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a b s t r a c t 

In this paper, we propose a networking paradigm built upon a fountain code based data transfer mech- 

anism. We advocate that, instead of controlling the congestion as it is applied in recent Internet by the 

Transmission Control Protocol (TCP), we can utilize congestion and neglect control algorithms with all 

of their drawbacks. We present our envisioned network architecture relying on a novel transport pro- 

tocol called Digital Fountain based Communication Protocol (DFCP) and highlight some potential applica- 

tion areas. We have implemented DFCP in the Linux kernel and we provide its validation results gained 

from three different testing platforms including our laboratory testbed, the Emulab network emulation 

environment and the ns-2 network simulator. Moreover, we present and discuss a comprehensive perfor- 

mance evaluation of DFCP in comparison with widely used TCP versions. 

© 2016 Elsevier B.V. All rights reserved. 
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1. Introduction 

A fearful phenomenon called congestion has been observed from

the beginning of computer networks when an aggregate demand

for a resource exceeds its available capacity. Congestion can result

in long delays, lost packets and consequently degraded quality of

the service and wasted resources of the network. The phenomenon

became even more dreadful in the early days of the Internet by

causing congestion collapse [1] when the increase in network load

led to the decrease of useful work in the entire network. It was

the reason to introduce congestion control , which is a set of mecha-

nisms to limit the demand-capacity mismatch by controlling traffic

sources when such a mismatch occurs. 

In the history of the Internet, closed-loop congestion control

was the successful paradigm to avoid congestion collapse and the

related performance degradation due to the overload of network

resources. Congestion control is mostly performed by the Trans-

mission Control Protocol (TCP) , which transports more than 80% of

Internet traffic. The basic idea behind the congestion control mech-

anism of TCP is that the sender gradually increases the transmis-

sion rate until a packet loss is detected, and when it happens, the

sending rate is cut in half starting the cycle again. Packets can be

lost due to both congestion and environmental factors (e.g. lossy

wireless links), which is typically indicated by an explicit feedback
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ignal, or inferred by the sender from the reception of three dupli-

ate acknowledgments. In this paper, we focus on this traditional

oss-based approach, however, we note that some TCP variants ad-

ust their transmission rate by measuring round-trip delay varia-

ions, or use hybrid solutions. The success of TCP was not even

uestioned until the fast development of networks, mobile devices

nd user applications resulted in heterogeneous and complex en-

ironments over the last decades. In order to fit these changes,

ignificant research was carried out to further develop TCP, and

herefore, several different TCP versions have been proposed [2–

] . However, it turned out that it will be very difficult to modify

CP to work efficiently as a universal transport protocol. 

In this paper, we propose a different data transfer paradigm,

amely, instead of avoiding congestion we advocate to allow it .

he main idea is that it might be possible to perform efficient

ommunication even in the presence of congestion. First, we

nable sources to transmit their data at the maximum possible rate ,

hich will shift the operation to the overloaded regime . Theoret-

cally, such a solution can be considered as the most efficient

ne, because the network would always be fully utilized by hosts

ending at maximal rates, and therefore, each additional capacity

ould immediately be consumed. In practice, however, this greedy

ehavior can lead to bandwidth waste that needs to be addressed

y a proper rate limitation mechanism (see Sections 3.2 and 7.6

or the discussion). Moreover, we suggest to apply efficient digital

ountain based coding schemes for encoding the application-level

ata. The proposed approach implies that packet loss becomes

nconsequential, which can considerably simplify network routers
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nd can result in highly reduced buffer sizes closely aligned to the

oncept of all-optical networking. Concerning stability, we can also

xpect improvements since transmitting at the maximum possible

ate would result in more predictable traffic patterns by avoiding

he high extent of rate variation often seen in TCP transmissions.

his property would make network design and dimensioning

asier tasks as well. Moreover, we suggest to use fair schedulers in

etwork nodes to ensure fairness among competing flows. Since

imple scalable schedulers are already available in routers, the

eamless deployment of the concept can be feasible. 

In order to take research on alternative data transfer paradigms

orward, we studied the possibility of applying a fountain code [6]

ased transport protocol instead of the congestion control based

CP. To the best of our knowledge, such a transport protocol has

ot been developed and implemented with a comprehensive per-

ormance evaluation study yet, thus we made our prototype im-

lementation and carried out a thorough analysis. First, we in-

roduced the Digital Fountain based Communication Protocol (DFCP)

n [7] with some preliminary analytical, simulation and testbed re-

ults. In this paper, the whole idea of the new architecture with

 detailed description and performance evaluation of DFCP is pre-

ented. Our intention is to deliver the message that the proposed

ransport mechanism can be a potential alternative to TCP for fu-

ure networks in several application areas. 

In summary, the main contributions of this paper are 

• the introduction of our envisioned network architecture and

data transfer paradigm with discussions on possible future ap-

plications and challenges, 

• a detailed description of our proposed transport protocol

(DFCP) including both design and implementation aspects, 

• the validation of our prototype implementation performed on

multiple platforms including our laboratory testbed, the Emu-

lab network emulation environment [8] and the ns-2 network

simulator [9] , 

• as well as a comprehensive performance evaluation of DFCP in

comparison with TCP 

– on both simulation and testbed platforms, 

– on multiple network topologies, 

– by investigating two widely used TCP versions in various

network conditions and 

– focusing on important performance metrics such as good-

put, flow completion time and fairness. 

The paper is organized as follows. First, in Section 2 we give

 brief overview about the evolution of TCP and digital fountain

odes. We also review the recent ideas proposed in the field of

ata transfer methods and protocols. In Section 3 , we introduce

nd discuss the envisioned network architecture built upon our

ewly developed transport protocol. Section 4 gives a detailed de-

cription of DFCP including the main design principles and imple-

entation issues. In Section 5 , we describe the evaluation method-

logy used for validation and comparative performance analysis. In

ection 6 , we present a multi-platform validation framework and

onfirm the operability of our protocol. A comprehensive perfor-

ance evaluation study of DFCP and different TCP versions is pre-

ented in Section 7 , then the future applications and challenges are

iscussed in Section 8 . Finally, Section 9 concludes the paper. 

. Related work 

.1. The evolution of TCP 

TCP is a connection-oriented transport protocol that provides

eliable data transfer in end-to-end communication. It means that

ost packets are retransmitted, and therefore, each sent packet will
e delivered to the destination. One of the most important fea-

ures of TCP is its congestion control mechanism, which is used

o avoid congestion collapse by determining the proper sending

ate and to achieve high performance. TCP maintains a congestion

indow that controls the number of outstanding unacknowledged

ata packets in the network. Continuously evolving network en-

ironments have made significant research demand on designing

ore and more efficient transport protocols in the last decades. As

 result, several TCP versions have been developed in order to fit

he ever-changing requirements of communication networks. 

In this paper, we investigate two widely used TCP variants,

amely TCP Cubic [10] and TCP NewReno with SACK [11] . In the

ase of TCP Reno, a lost packet is detected and retransmitted when

riple duplicate acknowledgments are received or a timeout event

ccurs at the sender. TCP Reno is effective to recover from a single

acket loss, but it still suffers from performance problems when

ultiple packets are dropped from a window of data [12] . TCP

ewReno is a slight modification of TCP Reno intended to improve

ts performance when a burst of packets is lost [11] . TCP Cubic is

n enhanced version of its predecessor, BIC TCP [13] . BIC TCP was

riginally designed to solve the well-known RTT (round-trip time)

nfairness problem by combining two schemes called additive in-

rease and binary search. TCP Cubic simplifies the window con-

rol of BIC and it applies a cubic function in terms of the elapsed

ime since the last loss event, which provides good stability and

calability [10] . 

Beyond the protocols described above, many other solutions

ave been worked out to improve the performance of traditional

CP. One of the main issues is that it takes a long time to make

 full recovery from packet loss for high-bandwidth, long-distance

onnections, because the congestion window builds up very slowly.

n order to cope with this limitation, HighSpeed TCP (HSTCP) [14]

as proposed to achieve better performance on high-capacity links

y modifying the congestion control mechanism of TCP for use

ith large congestion windows. Scalable TCP (STCP) [15] applies

 multiplicative increase and multiplicative decrease algorithm

o obtain performance improvement in high-speed networks and

t can also guarantee the scalability of the protocol. TCP West-

ood [16] is a sender-side modification of the congestion con-

rol mechanism that improves the performance of TCP Reno both

n wired and wireless networks. The main problem is that Reno

annot distinguish between random and congestion losses, thus

qually reacts to them. In fact, TCP Westwood shows moder-

te sensitivity to random errors, therefore the improvement is

he most significant in wireless networks with lossy links. FAST

CP [17] is a congestion avoidance algorithm especially targeted for

ong-distance, high-latency links. FAST determines the current con-

estion window size based on both round-trip delays and packet

osses over a path. The algorithm estimates the queuing delay of

he path using RTTs and if the delay falls below a threshold, it in-

reases the window aggressively. If it gets closer to the threshold,

he algorithm slowly reduces the increasing rate. MultiPath TCP

MPTCP) [18] is a recent approach for enabling the simultaneous

se of several IP addresses or interfaces by a modification of TCP

hat presents a regular TCP interface to applications, while in fact

preading data across several subflows. 

Traditional TCP and its variants were primarily designed for

ired networks, but emerging wireless networks and the increas-

ng demands motivated researchers to develop new versions and

ptimize them for different network environments. The perfor-

ance issues experienced in such environments stem from the

nique characteristics of wireless links and the packet loss model

sed by TCP. The problems manifest in various applications as

egradation of throughput, inefficiency in network resource uti-

ization and excessive interruption of data transmissions. Mod-

fication of standard TCP to remedy its deficiency in wireless
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communication has been an active research area in the recent

years, and many schemes have been proposed for various environ-

ments such as satellite, ad-hoc and cellular networks [19] . 

2.2. Digital fountain codes 

Fountain codes, also known as rateless codes, are a class of era-

sure codes with the property that a potentially limitless sequence

of encoded symbols ( n ) can be generated from a given set of source

symbols ( k ) such that the original source symbols can ideally be

recovered from any subset of the encoded symbols of size equal

to, or only slightly larger than the number of source symbols [6] .

In contrast to traditional erasure codes, rateless codes do not have

a fixed coding rate, and this coding rate tends to zero as the length

of the encoded message tends to infinity (i.e. k 
n → 0 if n → ∞ ). 

Historically, Tornado codes [20] were the first modern fountain

codes, but they were proven to be impractical due to the require-

ment for a cascade of graphs. Hence, they were quickly replaced by

irregular Luby Transform (LT) codes [21] , which have much simpler

structure and equal or even better performance. The main draw-

back of LT codes was that they failed to provide low complexity

encoding and decoding operations. 

In these days, Raptor codes [22] are the most efficient ones in

the family of fountain codes. They offer linear time encoding and

decoding complexity, as well as require only a small number of

XOR operations for each generated symbol. Raptor codes are spec-

ified in [23] , but they have also been adopted into multiple stan-

dards, such as in the area of broadcast file delivery and streaming

services. Currently, the most flexible and powerful variant of Rap-

tor codes is RaptorQ [24] , which supports larger source block sizes

and provides better coding efficiency. 

2.3. Data transfer paradigms 

In the last decade, the issues of TCP motivated researchers to

find alternative ways for data transfer beside the traditional con-

gestion control based approach. One of these ideas was suggested

by GENI (Global Environment for Network Innovations) [25] , rec-

ommending the omission of congestion control from the trans-

port layer and promoting erasure coding schemes instead to han-

dle congestion and its consequences. Unfortunately, no realization

or further refinement of this concept has been published so far. In

the following, we review some related work. 

Raghavan and Snoeren proposed a decongestion controller and

investigated its properties in [26] . Bonald et al. studied the net-

work behavior in the absence of congestion control [27] . We em-

phasize their astonishing result, that is, operating a network with-

out congestion control does not necessarily result in congestion

collapse. 

Furthermore, many research works focused on the application

of erasure codes in data transport. López et al. investigated a foun-

tain based protocol using game theory [28] . They found that a

Nash equilibrium can be obtained, and at this equilibrium, the per-

formance of the network is close to the performance experienced

when all hosts use TCP. Kumar et al. proposed a transport pro-

tocol based on fountain codes for wireless networks and pointed

out that, regarding performance, this approach can be beneficial in

such environments [29] . Botos et al. suggested a modified TCP for

high loss rate environment by utilizing rateless erasure codes [30] .

In their proposal, the well-known slow-start and congestion avoid-

ance algorithms of TCP are used, but some modifications are sug-

gested to avoid the dramatic decrease of the sending rate in case

of high packet loss. Another mechanism called TCP/NC that in-

corporates network coding into TCP with only minor changes to

the protocol stack is presented in [31] . According to this method,
he source transmits random linear combinations of packets cur-

ently found in the congestion window. Coding essentially masks

osses from the congestion control algorithm and allows TCP/NC

o react smoothly to them providing an effective solution for con-

estion control in lossy environments such as wireless networks.

ui et al. proposed FMTCP (Fountain code-based Multipath TCP)

n [32] to improve the performance of MPTCP by effectively mit-

gating the negative impact of the heterogeneity of different paths.

MTCP takes advantage of the random nature of fountain codes to

exibly transmit encoded symbols from the same or different data

locks over different subflows, and also achieves much more stable

erformance under abrupt changes of path quality. 

. Networking without congestion control 

This section is devoted to envision a network architecture based

n digital fountain based transfer and to highlight the benefits of

his approach with potential future applications. The main com-

onent of the architecture is a novel transport mechanism, which

rovides reliable transmission by efficient erasure coding and in-

erently makes it possible to get rid of congestion control and all

elated tasks at the transport layer. 

.1. Operating principles 

The novel data transfer method uses efficient erasure coding

chemes to recover lost packets instead of traditional retransmis-

ions. This approach enables endpoints to transmit at the maximum

ossible rate , thus the network can easily be driven to a state with

eavily congested, fully utilized links. In our transport protocol,

e propose to use Raptor codes [22] as a forward error correction

FEC) mechanism to cope with packet losses, which is an extension

f LT codes with linear time encoding and decoding complexity. 

The suggested network architecture relying on digital fountain

ased error correction is shown in Fig. 1 . We have multiple senders

ommunicating with the corresponding receivers by producing a

otentially infinite stream of encoded symbols from the original

essage of size k . Each received packet at the destination host in-

reases the probability of successful decoding, and once any sub-

et of size � (1 + ε) k � encoded symbols arrive to the receiver, de-

oding can be performed successfully with high probability (here

> 0 denotes the amount of redundancy added to the original

essage). One of the most important issues that must be resolved

y this novel network architecture is fairness. More exactly, mech-

nisms have to be provided in order to give a solution to the share

llocation problem among competing traffic flows sending at dif-

erent rates. To this end, we suggest the use of fair schedulers in the

etwork nodes since several implementations approximating the

deal fair scheduling, such as Deficit Round Robin (DRR) [33] , are

vailable and can be configured easily in network routers. If equal

andwidth sharing is provided by the inner nodes then it becomes

ossible to decouple fairness control from the transport layer pro-

ocol, as fairness can be treated in an orthogonal way. The feasibil-

ty of this approach is supported by the scalability of per-flow fair

ueuing [34,35] . 

.2. Rate control 

Greedy transmission at the maximum rate can easily lead to

n operational state when a huge number of packets are steadily

ent via some parts of the network, but reaching a bottleneck, they

re dropped. This unnecessary wasting of available bandwidth, also

nown as dead packet phenomenon , can be avoided in several ways.

The sender could perform passive or active measurements on

he currently available bandwidth along its network path like in
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Fig. 1. The network architecture utilizing digital fountain based data transfer. 
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he case of UDT (UDP-based Data Transport) [36] . Available band-

idth estimation (ABwE) [37] has received considerable attention

n the last decades due to its key role in many areas of networking

uch as transport layer protocols, admission control, network man-

gement and multimedia streaming. The majority of ABwE tech-

iques send probe packets to the receiver utilized in the estima-

ion process and are based on two basic models: the Probe Gap

odel (PGM) and the Probe Rate Model (PRM). PGM exploits the

nformation about gap dispersion between two consecutive probe

ackets at the receiver. The gap dispersion has a strong correla-

ion with the amount of cross-traffic in the tight link, that is, with

he link having the lowest available bandwidth. The methods using

GM (e.g. Abing, IGI, Spruce) first determine the amount of cross-

raffic, and then subtract the result from the known capacity of

he tight link. PRM tools (e.g. Pathload, pathChirp, DietTopp) are

ased on the idea of self-induced congestion where probe packets

re sent at increasing rates to the receiver, and the available band-

idth is determined by studying the change of the queuing delay

nd measuring the output rate. Different ABwE techniques work

ith different overhead, speed and estimation error. In fact, it is al-

ost impossible to obtain very precise estimation results because

f the fast and dynamic change of traffic conditions, however, the

roposed transfer mechanism does not require high accuracy. One

f the key principles of our concept is to operate the network in

he overloaded regime, which makes it possible to fully utilize the

vailable resources. Of course, this approach leads to a considerable

mount of packet loss at the network nodes, but from the user’s

oint of view goodput-based QoE metrics will only slightly be af-

ected even in case of high congestion levels. Although the con-

equences of shifting the operation to the overloaded regime is a

elevant aspect to be considered by the network operator, a rough

stimate of the bottleneck bandwidth is still sufficient to reduce

he packet drop rate at the buffers (overestimation is preferred),

nd to keep it in an acceptable range. The measurement frequency

epends on the applied algorithm, but it is practical to perform

stimation such that it can roughly follow the network dynamics

ithout causing significant overhead. 

Another possibility to adjust the source rate properly is us-

ng a mechanism capable of providing feedback about network con-

estion , e.g. as XCP (eXplicit Control Protocol) [38] does. One of

he most widely known solutions is called ECN (Explicit Con-
estion Notification) [39] , which allows to signal congestion by

arking packets instead of dropping them from the buffer. The

e-ECN [40] protocol extends the ECN mechanism in order to

nform the routers along a path about the estimated level of con-

estion. Today, network elements at any layer may signal con-

estion to the receiver by dropping packets or by ECN markings,

nd the receiver passes this information back to the sender in a

ransport layer feedback. ConEx (Congestion Exposure) [41] is a re-

ent proposal, currently being standardized by IETF, that enables

he sender to relay the congestion information back into the net-

ork in-band at the IP layer, such that the total amount of con-

estion from each element on the path is revealed to all nodes,

hich can be used to provide input for traffic management. SDN-

ased (Software-Defined Networking) mechanisms can also help to

ope with this issue where the network domains have dedicated

entral controllers with central knowledge regarding the domains,

ence they could provide information on the available bandwidth

o senders. For example, OpenTCP [42] is an SDN-based framework,

hich takes advantage of the global network view available at the

ontroller to make faster and more accurate congestion control

ecisions. 

.3. Potential benefits 

In this part, we give some possible applications and use-cases

f the proposed networking paradigm. For example, our scheme

upports not only unicast type traffic but inherently provides effi-

ient solution for multicast and broadcast services . The more chal-

enging n -to-1 and n -to- n communication patterns including multi-

le servers can also be realized in a straightforward manner due to

he beneficial properties of the fountain coding based approach, as

t does not matter which part of the message is received, and it can

e guaranteed that each received block provides extra information.

n addition, our transport mechanism enables multipath communi-

ation , which has received a great interest in the recent years be-

ause of its potential to achieve higher network resiliency and load

alancing targets. Another possible application area is data centers

ince the solution fits very well to the high utilization requirement

f such environments. Moreover, our transport protocol is insensi-

ive to packet loss and delay in contrast to TCP making it a good

andidate for wireless networks . The deployment in optical networks
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Fig. 2. Protocol header structure. 
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should also be considered reflecting the fact that the proposed

framework can support bufferless networking, thus it has the abil-

ity to eliminate the expensive power-hungry line cards and to

build all-optical cross-connects. A more detailed discussion about

the application and deployment options can be found in Section 8 .

4. DFCP: design and implementation 

This section is devoted to introduce the Digital Fountain based

Communication Protocol (DFCP), and to describe the main design

principles and implementation issues. First, a brief overview of

DFCP is given, then its operating mechanism is discussed includ-

ing the protocol header structure, the connection establishment

and termination processes, the coding and data transfer method,

as well as flow control. Since DFCP is currently under research and

development, we close this section with adjustable protocol spe-

cific parameters intended to facilitate future experimentations. 

4.1. Overview 

DFCP is a connection-oriented transport protocol, which can

be found in the transport layer of the TCP/IP stack, and it en-

sures reliable end-to-end communication between hosts like TCP.

The operation of the protocol consists of four main steps, namely

connection establishment, coding, data transfer and connection ter-

mination. However, unlike TCP our protocol does not use any con-

gestion control algorithm, but just encodes the data using Rap-

tor codes and sends the encoded data towards the receiver at the

maximum possible rate yielding a very efficient operation. In this

case, efficient means that available resources in the network can be

fully and quickly utilized without experiencing performance degra-

dation. Although coding and decoding need an extra overhead, it

will be shown in Section 7 that this approach has many advan-

tages and can eliminate several drawbacks of TCP. 

DFCP has been implemented in the Linux kernel version

2.6.26–2. Similar to TCP, the interaction between the applications

and our transport mechanism is handled through the socket layer

using the standard system calls. The socket structure associated

with DFCP stores all protocol specific information including flow

control and coding settings. 

4.2. Protocol header 

The protocol header can be seen in Fig. 2 including the name

of each field and its size in bits. The source and destination ports

give the port numbers used for the communication between the

sender and receiver applications. Since packets are organized into

blocks, the block ID identifies the block which the given packet
elongs to. The fields S1, S2 and S3 contain 32-bit unsigned inte-

ers, which play roles in the encoding and decoding processes. The

ffset gives the number of 32-bit words in the header, and hence

pecifies where the first bit of the application data can be found.

lags (e.g. SYN , FIN ) are primarily used in the connection establish-

ent and termination phases. The checksum is a generated num-

er depending on the content of the header and partially on the

ata field. 

.3. Connection establishment and signaling 

DFCP’s connection establishment is based on a three-way hand-

hake procedure as in the case of TCP [43] . The handshaking mech-

nism is designed so that the sender can negotiate all the parame-

ers necessary for decoding with the receiver before transmitting

pplication data. When the data is successfully received by the

estination host, the connection is released similarly to TCP. Since

FCP keeps the network congested due to the operation in the

verloaded regime, important signaling messages and acknowledg-

ents can be lost during the transmission. A possible way to han-

le this problem is giving high priority to these packets. 

.4. Coding scheme 

The flow chart of the coding and data transfer process can be

een in Fig. 4 . Once the connection is successfully established, the

rotocol is ready to send application-level data. First, the original

ata bytes received from the application are organized into mes-

age blocks and each of them is temporarily stored as a struc-

ure in the kernel memory before encoding. DFCP performs encod-

ng for the stored message blocks sequentially, and once a given

ncoded block has been transferred to the receiver, the allocated

emory is freed. 

As shown in Fig. 3 , Raptor coding [22] involves two phases: pre-

oding and LT coding [21] . In our implementation, precoding is re-

lized by LDPC (Low-Density Parity-Check) coding [44] , which adds

ome redundant bytes to the original message. The LT coder uses

he result of the LDPC coding phase as input and produces a po-

entially infinite stream of encoded bytes. 
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Window

Message block

63,536 bytes

LDPC coding LT coding

Raptor coding

Encoded block

63,536 + 2,000 bytes

65,536 bytes

Application-level data

Fig. 4. The flow chart of the coding and data transfer process. 

x1 + x2 + x3 + x4 + x6 + x8 + x10 = 0

x1 + x3 + x4 + x7 + x8 + x9 + x10 = 0

x2 + x4 + x8 = 0

x1 + x5 + x7 + x8 + x9 + x10 = 0

x3 + x4 + x5 + x7 + x9 = 0

x1

x2

x3

x4

x5

x6

x7

x8

x9

x10

Fig. 5. Example of an LDPC code. 
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Fig. 6. The concept of LT coding. 
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The concept of LDPC coding is the following. Let us consider a

ipartite graph having n m 

nodes on the left side and n c nodes on

he right side. The nodes on the left and right sides are referred

o as messages nodes and check nodes , respectively. An example is

hown in Fig. 5 . As can be seen, for each check node it holds that

he sum (XOR) of the adjacent message nodes is zero. In the latest

ersion of the protocol, LDPC codes are generated by using a given

robability distribution, and the initial value of the check nodes

s set to zero. A specific degree d is calculated for each message

ode, which determines the number of its neighbors. After that,

 check nodes are selected by using a uniform distribution. These

heck nodes will be the neighbors of the actual message node, and

he new values of check nodes are computed as follows: 

 r = c r ⊕ m i (1) 

here c r denotes the randomly chosen check node and m i is the

ctual message node. The value of a message node is associated

ith a byte of the original message. The LDPC encoder receives the

pplication-level data in k bytes long blocks, which are extended

y n − k redundant bytes, and as a result the length of the encoded

essage will be n . In our implementation, the size of the original

essage block is k = 63536 and n − k = 20 0 0 redundant bytes are

dded, thus the encoded length is n = 65536 . If the application-

evel data is less than k , it will be padded with dummy bytes. It is

n important part of the LDPC coding process that a random gen-

rator is used at both sender and receiver sides. The initial state of

he random generator is determined by three variables (S1, S2 and

3), which are exchanged through the SYN and SYNACK segments. 

The second phase of the Raptor coding scheme, LT coding ,

s performed on an encoded block of 65536 bytes received
rom the LDPC encoder. Fig. 6 illustrates the LT coding process

hrough a simple example. We have a given set of source symbols

 1 , x 2 , . . . , x n (which correspond to single bytes in our implemen-

ation), and we would like to produce an encoded output symbol

 . To this end, a degree distribution has to be given first, which

efines how many source symbols will be used for generating the

utput symbol. After that, the following steps are performed: 

• Step 1. A degree d is chosen based on the given degree distri-

bution, which is equal to d = 3 in this example. 

• Step 2. A specified number of random source symbols r 1 ,

r 2 , . . . , r d are selected according to the previously chosen de-

gree. 

• Step 3. XOR operations are performed on the selected source

symbols resulting in an encoded output symbol, that is y = r 1 ⊕
r 2 ⊕ · · · ⊕ r d = r 1 ⊕ r 2 ⊕ r 3 . 

This procedure generates a single encoded byte that can be re-

eated as many times as needed. Finally, the LT encoder provides

n encoded byte stream as output, which is then organized into

5536 bytes long encoded blocks. Since the actual state of the ran-

om generator depending on the initial state and the block ID is

ncluded in the protocol header, decoding at the receiver can be

erformed successfully. 

.5. Data transfer and flow control 

In order to prevent buffer overflows at the receiver side, we in-

roduce a simple flow control mechanism by using a sliding win-

ow (see Fig. 4 ). The sender is allowed to send a certain number of

T encoded blocks, specified by the window size, without waiting

or acknowledgments. Each encoded block is divided into packets

nd the encoded data is sent to the receiver packet by packet for

ll blocks found in the window. The size of a DFCP packet extended
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with the protocol headers is close to the MTU. During the trans-

mission, the sending rate is controlled at the source host accord-

ing to the result provided by the bandwidth estimation algorithm.

The data transfer process continues until an acknowledgment has

been received for the given block allowing the user application to

send the next encoded blocks. This procedure guarantees that even

if a large number of packets are lost, the receiver is able to re-

store the original message. As soon as the receiver has collected

a sufficient number of LT encoded bytes (arriving in packets), it

sends an acknowledgment for the received block to the sender. If

the acknowledgment has been lost, the receiver resends it when

additional packets are received from the same block. To ensure in-

order delivery, DFCP assigns a continuously increasing unique iden-

tifier to each block in the protocol header, hence the receiver can

recover the original order of blocks automatically. 

We mention that, until a block ACK travels back to the

sender, it produces and transmits additional encoded symbols

which are not useful for the receiver, and this phenomenon is

more pronounced in high BDP networks. However, first of all

we emphasize that any kind of reliable, feedback based trans-

port mechanisms (including TCP) suffer from similar issues causing

performance degradation or low network utilization. In comparison

with TCP, DFCP utilizes available resources more efficiently at the

price of this factor, but its impact can be mitigated in several ways.

For example, acknowledgments can be sent immediately by the re-

ceiver when enough encoded symbols are received even if decod-

ing has not been performed yet. In the case of RaptorQ [24] , which

is currently the most efficient variant of Raptor codes, only two

additional symbols can provide a successful decoding probability

greater than 99.9999%. Decoding failure is very rare, but when it

occurs the extra packets received in the meantime will be enough

for a successful outcome. Another possible way is to collect statis-

tics about some relevant network parameters such as link delay

and packet loss rate, and to calculate the expected number of en-

coded symbols to be sent, which will probably be sufficient for de-

coding at the receiver. The main advantage of this approach is that

the sender can stop the transmission of encoded symbols with-

out waiting for an ACK, and additional symbols are required only

in the case when the link characteristics change abruptly (e.g. the

loss rate gets significantly higher than the estimated value). More-

over, the block size can also be flexibly set in a wide range, which

could lead to more efficient operation in some applications (e.g.

long data transfers) as the number of unnecessarily sent symbols

can be reduced. 

4.6. Main parameters 

Since DFCP is currently under development, it is important to

make it possible to experiment by adjusting some protocol specific

parameters. In the recent version of the protocol, the following pa-

rameters can be set: 

• Window size. It controls the number of LT encoded blocks

within the sliding window. The receiver acknowledges each

block, but the sender is allowed to send all blocks of a window

without waiting for acknowledgments. 

• Redundancy. It gives the redundancy (in percentage) added to

the original message by both the LDPC and LT coders. The low-

est possible value of this parameter depends on the applied

coding scheme. In general, the lower the value, the more useful

data can be transmitted from source to destination. 

• Acknowledgments. ACKs can be switched ON or OFF that is ad-

vantageous for experimental reasons. The purpose of using ac-

knowledgments is twofold: (1) it gives a feedback to the sender

about the blocks successfully received by the destination host,

and (2) controls the speed of the sender preventing buffer over-
flow at the receiver side. In OFF state, we can investigate the

properties of the maximal rate sending mechanism by ignoring

many subsidiary factors. 

• Encoding and decoding. Coding phases can be switched ON

or OFF independently of each other to study the impact of the

Raptor codec implementation on the performance of DFCP. If

encoding is set to OFF, only the first block is encoded mak-

ing possible to ignore the overhead of the encoding process.

In this case, all message blocks are replaced by this block

and it is sent instead of the original blocks. If decoding is

switched OFF, decoding is not performed, but it can be deter-

mined by the receiver that successful decoding would be pos-

sible or not. This option enables to separate the coding process

from the transport mechanism, and hence, to focus on the new

data transfer paradigm. The use of Raptor codes is only one

possible option for encoding data, and our concept is not re-

stricted to the type of fountain code and is open for its future

evolution. 

. Performance evaluation methodology 

In practice, performance evaluation of a transport protocol re-

uires using different tools to get a clear picture about its behav-

or and specific properties, and to draw right conclusions. Even

o, most researchers choose only one way to investigate their pro-

osed protocols, namely simulation or testbed measurements. Es-

ecially for novel protocols and algorithms, it can be misleading

ue to the unique nature of such environments. On the one hand,

he main risk of relying only on simulation results is the fact that

imulation environments are far from realistic in most cases, thus

any real-world factors can easily be neglected [45,46] . On the

ther hand, performing only testbed measurements can also lead

o the loss of generality, because special hardware components

an affect the results. In addition, building a network testbed is

 time-consuming process, and measurements are very difficult to

epeat [47,48] . 

Since DFCP is based on a novel paradigm, it is crucial to ensure

hat our performance analysis results are reliable and the conclu-

ions are valid. In order to fit these requirements, the measure-

ents were carried out on multiple platforms including our lab-

ratory testbed, the Emulab network emulation environment [8]

nd the ns-2 network simulator [9] . First, this section describes

he performance metrics used for the evaluation, and after that the

etwork topologies and scenarios are presented. Finally, a descrip-

ion of the different platforms is given focusing on the settings and

arameters used in the analysis. 

.1. Performance metrics 

To evaluate the performance of transport protocols, there are

ome well-known metrics. One of the most widely used mea-

ures is throughput , which gives the amount of data successfully

ransferred per second from source to destination. However, in

any cases – especially if we compare the efficiency of trans-

ort mechanisms based on different principles – it is better to

nvestigate goodput instead of throughput, because it refers only

o the useful data bytes taking into account the protocol head-

rs, the added redundancy and the coding overhead. Therefore, in

ur measurements goodput was used as a primary performance

etric. 

In the case of our proposed network architecture built upon

FCP, the analytical calculation of the goodput is feasible for sim-

le scenarios. For example, consider a dumbbell topology ( Fig. 7 )

ith a single bottleneck link of capacity c B and N senders having

ccess link capacities c 1 , c 2 , . . . , c N . Each sender transfers one flow

imultaneously that results in N concurrent flows competing for
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Fig. 7. Dumbbell topology with N source-destination pairs. 
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Fig. 8. Parking lot topology with three source-destination pairs. 
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he shared bottleneck capacity. Assuming that fair schedulers are

sed in the network routers, and the redundancy is denoted by

, the goodput of flow i can be given as follows ( I is an indicator

ariable): 

 i = 

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

c B 
(1 + ε i ) N 

∀ j : c j ≥ c B 
N 

c i 
1 + ε i 

c i < 

c B 
N 

c B −
∑ N 

k =1 I { c k < c B N } c k 

(1 + ε i ) 
N ∑ 

k =1 

I { c k ≥ c B 
N } 

∃ j : c j < 

c B 
N 

and c i ≥ c B 
N 

. (2) 

Beyond measures related to the transfer rate, flow completion

ime (FCT) also serves as an important metric since most of the

pplications use flow transfers and the users’ main interest is to

ownload their flows as fast as possible [49] . FCT is the time

lapsed from when the first packet of a flow is sent until the

ast packet is received. Flows transmitted via the Internet have

ery complex characteristics [50] , and the mechanisms of differ-

nt transport protocols can handle them differently. For example,

t is known that TCP enters the congestion avoidance phase after

low-start, which takes many round-trip times, but the majority of

hort-lived flows never leave slow-start resulting in a high FCT. In

he case of long-lived flows the additive increase of the congestion

voidance phase limits the transfer speed, and the fact that TCP

lls the bottleneck buffer also contributes to the increase of FCT

nd it is far from being optimal. 

Fairness is also an important property of transport protocols de-

cribing how they behave in a situation when two or more flows

ompete for the available bandwidth of a bottleneck link. In our

xperiments we used the Jain’s index as the fairness measure,

hich is a widely accepted fairness index in the literature [51] .

ain’s index can be calculated by the following formula: 

I = 

( 
∑ n 

i =1 x i ) 
2 

n 

∑ n 
i =1 x 

2 
i 

(3) 

here x i denotes the throughput (or goodput) of flow i and n is

he number of flows. It returns a value between 0 and 1 where a

igher value indicates a higher degree of fairness. 

.2. Network topologies and scenarios 

The performance of DFCP was evaluated on different network

opologies including the simple dumbbell topology and the more

omplex parking lot topology frequently used in the literature for

xperiments [52] . The dumbbell topology consisting of N source-

estination pairs can be seen in Fig. 7 . First, we experimented with

 single flow ( N = 1 ) to reveal the ability of DFCP to resist against

arying delay and packet loss rate parameters of the network. In

his case, the bottleneck link capacity ( c B ) was set to 1 Gbps. Fur-

hermore, we studied the fairness properties of DFCP by using two

ource and destination nodes ( N = 2 ). The main purpose was to
bserve how DFCP behaves in a situation when two concurrent

ows compete for the available bandwidth determined by the bot-

leneck link. In this scenario, both the access links ( a 1 , a 2 ) and the

ottleneck link ( B ) had a capacity of 1 Gbps. Regarding scalabil-

ty , we investigated the performance and fairness stability of DFCP

or increasing number of flows ( N = 10 , 20 , . . . , 100 ) and bottleneck

andwidth ( c B = 0 . 1 , 1 , 10 Gbps). 

The scenarios described above made possible to explore the

undamental features of DFCP and its scalability. Beyond these ex-

eriments, DFCP was studied in a more realistic environment as

ell. Fig. 8 depicts a parking lot topology with three sender and

eceiver nodes, which contains two bottleneck links. In a real net-

ork multiple bottlenecks are common, and therefore, it is indis-

ensable to evaluate how a transport protocol performs in such

onditions. In these tests, the capacity was 1 Gbps for each access

ink ( a 1 , a 2 , a 3 ), and the bottleneck link capacities ( c B 1 , c B 2 ) were

et to different values as discussed in the following sections. 

Measurements lasted for 60 s in most scenarios (except if men-

ioned otherwise), and the results were obtained by excluding the

rst 15 s in order to ignore the impact of transient behavior of

he investigated transport protocols. In the case of multiple flows

hey were started at the same time, and for scheduling disci-

line WFQ (Weighted Fair Queuing) was applied by default with

qual weights [53] . However, we also experimented with other fair

chedulers like DRR (suggested previously for our paradigm) [33]

nd SFQ (Stochastic Fair Queuing) [54] , as well as with FIFO sched-

ler (using the DropTail queue management policy) which is the

implest algorithm available in today’s network routers. 

.3. Test environments 

To validate the performance evaluation results, the test scenar-

os were executed on the following three different platforms inde-

endently [55] , and here we give a brief description of each in-

luding 

(1) our laboratory testbed, 

(2) the Emulab network emulation environment, 

(3) as well as the ns-2 network simulator. 

The laboratory testbed consisted of senders, receivers and a

ummynet network emulator [56] , which was used for simulating

arious network parameters such as queue length, bandwidth, de-

ay and packet loss probability. Each test computer was equipped

ith the same hardware components according to Table 1 . 

Our second testing platform was Emulab , which is a network

estbed giving researchers a wide range of environments in which

o develop, debug and evaluate their systems [8] . The measure-

ent setup was identical to the one used in our laboratory testbed

or each test scenario, but the test machines were equipped with

ifferent hardware components as summarized in Table 2 . The

ype of the sender and receiver nodes was pc30 0 0 according to

he Emulab label system, and the network emulators were run

n d710 type nodes. Similar to the testbed measurements, our

odified kernel including the implementation of DFCP was loaded

nto the test computers. 
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Table 1 

Hardware components of our laboratory test computers. 

Component Type and parameters 

(a) Hardware components of senders and receivers 

Processor Intel® Core TM 2 Duo E8400 @ 3 GHz 

Memory 2GB DDR2 RAM 

Network adapter TP-Link TG-3468 Gigabit PCI-E 

Operating system Debian Lenny with modified kernel 

(b) Hardware components of network emulators 

Processor Intel® Core TM i3-530 @ 2.93 GHz 

Memory 2GB DDR2 RAM 

Network adapter TP-Link TG-3468 Gigabit PCI-E 

Operating system FreeBSD 8.2 

Table 2 

Hardware components of the Emulab test computers. 

Component Type and parameters 

(a) Hardware components of senders and receivers 

Processor Intel® Xeon® processors @ 3 GHz 

Memory 2GB DDR2 RAM 

Network adapter Intel Gigabit PCI-E 

Operating system Debian Lenny with modified kernel 

(b) Hardware components of network emulators 

Processor Intel® Xeon® E5530 @ 2.40 GHz 

Memory 12GB DDR2 RAM 

Network adapter Broadcom NetXtreme II 5709 Gigabit PCI-E 

Operating system FreeBSD 8.3 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 3 

Goodput performance in Mbps for different network parameters. 

Platform Packet loss rate Round-trip time 

0.1% 1% 5% 10% 0 ms 10 ms 50 ms 

Testbed 730 690 623 562 791 791 774 

Emulab 773 718 649 583 821 821 821 

ns-2 755 720 677 631 842 842 842 
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The third tool was the ns-2 network simulator to validate DFCP,

which is widely used by researchers to try out and evaluate their

new methods [9] . Since the first prototype of DFCP has been imple-

mented in the Linux kernel, we had to find a way to simulate our

protocol directly through the network stack of Linux. In fact, there

are some tools available for this purpose, but only few of them

can provide reasonable accuracy and efficiency, as well as support

a wide range of operating systems and kernel versions [57] . Fo-

cusing on these requirements, we chose Network Simulation Cradle

(NSC) , which is a framework for wrapping kernel code into simu-

lators allowing the simulation of real-world behavior at little ex-

tra cost [58] . NSC supports the simulation of the network stacks

of many operating systems such as FreeBSD, OpenBSD, lwIP and

Linux. This tool has been validated by comparing situations using

a test network with the same situations in the simulator, and it

has been shown that NSC is able to produce extremely accurate

results. Moreover, it has been ported to several network simula-

tors including both ns-2 and ns-3. Although, NSC is an excellent

tool for simulating different TCP versions and new TCP-like trans-

port protocols, we had to carry out a challenging work to get NSC

able to handle DFCP, which is based on a novel paradigm and it is

significantly different compared to the principles applied by TCP. 

6. Protocol validation 

In this section, we present a validation study carried out on the

three different testing platforms discussed above. The results show

that DFCP performs in a similar way in these environments provid-

ing a strong evidence for the operability of our protocol. We also

quantify the impact of the main parameters of DFCP on the good-

put performance. 

6.1. Operation in different network conditions 

Table 3 presents the main features of DFCP introducing its high

resistance to varying network conditions such as packet loss rate

and round-trip time . In our experiments, unless mentioned other-

wise, we used a uniform loss model with random, independent
acket losses. These measurements were carried out on a dumb-

ell topology with one source-destination pair (see Fig. 7 ). It is

nown that TCP is very sensitive to packet loss resulting in a quick

erformance degradation for increasing loss rate. The table clearly

ndicates that DFCP can operate efficiently even in high loss rate

nvironments with only a negligible decrease in goodput. The ta-

le also illustrates that the goodput performance of DFCP is inde-

endent of the round-trip time and it can achieve almost the same

oodput for different RTT values. 

Considering fairness , DFCP can ensure equal bandwidth shar-

ng among competing flows thanks to the use of fair schedulers

n routing nodes. Our measurements conducted on dumbbell and

arking lot topologies also confirmed this property. 

.2. The impact of protocol specific parameters 

Redundancy , denoted by ε, highly determines the efficiency of

ountain coding schemes since a lower value makes it possible to

ransmit more useful data bytes at a given link. Fig. 9 demonstrates

ow the redundancy parameter of DFCP affects the goodput perfor-

ance when the window size is set to 10 0 0 blocks. The theoretical

urve of Fig. 9 a is derived from the goodput formula (2) defined in

ection 5 by taking into account the overhead (i.e. protocol head-

rs) at different layers as well. One can see that ns-2 simulation

esults fit well to the theoretical values. Fig. 9 b shows the good-

ut degradation of DFCP as the amount of redundancy increases.

f the redundancy is about 5%, it leads to approximately the

ame degree of performance degradation. However, the decrease in

oodput does not change linearly with increasing redundancy. For

xample, 50% of redundancy wastes only 33% of the maximum

andwidth, which can be utilized for useful data transmission. In

ractice, the typical value of redundancy is below 5% for recent

ountain codes [22] . 

Fig. 10 illustrates the impact of DFCP’s flow control with

= 0 . 05 , which can be controlled by the window size parameter.

s mentioned in Section 4 , the window size is measured in LT

ncoded blocks. The figure shows that, as the window size in-

reases, a higher goodput can be realized. Since the Raptor cod-

ng scheme can generate an infinite stream of encoded bytes, in

heory it is plausible to choose a window size as high as possible.

owever, there are two aspects should be taken into considera-

ion. First, flow control is used to prevent buffer overflow at the

eceiver end. Secondly, the use of a larger window leads to a more

ursty traffic. In general, it is practical to limit the window size at

he point where further increasing does not improve goodput, but

elay-sensitive applications may require smaller windows. 

. Comprehensive performance evaluation 

In this section, we present an extensive performance analysis

tudy by comparing DFCP to different TCP versions, namely TCP

ubic [10] which is the default congestion control algorithm in the

inux kernel and TCP NewReno with SACK option [11] . In the fol-

owing, we deal with five main aspects: 

(1) goodput performance, 

(2) buffer demand and occupancy, 

(3) flow transfer efficiency, 
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Fig. 9. The impact of the redundancy parameter. 
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Fig. 10. The impact of window size on the goodput performance. 
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Fig. 11. The performance of DFCP and TCPs in a lossy environment (simulation). 
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Fig. 12. The performance of DFCP and TCPs for varying RTT (simulation). 
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(4) fairness properties, 

(5) as well as scalability. 

Moreover, we also quantify the bandwidth wasted by our data

ransfer mechanism due to the dead packet phenomenon if an

DN-based rate control algorithm is employed. All measurements

ere performed on three testing platforms (testbed, Emulab and

s-2), and we present a selection of these results. Unless men-

ioned otherwise, the window size and redundancy parameters of

FCP were set to 10 0 0 0 blocks and 10%, respectively. In single

ow experiments, we used a bottleneck buffer of 10 0 0 packets

nd a buffer of 10 0 0 0 packets in other scenarios except scalability

easurements. 

.1. Goodput performance 

In this part, we focus on the goodput performance of DFCP and

CPs they can provide in the long run. One of the main benefi-

ial properties of DFCP can be seen in Fig. 11 . It demonstrates that

FCP is much more resistant to packet loss than TCP Cubic and TCP

eno. The difference in goodput is already considerable for 0.1% of

acket loss, but for increasing loss rate DFCP highly outperforms

oth TCP variants. For example, for 1% of packet loss the ratio be-

ween the goodput obtained by DFCP and TCP Reno is about 4, and

his ratio is almost 8 for TCP Cubic. When the loss rate attains 10%,

FCP gets more than 250 times faster compared to TCPs, and it

orks efficiently even in case of extremely high loss (50%) in con-

rast to TCPs, which are unable to operate under these network

onditions. 

Fig. 12 shows the performance comparison results of DFCP and

CPs for varying round-trip time. The figure illustrates that TCP

ersions perform better than DFCP in terms of goodput regarding

he RTT interval 0–10 ms, but the difference is negligible and it is

ue to the coding overhead. Nevertheless, for delay values greater

han 10 ms DFCP achieves significantly higher transfer rate com-

ared to TCP Cubic and TCP Reno. Since the typical value of round-
rip time in a real network exceeds 10 ms [59] , DFCP can function

ore efficiently than TCP in such conditions. 

Additionally, it is essential to reveal and investigate how a

ransport protocol shares the available bandwidth of a bottleneck

ink among competing flows often referred to as fairness prop-

rty. As mentioned earlier, DFCP and TCP cannot work together

ithin the same network due to the fact that they operate in dif-

erent regimes according to the applied principles. For this reason,

ere we deal only with intra-protocol fairness analysis. As widely
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Fig. 13. The performance of DFCP and TCP in the case of two competing flows 

(testbed). 
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Fig. 15. The behavior of DFCP and TCP in a multi-bottleneck network with varying 

delay (testbed). 
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known, standard TCP cannot provide an equal portion of the bot-

tleneck bandwidth for competing flows with different round-trip

times [60] due to its AIMD mechanism [51] . Fig. 13 depicts the

goodput for two competing DFCP and TCP Cubic flows, respectively.

The delay of flow 1 was fixed at 10 ms, and for flow 2 we varied

the delay parameter between 10 and 100 ms. Since the results for

TCP Reno were quite the same as in the case of TCP Cubic, only

the latter was plotted. The figure shows that the bottleneck link

capacity is equally shared by the two TCP flows for RTT values

less than 20 ms in our testbed measurements. However, for RTTs

greater than 20 ms the goodput of flow 2 starts to decrease, and as

a result, flow 1 with lower RTT can gain access to a greater portion

of the available bandwidth indicating the unfairness behavior of

TCP. In contrast, DFCP flows achieve perfect fairness as they share

the bottleneck capacity equally and they are much less sensitive to

the round-trip time compared to TCP. We note that the difference

can be observed in the goodput of DFCP and TCP flows for RTT

values less than 20 ms is due to the coding overhead. 

Fig. 14 illustrates the impact of packet loss rate on the good-

put performance for two competing flows. Fig. 14 a shows the case

when packet loss rates are equal for both flows and changed ac-

cording to the horizontal axis, and Fig. 14 b shows the case when

they experienced different loss rates. In the latter case, the first
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(a) Equal packet loss rate

Fig. 14. Goodput for two competing flows with eq
ow has a fixed loss rate set to 0.1%, and the second one has a

oss rate varied between 0.1 and 5% as shown in Fig. 14 a. Fig. 14 a,

t can be observed that both TCP Cubic and TCP Reno flows do not

hare the available bandwidth equally for lower values of loss rate,

owever, the difference is reduced for increasing packet loss rate.

nlike different TCP variants, DFCP provides fair resource alloca-

ion. On the one hand, each DFCP flow achieves nearly the same

oodput value, and on the other hand it is almost independent of

he packet loss rate. We note that the slight increase in goodput for

igher loss rates can be attributed to some measurement artifacts.

ig. 14 b shows that, while DFCP behaves similarly in the cases of

qual and different loss rates for the two flows, respectively, TCP

ubic and TCP Reno share the bottleneck link capacity in an unfair

ay in the whole range. We can conclude the robust property of

FCP, namely, it is irrelevant to DFCP that loss rates are equal or

ifferent for the competing flows, and what values they have. 

Fig. 15 presents the performance comparison of DFCP and TCP

ubic carried out on the parking lot topology illustrated in Fig. 8 by

tarting three concurrent flows. In this test scenario, the capacity

as set to 1 Gbps for both bottleneck links denoted by B 1 and B 2 .

he round-trip time was fixed at 10 ms on B 1 , but it was increased

n B 2 from 0 to 100 ms. Looking at the figure, we can make the

ollowing observations. Until the round-trip time experienced on
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ual and different packet loss rates (testbed). 
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Fig. 16. The behavior of DFCP and TCP in a multi-bottleneck network with varying 

packet loss rate (testbed). 
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 2 attains 10 ms, both DFCP and TCP Cubic share the bottleneck

andwidth of B 1 and B 2 in a fair way. However, for higher delay

alues TCP Cubic gradually becomes unfair due to the fact pointed

ut in this section, namely, TCP is sensitive to round-trip time. As

he goodput obtained by flow 1 and flow 3 drops for increasing RTT

since they go through B 2 ), flow 2 with lower RTT receives more

nd more bandwidth. Accordingly, TCP Cubic does not provide fair-

ess between flow 1 and flow 2 having different RTTs. Moreover, in

his case the available capacity of B 2 is also shared unequally, and

ence, flow 1 and flow 3 achieve different goodput performance. As

e mentioned earlier it is an undesirable behavior, and the results

how that DFCP can resolve this issue by providing perfect fairness

or each flow independently of their RTTs thanks to its robustness

o varying network conditions. 

Fig. 16 demonstrates the results of a similar test scenario for

arying packet loss rate performed on the same parking lot topol-

gy. In this case, the capacity was set to 1 Gbps and 500 Mbps for

he bottleneck links denoted by B 1 and B 2 , respectively. The packet

oss rate was fixed at 0.01% on B 1 , but it was increased on B 2 from

.01% to 5%. The round-trip delay was set to 10 ms on both links.

e can see that DFCP provides fair shares for the flows competing

or the available bandwidth of B 2 , and their goodput drops very

lowly as the packet loss increases. Furthermore, the link utiliza-

ion of DFCP is excellent on both bottleneck links due to its high
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(a) TCP Cubic with FIFO

Fig. 17. Flow dynamics in the case of three concurrent 
oss resistance. In contrast, TCP Cubic and TCP Reno ensure fair-

ess for flow 1 and flow 3 only for packet loss rate greater than

% where both flows become almost unable to transfer data. The

oodput of flow 1 starts from a lower value than the goodput of

ow 3 , because flow 1 goes through both B 1 and B 2 , and hence ex-

eriences a higher rate of packet loss. The link utilization achieved

y the TCP variants is quite poor due to their sensitivity to this

actor. 

In Fig. 17 , the dynamics of three concurrent flows is illustrated

hen each flow was started at different times. This scenario was

arried out on the dumbbell topology where we investigated the

wo data transfer paradigms, TCP Cubic with FIFO (see Fig. 17 a) and

FCP with DRR scheduling (see Fig. 17 b). The bottleneck link ca-

acity and the round-trip delay were set to 1 Gbps and 50 ms, re-

pectively. The buffer size was equal to the BDP (bandwidth-delay

roduct), and the flows were started at 0, 100 and 200 s. The good-

ut curve was smoothed by using a 10 s long moving window. We

an observe that TCP flows show a slow convergence to the fair

hare and then their goodput highly fluctuates around it. In the

ase of DFCP the convergence time is very low while the fluctua-

ion around the fair share remains moderate. However, the transfer

echanism of DFCP leads to a more bursty transmission than that

f TCP, which is due to the trade-off between the window size and

he burstiness of traffic as pointed out in Section 6 . An extensive

nalysis of the dynamic behavior of different transport protocols

an be found in [61] . 

Overall, we can say that the goodput performance of DFCP is

ignificantly better than in the case of the investigated TCP ver-

ions in a wide range of packet loss rates and round-trip times.

he results suggest that the possible application areas cover both

igh latency and high loss rate network environments. 

.2. Buffer demand and occupancy 

It is a well-known fact that the buffer size demand of TCP is

t least of root order in the number of competing flows [62] . This

equirement imposes a significant challenge in all-optical networks

here only very small buffer sizes can be realized due to both eco-

omic and technological constraints [63] . 

Fig. 18 demonstrates on the dumbbell topology how the perfor-

ance of DFCP and TCPs is affected by the buffer size. In this sce-

ario, the round-trip time was fixed at 10 ms and no packet loss

as simulated. The buffer size is given in packets, and the verti-

al axis represents the performance utilization of the investigated

ransport protocols. Performance utilization is the ratio (expressed
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flows started with different timings (simulation). 
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Fig. 18. The impact of buffer size on the performance of DFCP and TCPs 

(simulation). 
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in percentage) between the goodput can be obtained with a par-

ticular buffer size and the maximum goodput that can be achieved

when the buffer size is set as high as to exclude it from the lim-

iting factors. We can see that, with a buffer size of 10 0 0 packets,

each protocol is able to realize maximum performance utilization.

However, by decreasing the buffer size the performance of TCP

variants drops considerably. For example, with a small buffer of

50 packets, TCP Cubic and TCP Reno can work only at a reduced

transfer rate, 92% and 79% of the ideal case, respectively. In con-

trast, DFCP can bring out the maximum performance not only for

large buffers, but also for small ones, and thanks to this property

the transport mechanism of DFCP is closely aligned to the concept

of all-optical networking [63] . 

Fig. 19 illustrates how DFCP and different TCP versions utilize

the bottleneck buffer. The average occupancy was calculated for a

600 s long interval. In the case of a small buffer of 100 packets

(see Fig. 19 a), DFCP operates with an average utilization of 54%

while TCP Cubic and Reno use only 43% and 11% of the available

buffer space. Considering queue length dynamics, we can see that

DFCP builds up the queue in a very short time, and then keeps

it stable in contrast to TCPs. If the buffer can store 10 0 0 packets

(see Fig. 19 b), utilization becomes higher for each transport pro-

tocol. Specifically, DFCP works at a 95% buffer occupancy demon-

strating that our concept is designed to fully saturate router buffers

irrespective of its size. TCP Cubic and Reno also show an improve-

ment in utilization as the average occupancy is 75% and 58%, re-

spectively. 
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(a) Buffer size: 100 packets

Fig. 19. Buffer occupan
Our results revealed the robust property of DFCP regarding

uffer space demand, as it performs well both in small and large

uffer environments without any oscillation phenomena usually

bserved in the case of different TCP versions. 

.3. Flow transfer efficiency 

As we mentioned in Section 5 , flow completion time is one of

he most important performance metrics from the user’s point of

iew because of the fact that users want to download web pages,

oftwares, movies and many other contents as fast as possible [64] .

ccordingly, we investigated two different categories: (1) web ob-

ect (150 kB, the mean size is about 10 0–20 0 kB [65] ) and (2)

VD (4.7GB), which represent short and long data transfers, re-

pectively. 

Fig. 20 illustrates how the flow completion time depends on the

acket loss rate. The flow completion times longer than 60 s were

alculated by using the steady-state goodput for each figure of this

ection. One can see that in both cases DFCP provides the fastest

ownload indicating its potential in the case of web traffic as well

s heavy data transfers, however, the benefit is more significant

n the latter case. By transferring a typical web object, the most

onsiderable performance gain can be experienced for high packet

oss rates (see Fig. 20 a). However, if we transfer a full DVD, the

dvantage of DFCP is pronounced in the whole range of packet loss

ate (see Fig. 20 b). Moreover, DFCP becomes almost insensitive to

acket loss in these practically relevant scenarios. 

Investigating the impact of round-trip time, we can also find

ignificant differences in the performance of DFCP and TCPs as

hown in Fig. 21 . Specifically, in the case of a web object there are

everal orders of magnitude between the download time of DFCP

nd TCP for increasing round-trip time (see Fig. 21 a). Considering

he category of DVD, it can be stated that the difference in down-

oad time is negligible for low RTT values, however, it gets more

nd more significant towards high RTT values as shown in Fig. 21 b.

Fig. 22 shows the flow completion time for two competing

FCP and TCP Cubic flows where the first flow has a fixed RTT

f 10 ms and the delay of the second flow is varied between 10

nd 100 ms. We observed that the results for TCP Reno were quite

he same as in the case of TCP Cubic, hence only the latter was

epicted. Looking at Fig. 22 a, one can see that in the case of a

eb object DFCP produces excellent results. It does not only pro-

ide 20 times faster download than TCP even in the worst case, but

lso achieves perfect fairness, thus both DFCP flows have nearly the

ame download time. If we transfer a full DVD, the two TCP flows

ehave in a fair way, but only for RTT values less than 20 ms (see

ig. 22 b). In contrast, DFCP flows attain equal download time in the
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cy (simulation). 
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Fig. 20. Flow completion time for different packet loss rates (testbed). 
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Fig. 21. Flow completion time for different round-trip times (testbed). 
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Fig. 22. Flow completion time for two competing flows with the one having a fixed RTT of 10 ms and the other one having an RTT varied between 10 and 100 ms (testbed). 
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hole range since DFCP protocol is insensitive to high RTTs com-

ared to TCP. We note that the difference in the flow completion

imes of DFCP and TCP flows for RTT values less than 20 ms is due

o the coding overhead of DFCP. 

The important issue of efficient flow transfer regarding dif-

erent transport protocols is addressed in this section. The re-

ults demonstrate that the currently used TCP versions cannot

chieve optimal performance in the case of short-lived and long-

ived flows. In many applications such as web browsing it is a

eal limiting factor, and the user experience would be significantly

mproved by a much more effective transport mechanism like

FCP. 
.4. Fairness with different queuing mechanisms 

In our proposed future network architecture, fairness can be re-

lized by the application of fair schedulers as we mentioned in

ection 3 . In fact, unlike TCP the transfer mechanism of DFCP can-

ot guarantee fairness at the host side. Therefore, the only way is

o perform this task by network routers. However, in this context

here are some open questions to be answered. On the one hand,

 plenty of fair scheduling algorithms have been worked out dur-

ng the last two decades, but only a few are available in today’s

outers. So, the natural question is which one to choose? On the

ther hand, in most routers a FIFO scheduler is applied by default
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(b) FIFO

Fig. 23. Bandwidth sharing with different queuing mechanisms (simulation). 
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Fig. 24. Intra-protocol fairness with WFQ, DRR and FIFO schedulers (simulation). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 4 

Performance scalability (simulation). 

Bandwidth Normalized aggregate goodput (TCP/DFCP) [%] 

10 flows 50 flows 100 flows 

0.1 Gbps 98/100 100/100 100/100 

1 Gbps 96/100 98/100 99/100 

10 Gbps 22/100 95/100 96/100 
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as it is the simplest algorithm, but it does not eligible for providing

fairness. How does DFCP perform in such conditions? To answer

these questions, in this section we extend our fairness analysis by

investigating other queuing mechanisms than WFQ. We note that,

since the results obtained for SFQ were completely similar to the

ones obtained for WFQ, we focus on DRR and FIFO below. 

Fig. 23 shows the goodput performance of DFCP and TCP ver-

sions for the same test scenario presented in Section 7.1 . Fig. 23 a

indicates that, with DRR scheduler, DFCP can provide equal band-

width sharing for the competing flows similar to the case when

WFQ was used. In addition, we can observe that applying DRR

makes TCP less sensitive to the difference experienced between

the RTTs of flow 1 and flow 2 resulting in better performance.

Fig. 23 b demonstrates that the phenomenon of unfairness is more

pronounced if we use the simple FIFO scheduling algorithm. Even

though, for both transport protocols the difference in goodput be-

tween the competing flows gets higher for increasing delay, for

DFCP this change is much slower than for TCP Cubic. 

Fig. 24 presents a fairness comparison of different schedulers

for DFCP and TCP Cubic. The results clearly show that DFCP can

guarantee perfect fairness for the two competing flows indepen-

dently of their RTTs if fair schedulers are used. Moreover, DFCP

achieves better fairness than TCP even with the much simpler FIFO

algorithm. 
Concluding the observations, we can say that in typical network

onditions DFCP can obtain a higher degree of fairness compared

o TCP for each queuing discipline. In other words, according to

he results, current Internet architecture with FIFO queues would

rovide better fairness for competing flows by applying DFCP as

 transport protocol instead of TCP. However, the highest degree

f fairness can be realized by deploying DFCP together with fair

chedulers (e.g. DRR) in network routers, which can significantly

mprove TCP-based bandwidth sharing. 

.5. Scalability 

On a typical bottleneck link hundreds of flows compete for the

vailable bandwidth, and the capacity of these links is continu-

usly increasing due to the development of communication tech-

ologies. Good scalability is an important requirement for transport

rotocols meaning that they have to provide similar performance

nd fairness as the number of flows and the link capacity increase.

he following simulations compare the scalability of two funda-

entally different data transfer paradigms, TCP Cubic with FIFO

current Internet) and DFCP with DRR scheduling (our concept).

he results obtained for a 200 s long measurement period on the

opology of Fig. 7 with a 0.1 BDP buffer, and each flow experienced

00 ms of RTT. 

Table 4 describes the performance scalability of the investigated

ransport protocols for different numbers of flows and link capac-

ties. We computed the normalized aggregate goodput as the ratio

f the aggregate goodput of concurrent flows and the maximum

oodput can be achieved by a single flow. The normalized values

re expressed in percentage and given for TCP Cubic and DFCP, re-

pectively, separated by a slash mark. The results show that DFCP

s able to gain the maximum performance irrespective of the num-

er of flows and bottleneck bandwidth. In contrast, for TCP Cubic

he normalized aggregate goodput increases with the number of

ows, but decreases with the link capacity. For example, in the



S. Molnár et al. / Computer Communications 80 (2016) 82–100 97 

10 20 30 40 50 60 70 80 90 100
0.7

0.75

0.8

0.85

0.9

0.95

1

Number of flows

F
ai

rn
es

s 
in

de
x

 

 

DFCP
TCP Cubic

Fig. 25. Fairness for increasing number of competing flows (simulation). 
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ase of a 100 Mbps link the maximum performance can be ob-

ained by 50 competing flows, however, an increase in the link

apacity by two orders of magnitude leads to a 5% performance

egradation. Moreover, high capacity links cannot be fully utilized

y a small number of flows since the round-trip time limits the

ransmission rate of individual flows. In this special case, 100 ms

f RTT results in a goodput reduced to approx. 200 Mbps for each

ow (see Fig. 12 ), and hence the underutilization of the 10 Gbps

ink by 10 flows. 

Fig. 25 demonstrates the fairness scalability of DFCP and TCP

ubic with increasing number of flows. In this scenario, each flow

xperienced the same delay to avoid the phenomenon of RTT un-

airness. In spite of that the tendency is obvious for TCP Cubic: the

arger the number of concurrent flows, the lower the fairness in-

ex. However, in contrast to all of these results DFCP can ensure

air bandwidth sharing independently of the number of competing

ows. 

.6. Bandwidth waste 

In Section 3.2 , we pointed out that our mechanism requires the

roper control of transmission rate in order to cope with the so-

alled dead packets, and hence, to minimize the extent of band-

idth waste. This section focuses on how to leverage the capa-

ilities of SDN to solve this issue and also quantifies the impact

f the dead packet phenomenon. In the last years, as the SDN
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(a) Drop rate over a 30 seconds long mea-
surement interval

Fig. 26. Packet drop rate at the bottleneck router 
aradigm becomes more and more decisive in the networking in-

ustry, a significant research effort has been devoted to explore the

enefits it can bring in comparison to traditional computer net-

orks. One of the areas where the SDN architecture opens new

orizons is network monitoring. Although passive and active mea-

urement techniques have a long research history (see Section 3.2

or a brief overview), the central knowledge of SDN controllers

an help to design much more efficient and accurate monitoring

ools, therefore it is a very active research topic being in the focus

f many papers and ongoing works. For example, FlowSense [66]

easures link utilization in a non-intrusive way by analyzing the

ontrol messages between the switches and the controller. Due to

he fact that SDN controllers know both the topology and the link

apacities, the available bandwidth can easily be computed. An-

ther framework called PayLess [67] can deliver highly accurate

nformation about the network in real-time without incurring sig-

ificant overhead whereas OpenNetMon [68] exploits OpenFlow to

rovide per-flow metrics including throughput, delay and packet

oss. Authors in [69] present a software-defined transport (SDT) ar-

hitecture for data center networks in which a central controller

omputes and sends flow rates periodically to hosts enabling real-

ime rate control in a scalable way. 

To quantify the bandwidth wasted due to the greedy trans-

ission mechanism of DFCP, we carried out some experiments

ssuming that an SDN-based solution is used to estimate the avail-

ble bandwidth and to control the rate at the sender. In software-

efined networks the monitoring accuracy is mainly determined

y the polling frequency and the link delay between the switches

nd the controller, which we call response time in the following.

n the context of our concept, response time is interpreted as the

ime elapsed from a bandwidth change until rate adaptation is

erformed at the sender, which includes the polling and process-

ng overhead, as well as the switch-to-controller and controller-to-

ender communication delay. 

Here we investigate a scenario on the parking lot topol-

gy illustrated in Fig. 8 where the bottleneck links, B 1 and B 2 ,

ave a capacity of 1 Gbps and 400 Mbps, respectively. The link

elays were set such that flows experienced a round-trip time of

0 ms on B 1 and 30 ms on B 2 . In DFCP, the window size was ad-

usted to 10 0 0 and we used a redundancy value of 5%. Assume that

ow 1 and flow 2 start data transfer at the same time while flow 3

aunches 10 s later. Each sender can control its transmission rate

ith a given accuracy according to the information provided by

he SDN-based available bandwidth measurement method. Fig. 26

hows the packet drop rate at the second bottleneck router in

he function of time for 5% estimation error and 50 ms response
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(b) Drop rate in case of sudden band-
width change (enlarged view)

using SDN-driven rate control (simulation). 
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Table 5 

Packet drop rate for different response times and esti- 

mation error (simulation). 

Response time Drop rate at the bottleneck router 

1% error 5% error 10% error 

5 ms 0.58% 3.32% 7.74% 

10 ms 0.59% 3.37% 7.81% 

50 ms 0.63% 3.48% 7.97% 

100 ms 0.69% 3.65% 8.19% 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

w  

m  

a  

c  

c  

i  

t  

m  

r  

F  

e  

i  

w  

T  

m  

l  

v  

1  

r  

T  

t  

t  

a  

t  

u

 

p  

D  

a  

g  

b  

c  

c  

a  

u  

o  

B  

i  

q  

m  

c  

s

 

p  

t  

s  

e  

i  

n  

t  

a  

a  

o  

t  

o  

t  

t  

T  

f  

D  

o  

i  

S  

u  
time. Before flow 3 enters flow 1 and flow 2 receive 400 Mbps and

600 Mbps of B 1 , respectively, because the available bandwidth is

400 Mbps along the path that flow 1 traverses. When flow 3 joins

at the time of 10 s, the available bandwidth on the path of flow 1

decreases to 200 Mbps since the DRR scheduler shares the capac-

ity of B 2 between flow 1 and flow 3 equally. At this point, a high

instantaneous drop rate can be observed because the bandwidth is

wasted until the sender reacts to traffic changes. Table 5 summa-

rizes the mean drop rate calculated over a 30 s long measurement

period from 10 runs for realistic parameter settings. The results

suggest that estimation accuracy is an important factor whereas

response time only slightly affects the drop rate. Overall, we be-

lieve that in the case of any transfer mechanism including TCP and

DFCP, a trade-off has to be found among different performance

determining factors. In fact, DFCP uses a very efficient transfer

method but it pays the price in the dead packet phenomenon.

However, this issue can be handled as shown in the above case

study, and SDN offers a promising solution, which will be one of

our future research directions. 

8. Future applications and challenges 

Our envisioned architecture built on the transport mechanism

of DFCP is a good candidate for data communication of future

networks since it is capable of supporting novel applications and

use-cases. However, current DFCP implementation has some issues

and limitations that need to be solved. In this section, we discuss

the potential application areas and future challenges. 

Multipath transport has received significant attention in recent

years. As a result of these activities, MultiPath TCP (MPTCP) has

been standardized by IETF [18] . Moreover, now it is available as

a kernel implementation to Linux [70] giving the chance of pro-

liferation. By multipath communication , network resiliency, efficient

transfer or load balancing can be provided. However, the conges-

tion control scheme of MPTCP is currently based on TCP Reno

which is the root cause of some severe issues of the protocol

(e.g. poor performance in high BDP networks). As we see, many

of the congestion control related problems of MPTCP can be mit-

igated by combining it with our digital fountain based transfer

mechanism. 

In data centers , the communication between network nodes can

be significant. This type of operation is supported by well-designed

network topologies. However, it is not enough to make efficient

transfer possible between inner nodes. DCTCP is a recent approach

intended to fulfill the specific requirements of data center net-

works, which can maintain small queue length and low latency for

short flows [71] . The key points where DFCP would improve the

performance of DCTCP includes the possibility of further reducing

the buffer size, a moderate queue oscillation, a lower flow comple-

tion time and the fact that the queue length is independent of the

number of flows. High-performance storage systems of data cen-

ters can also benefit from fountain coding, which enables better

utilization of resources by efficient distribution of I/O requests [72] .

i  
Another and potential application area of DFCP is wireless net-

orks . The performance of TCP is very poor in wireless environ-

ent, which is due to the basic inherent design principle of TCP

ssuming that packet loss is a result of network congestion. In

ontrast, in wireless communication we find significant packet loss

aused by not congestion but erroneous wireless channels resulting

n high bit error rate that may arrive in bursts. Wireless links of-

en use data link level solutions to tackle this problem like layer 2

ethods with forward error correction (FEC) and automatic repeat

equest (ARQ). However, such solutions hardly cooperate with TCP.

or example, these mechanisms add an extra delay to TCP’s RTT

stimate assuming a far higher latency on the path than the case

s. Moreover, TCP easily triggers a retransmission at the same time

hen ARQ is already retransmitting the same data. In this case,

CP will experience an ACK timeout and it is forced to recom-

ence from the slow-start mode and from the point of packet

oss. In general, TCP is very sensitive to packet loss and has a

ery poor performance even if the packet loss rate achieves only

 percent. In contrast, DFCP is insensitive to packet loss in a wide

ange of packet loss rates as it was demonstrated in Section 7 .

his property gives a great motivation for applying DFCP as the

ransport protocol in wireless environments and it also implies

hat the application of DFCP eliminates the need for all additional

nd essential mechanisms (e.g. ARQ methods in layer 2) with

heir interoperability problems, which are unavoidable if TCP is

sed. 

The proposed transport protocol also has a high potential to de-

loy it in optical networks . This is due to the attractive feature of

FCP concept that it makes possible to build a bufferless network

rchitecture. Since the concept of DFCP inherently counts for con-

estion due to packet loss in the network, there is no need to apply

uffers in network nodes to avoid packet loss. So the big challenge

urrently preventing the deployment of building all-optical cross-

onnects in optical networks can be solved. This feature also makes

 possibility to build a more cheaper wired Internet, because it is

nnecessary to use expensive and power-hungry line card mem-

ries in network routers as we do it in our TCP-based Internet.

uffers can be short or even totally eliminated in this network-

ng paradigm. Another consequence of this vision is that the extra

ueuing delay in router buffers, which is a significant, hardly esti-

ated and highly variable performance determining factor in our

urrent Internet, can be avoided resulting in an easier network de-

ign and dimensioning process. 

Finally, we give a summary about the challenges and future

lans related to our data transfer paradigm that still need fur-

her research. The most important unsolved problem is the con-

equence of the maximal rate sending principle of DFCP since it is

asy to construct a network topology where this approach results

n an undesirable bandwidth waste also known as dead packet phe-

omenon [27] . In fact, it is due to the absence of congestion con-

rol, however, there are several possible ways to tackle this issue

s discussed in Section 3 , and we are currently working on such

 mechanism. Another interesting research direction is extending

ur transport protocol with the capability of adaptive parameter op-

imization during the communication. Considering the deployment

ptions , as we pointed out in Section 7.6 , SDN is a very attrac-

ive environment for DFCP. In general, inter-protocol fairness be-

ween different TCP versions is an important issue, but DFCP and

CP cannot work together within the same network due to the

undamental difference in the applied paradigms. It means that

FCP would grab all capacity from TCP since it operates in the

verloaded regime. One possible solution to avoid such incompat-

bility is to deploy DFCP alone in a given target environment like

DN. Although we do not believe that DFCP should certainly be

sed in the whole Internet, its co-existence with TCP could be real-

zed by building overlay networks on top of the current infrastruc-



S. Molnár et al. / Computer Communications 80 (2016) 82–100 99 

t  

r  

a  

r  

s  

T

9

 

t  

I  

a  

t  

r  

t  

P  

t  

v  

o  

m  

a  

r  

i  

w  

l  

t  

b  

(  

f  

t  

W  

g  

i  

t  

i

R

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

[  

 

 

 

[

[  

 

[

[  

 

 

[  

[  

 

[  

 

 

 

 

[  

 

 

 

[  

 

 

 

 

[  

 

 

 

[  

[  

[  

 

[  

 

[
[  

[  

[  

 

 

[  

 

 

[  
ure. More precisely, physical resources such as link capacities and

outer memories can be split between the traditional TCP-based

nd the proposed DFCP-based architectures. During a transition pe-

iod, it would be set that a given ratio of link capacity and buffer

pace (e.g. 30%) is maintained for DFCP traffic and the rest is for

CP traffic. 

. Conclusion 

In this paper, we advocated a networking paradigm where

he objective is not to control congestion but rather to utilize it.

n contrast to the present TCP-based Internet, we proposed an

rchitecture built upon a completely different principle by omit-

ing congestion control and applying fair schedulers in network

outers. We have designed, developed and implemented a novel

ransport protocol called Digital Fountain based Communication

rotocol (DFCP), which relies on a fountain code based data

ransfer mechanism. We validated the performance of DFCP on

arious network topologies and on multiple platforms including

ur laboratory testbed, the Emulab network emulation environ-

ent and the ns-2 network simulator. Moreover, we carried out

 comparative performance evaluation of DFCP with the most

elevant TCP variants. We found that unlike TCP versions, DFCP

s insensitive to packet loss and delay in a wide range of realistic

orking regimes highlighting its benefits for many areas like wire-

ess communication. In addition, we concluded from the results

hat DFCP is able to work with small buffers, hence it can support

ufferless all-optical networking. From the Quality of Experience

QoE) point of view, we investigated the flow transfer efficiency

or both short-lived and long-lived flows, and pointed out that

he user experience can be significantly improved by using DFCP.

e also showed that digital fountain based transport guarantees

ood scalability both in terms of performance and fairness for

ncreasing number of flows and link capacity. Finally, we discussed

he possible applications of our proposal and outlined some open

ssues. 
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