed and a mapping is defined for ex-
pressing the demanded network resources as a function of the quality parameters of the
application. The Downgrade Vector and the Preference Function are proposed for express-
ing the multimedia application’s capabilities and for characterizing the user’s behaviour, re-
spectively. Furthermore, two intelligent resource allocation schemes are introduced and ana-
lyzed, which can utilize the service specific information for minimizing the over-provisioning
and reservation setup time, according to the numerical results.
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Appendix A

Extension of the Leaky Bucket
Analysis

I have presented in Section 2.2.2 that the CBR trace and one-level On-Off traces result the
least and most bursty LB curve, respectively, that is these traces constitute two extremes.
I have also stated that any traffic trace u(7, N) can be considered as a special MOO trace.
Thus an interesting idea is to define a linear space with the MOO traces as base vectors
and project other traffic traces to the vectors of this space.

Let © denote the space of traces u(T', N) and = denote a subspace of €2, which contains
every MOO trace. The 'addition’ of two traces p4 and pp is defined in the E space as a
”slot-wise” logical OR operation between the traces for all k:

HA+B = pa + /1B, BA, bBy HA+B € B (A1)

:U'A-I-B(k) :MA(k) OR ,U'B(k)7 k= 1727"' 7T'
The 'product’ of message p with a scalar A is defined as:

UAC = ALC, po €E; A€ IT (A.2)

NAC(k):NC(k+>‘%T) k=1,2,....,T,

where % denotes the residuum function.
The ’null’ element of this linear space is defined as:

,U,()(k‘) =0, k=1,2,...,T; pup€Z=. (A3)
And finally, the ’base vectors’ of this space are special MOO traces:

(k) =e(k—4), k=12...,7; i=12,...,T; p €= (A.4)
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Section 2.4.1 presented how an arbitrary, measured trace u(7', N) can be modeled with
an MOO trace targeting a good fit of LB curves. That modeling approach can be considered
as a transformation from the €2 space to the = space. This I call the MOO Transformation.
The resulted MOO trace can be decomposed from the linear combination of MOO base
vectors, yielding a canonical description of the trace. The LBA can promote the practical
implementation of this transformation.

The linear space of MOO traces and the MOO transformation is subject of further
research.



Appendix B

Equations to the Fluid Flow Model

This section provides a summary of the derivation of the parameter fitting equations for the
two-level fluid flow model, presented in Section 2.4.2. Using the notations of that section,
the basic equations for the two-level fluid flow model are:

ro <c<ri, A(t) =r(Z(t)), (B.1)
1 A

_ _ A B.2

e TN (B:2)

Denote X (t) the amount of fluid in the buffer (i.e. the queue length). Its partial distri-
bution function in state ¢ is:

Fi(z) = Pr{Z =4,X < z}. (B.3)
The stationary first and second moments of the arrival rate are [12]:

E[A] = 7o+ (r1—ro)m, (B.4)

Cov [Am Av] = (7“1 — 7“0)27r07r16()‘+/l)|“_7)|‘

We can establish the following set of equations for the two states:

(ro—c)Fy = —AFy+ pkFy,
(7”1 —C)F1 = )\F() _NFL

The solutions for the partial distribution functions can be obtained by using the following
boundary conditions:

Fl(oo) = 1,
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and we can get:

Fila) = m—m2—te, (5.5)
Fy (.’L‘) = m (1 — 67@:) , (B.G)
where
— —(r1 —c¢)A
C — (c TO)/'I’ (Tl c) . (B?)
(r1 —¢)(c—ro)
The complementary queue length distribution, i.e. the estimation for the cell loss prob-
ability is:
Qz) = Pr{X >z} = m— - :0 eC — (B.8)
— T

A T
)\+M cC—To )

Our aim is to fit the mean rate rj; to the LB curve and fit the cell loss rate [ to the
Q(z) function. The former can be expressed from Equation (B.4) using (B.2), while the
latter from Equation (B.8) using the working point rg, Ng (see Figure 2.26):

A
= +(r — , B.9
M 70 (7"1 7”0) N+ 0 ( )
- A -1 e~ CNs (B.10)
A+prs—ro
From Equation (B.9) we can get:
A+ T —To
_— = — B.11
A ™ —7T0 ’ ( )
R e
)\ v — T
yo o= ( ™ —7To . 1) )\7
'nr —To
and finally we have:
§o= <” — TM) A (B.12)
v — T
Let us use ¢ = rg in Equation (B.7) and insert p from Equation (B.12):
- —(r1 —rs)A
C — (TS TO)IU' (rl TS) , (B13)

(r1 —rs)(rs —ro)
(rs —ro) (M— - 1) A—(r1—rg)A

M —To

?

(r1 —rs)(rs —ro)
(Tr]\z rroo _ 1) —(r1 —rg)
) .

rr—rs)(rs —ro

(TS—TO

) (




Now we can express A from this expression:

(r1 —rg)(rs —ro)
A = C ’
(rs o) (£22 = 1) = (r1 = 1)

(r1 —rs)(rs —ro)

(rs — o) (:}W__T%) —(r —rs)

¢

We can get ¢ also from Equation (B.10):

1 At prs—ro
= ——1 | -
C Nsn( A 7“1—7“0)’

and now use Equation (B.11) to insert ’\%:

1 L —To s —To
= ——1In(l!
¢ NSH(TM—TOH—?”())’
1 TS —1T0
= ——1In{l! .
¢ Ns ( M — 7“0)
Therefore the three parameters for fitting the fluid flow model are:
1 TS — T
= —h|l——
¢ Ng ( M — 7”0>7
A= ¢ (r1 —rs)(rs —ro) N el

(rs =ro) (528) = (=) T

TmM—T0
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(B.14)



Appendix C

Traffic Measurements

Several hundreds of traces from many different ATM traffic types were captured by mea-
surements in Telia Research, Sweden during the last couple of years [B1, C5, C3, C2, C19,
C6, C4, 26]. This section shortly summarizes the measurement and describes the type of
measured traffic. Moreover, it presents the main parameters and traditional traffic char-
acteristics — such as mean cell rate and burstiness (i.e. squared coefficient of variation of
the cell interarrival time) — of a subset of measured traces, which are mentioned in this
dissertation.

C.1 Measurements on the Stockholm Gigabit Network

Traffic of multimedia workstations connected via the Stockholm Gigabit Network (an ATM
MAN) was multiplexed with CBR background traffic [C5]. Long traces of both traffic
types were captured before and after multiplexing. Traffic of different single multimedia
sources and the aggregate traffic of four workstations were captured in case of different load
conditions (see traces (a)—(e)).

C.2 Measurements on the ”Internet” Backbone

Different parts of the Swedish University Network (SUNET) are attached to the Swedish
ATM WAN. The aggregated traffic on the SUNET were analyzed during summer 1996 in
the framework of a common trial between the SUNET community and Telia Research. The
LAN traffic of universities in the northern region, around Uppsala, was aggregated on an
FDDI backbone, which was connected via a couple of routers and a 34 Mbps PDH link to
the ATM backbone in Stockholm. This network joins the northern LANs of SUNET to the
international Internet backbone and to the southern university networks around Géteborg.
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Table C.1: Main characteristics of VBR traffic traces captured in a MAN measurement

Total
Trace Trace Length Number of Mean Cell Burstiness Comments
(s) Cells Rate (cps)

a 294.42 1627 720 5500 140.3063 shaped

b 68.02 1 000 000 14 500 133.3298 aggregate

c 19.54 253 627 12 900 700.6972 ber. 100
Mbps

d 20.38 264 258 12 900 693.0733 ber. 120
Mbps

e 20.14 260 080 12 900 680.9803 ber. 140
Mbps

f 51.00 100 309 1960 179.8622 10 fps

g 45.60 138 453 3030 258.6941 10 fps

h 36.86 151 544 1110 345.9633 10 fps

i 15.68 307 471 6720 183.3476 10 fps

] 38.27 250 142 6540 186.7423 10 fps

k 19.67 293 180 5890 152.2486 10 fps

I 35.73 87 353 2440 197.9074 10 fps

m 32.41 117 899 3640 245.1639 20 fps

n 45.29 186 966 4120 226.8030 25 fps

That is the captured traffic traces represent the traffic in the core network (see traces (w)—
(z)). These are the longest traces that I have analyzed, capturing more than 8 - 10° cell
arrivals. A good assumption is that the traffic was an ordinary mix of common Internet
traffic types such as HT'TP, F'TP, Telnet, Chat, IP-phone etc.

C.3 Measurements in the Lab

Most of our laboratory tests have been carried out in Telia Research, Sweden, but I have
also participated in measurements at Ellemtel Research in Alvsjé and Ericsson Traffic Lab
in Budapest.

In Telia, we have measured the ATM traffic characteristics of several standard CCIR
video sequences, which were encoded in hardware using a lossy compression algorithmn.
These sequences had equal duration but different traffic intensity and burst structure cor-
responding to the picture content. The video sequences were played from a video cassette
recorder, which was connected to a multimedia workstation. The optical signal from the
ATM interface card of the workstation was tapped to the ATM test equipment by means of
an optical splitter. In this way we captured an exact copy of the cell low between terminals
without effecting the behaviour of the application in use. The arrival time of ATM cells of
interest was recorded in real-time by a module developed by Telia AB, Sweden. It resides
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Table C.2: Main characteristics of VBR traffic traces captured in LAN measurements

Trace Total Mean Name of Frame Resolution
Trace Length Number | Cell Rate | Burstiness Video Rate (pizels)
(s) of Cells (cps) Sequence (fps) P
GT10 21.41 22 871 1208 77.21 GerlovyVSlth 10 384x288
SU10 37.17 51 089 1554 98.52 Susie 10 384x288
PL10 24.04 85 060 4000 215.38 Popple 10 384x288
GT25 35.89 78 066 2459 78.82 Gla}o;vslth 25 384x288
SU25 34.55 83 696 2738 92.53 Susie 25 384x288
PL25 35.19 186 827 6003 171.93 Popple 25 384x288
Noise 20.18 263 570 12 926 710.26 Noise 10 768x576

in an ATM test instrument developed in the RACE PARASOL project. This instrument is
capable of recording about 8 million cell arrivals [26].

Table C.3 presents traces from siz different video sequences; namely the (f) Girl with
Toys, (g) Susie, (h) Table Tennis, (i) Tempest, (j) Flower Garden, and (k) Popple sequences,
while Table C.2 provides the main characteristics of seven traces which correspond to the
Girl with Toys, Susie, Popple and Noise sequences with different frame rates and resolution.

Apart from VBR video, we have also measured the traffic of fundamental TCP/IP
applications, such as WWW browsing, FTP and Ping. During capturing traces (o,p) a user
has downloaded a large size image with its WWW browser several times. First we measured
the traffic in case of a real user, than we played back the user’s mouse moving and mouse
click events by the ”Service User Emulator” (SUE) tool, and in this way repeated the WWW
session, resulting in trace (p). Traces (r) and (gq) represent file transfer, while the traffic of
traces (s)-(v) was generated by the UNIX Ping command, using different message size.

C.4 Measurement Configurations

We have repeated the measurements for many, different configurations, in which we have
changed the type of source application (video, WWW, FTP, Ping, IP phone, White Board,
etc.), the video sequence (see above), the VBR encoding technique (Cell-B and M-JPEG),
the application level quality of service (10, 20 and 25 fps frame rate) and the protocol stack
(AAL3/4, AAL5, and LLC or null encapsulation). In the investigated configurations, we
have used numerous ATM measurement tools such as the "Parasol’ instrument [26], different
HP devices [28], and the AdTech measurement tool [27]). The tests have been repeated
for various terminal platforms (different SUN Sparc workstation models, Silicon Graphics
Indigo, dedicated ATM hardware from AVA) equipped with different ATM cards (Fore
Runner SBA 100-200E , SAHI-2 , Interphase with either SDH or TAXI physical layer).
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Total
Trace Trace Length Number of Mean Cell Burstiness Comments
(s) Rate (cps)

Cells
0 11.45 22 889 1900 142.7399 real user
p 12.20 22 888 1880 150.4459 SUE
q 1.51 81 117 6843 680.8446
r 1.48 81 116 6718 759.9904
s 30.37 230 732 7573 448.6227 128 cells
t 29.94 286 945 9583 444.6371 256 cells
u 29.98 233 723 7772 471.4246 512 cells
A\ 29.83 290 948 9726 458.3453 1024 cells
w 912 8 386 560 9193
X 1140 8 386 560 7355
y 2301 8 386 390 3643
z 1837 8 386 560 4565

Furthermore, we have measured both single sources and representative traffic aggregates
after different number of multiplexing stages. Finally, there were various ATM switches
involved in my tests (AT&T, 3COM, Ericsson, Fore).



