
Computer Communications 171 (2021) 99–111

S
M
a

2
b

A

K
D
F
S
M
E

1

t
f
f
o
o
o
t

f
s
o
b
o
8
t
f
s
e
l
r

h
R
A
0
(

Contents lists available at ScienceDirect

Computer Communications

journal homepage: www.elsevier.com/locate/comcom

ieve: A flow scheduling framework in SDN based data center networks
aiass Zaher a,∗, Aymen Hasan Alawadi a,b, Sándor Molnár a

Department of Telecommunication and Media Informatics, Budapest University of Technology and Economics, Magyar tudósok körútja
, Budapest, H-1117, Hungary
Department of Computer Science, Faculty of Education, University of Kufa, P.O Box 21, Kufa, Najaf, Iraq

R T I C L E I N F O

eywords:
ata Center Network (DCN)
low scheduling
oftware Defined Networks (SDN)
ice flow

lephant flow

A B S T R A C T

Today’s data centers act as the primary infrastructure for emerging technologies. QoS imposes requirements
for more attentive techniques that can deal with different characteristics of traffic classes and patterns. In this
context, network flows can be classified into large and long-lived flows called elephant flows and mice flows,
which are small and short-lived flows. According to the characteristics of the emerging technologies, e.g., IoT
and Big Data, mice flows are dominant; Hence, it is crucial to improve Flow Completion Time (FCT) for such
delay-sensitive flows. This paper presents Sieve, a new distributed Software Defined Networks (SDN) based
framework. Sieve initially schedules a portion of the flows based on the available bandwidth despite their
classes. We propose a distributed sampling technique which sends a portion of the packets to the controller.
Furthermore, Sieve polls the edge switches periodically to get the network information rather than polls all
switches in the network, and it reschedules elephant flows only. Mininet emulator and mathematical analysis
have been employed to validate the proposed solution in 4-ary Fat-Tree DCN. Sieve provides less FCT up to
around 58% for mice flows and maintains throughput of elephant flows compared to Equal Cost MultiPath
(ECMP) and Hedera.
. Introduction

Nowadays, many enterprises employ various services and applica-
ions by leveraging data center networks. As a result, the associated
low patterns impose new considerations. In particular, the majority of
lows generated by applications like MapReduce send less than 10 KB
f data and lasting for less than 10 s, and similar characteristics are
btained in case of web services [1]. In this context, the proliferation
f IoT’s prospective applications may boost these characteristics since
he flow size of such applications very small [2].

Basically, flows in DCN can be classified into mice and elephant
lows [3]. Specifically, mice flows are known as the smallest and
hortest-lived flows, and they are sensitive to the delay [4]. On the
ther hand, the elephant flows are long-lived flows and more affected
y the available bandwidth [3]. Although, there are a smaller number
f elephant flows than mice flows in DCN, but they carry more than
0% of the transferred data [5]. Typically, elephant flows endeavor
o utilize the link capacity fully. Therefore, mice flows could suffer
rom real-time latency [6]. Studies show that any delay in the re-
ponse time of data center applications profoundly impacts the user
xperience [7]. For example, in the case of increasing the flow de-
ay with 400 ms, Google found that the number of daily searches
educed by 0.6% [8]. Therefore, enhancing the DCN utilization involves

∗ Corresponding author.
E-mail addresses: zaher@tmit.bme.hu (M. Zaher), aymen@tmit.bme.hu (A. Alawadi), molnar@tmit.bme.hu (S. Molnár).

minimizing FCT [9]; Hence, namely, we aim to mitigate FCT of delay-
sensitive flows, i.e., mice flows, as well as to maintain the throughput
of bandwidth-hungry flows which are elephant flows.

In this context, SDN paradigm provides reliable and effective tech-
niques to handle network resources and information centrally. SDN
controller can collect statistical information about various network
resources and events, including information about network flows. As
a result, many researches applied SDN significantly for improving QoS,
e.g., by flow scheduling and traffic load balancing [10,11].

The key contribution of this paper is to propose a flow scheduling
algorithm that achieves the following objectives:

1. Propose a heuristic, adaptive, and scalable scheduling algorithm
to schedule elephant and mice flows. The proposed algorithm is
based on the available bandwidth to mitigate FCT of mice flows
and to maintain throughput of elephant flows.

2. Propose a balanced scheduling scheme which divides the flow
scheduling burden between Sieve and ECMP.

3. Propose a flow detection technique to provide enough informa-
tion about a portion of network flows.

Sieve attempts to resolve two dilemmas:
ttps://doi.org/10.1016/j.comcom.2021.02.013
eceived 2 June 2020; Received in revised form 11 January 2021; Accepted 7 Feb
vailable online 15 February 2021
140-3664/© 2021 The Author(s). Published by Elsevier B.V. This is an open acce
http://creativecommons.org/licenses/by-nc-nd/4.0/).
ruary 2021

ss article under the CC BY-NC-ND license

https://doi.org/10.1016/j.comcom.2021.02.013
http://www.elsevier.com/locate/comcom
http://www.elsevier.com/locate/comcom
http://crossmark.crossref.org/dialog/?doi=10.1016/j.comcom.2021.02.013&domain=pdf
mailto:zaher@tmit.bme.hu
mailto:aymen@tmit.bme.hu
mailto:molnar@tmit.bme.hu
https://doi.org/10.1016/j.comcom.2021.02.013
http://creativecommons.org/licenses/by-nc-nd/4.0/


M. Zaher, A. Alawadi and S. Molnár Computer Communications 171 (2021) 99–111
Fig. 1. Motivation example on flow collisions inside 4-ary Fat-tree DCN in which
packet collisions yielded as a result of static hashing based routing employed by ECMP.

1. Polling information about every flow provides full flow visibility
on the controller, but overwhelms the control plane.

2. Flow scheduling based on ECMP only provides rapid scheduling,
but prevents any scheduling optimization by control plane.

This paper is structured as follows: Section 2 gives background informa-
tion about the addressed problem. Section 3 surveys related works. We
present the Sieve framework and its design aspects in Sections 4 and 5
respectively, and we evaluate and discuss its performance in Sections
6 and 7. We conclude our work in Section 8.

2. Preliminary

The typical design of DCN topology includes multi-rooted layers that
it has many paths between each pair of hosts [12]. Therefore, finding a
suitable path is challenging since congestion avoidance requires consid-
ering the current load and potential conflicts. The motivation example,
depicted in Fig. 1, shows 4-ary Fat-tree DCN, which contains many-to-
one communication pattern regardless of the flow size. Two senders,
H1 and H3, connected to pod 1 initiate two mice flows to H11 in pod
3. Assuming that there was a background elephant flow transferring
data from H4 to H9. Employing ECMP only in such scenario probably
incurs many collisions, as shown in Fig. 1, since it adopts scheduling
based on static hashing of packet header where congestion occurs due
to overwhelming some links. This kind of congestion will profoundly
reduce QoS [8] of mice flows. Hence, deploying applications in data
centers leveraging ECMP does not guarantee QoS due to the probabil-
ity of data loss and retransmissions. However, flow contentions and
bottlenecks are inevitable [13]. Therefore, rescheduling flows from a
path to another based on flow’s bandwidth consumption only, such
as in Hedera [12], might produce another kind of congestion and
flow completion delay. Consequently, improving QoS in DCN requires
considering the characteristics of both flow classes and the network
situation.

3. Related work

We classify the studies into two categories. One for the central
solutions reside in the control plane, while the other for the studies
assign a portion of the operations to the data plane.

3.1. Central solutions

Several studies have emerged dealing with flow scheduling in DCN.
Al-Fares et al. [12] proposed Hedera, and they assumed a flow which
consumes more than 10% of link capacity as an elephant flow. Then,

Global First Fit algorithm determines the best available path for this

100
flow. On the other hand, Hedera employs ECMP to schedule all unde-
termined flows, so FCT of mice flows is not considered as an evaluation
metric. Curtis et al. in [10] proposed Mahout to detect elephant flows in
DCN on end-hosts by inspecting socket layer. Mahout periodically polls
switch counters to optimize elephant flows scheduling using first-fit
algorithm. Although the authors tried to mitigate the detection over-
head on the controller, deploying such method requires modifications
in the end-host kernel. DevoFlow [14] schedules elephant flows only,
and it provides no FCT measurements of mice flows. MiceTrap [15]
is a mice flows detection and scheduling algorithm based on finding
underutilized paths. Nevertheless, the authors did not evaluate their
solution. Yazidi et al. [16] classified links into hot and cold links to
reschedule the detected elephant flows to the least congested links.
However, the mechanism monitors the demand of all flows, and this
solution results in processing overhead. L2RM [17] balances the load in
fat-tree DCN. L2RM reschedules flows after two consecutive predefined
threshold hits to maintain the balance between DNC links. However,
L2RM treats both flows classes similarly.

3.2. Distributed solutions

Distributed solutions aim to diminish the overhead on the control
plane. In this context, a fine granularity has been proposed by flowlet,
which is a data unit defined in [18] as a packet burst. Flowlet is
leveraged in CONGA [19] to achieve optimal flow scheduling in leaf-
spine DCN by employing leaf switches to feedback on congestion
metrics. However, CONGA requires custom switching ASICs. Wang
et al. [20] employed end-hosts to detect elephant flows to be scheduled
by the controller. On the other hand, EMCP schedules the remain-
ing flows on the switches. BLEND [21] uses end-hosts to track all
outgoing elephant flows and to select paths for the remaining flows
locally. However, modifying end-hosts kernel is not a feasible solution.
The work presented in [22] provides different QoS for mice and ele-
phant flows by creating specific queues for each traffic class. Hence,
It involves creating and monitoring many queues. Afek et al. [23]
proposed a sampling technique using OpenFlow group feature. They
preserved the flows information in a data structure into the controller
to track the total counter of each sampled flow. Besides, a unique
flow entry for a candidate elephant flow is installed after passing a
predefined threshold. Then, it polls the candidate flow entries to detect
if it is an elephant flow indeed. As a result, the controller will be
involved in more processing. Similarly, Tang et al. [13] proposed a
flow classification model for both mice and elephant flows by sampling
packet-in packet of each flow to identify aggregated flow category;
Therefore, this solution is exposed to misclassification. Hermes [24]
is a congestion-aware load balancing technique. Hermes proactively
schedules flows when congestion or failure occurs. The method depends
on ECN (Explicit Congestion Notification) and RTT (Round-Trip Time)
for congestion detection. Although Hermes is deployable since it does
not require hardware changing, all data center end-hosts need to take
part in the sensing method. Therefore, without end-host visibility, the
sensing approach cannot be achieved. CAPS [25] is a congestion aware
technique based on end-hosts. The solution contains three modules;
packet encoder and decoder on each host of the data center besides
packet spraying module based on Random Packet Spraying (RPS) on
the ToR switch. Traffic flows are divided into mice and elephant flows,
where the elephants are scheduled using ECMP to specific paths, and
mice flow scatted to all available paths based on RPS. However, this
technique requires modifications in end-hosts and the availability of
RPS capable switches. Luopan [26] is a distributed congestion aware
approach implemented based on sampling routing paths between ToR
switches to direct the flowcels to less congestion path. However, the
method operates at flowcell granularity at a threshold of 64 KB. There-



M. Zaher, A. Alawadi and S. Molnár Computer Communications 171 (2021) 99–111

f
t
p

d
o
r
m
f

4

p
n
p
r
p
r
t

Fig. 2. The proposed framework architecture.

Fig. 3. Flow entry types in Table 0 on edge switch.

ore, end-host NIC needs to be managed to generate flowcells. On
he other hand, the process of path sampling is performed by packet
ropping, which requires TCP/IP modification.

Therefore, based on the presented related works, our solution is
ifferent from others since it is distributed, but it does not incur the
verhead resulted from end-hosts contacting. Furthermore, it does not
equire any modifications in kernel nor hardware. In addition, Sieve
itigates the overhead due to its functions are applied on a portion of

lows only.

. The proposed Sieve framework

The framework architecture is depicted in Fig. 2. Basically, the
roposed framework aims to guarantee QoS of mice flows by classifying
etwork flows so that mice flows can be served with less delay. We
ropose three layers framework as depicted in Fig. 2. The first layer
esides in the data plane. It employs OpenFlow bucket group feature to
rovide packet sampling and ECMP-based scheduling. The second layer
esides in the control plane. It contains the required functionalities
o schedule the sampled flows using shortest-path available-bandwidth

mechanism. The last layer resides in the control plane also. It contains
the polling technique and elephant flows rescheduling functions.

In the following, we describe the proposed framework modules in
more details.

4.1. Flow sampling

Sieve employs weighted bucket group feature of OpenFlow to sam-
ple flows as well as to mitigate the overhead on the control plane. In

practice, the data plane does not send every packet to the controller,

101
Table 1
Sampling group entry.

group_id group_type bucket_action

group_id=1 select bucket=weight:50,actions=CONTROLLER,
bucket=weight:50,actions=GOTO_TABLE:ECMP

Table 2
ECMP group entry.

group_id group_type bucket_action

group_id=1 select bucket=weight:50,actions=OUTPORT:1,
bucket=weight:50,actions=OUTPORT:2

but rather the first packet of a flow, i.e., packet-in, is either scheduled
based on ECMP or sent to the controller. We implement this mechanism
using a group entry consists of four fields:

1. Group identifier: It is 32 bits integer value used as a unique
identity.

2. Group type: We use "select" group type, so the switch executes
one bucket’s action based on the value of packet header hashing
and bucket’s weight value.

3. Counter: Represents the number of packets matched by the
group.

4. Action bucket: An action associated with a specific bucket and
applied to the matched packets.

Recall that the first packet of a flow did not match the direct nor polling
flow entries on an edge switch, as shown in Fig. 3, so it will be handled
according to the sampling group entry presented in Table 1. Since the
type of group is select, the switch chooses one bucket of actions based
on its weight. In particular, the switch will hash the packet header
information; then, based on the hash value and the values of buckets
weights, one bucket will be selected to apply its associated action.
Specifically, the switch will either forward the packet to the controller
or to ECMP table with probabilities of 0.5 and 0.5, respectively. Sieve
samples flows only from edge switches, so only edge switches contain
the sampling group entry presented in Table 1. Specifically, edge layer
switches contain two flow tables which are Table 0 shown in Fig. 3
and Table ECMP contained ECMP-based scheduling group entries as
shown in Fig. 2. This partial sampling saves the controller from
overwhelming samples load. Our framework treats the sampled packets
equally; regardless they belong to elephant or mice flows.

4.2. ECMP-based scheduling

We utilize ECMP in scheduling a portion of flows since ECMP
represents a fast scheduling technique. Therefore, we can avoid flow
collisions which could happen in case of sole dependence on ECMP.
In particular, we implement ECMP-based scheduling by proactively
defining bucket group with equal weights into all switches of edge
and aggregate layers. ECMP group entry is presented in Table 2.
Specifically, Sieve employs ECMP to schedule the flows forwarded out
switches ports 1 or 2, on edge layer connected to the aggregate layer
and on aggregate layer connected to the core layer only, based on
packet header hash value and buckets weights values. On the other
hand, Sieve uses proactively defined flow entries for directly connected
hosts and subnets for forwarding the flows from an upper layer toward
a lower layer. Besides, polling flow entries are used for scheduling
flows in either direction. Fig. 4 presents the flow entries effective direc-
tions. However, different priority values are used to enable preferential
scheduling. As a result, edge layer switches contain two flow entry

tables, whereas one flow entry table exists into all other switches. The



M. Zaher, A. Alawadi and S. Molnár Computer Communications 171 (2021) 99–111

t
a

p
a
s
t

4

Table 3
Flow tables in different switch layers and flow entry types with an indication whether
they are proactively predefined or reactively defined.

Flow entry type Table_id Switch_layer Proactive/Reactive

Directly connected host 0 edge proactive
Polling and Scheduling 0 edge/agg/core reactive
Directly connected subnet 0 agg/core proactive
ECMP-based scheduling 0 agg proactive
Sampling 0 edge proactive
ECMP-based scheduling ECMP edge proactive

Fig. 4. Flow entry effective forwarding directions where each flow entry type is created
o forward traffic in dedicated directions across the Fat-tree DCN layers and end-hosts
s well.

roactively and re-actively installed flow entries are depicted in Table 3
long with the table id, location and their types. Table 3 is descendingly
orted based on priority values of the flow entry types according to each
able_id.

.3. Flow schedule

Upon receiving packet-in at the control plane, Sieve parses the
packet header to retrieve the connection information. Then, Path Com-
putation module will be invoked to find the four shortest paths between
the source and destination, which has the best available bandwidth
as well. As shown in Algorithm 1, bottleneck_of_path function will be
invoked for each shortest path in shortest_p, which contains information
of the four shortest paths, to compute its bottleneck link, which is
the highest loaded link. Then, the path with maximum bottleneck
bandwidth will be the best one, best_p, to schedule the new flow onto.
Finally, this module sends the connection information and the best path
to Flow Installation module, which installs a new polling flow entry into
all switches along the chosen path. In this layer, Sieve serves new flows
similarly regardless they are mice or elephant flows.

4.4. Port polling

Polling_stat function in Algorithm 2 periodically polls port statistics

every PR from all switches in the network by sending OpenFlow

102
OFPPORTStats message. Therefore, the framework has full available-
bandwidth visibility. Sieve saves this information on a directed graph.
Furthermore, port information used by it to reschedule elephant flows
by comparing the occupied bandwidth of edge switch ports, connected
to the aggregate layer, with the predefined threshold. Threshold refers
to the bandwidth occupation on an edge switch port in this paper
unless otherwise indicated. Specifically, when the available bandwidth
on any edge switch port, connected to the aggregate layer, passes the
predefined threshold 𝑈 _𝐵𝑊 < 𝑇ℎ, this module will invoke Elephant
Flow Detection module by invoking 𝑟𝑒𝑠𝑐ℎ𝑒𝑑𝑢𝑙𝑒(𝑖, 𝑗, 𝑈 _𝐵𝑊 ) function, as
shown in line 6 of Algorithm 2.

4.5. Elephant flow detection

Sieve employs polling flow entries on edge switches to find the sent
byte counts. In particular, each polling flow entry is defined uniquely,
and it consists of four-tuple fields which are source IP, destination
IP, source transport port, and destination transport port. In particular,
upon threshold hits, Sieves fetches all elephant flows forwarding out a
specific edge switch port, i.e., 𝑗, and whose accumulated sent bytes is
more than 50 KB, i.e., 𝐹 _𝑙𝑜𝑎𝑑 > 50 𝐾𝐵, as well, as shown in lines 9–12
of Algorithm 2. In this context, we consider a flow whose size more
than 50 KB as an elephant flow. We adopt this classification principle
according to the results in [1,5].

4.6. Elephant flow reschedule

This module then receives the total number of elephant flows that
are to be rescheduled, i.e., 𝑛𝑢𝑚_𝑟𝑒𝑑𝑖𝑟_𝐸𝐹𝑙𝑜𝑤𝑠, as shown in line 13
of Algorithm 2. In addition, the information of each elephant flow,
the edge switch and the port, are sent from the previous module,
as presented in lines 14–16. Furthermore, this module tries to find
a new path that the original edge switch port is not a part of it as
shown in lines 18–22. Then, It invokes function get_best_path_by_bw to
compare the bottleneck available bandwidth of the possible new paths
with the available bandwidth on the edge switch port. Then, if an
alternative path has sufficiently higher available bandwidth than that
on the original port as in line 30, it sends the information of the
elephant flow and the new path to Flow Installation module; otherwise, a
log message will be displayed that no path met the specified conditions.

In case only one elephant flow exists on an edge switch port upon
threshold hits, Sieve tries to reschedule it to another path with higher
available bandwidth. On the other hand, if there are many elephant
flows, the framework tries to reschedule as many as of them. It propor-
tions the available bandwidth on the original edge switch port to the
number of existed elephant flows as in line 13.

4.7. Path computation

This module receives requests from Flow Schedule and Elephant
Flow Reschedule modules. In particular, the former module needs a
path for a new sampled flow upon receiving Packet-in message from
the data plane, and the later invokes this module upon threshold
hits to reschedule as possible as of elephant flows on a specific edge
switch port, i.e. function bottleneck_of_path of Algorithm 1 and function
get_best_path_by_bw of Algorithm 2, respectively. This module tries to
find the shortest paths between src_ip and dst_ip then selects the one
whose bottleneck link has the maximum available bandwidth. There-
fore, this module fetches the network graph, G, containing the available
bandwidth. Finally, it sends the chosen path to the Flow Installation
module.



M. Zaher, A. Alawadi and S. Molnár Computer Communications 171 (2021) 99–111

a
n
a
i
v
T

5

s

5

t

T
V

4.8. Flow installation

As depicted in Table 3, edge switches have proactive flow entries
for directly connected hosts and buckets group entry. Specific priority
values have been assigned in descending order, as shown in Table 3.
However, this module installs new polling flow entries with incremen-
tal priority based on the last priority value provided that it cannot be
more than that of the directly connected hosts flow entries. Polling flow
entries are installed into all switches along the path.

4.9. Network graph

The gathered network information is saved on a directed graph
(G) to represent the network topology and situation. Hence, operations
like finding the shortest path between any two hosts <S, D > can be
achieved by Dijkstra algorithm based on edges weights (G, S, D, W ).
The algorithm starts searching the graph G for the shortest and most-
vailable-bandwidth path from the source node (S) to the destination
ode (D) by computing the edges’ weights (W ) which are the free
vailable bandwidth. We present our proposed second layer functions
n Algorithm 1, and the third layer functions in Algorithm 2. The
ariables used by Sieve framework are presented and described in
able 4.

. Framework design aspects

Algorithms 1 & 2 describe the functionalities of the framework. This
ection presents the design aspects and decisions of the framework.

.1. Problem formulation

Network is modeled as a directed graph 𝐺 = (𝑉 ,𝐸), where 𝑉 :
set of the nodes, 𝐸: set of the directed edges, 𝑝: a path where 𝑝 =
(𝑣0, 𝑣1,… , 𝑣𝑛), ∀𝑣𝑖 ∈ 𝑉 , ∀𝑖 ∈ [0, 𝑛], 𝑛 ∈ Z. However, the connection
throughput is limited to the available bandwidth on the bottleneck link
of a path as shown in Eq. (1). In particular, the load of any link 𝑒 is
𝑙𝑒
𝐶𝑒

, where 𝑙𝑒 is the currently used fraction of its capacity 𝐶𝑒 as shown
in Eq. (3) where 𝑠𝑒𝑖 is the 𝑖th flow size. Therefore, the condition in
Eq. (2) should be maintained to avoid congestion on path 𝑝, so that
the utilization on any link along path 𝑝 should be smaller than the
bottleneck capacity link. Let us assume that flows arrive at a switch
according to Poisson process with rate 𝜆 and size 𝑠, and the predefined
threshold of flow size is 𝑇 . Hence, the number of elephant flows until
ime 𝑡 is as in Eq. (4) where 𝐹 is CDF of flow sizes. In particular,

elephant flows on path 𝑝1 and path 𝑝2 are 𝑁1(𝑡) and 𝑁2(𝑡), respectively.
Portion of 𝑁1(𝑡) should be redirected to 𝑝2 if 𝑁1(𝑡) > 0 and 𝐶𝑝1 > 𝑇ℎ
and 𝐶𝑝2 < 𝑇ℎ, where 𝑇ℎ is the threshold of triggering elephant flow
rescheduling. Consequently, the maximum number of elephant flows
should be redirected to path 𝑝2 is computed so that the condition in
Eq. (1) is maintained.

𝐶𝑝𝑖 = 𝑚𝑖𝑛 𝐶𝑒, ∀𝑒 ∈ 𝐸 (1)

𝑙𝑒
𝐶𝑒

< 𝐶𝑝 (2)

𝑙𝑒 =
𝑁(𝑡)
∑

𝑖=1
𝑠𝑒𝑖 (3)

𝑁(𝑡) = 𝜆(1 − 𝐹 (𝑇 ))𝑡 (4)
103
able 4
ariables used by Sieve.
Variable Description

min_bw Available bandwidth on the bottleneck link
max_bw Maximum available bandwidth along a path
k The scale of Fat-tree topology
shortest_p List of the four shortest paths between src_ip and dst_ip
best_p The best path between src_ip and dst_ip based on hop

count and available bandwidth
F_bw Available bandwidth on an edge switch port
Th Threshold of the bandwidth occupation
U_bw Utilized bandwidth on an edge switch port
dpid_list List of switch IDs
PR Polling rate
EF_list List of active elephant flows on an edge switch port
Paths List of the shortest paths excluding a specific edge switch

port
port_list List of port IDs

5.2. Flow detection

There are many principles to classify flows in data center networks.
In the case of consumption based classification [12], the flow through-
put must be tracked periodically. In this context, the phase of flow
detection starts by polling flow statistics from switches in terms of
source IP, destination IP, source port, destination port and Byte count.
Hence, any flow consumes bandwidth more than the predefined per-
centage of the link capacity is identified as an elephant flow. However,
this methodology discards the large link capacity sizes in recent DCN.
As a result, considering the percentage consumption as a classification
criterion does not guarantee a rapid reaction for mice flows since they
have a very short life span.

The other methodology employs flow size as a classification cri-
terion [5]. In particular, whenever the cumulative flow size hits the
predefined threshold 𝑇 , it will be considered as an elephant flow.
We adopt this methodology to distinguish between elephant and mice
flows. Specifically, we follow the fact discovered in study [5], where
more than 80% of the flows in DCN had less than 10 KB.



M. Zaher, A. Alawadi and S. Molnár Computer Communications 171 (2021) 99–111

f
b
i
2
p
p

f
f
r
a
p
f

a
t
d
t

5

s
i
t
r
d
f
i
c
t

5.3. Flow sampling

Sieve employs edge layer switches to sample a portion of flows by
sending the first packet, i.e., packet-in. Sieve installs unique polling
low entries into the switches along the chosen path to forward packets
elonging to the sampled flows. Subsequently, upon threshold hits,
.e., the occupied bandwidth on an edge switch port gets more than
5%, our framework will detect elephant flows forwarding out of the
ort based on the cumulative bytes count of the corresponding installed
olling flow entries.

However, this solution discovers just a portion of the total DCN
lows so that a fraction of the flows are not sampled. Assuming that
lows arrive at an edge switch according to a Poisson process with a
ate of 𝜆. Hence, a portion of flows will be scheduled based on ECMP,
nd the rest will be scheduled based on Sieve after sampling their first
acket. Let x(t) is a random variable represents the number of arrived
lows at the time interval [0,t] and s(t) is a random variable represents

the cumulative flow size in the network during [0,t].

Theorem 1. The cumulative flows size sampled by the controller is ap-
proaching the half of the total size of flows in the network as 𝑡 increases
 (

104
Fig. 5. Estimate the error resulted from the delay between the time instants of
exchanging control messages and reaction instant by the controller.

to infinity, i.e., lim𝑡→∞ 𝑛(𝑡)𝑠(𝑡) → 𝑥(𝑡)𝑠(𝑡)
2 𝑛(𝑡) is the number of sampled flows

until time 𝑡.

Proof. Mitigating the load on the controller is our aim so that it will
not be overwhelmed by samples. Let us assume a probabilistic scheme
by applying the strong law of large numbers. In this context, each flow
has a probability 𝑝𝑐 of being sampled by the controller or 𝑝𝑒 of being
scheduled by ECMP. To denote the event of sampling the first packet
by the controller, we use 𝐼𝑐𝑗 = 1 with probability 𝑝𝑐 ; in contrast, 𝐼𝑒𝑗 =
1 with probability 𝑝𝑒 indicates the event of ECMP based scheduling.
Therefore, the expected number of the sampled flows is 𝐸[𝐼𝑐𝑗 ] = 𝑝𝑐 , and
similarly the expected number of the flows scheduled based on ECMP is
𝐸[𝐼𝑒𝑗 ] = 𝑝𝑒. Note that the variances of these values are equal to equation
Eq. (5) and Eq. (6) respectively:

𝑉 [𝐼𝑐𝑗 ] = 𝑝𝑐 (1 − 𝑝𝑐 ) (5)

𝑉 [𝐼𝑒𝑗 ] = 𝑝𝑒(1 − 𝑝𝑒) (6)

The cumulative size of the sampled flows resulted by the proposed
sampling process is, regardless of whether these flows are mice or
elephants, represented in Eq. (7) and Eq. (8) of both cases, where 𝑆
denotes the flow size:

𝐵𝑐 =
𝑁(𝑡)
∑

𝑗=1
𝐼𝑐𝑗 𝑆𝑗 (7)

𝐵𝑒 =
𝑁(𝑡)
∑

𝑗=1
𝐼𝑒𝑗𝑆𝑗 (8)

By applying the strong law of large numbers, the total cumulative
size of these flows will be 𝐵𝑡 =

𝐵𝑐+𝐵𝑒
2 . Therefore, Sieve can manipulate

bout half of the DCN transferred data between end-hosts connected
o different edge switches since we defined proactive flow entries for
irectly connected hosts; Hence, flow conflicts and congestion due to
he sole dependence on ECMP can be mitigated.

.4. Mitigate obsolete information

As shown in Fig. 5, the polling messages sent from the switches
equentially to the controller. Hence, there is a delay between the
nstant of sending the statistics at 𝑡2, as a reply to the request at 𝑡1, and
he instant of taking a decision by the controller at 𝑡4. The controller
eceives the statistical information message at 𝑡3 then it sends the
ecision at 𝑡5. Furthermore, the decision could lead to installing new
lows in a switch at 𝑡7 after receiving it by the switch at 𝑡6. This delay
s due to the number of switches, controller activities and network
onditions. Consequently, some obsolete decisions could be taken, so
he error estimation of the taken decisions can be computed as in Eq.

9). Assuming 𝜏 is the delay between 𝑡2 and 𝑡4, 𝑃𝑟𝑎𝑡𝑒 is the polling rate,



M. Zaher, A. Alawadi and S. Molnár Computer Communications 171 (2021) 99–111

i

𝜏

i
c
t
h
t
d
m
o
c

a
C

𝑥

w
s
i
d
t
s

𝐶 is the capacity of the link connecting a switch with the controller, 𝑁
s the switches number, 𝑀𝑙𝑒𝑛 is the length of the reply message.

=
𝑁 𝑀𝑙𝑒𝑛 𝑃𝑟𝑎𝑡𝑒

𝐶
(9)

𝐶𝑙 = 𝑁 𝑃𝑟𝑎𝑡𝑒 (10)

𝑃𝑟𝑎𝑡𝑒 =

⎧

⎪

⎨

⎪

⎩

10
𝐵𝑒𝑑𝑔𝑒 −

∑4𝑘
𝑖=1 𝑉𝑖
4𝑘

𝐵𝑒𝑑𝑔𝑒 𝑖𝑓
∑4𝑘

𝑖=1 𝑉𝑖
4𝑘 ≤ 𝐵𝑒𝑑𝑔𝑒

𝑇𝑏𝑎𝑠𝑒 = 2𝑠𝑒𝑐 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

(11)

Based on Eqs. (9) and (10), the delay is related to the controller load
𝐶𝑙, where they are directly proportional to each other. For example,
given the size of statistics message 𝑀𝑙𝑒𝑛 = 112 Bytes,1 the link capacity
connects the controller to the data plane is 1Gbps and there are 100
switches with 𝑃𝑟𝑎𝑡𝑒 = 2 s. Under these conditions, the delay can be
maximum 179.2 μs. Moreover, the polling period influences network
stability; therefore, the polling period should be dynamic. Eq. (11) is
used to compute the dynamic values of the polling rate. Since it is not
necessary to probe the data plane when the average utilization of the
edge switch ports is far from the threshold value of the bandwidth
occupation, i.e., 𝐵𝑒𝑑𝑔𝑒, where 𝑉𝑖 is the utilization of port 𝑖 and 𝑘 is
the Fat-Tree scale, i.e. 𝑘 = 4. 𝑇𝑏𝑎𝑠𝑒 is 2 s, and it is the default polling
nterval. Thus, the value of 𝑃𝑟𝑎𝑡𝑒 will not grow too much, and the
ontroller can still probe the data plane when ports utilization under
he predefined threshold. In particular, 𝑃𝑟𝑎𝑡𝑒 can extend from 1 s under
igh traffic until 10 s under light traffic to maintain the accuracy and
o avoid the overhead, as shown in Eq. (11). Besides, the polling rate’s
efault value can be used in the case of the average port utilization is
ore than the occupation threshold at any instant. As a result, based

n Eqs. (9) and (11) and as the numerical example, the delay in our
ase, i.e., 𝑁 = 20, will be 35.84 μs which ensures delivering of up-

to-date statistical information. Furthermore, based on the real traffic
measurements in [1], 𝑃𝑟𝑎𝑡𝑒 value range is efficient since 25% of Web
service, 85% of Cache and 25% of Hadoop flows are last for more than
1 s Therefore, 𝑃𝑟𝑎𝑡𝑒 value range is feasible to take rescheduling decisions
for elephant flows where Sieve probes statistics at a rate whose value
is within the elephant flows’ life span.

5.5. Controller overhead

Let us assume that the sampling probability is 𝑝; hence, the con-
troller receives a packet-in packet with a probability 𝑝. Likewise, 𝑛 is
the number of the sampled packets out of the total arrived packets, 𝑥.

Theorem 2. The total number of packet-in, 𝑛, sampled to the controller is
≪ 𝑥

2 given that 𝑥 is the total number of the packets arrived to an edge switch

Proof. Let us assume 𝑓 is the number of flow entries on an edge switch,
nd 𝑐 is the count of packets forwarded according to a flow entry.
onsequently, 𝑛(𝑡) could be asymptotically computed as in Eq. (13).

= 𝑛 + 𝑐𝑓 ⇒ 𝑛 = 𝑥 − 𝑐𝑓 (12)

𝑛(𝑡) = ∫

𝑡

0
𝑥(𝑡)𝑑𝑡 − ∫

𝑡

0
𝑐𝑓 (𝑡)𝑑𝑡

= 𝑡2
(

𝑥
2

−
𝑐𝑓
2

) (13)

Accordingly, the maximum value of 𝑛(𝑡) ≪ 50% of the total number,
since over the time 𝑐&𝑓 will get larger, and the load on the controller
will be less consequently. For example, let us assume that no more new
flows arrived at an edge switch after some time, so 𝑐𝑓 ≈ 𝑥 which yields
no more packets will be sent to the controller.

In the following, we analyze the expected overhead of processing
new flows with Sieve. We set up an numerical study to inspect the

1 OpenFlow Switch Specification Version 1.3.1 Section A.3.5.6.
105
Fig. 6. Flow entries numbers generated in case of proactive and reactive schemes.

Table 5
Parameters and values of the controller overhead evaluation.

Parameter Description Value

𝐻 Number of end-host 10000 [5]
𝑅 Number of edge switches 578 [27]
𝑆 Number of total switches 1445 [27]
𝐹 Median inter-arrival time 2 ms [1]
𝐵 Link bandwidth 10 Gbps [1]
𝑃 Packet size 1500 Byte
𝑃𝑟𝑎𝑡𝑒 Default value of the polling rate 2 sec

number of the new flows, Sieve has to process in case of real DCN
parameters. Sieve samples a portion of the new flows by employing
two buckets. Assuming that number of the sampled flows is half of the
total number of flows. We consider a Fat-tree DCN with real parameters
as shown in Table 5.

Sieve needs to handle half of 𝐻 × 103∕𝐹 flow set up per second,
hich is 2.5 million requests per second. Using specific hardware, a

ingle controller can handle up to 12 million requests per seconds as
n [28]. In this numerical study, we adopt a size of the commercial
ata centers as presented in [5]. On the other hand, Eq. (10) detects
he rate at which Sieve needs to process port statistics messages from
witches. Consequently, Sieve will handle 𝑆 ×𝑃∕𝑃𝑟𝑎𝑡𝑒, i.e., 723 packets

per second. Assuming that the controller can handle these packets at the
same rate of handling flow setup, as in [28], so it unlikely under the
mentioned parameters that Sieve’s performance will reduce severely.

5.6. Impact of threshold values

Our framework probes the occupied bandwidth on edge switch
ports connected to the aggregate layer to figure out if it is below the
predefined threshold. However, due to the overhead and reschedul-
ing failure probability associated with different threshold values, we
evaluate the occupied bandwidth threshold values. In particular, we
investigate the effects of different threshold values on the number of
𝑂𝐹𝑃𝐹 𝑙𝑜𝑤𝑆𝑡𝑎𝑡𝑠 message replies to measure the yielded overhead in
the controller, since upon threshold hits, Sieve probes flow statistics by
sending 𝑂𝐹𝑃𝐹 𝑙𝑜𝑤𝑆𝑡𝑎𝑡𝑠 message to detect elephant flows on a specific
switch port. Besides, we measure the associated failure probability of
rescheduling elephant flows to other paths in case of each threshold
value by computing the number of successfully rescheduled elephant
flows out of the total number of rescheduling requests. In particular,
the frequency of rescheduling requests is inversely proportional to the
threshold value. Table 6 presents the number of messages and the
number of failures associated with the different values of the band-
width occupation percentages under different traffic patterns, which
are described in Section 6. We aim to find the optimal value so that the



M. Zaher, A. Alawadi and S. Molnár Computer Communications 171 (2021) 99–111

T
E
a

Fig. 7. Performance of Sieve framework under CT scenario.
able 6
ffect of different values of occupied bandwidth threshold on the probability of finding
lternative paths to reschedule elephant flows in case of CT and UT traffic patterns.
Criterion 𝑂𝐹𝑃𝐹 𝑙𝑜𝑤𝑆𝑡𝑎𝑡𝑠_number Failure_Probability%

Threshold CT UT CT UT

75% 0 25 0 8
50% 3 168 0 42.6
25% 296 1265 28.7 70.6
10% 1226 1686 5.9 60

probability of finding alternative paths for rescheduling elephant flows
is reasonable. Besides, the threshold value should preserve the con-
troller from an intensive message load as well. Therefore, we decided
to adopt 25% as a value for the predefined threshold of bandwidth
occupation where it yields 28.7%, 70.6% as failure probabilities in CT
and UT scenarios, respectively. In contrast, 10% threshold yields fewer
failure probabilities, 5.9% and 60% for CT and UT, respectively, but
with a much higher number of messages, which increases the load
on the controller. On the other hand, such a small value as 10% of
the bandwidth occupation threshold could result in network instability
due to the elephant flows rescheduling fluctuations. However, 50% and
75% percentages are not desirable since we aim to improve the FCT of
mice flows, and such values can slow down the framework reaction.

5.7. Number of flow table entries

We measure the number of flow entries generated by our framework
and compare it to a fully reactive scheme. In particular, fully reactive
scheme sends a packet-in packet upon receiving the first packet of a
new flow to the controller. Subsequently, the controller tries to find a
path, and then it installs a new flow entry into switches along the path.
In this context, we aim to figure out the difference in flow numbers
between fully reactive scheme and our scheme presented in Table 3
which is called proactive. Besides, we investigate if the controller can
cap with the received requests and if the number of the flow entries
can be absorbed based on the flow table size. Accordingly, we count
the flow entries number generated by the second and the third layers
in both cases under the uniform traffic pattern UT, which is described
in Section 6. The results shown in Fig. 6 indicates that the proactive
scheme, i.e., our scheme, has fewer flow entries up to 50% than that in
case of the fully reactive one. In addition, since a controller can deal
with about 10 millions of flows per second [28,29] and the flow table
can contain up to 5k flows [14], we conclude that our framework yields
reasonable load and flow entry number. Furthermore, the numbers in
Fig. 6 are the cumulative numbers of the generated flow entries during
the whole experiment whose length is 300 s. Therefore, this implies that
the number of the simultaneous flow entries at one instant is so lower.
Moreover, the presented numbers in Fig. 6 in case of L2, coincides with
106
Theorem 2 since the sampling process is held by L2 and the presented
number in case of the proactive scheme is less than that in the case of
the reactive scheme by more than half.

5.8. Framework implementation

The framework modules in the control plane are implemented as
Python modules and integrated with Ryu SDN controller [30]. We
leverage OpenFlow 1.3.1, and the testbed environment has been imple-
mented by Mininet 2.2.2d where we evaluate our framework in 4-ary
FatTree data center network, as shown in Fig. 1 [27]. We employed
Intel Core i5-8400 3.20 GHz, 16 GB RAM, Ubuntu 16.04.

6. Experimental results

We compare our framework’s performance to Hedera and ECMP
[12] since Hedera is the mainstream scheduling and detection frame-
work for DCN, and ECMP acts as a commonly used scheduler in
academic and business sectors. Since Mininet runs in real-time and for
the sake of precision, we did not use high values for link capacity.
Therefore, each core switch connects to four aggregation switches with
100 Mbps bandwidth and 250 μs one-way propagation delay links, 20
Mbps and 1 ms one-way propagation delay for links connect aggre-
gation and edge layers, and 10 Mbps and 2 ms one-way propagation
delay for links connect edge switches and end-hosts where each edge
switch connected with two end-hosts. Hence, the oversubscription ratio
is 1:2 at the edge layer. We evaluate the framework performance by
conducted three different 300 s scenarios containing a mix of mice
and elephant flows for each scenario. In the first scenario, concentrated
traffic (CT), elephant and mice flows follow many-to-one patterns, in
which twelve end-hosts send data to three end-hosts on different pods
than the sources. The second one follows the uniform model, Uniform
Traffic (UT), where connections span all layers and all end-hosts have
been employed to generate the traffic, and each source has a different
destination. Finally, Multi Destinations, we generate traffic from two
end-hosts connected to the same edge switch to ten different end-hosts
on the other pods, five destinations for each source. We employ iperf for
generating elephant flows and Apache server [31] for generating mice
flows by repeatedly requesting a webpage of size 10 KB at the tenth
second of the simulation lifespan and elephant flows last randomly
between [20,60] seconds. In the case of this group of scenarios, our
framework will be examined in a situation where mice flows are syn-
chronized to generate burstiness and elephant flows exist to evaluate
the framework under high load. Specifically, every 10 s, the previous
pattern repeats to generate the burstiness during the experiment life
span. We conduct the experiments for two different traffic classes. First,
we employ high elephant flows share of 1:1, i.e., mice:elephant ratio,
to investigate the impact of the framework under a high volume of

elephant traffic. Second, we simulate a mice:elephant ratio of 3:1 as



M. Zaher, A. Alawadi and S. Molnár Computer Communications 171 (2021) 99–111
Fig. 8. Performance of Sieve framework under UT scenario.
Fig. 9. Performance of Sieve framework under MD scenario.
Table 7
Number of mice to elephant flows in CT, MD and UT scenarios in case
of equilibrium ratio which is 1:1 and when mice flows are three times
more than elephant flows, i.e. 3:1.

Scenario 1:1 3:1

CT 360:360 871:300
MD 300:300 871:300
UT 300:300 871:300

the ratio reported in [5]. Moreover, Table 7 presents the details of the
flow numbers generated in each scenario. We follow the traffic pattern
in [17] to compare Sieve performance to Hedera and ECMP in terms
of FCT of mice flows and goodput of elephant flows. We repeat each
experiment 10 rounds for each different scenario. For mice flows, we
present Cumulative Distribution Function (CDF) of FCT. For elephant
flows, we essentially present CDF of the goodput. These results are
shown in Fig. 7 for the CT scenario, Fig. 8 for the UT scenario and Fig. 9
for the MD scenario. Furthermore, we evaluate our framework under a
second scenario group. Specifically, we compare our framework perfor-
mance under the traffic pattern employed in [12] in terms of average
goodput of elephant flows and the average aggregate throughput of
all flows in the network. Finally, we conduct a third scenario group
in which we employ real workloads to investigate Sieve performance
in web services, cache [1] and data mining [6] applications scenarios.

6.1. FCT of Mice flows

We compare FCT of each algorithm, as shown in Figs. 7–9. Since
mice flows are delay-sensitive flows, FCT is the most important metric

to measure the algorithms performance. As shown in the Fig. 7a-7b,

107
Fig. 10. Relative changes of average mice flows FCT of Sieve in comparison to Hedera
and ECMP in the first scenario group.

Sieve outperforms Hedera and ECMP in case of many-to-one traffic
pattern. Consequently, our framework can mitigate the delay of mice
flows by rescheduling elephant flows upon bandwidth occupation hits
the threshold and efficiently utilizes the other network links. On the
other hand, ECMP provides no consideration of this problem, and
Hedera does not invoke the first global fit algorithm based on link
situation but based on elephant flows consumption. Similarly, FCT of
mice flows provided by Sieve is less compared to Hedera and ECMP
in case of UT scenario, as shown in Fig. 8a-8b. As the number of the
sources and destinations are the same, the opportunity of finding other
paths for elephant flows upon threshold hits is high. Finally, Fig. 9a-9b
show the results of MD scenario. The performance of all methods is



M. Zaher, A. Alawadi and S. Molnár Computer Communications 171 (2021) 99–111

T
C
C

Fig. 11. Average goodput of the elephant flows from H1 to H16 in case of all traffic patterns of the second scenario group.
Fig. 12. Average aggregate throughput of all elephant flows in the network in case of all traffic patterns of the second scenario group.
able 8
onfidence interval of goodput of all algorithms in different scenarios and flow ratios.
DF of algorithms’ goodput is shown in Figs. 7d–Fig. 9d Figs. 7c–Fig. 9c.
Scenario Hedera ECMP Sieve

CT 3–1 1.11 ± 0.11 1.09 ± 0.12 1.08 ± 0.12
UT 3–1 2.9 ± 0.2 2.92 ± 0.21 2.73 ± 0.26
MD 3–1 0.57 ± 0.04 0.57 ± 0.04 0.57 ± 0.04
CT 1–1 0.61 ± 0.05 0.59 ± 0.04 0.54 ± 0.07
UT 1–1 2.5 ± 0.18 2.53 ± 0.17 2.2 ± 0.23
MD 1–1 0.49 ± 0.04 0.49 ± 0.04 0.48 ± 0.04

the same because there are only two sources connected to the same
edge switch. Therefore, the opportunity of finding other alternative
paths for elephant flows is rare. Fig. 10 presents the relative changes
of average FCT of the mice flows under all scenarios. As shown, Sieve
outperforms Hedera and ECMP in all scenarios, but the greatest positive
improvement is under UT 1–1 since the load in the network links is
balanced. On the other hand, the lowest positive change value is in MD
scenario where all links toward the sources are saturated, especially in
the case of MD 3–1. Besides, Sieve provides less FCT for mice flows
under many-to-one traffic pattern, which is the common pattern in
DCN.

Table 8 presents the confidence intervals of the average goodput of
the elephant flows under the various scenarios, where the confidence
interval is 95%. Based on the shown numbers, Sieve has similar average
goodput to Hedera and ECMP for all scenarios. As a result, Sieve can
provide almost equivalent average goodput to Hedera and ECMP for
elephant flows.
108
Fig. 13. Relative changes of average mice flows FCT of Sieve in comparison to Hedera
and ECMP resulted from employing realistic traffic loads in the third scenario group
depicted according to traffic type.

6.2. Throughput of elephant flows

In this section, we compare the goodput of elephant flows of the
first scenario group, as shown in Figs. 7–9. Sieve provides elephant
flows with a goodput close to that of Hedera and ECMP under almost all
cases. Furthermore, we compare the goodput of elephant flows under
the second scenario group. The generated traffic patterns consist of a
random pattern and staggered probability pattern. In particular, the
traffic patterns are detailed as follows.



M. Zaher, A. Alawadi and S. Molnár Computer Communications 171 (2021) 99–111
Fig. 14. CDF of the goodput of elephant flows resulted from employing realistic traffic loads in the third scenario group of all algorithms according to traffic type.
a
w

1. Random: each end-host sends traffic to any other end-host in the
network with equal probability.

2. Staggered probability (𝐸𝑑𝑔𝑒_𝑝, 𝑃 𝑜𝑑_𝑝): each end-host sends traf-
fic to another one connected to the same edge switch with
probability (𝐸𝑑𝑔𝑒_𝑝), to the same pod with probability (𝑃𝑜𝑑_𝑝)
and to other pods in the network with probability (1 −𝐸𝑑𝑔𝑒_𝑝−
𝑃𝑜𝑑_𝑝).

The generated flows differ in sizes and numbers. Each end-host
generates one elephant flow lasts for 55 s as well as eight mice flows
which have different and random sizes ≤ 50 KB. Furthermore, flows
arrive in Poisson distribution with 10 ms inter-arrival time. Moreover,
we repeat the experiment 10 rounds for each algorithm in case of each
pattern. In addition, we generate three parallel elephant flows along
with nine mice flows from H1 to H16 to compute the average goodput,
where elephant flows lasts for 55 s.

Similar to the results we have in the first scenario group, Sieve
provides pretty close goodput in comparison to ECMP and Hedera
for the flows initiated from H1 to H16, as shown in Fig. 11. In this
context, the works in [32–34] prove that Hedera and ECMP have
so close throughput as well. On the other hand, Fig. 12 depicts the
average aggregated throughput of all elephant flows in the network.
Basically, the throughput achieved by Sieve confirms the approximate
equivalence.

6.3. Real workload

In this scenario group, we employ real workloads from production
datacenter networks. The flow distribution of web services is less
than 10 KB for 90% of the flows, and 90% of cache flows are less
than 500 KB [1]. On the other hand, 90% of data mining flow size
distribution is less 100 KB [6]. Therefore, we generate flows based
on the mentioned flow size distributions in the topology shown in
Fig. 1 by employing uniform traffic pattern (UT) so that the load on
all network segments are equal and the generated flow number of the
three workloads as well. Specifically, we generate 1920 flows with inter
arrival time of 10 ms as in [1], so 120 flows from each host. For this
scenario group, we compare FCT of mice flows and goodput of elephant
flows under Sieve with ECMP and Hedera results.

Fig. 13 depicts the relative change of mice flow FCT according to
the workload types. As shown, Sieve outperforms Hedera and ECMP
consistent with the results presented in Fig. 10. Similar to the perfor-
mance in the first and second scenario groups, the goodput of elephant
flows under Sieve framework is equivalent to that in case of ECMP
and Hedera, as shown in Fig. 14. However, elephant flows in case
of web services are higher than the other algorithms due to the fact
the majority of the web flows are scheduled as mice flows, so the
rescheduling of the other workload type flows yields more bandwidth
for web flows.
 F

109
Fig. 15. Illustration of the difference between flow rescheduling on link 𝑋 in case of
Sieve employing link bandwidth occupation as a threshold, Fig. 15a, and employing
flow size as threshold adopted by Hedera depicted in Fig. 15b.

7. Discussion

So far, we presented our flow scheduling solution. In this section,
we justify our results by analyzing the behavior of Sieve in comparison
to Hedera and ECMP. For this sake, let us assume two links 𝑋 and
𝑌 receive several mixed flows whose arrival is Poisson process with
𝜆 parameter. For illustration, the link 𝑋 will be demonstrated with
four flows, e.g., three mice flows and one elephant flow. The first three
flows arrived and served in the first three time intervals, i.e., 𝑡1, 𝑡2, 𝑡3,
s shown in Fig. 15. Then, the elephant flow, i.e., Flow 4, begins
ith slow start phase within the third time interval, 𝑡3, as depicted in
ig. 15a-15b.



M. Zaher, A. Alawadi and S. Molnár Computer Communications 171 (2021) 99–111

𝑝
a
m
t

d
b
l
t
1
e
f
d
b
h
i
a
f
I
r

8

e
d
i
p
f
f
b
a
n
p
t
t
i
5
t
n

D

c
i

A

v
o

R
In case of Sieve, we define polling rates 𝑝1, 𝑝2,… to monitor the
load on the edge switches. Once the occupation rate on an edge switch
port of link 𝑋 reaches 25% of the total capacity, the controller starts to
detect elephant flows on it. Therefore, during the polling rates 𝑝1 and
𝑝2, the controller only saves the total load values on 𝑋 into the network
graph. However, during 𝑝3 the occupation reaches the threshold, so
elephant flow detection module discovers the elephant flow, and it tries
to reschedule it to another link with better bandwidth, i.e., 𝑌 , during
4 as shown in Fig. 15a. Consequently, some bandwidth will be avail-
ble for the current and upcoming mice or elephant flows. Worth to
ention, elephant flows rescheduling is not occurring frequently since

he alternative links may not absorb them.
On the other hand, Hedera monitors all flows at edge switches to

etect the elephant flows. However, the elephant flows detection is
ased on exceeding 10% of link capacity. Therefore, in case of 1 Gbps
ink, an elephant flow must occupy more than 100 Mbps. Hence, in
he co-existing of many elephant flows whose consumptions are below
0% of the link capacity for each, the link will be saturated before
lephant flows are appropriately detected and rescheduled. Thus, mice
lows will suffer from latency, and their FCT will increase as a result. As
epicted in Fig. 15b, every mice flow scheduled by ECMP after 𝑡7 will
e exposed to significant delay or even be lost since the elephant flows
ave already overtaken the link capacity. Furthermore, our framework
nvokes the elephant flow rescheduling only when a link occupation
pproaches 25% of its capacity. Besides, we sample a portion of the
lows. As a result, the monitoring and detection burden is reasonable.
n contrast, Hedera monitors consumption’s of each flow to invoke the
escheduling procedure.

. Conclusion

The emerging cloud-based technologies leverage DCN. Thus, it is
ssential to guarantee a suitable QoS to meet the requirements of
elay-sensitive applications. In this paper, we tackle the problem of
mproving FCT of mice flows in DCN, as well as maintain the through-
ut of elephant flows. We present Sieve which schedules a portion of
lows and reschedules the detected elephant flows. In addition, our
ramework is a distributed solution that balances the scheduling burden
etween the data plane and the control plane. Furthermore, we propose
sampling mechanism by which Sieve can sample a portion of the

etwork flows to mitigate the sampling overhead and ECMP-related
acket collisions. Besides, we investigate its impact on flow table size,
he controller overhead and the optimal values of the polling rate and
he threshold. We compare FCT of mice flows in case of Sieve to that
n case of Hedera and ECMP. We show that Sieve improves FCT up to
8% without impairing the throughput of elephant flows by conducting
hree scenario groups. Moreover, Sieve does not require any change
either in the network hardware nor in end-hosts.

eclaration of competing interest

The authors declare that they have no known competing finan-
ial interests or personal relationships that could have appeared to
nfluence the work reported in this paper.

cknowledgment

Project no. 135074 has been implemented with the support pro-
ided from the National Research, Development and Innovation Fund

f Hungary under the FK_20 funding scheme.

110
eferences

[1] A. Roy, H. Zeng, J. Bagga, G. Porter, A.C. Snoeren, Inside the social network’s
(datacenter) network, in: Proceedings of the ACM Conference on Special Interest
Group on Data Communication, 2015, pp. 123–137.

[2] A. Sivanathan, H.H. Gharakheili, F. Loi, A. Radford, C. Wijenayake, A. Vish-
wanath, V. Sivaraman, Classifying IoT devices in smart environments using
network traffic characteristics, IEEE Trans. Mob. Comput. 18 (8) (2018)
1745–1759.

[3] J.A. Rashid, Sorted-GFF: An efficient large flows placing mechanism in software
defined network datacenter, Karbala Int. J. Mod. Sci. 4 (3) (2018) 313–331.

[4] M. Alizadeh, A. Greenberg, D. Maltz, J. Padhye, P. Patel, B. Prabhakar, M.
Sridharan, DCTCP: Efficient packet transport for the commoditized data center,
2010.

[5] T. Benson, A. Akella, D.A. Maltz, Network traffic characteristics of data centers
in the wild, in: Proceedings of the 10th ACM SIGCOMM Conference on Internet
Measurement, 2010, pp. 267–280.

[6] A. Greenberg, J.R. Hamilton, N. Jain, S. Kandula, C. Kim, P. Lahiri, D.A. Maltz,
P. Patel, S. Sengupta, VL2: a scalable and flexible data center network, ACM
SIGCOMM Comput. Commun. Rev. 39 (4) (2009) 51–62.

[7] M. Noormohammadpour, C.S. Raghavendra, Datacenter traffic control: Under-
standing techniques and tradeoffs, IEEE Commun. Surv. Tutor. 20 (2) (2017)
1492–1525.

[8] J. Brutlag, Speed matters for Google web search, 2009, Google.
[9] N. Dukkipati, N. McKeown, Why flow-completion time is the right metric for

congestion control, ACM SIGCOMM Comput. Commun. Rev. 36 (1) (2006) 59–62.
[10] A.R. Curtis, W. Kim, P. Yalagandula, Mahout: Low-overhead datacenter traf-

fic management using end-host-based elephant detection, Infocom 11 (2011)
1629–1637.

[11] C.A. Wang, B. Hu, S. Chen, D. Li, B. Liu, A switch migration-based
decision-making scheme for balancing load in SDN, IEEE Access 5 (2017)
4537–4544.

[12] M. Al-Fares, S. Radhakrishnan, B. Raghavan, N. Huang, A. Vahdat, Hedera:
dynamic flow scheduling for data center networks, 10, (8) 2010, pp. 89–92.

[13] F. Tang, H. Zhang, L.T. Yang, L. Chen, Elephant flow detection and differentiated
scheduling with efficient sampling and classification, IEEE Trans. Cloud Comput.
(2019).

[14] A.R. Curtis, J.C. Mogul, J. Tourrilhes, P. Yalagandula, P. Sharma, S. Baner-
jee, Devoflow: Scaling flow management for high-performance networks, ACM
SIGCOMM Comput. Commun. Rev. 41 (4) (2011) 254–265.

[15] R. Trestian, G.M. Muntean, K. Katrinis, MiceTrap: Scalable traffic engineering
of datacenter mice flows using OpenFlow, in: 2013 IFIP/IEEE International
Symposium on Integrated Network Management (IM 2013), 2013, pp. 904–907.

[16] A. Yazidi, H. Abdi, B. Feng, Data center traffic scheduling with hot-cold link
detection capabilities, in: Proceedings of the 2018 Conference on Research in
Adaptive and Convergent Systems, 2018, pp. 268–275.

[17] Y.C. Wang, S.Y. You, An efficient route management framework for load balance
and overhead reduction in SDN-based data center networks, IEEE Trans. Netw.
Serv. Manag. 15 (4) (2018) 1422–1434.

[18] S. Kandula, D. Katabi, S. Sinha, A. Berger, Dynamic load balancing without
packet reordering, ACM SIGCOMM Comput. Commun. Rev. 37 (2) (2007) 51–62.

[19] M. Alizadeh, T. Edsall, S. Dharmapurikar, R. Vaidyanathan, K. Chu, A. Finger-
hut, V. Lam, F. Matus, R. Pan, N. Yadav, G. Varghese, CONGA: Distributed
congestion-aware load balancing for datacenters, in: Proceedings of the 2014
ACM Conference on SIGCOMM, 2014, pp. 503–514.

[20] S. Wang, J. Zhang, T. Huang, T. Pan, J. Liu, Y. Liu, Flow distribution-aware load
balancing for the datacenter, Comput. Commun. 106 (2017) 136–146.

[21] L. Liu, Y. Jiang, G. Shen, Q. Li, D. Lin, L. Li, Y. Wang, An SDN-based hybrid
strategy for load balancing in data center networks, in: 2019 IEEE Symposium
on Computers and Communications, 2019, pp. 1–6.

[22] M. Zaher, S. Molnar, Enhancing of micro flow transfer in SDN-based data center
networks, in: Proceeding of ICC 2019-2019 IEEE International Conference on
Communications, 2019, pp. 1–6.

[23] Y. Afek, A. Bremler-Barr, S.L. Feibish, L. Schiff, Detecting heavy flows in the
SDN match and action model, Comput. Netw. 136 (2018) 1–12.

[24] J. Zheng, Q. Ma, C. Tian, B. Li, H. Dai, H. Xu, Q. Ni, Hermes: Utility-aware
network update in software-defined wans, in: Proceedings of 2018 IEEE 26th
International Conference on Network Protocols (ICNP), 2018, pp. 231–240.

[25] J. Hu, J. Huang, W. Lv, Y. Zhou, J. Wang, T. He, CAPS: Coding-based adaptive
packet spraying to reduce flow completion time in data center, IEEE/ACM Trans.
Netw. 27 (6) (2019) 2338–2353.

[26] P. Wang, G. Trimponias, H. Xu, Y. Geng, Luopan: Sampling-based load balancing
in data center networks, IEEE Trans. Parallel Distrib. Syst. 30 (1) (2018)
133–145.

[27] M. Al-Fares, A. Loukissas, A. Vahdat, A scalable commodity data center network
architecture, ACM SIGCOMM Comput. Commun. Rev. 38 (4) (2008) 63–74.

[28] D. Erickson, The beacon OpenFlow controller, in: Proceeding of 2nd ACM
SIGCOMM Workshop Hot Topics Softw. Defined Netw., 2013, pp. 13–18.

[29] Y. Zhao, L. Iannone, M. Riguidel, On the performance of SDN controllers:
A reality check, in: Proceeding IEEE Conf. Netw. Funct. Virtualization Softw.

Defined Netw., 2015, pp. 79–85.

http://refhub.elsevier.com/S0140-3664(21)00076-1/sb2
http://refhub.elsevier.com/S0140-3664(21)00076-1/sb2
http://refhub.elsevier.com/S0140-3664(21)00076-1/sb2
http://refhub.elsevier.com/S0140-3664(21)00076-1/sb2
http://refhub.elsevier.com/S0140-3664(21)00076-1/sb2
http://refhub.elsevier.com/S0140-3664(21)00076-1/sb2
http://refhub.elsevier.com/S0140-3664(21)00076-1/sb2
http://refhub.elsevier.com/S0140-3664(21)00076-1/sb3
http://refhub.elsevier.com/S0140-3664(21)00076-1/sb3
http://refhub.elsevier.com/S0140-3664(21)00076-1/sb3
http://refhub.elsevier.com/S0140-3664(21)00076-1/sb4
http://refhub.elsevier.com/S0140-3664(21)00076-1/sb4
http://refhub.elsevier.com/S0140-3664(21)00076-1/sb4
http://refhub.elsevier.com/S0140-3664(21)00076-1/sb4
http://refhub.elsevier.com/S0140-3664(21)00076-1/sb4
http://refhub.elsevier.com/S0140-3664(21)00076-1/sb6
http://refhub.elsevier.com/S0140-3664(21)00076-1/sb6
http://refhub.elsevier.com/S0140-3664(21)00076-1/sb6
http://refhub.elsevier.com/S0140-3664(21)00076-1/sb6
http://refhub.elsevier.com/S0140-3664(21)00076-1/sb6
http://refhub.elsevier.com/S0140-3664(21)00076-1/sb7
http://refhub.elsevier.com/S0140-3664(21)00076-1/sb7
http://refhub.elsevier.com/S0140-3664(21)00076-1/sb7
http://refhub.elsevier.com/S0140-3664(21)00076-1/sb7
http://refhub.elsevier.com/S0140-3664(21)00076-1/sb7
http://refhub.elsevier.com/S0140-3664(21)00076-1/sb8
http://refhub.elsevier.com/S0140-3664(21)00076-1/sb9
http://refhub.elsevier.com/S0140-3664(21)00076-1/sb9
http://refhub.elsevier.com/S0140-3664(21)00076-1/sb9
http://refhub.elsevier.com/S0140-3664(21)00076-1/sb10
http://refhub.elsevier.com/S0140-3664(21)00076-1/sb10
http://refhub.elsevier.com/S0140-3664(21)00076-1/sb10
http://refhub.elsevier.com/S0140-3664(21)00076-1/sb10
http://refhub.elsevier.com/S0140-3664(21)00076-1/sb10
http://refhub.elsevier.com/S0140-3664(21)00076-1/sb11
http://refhub.elsevier.com/S0140-3664(21)00076-1/sb11
http://refhub.elsevier.com/S0140-3664(21)00076-1/sb11
http://refhub.elsevier.com/S0140-3664(21)00076-1/sb11
http://refhub.elsevier.com/S0140-3664(21)00076-1/sb11
http://refhub.elsevier.com/S0140-3664(21)00076-1/sb12
http://refhub.elsevier.com/S0140-3664(21)00076-1/sb12
http://refhub.elsevier.com/S0140-3664(21)00076-1/sb12
http://refhub.elsevier.com/S0140-3664(21)00076-1/sb13
http://refhub.elsevier.com/S0140-3664(21)00076-1/sb13
http://refhub.elsevier.com/S0140-3664(21)00076-1/sb13
http://refhub.elsevier.com/S0140-3664(21)00076-1/sb13
http://refhub.elsevier.com/S0140-3664(21)00076-1/sb13
http://refhub.elsevier.com/S0140-3664(21)00076-1/sb14
http://refhub.elsevier.com/S0140-3664(21)00076-1/sb14
http://refhub.elsevier.com/S0140-3664(21)00076-1/sb14
http://refhub.elsevier.com/S0140-3664(21)00076-1/sb14
http://refhub.elsevier.com/S0140-3664(21)00076-1/sb14
http://refhub.elsevier.com/S0140-3664(21)00076-1/sb17
http://refhub.elsevier.com/S0140-3664(21)00076-1/sb17
http://refhub.elsevier.com/S0140-3664(21)00076-1/sb17
http://refhub.elsevier.com/S0140-3664(21)00076-1/sb17
http://refhub.elsevier.com/S0140-3664(21)00076-1/sb17
http://refhub.elsevier.com/S0140-3664(21)00076-1/sb18
http://refhub.elsevier.com/S0140-3664(21)00076-1/sb18
http://refhub.elsevier.com/S0140-3664(21)00076-1/sb18
http://refhub.elsevier.com/S0140-3664(21)00076-1/sb20
http://refhub.elsevier.com/S0140-3664(21)00076-1/sb20
http://refhub.elsevier.com/S0140-3664(21)00076-1/sb20
http://refhub.elsevier.com/S0140-3664(21)00076-1/sb23
http://refhub.elsevier.com/S0140-3664(21)00076-1/sb23
http://refhub.elsevier.com/S0140-3664(21)00076-1/sb23
http://refhub.elsevier.com/S0140-3664(21)00076-1/sb25
http://refhub.elsevier.com/S0140-3664(21)00076-1/sb25
http://refhub.elsevier.com/S0140-3664(21)00076-1/sb25
http://refhub.elsevier.com/S0140-3664(21)00076-1/sb25
http://refhub.elsevier.com/S0140-3664(21)00076-1/sb25
http://refhub.elsevier.com/S0140-3664(21)00076-1/sb26
http://refhub.elsevier.com/S0140-3664(21)00076-1/sb26
http://refhub.elsevier.com/S0140-3664(21)00076-1/sb26
http://refhub.elsevier.com/S0140-3664(21)00076-1/sb26
http://refhub.elsevier.com/S0140-3664(21)00076-1/sb26
http://refhub.elsevier.com/S0140-3664(21)00076-1/sb27
http://refhub.elsevier.com/S0140-3664(21)00076-1/sb27
http://refhub.elsevier.com/S0140-3664(21)00076-1/sb27


M. Zaher, A. Alawadi and S. Molnár Computer Communications 171 (2021) 99–111
[30] Ryu: Ryu SDN Framework. http://osrg.github.io/ryu/ (Accessed 12 Mar. 2019).
[31] Apache.org: Apache HTTP server benchmarking tool. http://httpd.apache.org/

docs/current/install.html.
[32] N. Handigol, B. Heller, V. Jeyakumar, B. Lantz, N. McKeown, Reproducible

network experiments using container-based emulation, in: Proceedings of
the 8th International Conference on Emerging Networking Experiments and
Technologies, 2012, pp. 253–264.

[33] A. Alawadi, M. Zaher, S. Molnár, Methods for predicting behavior of elephant
flows in data center networks, Infocommunications J. XI (3) (2019) 34–41.

[34] H. Zhang, F. Tang, L. Barolli, Efficient flow detection and scheduling for SDN-
based big data centers, J. Ambient Intell. Humaniz. Comput. 10 (5) (2019)
1915–1926.

Maiass Zaher received his M.Sc. in Computer Science from
Faculty of Information Technology Engineering, Damascus
University, Damascus, Syria, in 2016. Since 2016, he is a
Ph.D. student in the Department of Telecommunication and
Media Informatics, Budapest University of Technology and
Economics, Budapest, Hungary.
111
Aymen Alawadi received his M.Sc. in Computer Science
from Universiti Sains Malaysia in Penang - Malaysia, in
2012. Since 2017, he is Ph.D. student in the Depart-
ment of Telecommunication and Media Informatics, Bu-
dapest University of Technology and Economics, Budapest,
Hungary.

Sándor Molnár received his M.Sc., Ph.D. and Habilitation
in Electrical Engineering and Computer Science from the
Budapest University of Technology and Economics (BME),
Budapest, Hungary, in 1991, 1996 and 2013, respectively. In
1995 he joined the Department of Telecommunications and
Media Informatics, BME. He is now an Associate Professor
and the principal investigator of the tele traffic research
program of the High-Speed Networks Laboratory.

http://osrg.github.io/ryu/
http://httpd.apache.org/docs/current/install.html
http://httpd.apache.org/docs/current/install.html
http://httpd.apache.org/docs/current/install.html
http://refhub.elsevier.com/S0140-3664(21)00076-1/sb33
http://refhub.elsevier.com/S0140-3664(21)00076-1/sb33
http://refhub.elsevier.com/S0140-3664(21)00076-1/sb33
http://refhub.elsevier.com/S0140-3664(21)00076-1/sb34
http://refhub.elsevier.com/S0140-3664(21)00076-1/sb34
http://refhub.elsevier.com/S0140-3664(21)00076-1/sb34
http://refhub.elsevier.com/S0140-3664(21)00076-1/sb34
http://refhub.elsevier.com/S0140-3664(21)00076-1/sb34

	Sieve: A flow scheduling framework in SDN based data center networks
	Introduction
	Preliminary
	Related work
	Central solutions
	Distributed solutions

	The proposed Sieve framework
	Flow sampling
	ECMP-based scheduling
	Flow schedule
	Port polling
	Elephant flow detection
	Elephant flow reschedule
	Path computation
	Flow installation
	Network graph

	Framework design aspects
	Problem formulation
	Flow detection
	Flow sampling
	Mitigate obsolete information
	Controller overhead
	Impact of threshold values
	Number of flow table entries
	Framework implementation

	Experimental results
	FCT of Mice flows
	Throughput of elephant flows
	Real workload

	Discussion
	Conclusion
	Declaration of competing interest
	Acknowledgment
	References


