
Computer Networks 92 (2015) 41–54

Contents lists available at ScienceDirect

Computer Networks

journal homepage: www.elsevier.com/locate/comnet

User behavior based traffic emulator: A framework

for generating test data for DPI tools

Péter Megyesi a,∗, Géza Szabó b, Sándor Molnár a

a HSNLab, Department of Telecommunications and Media Informatics, Budapest University of Technology and Economics, Budapest, Hungary
b TrafficLab, Ericsson Research, Budapest, Hungary

a r t i c l e i n f o

Article history:

Received 16 July 2014

Revised 29 May 2015

Accepted 23 September 2015

Available online 3 October 2015

Keywords:

Deep packet inspection

User behavior emulation

Traffic generation

a b s t r a c t

Deep Packet Inspection (DPI) engines rely highly on the operation environment i.e., the traf-

fic mix they supposed to work with. A well performing DPI engine requires real-world traffic

mixes to be tested on. Due to privacy issues real-world traffic is usually only available at the

site of the network operator at a secure measurement point. Furthermore, in order to make

signature update, performance tweaks, etc. of the DPI engine, real-like measurements are es-

sential. In this paper we present a traffic generation framework that provides up-to-date traffic

mixes continuously. The basic idea of the framework is to generate traffic based on automatic

user behavior emulation. Real-world traffic measurements are processed to analyze and ex-

tract the most typical user behavior scenarios. Our proposed method uses these typical user

behaviors for emulation of users on remote controlled hosts while the network traffic of the

user equipment is recorded. As a final step, the framework can build high-speed multiplexed

traces from the recorded data which mimic the behavior of real traffic. The characteristics of

the constructed traffic compared to real world traffic measurements are also evaluated in the

paper showing that the framework is able to generate realistic traffic traces that are both suit-

able for DPI testing and can be publicly distributed without any privacy concerns. The proof of

concept implementation of the presented system is open to the public [1].

© 2015 Elsevier B.V. All rights reserved.
1. Introduction

In-depth understanding of the Internet traffic profile is a

challenging task for researchers and a mandatory require-

ment for most Internet Service Providers (ISP). To this end,

traffic identification helps ISPs in the quest for profiling net-

work applications. With this information in hand, ISPs may

then apply different charging policies, traffic shaping, and of-

fer different Quality of Service (QoS) guarantees to selected

users or applications.

Deep Packet Inspection (DPI) is a subclass of traffic identi-

fication where the method relies on the inspection of packet
∗ Corresponding author. Tel.: +3614633110.

E-mail addresses: megyesi@tmit.bme.hu, peter@megyesi.hu (P. Megyesi),

geza.szabo@ericsson.com (G. Szabó), molnar@tmit.bme.hu (S. Molnár).

http://dx.doi.org/10.1016/j.comnet.2015.09.026

1389-1286/© 2015 Elsevier B.V. All rights reserved.
payload content, instead of only looking at the structured

information found in packet headers. Packet payloads are

matched against a signature database which contains unique

expressions for the different protocols. This method is proven

to be the most reliable one among the traffic classification

procedures [2,3] and often used as a ground truth for testing

other classification methods [4,5]. However, testing DPI tools

in terms of both accuracy and performance is still an open

issue in the research community.

Many recent publications compare the output of DPI tools

in term of accuracy [4–7]. The common method in these

studies is the manual creation of ground-truth data by ei-

ther one of the following two ways: (i) run specific applica-

tions one at a time and filter out any background traffic that

is unrelated to the given application [5], or (ii) use a third

party tool that can associate every generated packet to an

http://dx.doi.org/10.1016/j.comnet.2015.09.026
http://www.ScienceDirect.com
http://www.elsevier.com/locate/comnet
http://crossmark.crossref.org/dialog/?doi=10.1016/j.comnet.2015.09.026&domain=pdf
mailto:megyesi@tmit.bme.hu
mailto:peter@megyesi.hu
mailto:geza.szabo@ericsson.com
mailto:molnar@tmit.bme.hu
http://dx.doi.org/10.1016/j.comnet.2015.09.026

42 P. Megyesi et al. / Computer Networks 92 (2015) 41–54
application [4,6,7]. Although these methods proven to be

an efficient way of testing the accuracy of DPI tools, the

manual generation of test data is a highly unscalable pro-

cess since it should be repeated frequently in order to test

that the application-signature database of these tools are still

up-to-date.

It is also well known that increasing accuracy by adding

more and more signatures to the application-signature

database negatively affects performance. The goal of the de-

velopers of DPI products is to provide high enough accuracy

in real world networks with the highest performance. The

most common solution for DPI performance testing is to use

traffic simulators which mimic several application level net-

work protocols (e.g., HTTP, SMTP), transport layer network

protocols (e.g., TCP/IP, UDP/IP), and also user behavior (e.g.,

Poisson arrivals of user interaction events). However, simula-

tors are not flexible enough by definition. They can simulate

such traffic which is encoded in them. To create realistic traf-

fic with a simulator, the simulator has to be also updated to

keep up with the everchanging Internet [8]. This whole pro-

cess is an overhead for the DPI signature set development

which can be saved by collecting measurements with real

protocol conversations in real network environment and re-

played to the DPI box later. On the other hand, the network

data is the property of the operator and plenty of privacy is-

sues may arise if a DPI product vendor takes the measure-

ments to its own site to further develop the DPI signature

set.

The lifecycle of a DPI system comprises the steps shown in

Fig. 1. After testing a DPI device, the traffic falls into two cat-

egories: the recognized traffic part for which the system pro-

vides matching signatures and the unrecognized traffic part

for which no signature provided any hit. Lack of continuous

update of the signatures results in decreased number of sig-
Fig. 1. The lifecycle of
nature hits and increased number of non-hits. This effect is

due to the inevitable changes in existing protocols and the

approach of new ones. Up-to-date active measurements con-

taining latest traffic patterns are needed to update the signa-

ture set of the DPI box. The effects of the updates should be

tested with traffic mixes containing hints for the new signa-

tures while mimicking realistic network environment at the

same time. Our goal is to create a system capable of generat-

ing traffic traces for testing purposes of traffic classification

systems (especially for DPI tools) both in terms of accuracy

and performance. The scope of this framework does not in-

clude the process of signature update which is addressed in

several papers, e.g., [9] and [10].

In order to reach these goals the following requirements

have to be fulfilled by our system:

• The traffic generation has to be automatic to the highest

level of extent.

• The generated traffic has to contain up-to-date applica-

tion level protocol information in the packet payloads

similar what can be measured in operational networks.

• The traffic characteristics of the generated traffic (e.g.,

bandwidth, payload sizes, packet inter-arrival times) have

to be similar to what are measured in operational net-

works.

• The users in the generated traffic (e.g., parallel number of

users, used applications and the way they are used) have

to be similar what are measured in operational networks.

• The generated traffic should be distributable among DPI

testing institutes thus it must not contain user sensitive

data.

• The communicating applications of the generated traffic

have to be known per packet basis providing the ground

truth data.
DPI systems.

P. Megyesi et al. / Computer Networks 92 (2015) 41–54 43
In this paper we propose to record typical user inter-

actions with several applications on the Graphical User In-

terface (GUI) and construct application specific usage mod-

els which can be used later to emulate user interactions on

remote controlled computers. From real network measure-

ments we extract typical user scenarios: used applications

and their share, usage patterns, etc. With these information

elements, anytime when an up-to-date validation trace has

to be generated the user actions (e.g., mouse or keyboard

events) are replayed according to the emulated user scenar-

ios. The network traffic of the client machine is recorded and

stored according to the emulated scenario. Finally, the user

base is multiplied and an aggregated traffic is constructed

from the recorded network traffic and the real world traffic

models. The generated traffic has realistic payload and traffic

characteristics both in inter-packet and user level timescales.

Furthermore, it does not contain user sensitive data and can

be distributed for wide audience. Thus, the presented system

can be considered as a network measurement anonymization

system to a certain extent as well.

The main contribution of the paper is to thoroughly

present our framework for realistic traffic generation in

which we imply both realistic payload and inter-packet tim-

ing information. Moreover, this is the first time that we eval-

uate our framework by comparing the characteristics of the

generated traffic to traffic characteristics of real measure-

ments recorded in an operational broadband network. We

also emphasize that our system is publicly available as a

proof of concept [1] to encourage other research parties to

contribute to our work.

The paper is structured as follows. In Section 2 a brief

overview is given about state-of-the-art traffic generation

techniques along with the discussion of their inability to pro-

duce realistic output for DPI testing. The basic concept of the

User Behavior Based Traffic Emulator (UBE) is presented in

Section 3. In Section 4 some highlights in connection with the

working mechanism of the presented system is discussed. In

Section 5 we present a validation study demonstrating that

UBE can construct application mixes in aggregated level sim-

ilar to those found in real measurements. Finally, Section 6

concludes the paper.

2. Related work

Numerous different traffic generators were proposed in

the literature in the last two decades. In this section we men-

tion several generally known solutions which are frequently

referred in papers in the field of synthetic traffic generation.

Packet-level generators are usually used for stress testing

firewalls and servers or for end-to-end performance testing.

The most commonly user-space traffic generator is Iperf [11]

which can generate UDP packets at a given rate or TCP pack-

ets at maximum speed. BRUTE [12] was later introduced as

a kernel-level application for increasing the accuracy of the

output speed rate. The same idea has been implemented for

specific hardware platform (Intel IXP2400) for archiving fur-

ther precision and even higher maximum output rate [13].

Other solutions, such as TG [14] or MGEN [15] supports dif-

ferent statistical distributions to be set up for the Inter Packet

Times (IPT) and Packet Sizes (PS) information. Furthermore,

Ostinato [16] is a very recent generator where users can set
up different streams with distinct properties and the output

traffic will be the aggregate of them. Since all these solutions

generate packets with dummy or random payload they can-

not be used for DPI testing purposes.

Replay engines aims to reinject packets to the network

as they were previously recorded with as accurate timing as

possible. The most common tool for this purpose is Tcpre-

ply [17] which is a user-space application for replying libpcap

files at arbitrary speeds onto the network. The software pack-

age also includes Tcplivereplay which is able to replay stored

traffic using new TCP connections and by that adopting for

the present network conditions. TCPivo [18] is a kernel-level

application for traffic reply which aims to enhance the accu-

racy of the timing of packets critically when replaying high

speed traces (e.g., recorded on OC-48 speed). Another in-

teresting solution is presented in [19] were authors replay

OC-48 traces using multiple commodity PCs with Gigabit

Ethernet network card. The collective drawback of these gen-

erators is that the measurement contains user sensitive infor-

mation and cannot be distributed to other research groups

for further work.

More sophisticated traffic generators are able to mimic

the behavior of previously recorded traces by more complex

traffic modeling. Harpoon [20] is a flow-based traffic gen-

erator that can mimic netflow based measurements by an-

alyzing various flow characteristics. Swing [21] is a closed-

loop, network responsive traffic generator which is able to

extract distributions for user, application, and network be-

havior of real measurements. Tmix [22] is a traffic emulator

for ns-2 based on source-level characterization of TCP con-

nections. Although all these solutions can mimic the behav-

ior of real network traffic in aspect of many different metrics,

all these approaches miss to provide realistic packet payloads

thus cannot be used as input for DPI devices.

D-ITG [23] is a comprehensive framework for synthetic

workload generation. The tool supports both model-based

and trace-based traffic generation at the same time. The

model-based mode uses Hidden Markov Model approach for

modeling the IPT and PS sequence, while the trace-based

mode can send packets according to the time order of a pre-

viously recorded capture file. The same two problems are

present in D-ITG for DPI testing as in the previous cases: the

model-based mode generates packet with synthetic payload

and the trace-based mode arises privacy issues.

The idea of using GUI testing tools for controlling applica-

tion in place of a human user was proposed in [24] where au-

thors present a finite state machine model for driving appli-

cations. However, their automation only covers basic appli-

cations (e.g., Internet Explorer, Outlook and Microsoft Word)

using an isolated testbed instead of the Internet and their

goal is to present the effect of using anti-virus software on

the system’s performance. Our goal is to provide repeatable

traffic generation in more versatile environments including

measurements with various access technologies and smart-

phone platform as well.

Our framework does not belong to any of these categories

since on the one hand, it captures the behavior of real users,

and on the other hand, it generates traffic composed of traf-

fic taken from real measurements. It is also able to generate

new user level measurement automatically ensuring that our

database continuously contains the newest traffic patterns

44 P. Megyesi et al. / Computer Networks 92 (2015) 41–54

Fig. 2. Abstract structure of the User Behavior Based Traffic Emulator.
of different applications providing the ground truth data as

well.

3. The concept of the system

During the maintenance of a DPI box the protocol signa-

ture set has to be revised from time to time to check whether

some of the signatures become completely obsolete or a new

traffic type has emerged and the signature set has to be ex-

tended. The unrecognized traffic, i.e., the traffic which has

no signature yet does not necessarily originate from a com-

pletely new application but a new version of an existing pop-

ular one extended with new features. The extension process

of the signature set usually starts with active measurements.

Selected applications are used one-by-one and regular ex-

pressions are constructed [9] on the recorded traffic. After

software updates, the active measurements have to be re-

done. The measurements require the same user interactions

with the application GUI from time to time. The basic idea

of our system originates from the recognition that the man-

ual repetitive work can be substituted with an automatic

mechanism which is feasible due to the practice that the GUI

look and feel change less frequently than the underlying net-

work protocol. A good example is Skype [25] which has the

same skin from version 1–3 and it changed radically only in
Fig. 3. The architecture of the User Be
version 4. On the other hand, the underlying network proto-

col changed in several subversions.

For terminology clarification the term user behavior sce-

nario indicate a series of actions that a user does to inter-

act with GUI applications. For example, the user opens a web

browser, navigates to a torrent site, downloads a torrent file,

opens it in a torrent application and five minutes later he

or she closes it. Whereas, an emulated user behavior scenario

means the process constructed by our framework in order to

mimic a specific user behavior scenario.

In order to clearly present the architecture of the User Be-

havior Based Traffic Emulator (UBE) we present and discuss

three figures in different levels of details:

• Fig. 2: High-level abstract structure of the framework.

• Fig. 3: Detailed functions of the framework.

• Fig. 4: Data flow and database structure of the framework.

Fig. 2 presents the abstract structure of the UBE. The

framework is composed of following three main compo-

nents. The Measurement processor is responsible for the def-

inition of typical user behavior scenarios. The User emulator

can emulate a user behavior scenario on a remote controlled

machine and record the traffic generated during the process.

The Traffic aggregator is able to merge multiple traffic mea-

surements in order to create a high speed aggregated traf-

fic mix. The abstract structure shown in Fig. 2 is detailed in

Fig. 3.

Although initial set up of the framework requires some

operations detailed below, the main function of the three

components in Fig. 2 are repeatable and parallel. For further

clarification, Fig. 4 presents the data flow details and Fig. 5

the time flow sequence diagram of operations, respectively.

The detailed functions of the three main components of UBE

are the following.

3.1. Measurement processor

In the Measurement processor the recording of the two

necessary inputs are performed:
havior Based Traffic Emulator.

P. Megyesi et al. / Computer Networks 92 (2015) 41–54 45

Fig. 4. Data flows in the User Behavior Based Traffic Emulator.

Fig. 5. Time flow sequence diagram of the User Behavior Based Traffic Emulator.

46 P. Megyesi et al. / Computer Networks 92 (2015) 41–54

Fig. 6. New application is registered to the framework.
• Recording of user interactions: When a new application

is added to the system – or one of the GUIs of the ap-

plications has changed significantly –, a user will simply

use the application while its interaction with the GUI is

recorded. This process typically means the naming of the

input fields, buttons, etc. – not the exact location of the

mouse cursor – as Fig. 6 shows. Object names are rarely

changed in a specific application thus this step is robust to

version changes. The recorded typical sessions are stored

in specific scripts on the test devices.

• Traffic measurements are taken in operational broadband

networks and typical user behavior scenarios are ex-

tracted and stored in a database (see Figs. 3 and 4 from

Operator traffic measurement to User behavior scenarios

database, for further details see Section 4.1). User behav-

iors scenarios can also be defined manually. For exam-

ple, one can integrate a simple scenario of five minutes of

web browsing with P2P at the background via UBE’s web

interface, and the framework automatically records it to

the User behavior scenario database by assigning a remote

control procedure for this activity.

3.2. User emulator

In the User emulator the creation of traffic segments

are performed. When new up-to-date validation traffic is

needed, the information from the User behavior scenario

database (see Fig. 3) is grabbed and user actions are emu-

lated by remote controlling computers (see Section 4.3 for

details) with the recorded user interactions (see Fig. 6). Dur-

ing remote controlling (see Fig. 3 Remote controller), GUI test-

ing tools drive the applications on the client machine and

make them to generate real traffic on the network. The gener-

ated traffic is recorded and stored in the Network traffic mea-

surement database. Note that the scenarios can include such

cases when the effects of the applications on each other are

emulated, e.g., web browsing with streaming radio and back-

ground P2P traffic to consider the effects of the applications
on each other’s traffic in the transport layer. We installed sev-

eral test machines on different access network types for fur-

ther increasing the diversity of the Network traffic measure-

ment database. The database can also store the version num-

ber of the used clients and later validation traffic for a specific

snapshot in the past can be constructed.

3.3. Traffic aggregator

In the Traffic aggregator the aggregation of the traffic seg-

ments is performed. The number of users is increased and

an aggregated traffic is created based on the original traffic

measurement and the Network traffic measurement database

(see Fig. 4 Reconstruct original user traffic). The reconstruc-

tion of per user traffic implies the arrangement of the proper

measurement segments of the Network traffic measurement

database according to the order defined during the identifi-

cation of typical user behavior scenarios. As the operational

traffic measurement and the measurements in the Network

traffic measurement database have different measurement pe-

riods the packet timestamps have to be modified according to

the activity period of the specific user in the user plane traf-

fic measurement. Finally, per user traffic can be aggregated

according to the timestamps.

4. Highlights of the implementation

In this section we would like to give some insights on the

implementation of the framework. We do not go into the very

details in order not to spin out this section but put empha-

size on the most interesting elements. (For further imple-

mentation details see the help section of the portal [1].) The

framework is continuously developed thus it is not limited to

the applications or operation systems included in the current

paper. Moreover, we mention that previous implementation

of our framework had a demo presentation in [26] and the

applicability of our system for traffic analysis purposes was

shown in [27].

P. Megyesi et al. / Computer Networks 92 (2015) 41–54 47
4.1. Creation of user behavior scenarios

In our framework we defined the granularity of user be-

havior analysis in 1 min scale. This means that we can say for

each 1 min period of the user what applications were used,

e.g., only email occurred or also P2P file-sharing existed in

the background (see Fig. 4 User plane traffic measurement).

There are two possible ways to recreate the typical user

behavior scenarios. One is a bottom-up approach, when we

analyze and store small time slices of the user activity in our

user behavior scenario database. Later when the original user

activity has to be reconstructed there are a limited number

of small building blocks in the database and, for example, a

100 min long user activity is constructed from 100 pieces of

1 min long slices. The other is a top-down approach where

longest possible building blocks are matched one-by-one for

the user activity with decreasing matching length, for exam-

ple, a 100 min long user activity is constructed from 4 pieces

of 20 min long slices, 1 piece of 10 min slice and 2 pieces of

5 min slices. Our goal was to focus on the top-down approach

as it reduces the effect of transient states recorded during the

communication of applications. An example for such a tran-

sient state occurs during P2P file-sharing. At the beginning of

the P2P file-sharing session when good seeders are searched

for the network traffic has mainly signaling traffic exchange,

while later this ratio turns in favor of the content exchange.

To extract typical user behavior scenarios our idea was

to utilize algorithms which search for high number of oc-

currences with tunable soft-limit for hits and non-hits. Such

algorithm was applied in [9]. In that scenario the original

goal of the algorithm was to find the smallest set of signa-

tures for the biggest coverage ratio for a specific application.

Our current goal is to select the smallest set of user behav-

ior segments for the full coverage of the total user behav-

ior sequences. To achieve this we constructed string literals

per user from the packet-level network traffic measurement.

In the String based traffic descriptors in Fig. 4 the used ap-

plications are represented with a character while the 1 min

granularity is signaled with delimiter characters (‘x’). For

example, PxPWxPEx describes a three minutes long user

scenario where P2P traffic was continuous, web-browsing

was occurred in the second minute and e-mail in the third

(see [28] for further details on these string based traffic

descriptors).

Currently there are 749 entries in the User Behavior Sce-

nario Database which were created after analyzing multiple

real measurements. The minimum and the maximum length

of these scenarios are 4 and 10 min, respectively. Since the

emulation is a real time process running all these scenar-

ios takes about one week measurement on one test machine.

Furthermore, we found that using the current entries we can

sufficiently cover the available real measurements.

4.2. Types of user traffic

Two main types of generated traffic are identified in our

framework. One requires the active attention of the user, thus

the generating application is in the user’s focus meaning that

the specific application is the focused window. The back-

ground activities are usually started once and later - after

several other actions performed by the user - are switched
off. The performed actions of the user behavior emulation

consist of three main phases:

• Starting phase: This phase usually includes the starting of

the application client or navigation to the starting page

and login with user credentials. User credentials used by

the framework were created solely for testing purposes.

3rd party testers can change these information to their

own and use them to build a database. However, these

changes would not have significant impact on the pay-

loads since credentials usually transferred via encrypted

channels.

• User activity or active phase: In this phase some user ac-

tions are performed, e.g., sending some hotkey actions,

mouse actions or other keyboard events.

• Ending phase: This phase is responsible of the proper lo-

gout and closing of the application.

The two activities are discussed as follows:

4.2.1. User focus is required

In this section we enumerate the implementation tricks of

the user behavior emulation of those applications types that

require user focus.

• Gaming: We use World of Warcraft [29] to generate gam-

ing traffic. The start phase opens the application and en-

ters into the Public Test Realm (PTR) which is a special

server used for testing the upcoming patches. Although

PTR is not a regular server many players use it to test the

upcoming changes in game mechanics. The active part

of the emulation performs randomly some movements,

spell usages or chatting. The ending phase closes the ap-

plication. In the future, we would like to extend the gam-

ing scripts to other popular on-line games and also com-

pare the emulation results to relevant studies in this filed

such as [30,31].

• Instant messaging: We use Skype [25] for traffic genera-

tion (former version also included MSN Messenger [32]

which has been integrated into Skype). The start phase

opens the given application and performs the login of the

user. The active phase picks a contact and starts send-

ing messages to it. The messages are typed and sent

with the exact timing we measured according to formerly

recorded chat logs. The emulation of typing is impor-

tant due to the working mechanism of instant messag-

ing applications which notifies the parties whether the

other communicating party types or erases something.

The ending phase logs out and closes the application.

• Remote access: In our framework we use two kind of pop-

ular remote access applications: the built in Remote Desk-

top Connection [33] of MS Windows and RealVNC [34].

The starting phase establishes the communication tunnel.

The user activity emulation phase performs some simple

mouse and keyboard actions, while the ending phase ter-

minates the connection.

• Social-networking: To be able to generate social-

networking traffic we created a user on Facebook

and ’liked’ several pages to make the ’wall’ full of new

comments from time-to-time. The starting phase opens

the website and navigates to random links inside the

Facebook for the given time. We also switched of the

48 P. Megyesi et al. / Computer Networks 92 (2015) 41–54
caching function of the browser to download every data

every time the script opens the same link. The script is

also able to send messages to a randomly chosen friend

according to the same log files we use during instant

messaging.

• Voice over IP: Note that in some cases the synchroniza-

tion of two clients is necessary. We need two remote con-

trolled computer for this type of activity and have Skype

[25] installed on them. One of them will be the call ini-

tiator, the other is the receiver. The call initiator picks the

receiver computer user id from the contact list and per-

forms a call with it. The receiver will automatically accept

every incoming call. We play audio files containing hu-

man communication as input for both the caller and the

receiver.

• Web browsing: To emulate web browsing activity a link is

picked randomly from popular web pages [35] of the spe-

cific country the remote controlled computer is situated

and a browser is opened with this URL. After loading the

page, the active phase waits for a given time, browses the

page for a while by rolling down on it and navigates to

another either to a randomly chosen link on the current

page or a randomly chosen URL from the original pool.

The browsing phase can be important in case of AJAX

[36] based dynamic web pages in which the separate

parts of the page are downloaded on demand, e.g., on the

eBay [37] site.

4.2.2. Background activities

In this section we enumerate the implementation tricks

of the user behavior emulation of those applications which

run in the background and do not require user focus.

• File download: To emulate file downloading traffic the

starting phase begins file downloading by picking a ran-

dom file from a formerly defined pool. After finishing, an-

other one is picked and download is started. The ending

phase stops the download and deletes every data from the

download directory.

• File sharing: During file sharing emulation the file shar-

ing client randomly opens a torrent file from a formerly

defined pool. The pool contains torrent files in various

sizes from different torrent sites. The pool also contains

some magnet torrent files which do not use a centralized

tracker server but rather other torrent hosts to find the

given file to download (e.g., The Pirate Bay now shares

only magnet links rather than regular torrent files). The

ending phase deletes the downloaded data, thus reopen-

ing the torrent file results in restarting the whole file-

transfer. Currently we can emulate file sharing using uTor-

rent, Vuze and BitCommet.

• Video playback: Online video playback is either active be-

ing in the focus of the user, jumping in the video stream,

clicking on new recommended videos, etc. or a com-

pletely background activity which plays all videos in a

track list. Our framework emulates the later scenarios

utilizing the channel function of YouTube. A playlist is

loaded first and each of the videos are played one-by-one

in the list.

• Malicious traffic: DPI devices could also be used for de-

tecting malicious traffic. In order to further extend the
functions of UBE we defined malicious traffic as a separate

traffic type. We implemented two scripts which are able

to download various malicious traffic in the background.

The first script downloads the popular Eicar standard

anti-virus test file [38] which is a harmless executable but

most anti-virus product reacts as it were a virus. The sec-

ond script uses the Malware Domain List database [39] to

download a random malicious file. Since this list is cre-

ated for security experts, most of the links contains a real

harmful program thus we only implemented it to virtual

test machines where backup images are available.

4.3. Remote controlling of the GUI on desktop

Windows platform

For the emulation of user behavior we used AutoIt [40].

Its primarily goal is to make possible to create automation

scripts or macros for Microsoft Windows programs. For every

specific application client and for each phase (see Section 4.2)

a specific script is constructed. The automation script can be

compiled into a compressed and standalone executable file

which can be run on computers that do not have the AutoIt

interpreter installed. Moreover, AutoIt is compatible with ev-

ery version of Windows from XP to 8.1 without recompiling

the executable files. Also, previous implementations of the

automation scripts used AutoHotkey [41] and Watir [42] but

we found AutoIt much more flexible. Currently we are also

experimenting with Sikuli IDE [43] which uses image recog-

nition to identify and control GUI components. This tech-

nique could be useful in case of a version update with rad-

ical changes in an application’s GUI since updating the au-

tomation script would only require replacing some screen-

shot files. Furthermore, Sikuli IDE works on Windows, Linux

and Mac OS systems as well. Adding a new application to

the framework (or updating an existing one to recent GUI

changes) is fairly simple since both AutoIt and Sikuli IDE are

easy-to-use tools, thus an experienced programmer should

do it within a day.

The standalone executable files has to be executed in a

specific order according to the user behavior scenario we in-

tend to emulate (see Section 4.1). Applications with GUI, e.g.,

uTorrent [44] or Skype [25] have to be bounded to a graphical

session in the Windows system otherwise running them di-

rectly from a console session would cause them unexpected

errors. Thus the execution is performed from console but via

an application called PsExec [45].

PsExec is invoked automatically from an external server

by logging into the Windows machine via Telnet. Telnet ses-

sion can be managed efficiently from the main server con-

taining the user behavior database via Expect [46]. Expect is

a simple script language created for automating interactive

console based applications such as telnet or FTP.

4.4. Remote controlling of the GUI on Android platform

We are also able to emulate user behavior scenarios on

Android platform using MonkeyRunner [47]. MonkeyRunner

is part of the software development kit of Android and it is

commonly used for stress testing applications as it can gen-

erate touch, drag and keystroke events on the smartphones

GUI. Although, MonkeyRunner only supports touch and drag

P. Megyesi et al. / Computer Networks 92 (2015) 41–54 49
events on exact pixels (rather than control buttons), by using

the intent mechanism we were able to implement most of the

emulation scripts for Android platform. Intents are abstract

descriptions of an operation to be performed. It can be di-

rectly sent to an application or broadcasted into the Android

system. In the latter case the global intent filter will deter-

mine which application should get the message [48]. For ex-

ample, sending an intent message with the Uniform Resource

Identifier (URI) www.google.com will be directed to the de-

fault web browser or the URI skype:testuser will automatically

open Skype and call the user named testuser. We have used

these mechanisms to demonstrate the differences in the traf-

fic pattern if the same user behavior scenario is emulated on

different access and OS types [27].

The possibility to emulate users on multiple OS platforms

using different access types with many applications gives

us the opportunity to characterize our measurements in a

similar way that was presented in [49]. For example, one

could identify mobile users in the operational measurement

and only compare them to dump files in our measurement

database that was emulated on mobile platform. In [8] au-

thors describe why it would be very complicated (if not im-

possible) to build a traffic simulator that can cover every pos-

sible network scenario. This is the reason why our approach

needs a real measurement to mimic its behavior. This way an

operator could contract traces similar to the conditions on

his/her network.

4.5. Recording of network traffic

For one specific usage scenario multiple measurements

are created and stored in the user behavior scenarios database

(see Fig. 4 Network traffic measurement database) on the dif-

ferent test machines and setups. This is practically a link to a

network measurement file recorded with tcpdump [50] dur-

ing the emulation of the user behavior scenario. It is im-

portant to note that the Windows based traffic generating
Fig. 7. Main components to d
machines have a special driver (see [6]) installed to create

dump files which can be perfectly classified later. This is

achieved by a daemon which can track the opened sockets

and modify the IP header according the application gener-

ated the current packet. Also, in Android platform we use

similar approach that can track the opened socket and log it

on the device (thus in this platform we do not modify the IP

packet headers). This tool is available on Google Play Store

[51]. These mechanism provides the ground truth data on

per packet granularity for every measurement in the Network

traffic measurement database thus fulfilling this requirement

against our framework. However, we also remark the tool

we currently using for ground-truth generation on Windows

platform is not open for the public. In order to make our sys-

tem more open, in the future we would like to to replace this

mechanism with publicly available ground-truth generation

tools such as GT [7] or VBR [52].

4.6. Guide to deploy the system

In this subsection we give further insight into how one

can deploy and use a similar framework. Fig. 7 depicts the

main components that have to be installed and also, the main

outputs that the system generate. There are two components

that need to be deployed: the control server and the test ma-

chines. The control server (in our framework a simple Linux

machine) handles the databases (the user behavior scenario

database and the network traffic measurement database) and

controls the user emulation processes on the test machines.

Deploying a test machine requires three steps. First, we have

to make sure that the machine is remotely controllable by the

control server. For PCs it means an open telnet connection,

whereas Android phones have to be attached to server via

USB cable. Second, we have to place the GUI control scripts to

the test machine which are able to drive the applications. And

finally, test machines have to be able to record the network

traffic in libpcap format. We use tcpdump on Linux based
eploy the framework.

http://www.google.com

50 P. Megyesi et al. / Computer Networks 92 (2015) 41–54
systems and windump on Windows system for this purpose.

The logic of the Traffic aggregator is also stored in the control

server. Most of the above mentioned scripts are available for

download on UBE’s website [1].

The user emulation processes generate the individual

trace files in the network traffic measurement database which

is one of the fundamental output of the system. The usage

of these measurements is twofold. Firstly, by regular updates

of these measurements the database can contain the newest

application signatures thus it could serve as an input for au-

tomatic signature update tool (such system was presented

in [9]). On the other hand, the network traffic measurement

database is also the input for the Traffic aggregator part of the

system where it is able to generate high speed aggregated

traffic mixes which could be used in performance testing of

DPI tools. An example for generating such high speed aggre-

gate is presented in the next section.

5. Validation study

We have carried out a performance evaluation study of

the User Behavior Based Traffic Emulator to validate that the

emulated traffic reflects similar characteristics compared to

the traffic generated by users in real measurements. The val-

idation of traffic generators can usually be performed from

different points of views and on different time-scales [53]. In

this section we summarize our results focusing on four met-

rics as representative validation metrics from these impor-

tant traffic characterization dimensions:

• Traffic components characterization: traffic shares of ap-

plications in the aggregation.

• Packet-level characterization: traffic intensity and packet

size distribution.

• Flow-level characterization: flow size distribution and

• Scaling-level characterization: logscale diagram.

Our original database generated by our emulator (all

dump files in the network traffic measurement database,

henceforth UBE database) contains about 1800 individual

dump files, a total of 165GB data, 200 millions of packets

and 3.5 millions of flows. In order to investigate the traf-

fic shares per applications in this database we classified the

traffic using nDPI which is an open source Deep Packet In-

spection application developed by the nTOP project [54] and

the results are presented in Table 1. Also, nDPI is considered

to be one of the best performing DPI tools in the literature
Table 1

Traffic classification results for the UBE database.

Application # Bytes % Bytes # Pa

1 QuickTime 45 G 26.8 44

2 Unknown 42 G 25.4 60

3 Flash 40 G 24.2 42

4 Bittorent 23 G 13.9 33

5 HTTP 13 G 7.8 19

6 SSL 525 M 0.3 830

7 DNS 55 M 0.03 340

8 Skype 50 M 0.03 220

9 Google 24 M 0.01 46

10 ICMP 22 M 0.01 190

SUM 167 G 206
and it is also frequently upgraded by the developers [4,5].

We used this methodology since later in this section we will

show that the real measurement trace and the constructed

trace by UBE generate similar amount of application signa-

ture matches using nDPI. To know the accuracy of nDPI is of

great importance and our future work includes the discus-

sion of this topic. We have preliminary result on accuracy

comparison of different traffic classification tools based on

our labeling technique [55] but this topic needs a more sound

analysis so we consider it as one of our future research topics.

A real operational network measurement (BME WiFi trace)

was taken at our university campus in a 10Gigabit Ethernet

link which aggregates the traffic of WiFi users of two build-

ings. This measurement is a six minutes long trace containing

about 4GB data and 5.5 million packets including the traffic

aggregation of about 1970 users, 125k flows and 40 known

applications.

We created the constructed trace via the Traffic aggrega-

tor component of UBE using the available individual dump

files in the UBE database as follows. Firstly, we consider the

user level log from the BME WiFi trace used by the nDPI

classificatory. This log contains the amount of data that

were generated by every individual users in the aggregated

measurement in a per application basis. After, we find out

which individual dump file from the UBE database is the most

similar to a given user (see Fig. 3 User matcher). The most sim-

ilar measurement file is calculated by the following distance

formula which can be considered as a metric in the applica-

tion space:
√∑

i (Oappi
− Pappi

)2 , where Oappi
and Pappi

is the

amount of the ith application data in bytes that were gener-

ated by the specific user in the operational measurement and

in the specific dump file in our database, respectively. After

this step, we had a list of dump files that should be concate-

nated to get a similar mix to the original operational mea-

surement (see Fig. 4 Files to concatenate). To get the final ag-

gregated traffic we performed the reconstruction phase for

every user existing in the trace. (For further details about the

algorithm refer to [55].) The main packet modifications are

the following:

• Adjusting the timestamp of the packets from the mea-

surement date to the date when the user was active. This

is a fix shift and the inter-packet timers are not altered.

• Managing the IP addresses in the function of the number

of emulated users. We have to alter the IP addresses of

the test devices in the IP header. The framework is also
ckets % Packets # Flows % Flows

M 21.7 % 1016 0.03

M 29.3 % 787 k 22.7

k 20.6 % 16 k 0.5

M 16.3 % 1.98 M 57.2

M 9.1 % 376 k 10.8

k 0.4 % 26 k 0.75

k 0.16 % 163 k 4.7

k 0.1 % 22 k 0.6

k 0.02 % 1170 0.03

k 0.1 % 76 k 2.2

M 3.5 M

P. Megyesi et al. / Computer Networks 92 (2015) 41–54 51

Table 2

Traffic classification results comparing the BME WiFi trace to the constructed trace.

Application Bytes Packets Flows

BME Constr. BME Constr. BME Constr.

Unknown 2 G 1.95 G 2.9 M 2.8 M 36.3 k 43 k

HTTP 1.17 G 1.12 G 1.2 M 1.4 M 11.8 k 22 k

QuickTime 359 M 250 M 310 k 233 k 162 47

Bittorent 256 M 198 M 575 k 573 k 46 k 115 k

SSL 167 M 138 M 277 k 270 k 5186 9385

Google 42 M 3.7 M 64 k 9200 1025 95

Flash 23 M 94 M 24 k 97 k 97 431

DNS 7.7 M 4.9 M 42 k 27 k 20 k 13 k

Skype 1.9 M 4.1 M 15 k 39 k 1560 6600

ICMP 0.6 M 1.4 M 5441 11 k 2164 6170

SUM 4 G 3.77 G 5.45 M 5.45 M 125 k 217 k

Fig. 8. Application mix of the BME WiFi and constructed traces. The x-axis represents the traffic volumes of the top 10 applications in the BME WiFi trace whereas

the y-axis represents the same traffic volumes in the constructed trace.
capable of searching the payload of the packet for the IP

address in both binary and text format and switches them

for the given address. The checksums of the IP/TCP head-

ers are also recalculated.

The constructed trace contains about 450 individual dump

files, a total 3.8 GB data, 5.4 millions of packets and 217 thou-

sands of flows and Table 2 presents the result of the top 10

applications after the classification for both the constructed

trace and the BME WiFi trace. In addition, Fig. 8 shows a gen-

eral view about these results where we plotted the traffic

volume of the top 10 applications in the BME WiFi trace vs.

the traffic volume in the constructed trace. Furthermore, the

names of the applications are analogous to name conversa-

tion of nDPI.

It can be seen from Table 2 and in Fig. 8 that the traffic

shares of the top applications in the aggregation are correctly

represented and important characteristics are also captured,

e.g., Bittorent is the dominant protocol in terms of flows, a

few QuickTime flows cause reasonably large amount of traf-

fic, or fairly large number of DNS and ICMP flows cause very

small amount of traffic. On the other hand, traffic associated

to Google web services is slightly over-represented in the

BME WiFi Trace than in the constructed aggregate possibly

due to the fact that many Android smartphone uses the cam-

pus WiFi network. However, this is a good indication that the

constructed trace is suitable for performance testing of DPI
tools since our first goal was to create a traffic mix which

can generate similar amount of signature matches than the

original trace would.

In order to compare traffic characteristics at packet-level

the traffic intensity to downstream direction and the packet

size distribution were investigated in Fig. 9a and b, re-

spectively. Although the throughput in the BME WiFi and

constructed traces are not matching, the trends of the two

curves in Fig. 9a show similar characteristics. This is further

strengthen later in this section by a wavelet scaling analy-

sis. In Fig. 9b the Cumulative Distribution Function (CDF) of

packet size shows a good fit between the two curves. The

shift between the two curves can be explained by a slight

over-representation of small sized of packets in the con-

structed trace (the total traffic of the constructed trace is about

5% less than the traffic in the BME WiFi trace, whereas the to-

tal number of packets is about the same in the two traces).

Furthermore, in Table 3 we collected the mean and standard

deviation values for the aforementioned curves. Although the

values have some deviation to each other we consider these

values sufficiently close to approximate the characteristics of

the original measurement.

To analyze flow-level characteristics of the two traces we

plotted the flow size distributions. The CDF of the flow size

is also well captured as depicted in Fig. 9c. We observed an

increased number of the torrent request-response activity

(53 thousands of 145 byte flows) in our constructed trace

52 P. Megyesi et al. / Computer Networks 92 (2015) 41–54

Fig. 9. Comparing the BME WiFi and constructed traces using different metrics.

Table 3

Statistical significance indicators of the traffic characteristic comparison of

the BME WiFi trace to the constructed trace.

Statistic Mean Standard deviation

BME Constr. BME Constr.

Traffic intensity [M bps] 38.09 45.48 20.32 17.99

Packet size [byte] 771 680 693 668

Flow size [k byte] 17.4 10.2 905.9 766.2
compared to the BME WiFi trace resulting in a vertical jump

in the CDF of the constructed trace. This is also the main cause

for the slightly smaller values in the mean and standard de-

viation of flow sizes in the constructed trace presented in

Table 3.

To investigate the scaling characteristic of the traffic we

calculated the logscale diagram [56] for both the constructed

trace and the BME WiFi trace. The discrete wavelet trans-

form represents a data series X of size n at a scaling level

j by a set of wavelet coefficients dX(j, k), k = 1, 2, . . . , n j,

where n j = 2− jn. Define the qth order Logscale Diagram (q-

LD) by the log-linear graph of the estimated qth moment

μ j(q) = 1/n j

∑n j

k=1
|dX(j, k)|q against the octave j. Linearity

of the LDs at a different moment order q suggests the scaling

property of the series, i.e., log2 μ j(q) = jα(q) + c2(q), where
α(q) is the scaling exponent and c2(q) is a constant. The plot

of α(q) against q can reveal the type of scaling [56].

The scaling characteristics for both the BME WiFi trace and

the constructed traffic are presented by the Logscale Diagram

related to the moment order q = 2 in Fig. 9d. A nearly linear

interval of the LD plot at octaves 4 ≤ j ≤ 11 can be observed

for both traces revealing the well-known Long-Range Depen-

dence (LRD) property of the aggregated traffic [56]. A linear

regression to this interval gives an estimation of LRD param-

eter of HBME WiFi trace = 0.875 and Hconstructedtrace = 0.842 for

the original measured and the emulated traffic, respectively.

These results clearly indicate that the emulated traffic accu-

rately captures the complex scaling structure of the original

measured traffic.

In summary our validation study shows that the emulator

is able to reproduce an aggregated traffic which captures the

characteristics of the original measurements.

6. Conclusion

In this paper we introduced the User Behavior Based Traf-

fic Emulator (UBE), an automatic traffic emulation frame-

work for constructing database for DPI testing. The sys-

tem works by recording the traffic of remotely controlled

computers and aggregating the traffic segments into multi-

user traffic. UBE is able to construct a realistic aggregate

P. Megyesi et al. / Computer Networks 92 (2015) 41–54 53
traffic with arbitrary application mix, which is usually dif-

ficult to find in real measurements. Moreover, the gener-

ated traffic has no privacy restrictions so it can freely be dis-

tributed among DPI testing institutes. The emulated traffic

contains up-to-date application level protocol information

in the packet payloads and the characteristics of the traffic

(e.g., application mix, packet sizes, flow sizes, scaling struc-

ture) exhibit the traffic characteristics measured in opera-

tional networks. The aggregated per user traffic was ana-

lyzed and validated by comparing several traffic characteris-

tics with corresponding metrics investigated in traffic taken

from real measurements.

References

[1] User Behavior Based Traffic Emulator DEMO portal, Retrieved: May,
2015. URL http://ubetest1.hsnlab.tmit.bme.hu/

[2] A. Callado, C. Kamienski, G. Szabo, B.P. Gero, J. Kelner, S. Fernandes,
D. Sadok, A survey on internet traffic identification, Commun Surv Tu-

tor, IEEE 11 (3) (2009) 37–52.

[3] A. Dainotti, A. Pescape, K. Claffy, Issues and future directions in traffic
classification, Network, IEEE 26 (1) (2012) 35—40.

[4] Tomasz Bujlow, Valentin Carela-Espanol, Pere Barlet-Ros, Independent
comparison of popular DPI tools for traffic classification, Comput. Netw.

76 (2015) 75–89.
[5] S. Alcock, R. Nelson, Measuring the accuracy of open-source payload-

based traffic classifiers using popular internet applications, in: 2013

IEEE 38th Conference on Local Computer Networks Workshops (LCN
Workshops), 2013, pp. 956–963.

[6] G. Szabó, D. Orincsay, I. Szabó, S. Malomsoky, On the validation of traffic
classification algorithms, in: Proceedings of the PAM, Cleveland, Ohio,

USA, 2008.
[7] F. Gringoli, L. Salgarelli, M. Dusi, N. Cascarano, F. Risso, K.C. Claffy, Gt:

picking up the truth from the ground for internet traffic, SIGCOMM
Comput. Commun. Rev. 39 (5) (2009) 12–18.

[8] S. Floyd, V. Paxson, Difficulties in simulating the internet, IEEE/ACM

Trans. Netw. 9 (4) (2001) 392–403.
[9] G. Szabó, Z. Turányi, L. Toka, S. Molnár, A. Santos, Automatic protocol

signature generation framework for deep packet inspection, in: Pro-
ceedings of the. Valuetools, Cachan, France, 2011, pp. 291–299.

[10] M. Ye, K. Xu, J. Wu, H. Po, AutoSig-automatically generating signatures
for applications, in: Proceedings of the Ninth IEEE International Con-

ference on Computer and Information Technology, 2009 (CIT ’09), Kiev,

Ukraine, 2009, pp. 104–109.
[11] Iperf, Retrieved: May, 2015. URL http://sourceforge.net/projects/iperf/

[12] N. Secchi R. Bonelli, S. Giordano, G. Procissi, BRUTE: a high perfor-
mance and extensible traffic generator, in: Proceedings of the SPECTS

’05, Philadelphia, PA, USA, 2005, pp. 839–845.
[13] G. Antichi, A. Di Pietro, D. Ficara, S. Giordano, G. Procissi, F. Vitucci,

BRUNO: a high performance traffic generator for network processor,

in: Proceedings of the SPECTS ’08, Edinburgh, UK, 2008, pp. 526–533.
[14] TG, Retrieved:May, 2015. URL http://www.postel.org/tg/tg.html

[15] MGEN, Retrieved: May, 2015. URL http://cs.itd.nrl.navy.mil/work/
mgen/

[16] Ostinato, Retrieved: May, 2015. URL http://ostinato.org/
[17] tcpreplay, Retrieved: May, 2015. URL http://tcpreplay.synfin.net/

[18] W. Feng, A. Goel, A. Bezzaz, W. Feng, J. Walpole, TCPivo: a high-

performance packet replay engine, in: Proceedings of the ACM SIG-
COMM Workshop on Models, methods and tools for reproducible net-

work research, Karlsruhe, Germany, 2003, pp. 57–64.
[19] T. Ye, D. Veitch, G. Iannaccone, S. Bhattacharya, Divide and conquer:

PC-based packet trace replay at OC-48 speeds, in: in Proceedings of
the First International Conference on Testbeds and Research Infrastruc-

tures for the Development of Networks and Communities, 2005 (Tri-

dentcom 2005)., 2005, pp. 262–271.
[20] J. Sommers, P. Barford, Self-configuring network traffic generation, in:

Proceedings of the 4th ACM SIGCOMM conference on Internet mea-
surement, in: IMC ’04, 2004, pp. 68–81.

[21] K. Vishwanath, A. Vahdat, Swing: realistic and responsive network traf-
fic generation, IEEE/ACM Trans Netw 17 (3) (2009) 712–725.

[22] M.C. Weigle, P. Adurthi, F. Hernández-Campos, K.J. Kevin, F.D. Smith,
Tmix: A tool For Generating Realistic TCP Application Workloads In ns-

2, SIGCOMM Comput. Commun. Rev. 36 (3) (2006) 65–76, doi:10.1145/

1140086.1140094.
[23] A. Botta, A. Dainotti, A. Pescap, A tool for the generation of realistic
network workload for emerging networking scenarios, Comput Netw

56 (15) (2012) 3531–3547.
[24] C.V. Wright, C. Connelly, T. Braje, J.C. Rabek, L.M. Rossey, R.K. Cun-

ningham, Generating client workloads and high-fidelity network traffic
for controllable, repeatable experiments in computer Security, in: Pro-

ceedings of the 13th international conference on Recent advances in

intrusion detection, RAID’10, Ottawa, Canada, 2010, pp. 218–237.
[25] S.A. Baset, H. Schulzrinne, An analyis of the Skype peer-to-peer internet

telephony protocol, in: Proceedings of the IEEE INFOCOM, Barcelona,
Spain, 2006.

[26] S. Molnár, P. Megyesi, G. Szabó, Multi-functional traffic generation
framework based on accurate user behavior emulation, in: Proceedings

of the IEEE INFOCOM (Demo), Turin, Italy, 2013, pp. 632–633.
[27] S. Molnár, P. Megyesi, G. Szabó, Multi-functional emulator for traf-

fic analysis, in: Proceedings of the IEEE ICC, Budapest, Hungary, 2013,

pp. 2397–2402.
[28] P. Megyesi, S. Molnár, Finding typical internet user behaviors, in: Pro-

ceedings of the 18th EUNICE Conference on Information and Commu-
nications Technologies, Budapest, Hungary, 2012, pp. 321–327.

[29] World of Warcraft, Retrieved: May, 2015. URL http://www.
worldofwarcraft.com/index.xml

[30] A. Dainotti, A. Botta, A. Pescapé, G. Ventre, Searching for invariants in

network games traffic, in: Proceedings of the 2006 ACM CoNEXT Con-
ference, CoNEXT ’06, 2006.

[31] W. chang Feng, F. Chang, W. chi Feng, J. Walpole, A traffic characteri-
zation of popular on-line games, IEEE/ACM Trans Netw 13 (3) (2005)

488–500.
[32] MSN Messenger, Retrieved: May, 2015. URL http://explore.live.com/

messenger

[33] Microsoft Remote Desktop Connection, Retrieved: May, 2015. URL
http://windows.microsoft.com/en-US/windows7/products/features/

remote-desktop-connection
[34] Real VNC, Retrieved: May, 2015. URL http://www.realvnc.com

[35] Alexa: Top 500 Global Sites, Retrieved: May, 2015. URL http://www.
alexa.com/topsites

[36] AJAX tutorial, Retrieved: May, 2015. URL http://www.w3schools.com/

ajax/default.asp
[37] eBay, Retrieved: May, 2015. URL http://www.ebay.com/

[38] Eicar test virus, Retrieved: May, 2015. URL http://www.eicar.org/
86-0-Intended-use.html

[39] Malware domain list, Retrieved: May, 2015. URL http://www.
malwaredomainlist.com/

[40] AutoIt, Retrieved: May, 2015. URL http://www.autoitscript.com/site/

autoit/
[41] AutoHotkey, Retrieved: May, 2015. URL http://www.autohotkey.com/

[42] Watir, Retrieved: May, 2015. URL http://www.watir.com/
[43] Sikuli IDE, Retrieved: May, 2015. URL http://www.sikuli.org/

[44] uTorrent, Retrieved: May, 2015. URL http://www.utorrent.com/
[45] PsExec, Retrieved: May, 2015. URL http://technet.microsoft.com/en-us/

sysinternals/bb897553

[46] Expect, Retrieved: May, 2015. URL http://sourceforge.net/projects/
expect/

[47] MonkeyRunner, Retrieved: May, 2015. URL http://developer.android.
com/tools/help/monkeyrunner_concepts.html

[48] Intents and Intent Filters in Android, Retrieved: May, 2015. URL http://
developer.android.com/guide/components/intents-filters.html

[49] A. Botta, D. Emma, A. Pescape, G. Ventre, Systematic performance mod-
eling and characterization of heterogeneous ip networks, in: Proceed-

ings of the 11th International Conference on Parallel and Distributed

Systems, 2, 2005, pp. 120–124.
[50] tcpdump, Retrieved: May, 2015. URL http://www.tcpdump.org

[51] VPN Capture Android Application, Retrieved: May, 2015. URL https://
play.google.com/store/apps/details?id=hu.edudroid.measurement_

uploader
[52] T. Bujlow, K. Balachandran, M.T. Riaz, J.M. Pedersen, Volunteer-based

system for classification of traffic in computer networks, in: Proceed-

ings of the 19th Telecommunications Forum (TELFOR 2011), 2011.
[53] S. Molnár, P. Megyesi, G. Szabó, How to Validate Traffic Generators? in:

Proceedings the 1st IEEE Workshop on Traffic Identification and Classi-
fication for Advanced Network Services and Scenarios (TRICANS 2013),

Budapest, Hungary, 2013.
[54] nDPI, Retrieved: May, 2015. URL http://www.ntop.org/products/ndpi/

[55] B. Csatári, Framework for Comparison of Traffic Classification Al-

gorithms, in: Master Thesis, 2011.URL http://www.crysys.hu/szabog/
publications/diplomazok/csatari-thesis.pdf

[56] P. Abry, P. Flandrin, M.S. Taqqu, D. Veitch, Wavelets for the Analysis,
Estimation, and Synthesis of Scaling Data, Wiley.

http://ubetest1.hsnlab.tmit.bme.hu/
http://refhub.elsevier.com/S1389-1286(15)00346-1/sbref0001
http://refhub.elsevier.com/S1389-1286(15)00346-1/sbref0001
http://refhub.elsevier.com/S1389-1286(15)00346-1/sbref0001
http://refhub.elsevier.com/S1389-1286(15)00346-1/sbref0001
http://refhub.elsevier.com/S1389-1286(15)00346-1/sbref0001
http://refhub.elsevier.com/S1389-1286(15)00346-1/sbref0001
http://refhub.elsevier.com/S1389-1286(15)00346-1/sbref0001
http://refhub.elsevier.com/S1389-1286(15)00346-1/sbref0001
http://refhub.elsevier.com/S1389-1286(15)00346-1/sbref0002
http://refhub.elsevier.com/S1389-1286(15)00346-1/sbref0002
http://refhub.elsevier.com/S1389-1286(15)00346-1/sbref0002
http://refhub.elsevier.com/S1389-1286(15)00346-1/sbref0002
http://refhub.elsevier.com/S1389-1286(15)00346-1/sbref0003
http://refhub.elsevier.com/S1389-1286(15)00346-1/sbref0003
http://refhub.elsevier.com/S1389-1286(15)00346-1/sbref0003
http://refhub.elsevier.com/S1389-1286(15)00346-1/sbref0003
http://refhub.elsevier.com/S1389-1286(15)00346-1/sbref0004
http://refhub.elsevier.com/S1389-1286(15)00346-1/sbref0004
http://refhub.elsevier.com/S1389-1286(15)00346-1/sbref0004
http://refhub.elsevier.com/S1389-1286(15)00346-1/sbref0005
http://refhub.elsevier.com/S1389-1286(15)00346-1/sbref0005
http://refhub.elsevier.com/S1389-1286(15)00346-1/sbref0005
http://refhub.elsevier.com/S1389-1286(15)00346-1/sbref0005
http://refhub.elsevier.com/S1389-1286(15)00346-1/sbref0005
http://refhub.elsevier.com/S1389-1286(15)00346-1/sbref0006
http://refhub.elsevier.com/S1389-1286(15)00346-1/sbref0006
http://refhub.elsevier.com/S1389-1286(15)00346-1/sbref0006
http://refhub.elsevier.com/S1389-1286(15)00346-1/sbref0006
http://refhub.elsevier.com/S1389-1286(15)00346-1/sbref0006
http://refhub.elsevier.com/S1389-1286(15)00346-1/sbref0006
http://refhub.elsevier.com/S1389-1286(15)00346-1/sbref0006
http://refhub.elsevier.com/S1389-1286(15)00346-1/sbref0007
http://refhub.elsevier.com/S1389-1286(15)00346-1/sbref0007
http://refhub.elsevier.com/S1389-1286(15)00346-1/sbref0007
http://refhub.elsevier.com/S1389-1286(15)00346-1/sbref0008
http://refhub.elsevier.com/S1389-1286(15)00346-1/sbref0008
http://refhub.elsevier.com/S1389-1286(15)00346-1/sbref0008
http://refhub.elsevier.com/S1389-1286(15)00346-1/sbref0008
http://refhub.elsevier.com/S1389-1286(15)00346-1/sbref0008
http://refhub.elsevier.com/S1389-1286(15)00346-1/sbref0008
http://refhub.elsevier.com/S1389-1286(15)00346-1/sbref0009
http://refhub.elsevier.com/S1389-1286(15)00346-1/sbref0009
http://refhub.elsevier.com/S1389-1286(15)00346-1/sbref0009
http://refhub.elsevier.com/S1389-1286(15)00346-1/sbref0009
http://refhub.elsevier.com/S1389-1286(15)00346-1/sbref0009
http://sourceforge.net/projects/iperf/
http://refhub.elsevier.com/S1389-1286(15)00346-1/sbref0010
http://refhub.elsevier.com/S1389-1286(15)00346-1/sbref0010
http://refhub.elsevier.com/S1389-1286(15)00346-1/sbref0010
http://refhub.elsevier.com/S1389-1286(15)00346-1/sbref0010
http://refhub.elsevier.com/S1389-1286(15)00346-1/sbref0011
http://refhub.elsevier.com/S1389-1286(15)00346-1/sbref0011
http://refhub.elsevier.com/S1389-1286(15)00346-1/sbref0011
http://refhub.elsevier.com/S1389-1286(15)00346-1/sbref0011
http://refhub.elsevier.com/S1389-1286(15)00346-1/sbref0011
http://refhub.elsevier.com/S1389-1286(15)00346-1/sbref0011
http://refhub.elsevier.com/S1389-1286(15)00346-1/sbref0011
http://www.postel.org/tg/tg.html
http://cs.itd.nrl.navy.mil/work/mgen/
http://ostinato.org/
http://tcpreplay.synfin.net/
http://refhub.elsevier.com/S1389-1286(15)00346-1/sbref0012
http://refhub.elsevier.com/S1389-1286(15)00346-1/sbref0012
http://refhub.elsevier.com/S1389-1286(15)00346-1/sbref0012
http://refhub.elsevier.com/S1389-1286(15)00346-1/sbref0012
http://refhub.elsevier.com/S1389-1286(15)00346-1/sbref0012
http://refhub.elsevier.com/S1389-1286(15)00346-1/sbref0012
http://refhub.elsevier.com/S1389-1286(15)00346-1/sbref0013
http://refhub.elsevier.com/S1389-1286(15)00346-1/sbref0013
http://refhub.elsevier.com/S1389-1286(15)00346-1/sbref0013
http://refhub.elsevier.com/S1389-1286(15)00346-1/sbref0013
http://refhub.elsevier.com/S1389-1286(15)00346-1/sbref0013
http://refhub.elsevier.com/S1389-1286(15)00346-1/sbref0014
http://refhub.elsevier.com/S1389-1286(15)00346-1/sbref0014
http://refhub.elsevier.com/S1389-1286(15)00346-1/sbref0014
http://refhub.elsevier.com/S1389-1286(15)00346-1/sbref0015
http://refhub.elsevier.com/S1389-1286(15)00346-1/sbref0015
http://refhub.elsevier.com/S1389-1286(15)00346-1/sbref0015
http://dx.doi.org/10.1145/1140086.1140094
http://refhub.elsevier.com/S1389-1286(15)00346-1/sbref0017
http://refhub.elsevier.com/S1389-1286(15)00346-1/sbref0017
http://refhub.elsevier.com/S1389-1286(15)00346-1/sbref0017
http://refhub.elsevier.com/S1389-1286(15)00346-1/sbref0017
http://refhub.elsevier.com/S1389-1286(15)00346-1/sbref0018
http://refhub.elsevier.com/S1389-1286(15)00346-1/sbref0018
http://refhub.elsevier.com/S1389-1286(15)00346-1/sbref0018
http://refhub.elsevier.com/S1389-1286(15)00346-1/sbref0018
http://refhub.elsevier.com/S1389-1286(15)00346-1/sbref0018
http://refhub.elsevier.com/S1389-1286(15)00346-1/sbref0018
http://refhub.elsevier.com/S1389-1286(15)00346-1/sbref0018
http://refhub.elsevier.com/S1389-1286(15)00346-1/sbref0019
http://refhub.elsevier.com/S1389-1286(15)00346-1/sbref0019
http://refhub.elsevier.com/S1389-1286(15)00346-1/sbref0019
http://refhub.elsevier.com/S1389-1286(15)00346-1/sbref0020
http://refhub.elsevier.com/S1389-1286(15)00346-1/sbref0020
http://refhub.elsevier.com/S1389-1286(15)00346-1/sbref0020
http://refhub.elsevier.com/S1389-1286(15)00346-1/sbref0020
http://refhub.elsevier.com/S1389-1286(15)00346-1/sbref0021
http://refhub.elsevier.com/S1389-1286(15)00346-1/sbref0021
http://refhub.elsevier.com/S1389-1286(15)00346-1/sbref0021
http://refhub.elsevier.com/S1389-1286(15)00346-1/sbref0021
http://refhub.elsevier.com/S1389-1286(15)00346-1/sbref0022
http://refhub.elsevier.com/S1389-1286(15)00346-1/sbref0022
http://refhub.elsevier.com/S1389-1286(15)00346-1/sbref0022
http://www.worldofwarcraft.com/index.xml
http://refhub.elsevier.com/S1389-1286(15)00346-1/sbref0023
http://refhub.elsevier.com/S1389-1286(15)00346-1/sbref0023
http://refhub.elsevier.com/S1389-1286(15)00346-1/sbref0023
http://refhub.elsevier.com/S1389-1286(15)00346-1/sbref0023
http://refhub.elsevier.com/S1389-1286(15)00346-1/sbref0023
http://refhub.elsevier.com/S1389-1286(15)00346-1/sbref0024
http://refhub.elsevier.com/S1389-1286(15)00346-1/sbref0024
http://refhub.elsevier.com/S1389-1286(15)00346-1/sbref0024
http://refhub.elsevier.com/S1389-1286(15)00346-1/sbref0024
http://refhub.elsevier.com/S1389-1286(15)00346-1/sbref0024
http://explore.live.com/messenger
http://windows.microsoft.com/en-US/windows7/products/features/remote-desktop-connection
http://www.realvnc.com
http://www.alexa.com/topsites
http://www.w3schools.com/ajax/default.asp
http://www.ebay.com/
http://www.eicar.org/86-0-Intended-use.html
http://www.malwaredomainlist.com/
http://www.autoitscript.com/site/autoit/
http://www.autohotkey.com/
http://www.watir.com/
http://www.sikuli.org/
http://www.utorrent.com/
http://technet.microsoft.com/en-us/sysinternals/bb897553
http://sourceforge.net/projects/expect/
http://developer.android.com/tools/help/monkeyrunner_concepts.html
http://developer.android.com/guide/components/intents-filters.html
http://refhub.elsevier.com/S1389-1286(15)00346-1/sbref0025
http://refhub.elsevier.com/S1389-1286(15)00346-1/sbref0025
http://refhub.elsevier.com/S1389-1286(15)00346-1/sbref0025
http://refhub.elsevier.com/S1389-1286(15)00346-1/sbref0025
http://refhub.elsevier.com/S1389-1286(15)00346-1/sbref0025
http://www.tcpdump.org
https://play.google.com/store/apps/details?id=hu.edudroid.measurement_uploader
http://refhub.elsevier.com/S1389-1286(15)00346-1/sbref0026
http://refhub.elsevier.com/S1389-1286(15)00346-1/sbref0026
http://refhub.elsevier.com/S1389-1286(15)00346-1/sbref0026
http://refhub.elsevier.com/S1389-1286(15)00346-1/sbref0026
http://refhub.elsevier.com/S1389-1286(15)00346-1/sbref0026
http://refhub.elsevier.com/S1389-1286(15)00346-1/sbref0027
http://refhub.elsevier.com/S1389-1286(15)00346-1/sbref0027
http://refhub.elsevier.com/S1389-1286(15)00346-1/sbref0027
http://refhub.elsevier.com/S1389-1286(15)00346-1/sbref0027
http://www.ntop.org/products/ndpi/
http://www.crysys.hu/szabog/publications/diplomazok/csatari-thesis.pdf

54 P. Megyesi et al. / Computer Networks 92 (2015) 41–54
Géza Szabó is a Research Fellow at the Traffic Lab-

oratory of Ericsson (Hungary). He has been work-
ing there since 2005. He received the M.Sc. degree

in Computer Science from the Budapest Univer-

sity of Technology and Economics (BME) in 2006.
During 2006-2009, he pursued his PhD studies in

the Department of Telecommunications and Me-
dia Informatics, Budapest University of Technol-

ogy and Economics and received his PhD degree
in 2011 in the topic of traffic classification algo-

rithms. His research interests focusing on mobile

broadband networks mainly in connection with
traffic measurements, traffic profiling, network

management, radio related issues. He coauthored several journals (Journal
of Multimedia Tools and Applications, IEEE Communications Surveys and

Tutorials, etc.), conferences (ICC, Globecom, PAM, etc.) papers, and patents.

Péter Megyesi received his BSc and MSc in Elec-

trical Engineering from the Budapest University

of Technology and Economics (BME), Budapest,
Hungary, in 2010 and 2012, respectively. Since

2012, he is a PhD student at the High Speed Net-
works Laboratory at the Department of Telecom-

munications and Media Informatics, BME. His
PhD research is focused on synthetic network

traffic generation. His research interests also in-

clude traffic measurements, traffic modeling and
analysis and traffic identification. Since 2013,

Péter is also enrolled in the Doctoral School on
Innovation & Entrepreneurship organized by the

Information and Communication Laboratory of the European Institute of In-
novation and Technology.
Sándor Molnár received his MSc, PhD and Ha-

bilitation in Electrical Engineering and Computer
Science from the Budapest University of Technol-

ogy and Economics (BME), Budapest, Hungary,

in 1991, 1996 and 2013, respectively. In 1995 he
joined the Department of Telecommunications

and Media Informatics, BME. He is now an Asso-
ciate Professor and the principal investigator of

the teletraffic research program of the High Speed
Networks Laboratory. Dr. Molnár has participated

in several European research projects COST 242,

COST 257, COST 279 and recently in COST IC0703
on ‘Traffic Monitoring and Analysis: theory, tech-

niques, tools and applications for the future networks’. He was the BME
project leader of the Gold Award winner 2009 CELTIC project titled ‘Traf-

fic Measurements and Models in Multi-Service networks (TRAMMS)’. He is
a member of the IFIP TC6 WG 6.3 on ‘Performance on Communication Sys-

tems’. He is a participant in the review process of several top journals and

serves on the Editorial Board of the Springer Telecommunication Systems
journal. He is active as a guest editor of several international journals such

as the ACM Kluwer Journal on Special Topics in Mobile Networks and Appli-
cations (MONET). Dr. Molnár served on numerous technical program com-

mittees of IEEE, ITC and IFIP conferences working also as Program Chair. He
was the General Chair of SIMUTOOLS 2008. He is a member of the IEEE Com-

munications Society. Dr Molnár has more than 170 publications in interna-

tional journals and conferences (see http://hsnlab.tmit.bme.hu/molnar for
recent publications). His main interests include teletraffic analysis and per-

formance evaluation of modern communication networks.

http://hsnlab.tmit.bme.hu/molnar

	User behavior based traffic emulator: A framework for generating test data for DPI tools
	1 Introduction
	2 Related work
	3 The concept of the system
	3.1 Measurement processor
	3.2 User emulator
	3.3 Traffic aggregator

	4 Highlights of the implementation
	4.1 Creation of user behavior scenarios
	4.2 Types of user traffic
	4.2.1 User focus is required
	4.2.2 Background activities

	4.3 Remote controlling of the GUI on desktop Windows platform
	4.4 Remote controlling of the GUI on Android platform
	4.5 Recording of network traffic
	4.6 Guide to deploy the system

	5 Validation study
	6 Conclusion
	 References

