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Abstract

Dynamic synchronous transfer mode (DTM) is a next-generation high-speed networking technology. It is based on fast circuit switching
and uses distributed channel allocation on shared media. The paper proposes a channel allocation algorithm for DTM, which improves the
average call set-up time and call blocking probability characteristics. Another modification is also recommended to the operation, which
provides fairness in the case of the examined network model. Many variants of the proposed and known techniques are compared in various
network conditions. The performance evaluation of the algorithms is carried out by simulation, and practical conclusions are derived from the
results.q 1998 Elsevier Science Ltd. All rights reserved.
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1. Introduction

The most dominant broadbend networking technology in
research and development has been asynchronous transfer
mode for several years [13, 15]. It is planned to support
applications with requirements spanning from videoconfer-
ence (real-time, high bandwidth) to telephony and general
computer data transmission. ATM transfer capabilities
define service classes, which are appropriate for several
application types. ATM is also the transfer mode of broad-
band ISDN. However, it is not the most natural solution for
applications with low delay and delay variance require-
ments owing to its inherent cell (packet) switching charac-
teristics. Applications with high bandwidth and low delay
variance needs (e.g. video on demand, video telephony) are
more suited to the philosophy of circuit switched networks.
Dynamic synchronous transfer mode (DTM) is an attempt to
build the next generation of networking technologies on fast
circuit switching basis. It is a new broadband network archi-
tecture developed at the Royal Institute of Technology in
Stockholm (KTH). The technology is in the focus of several
Swedish companies. Performance analysis of DTM in the
case of bus and fully connected mesh topology was also
investigated in [4]. Extending DTM to provide various
ATM-like service classes was proposed in [2].

Performance studies were based on a single distributed
channel allocation algorithm, which will be referred to as
KTH algorithm. This paper proposes a new algorithm
[1], which can be used as an extension to the earlier
method.

Other areas of telecommunications, such as mobile
communications, use several types of algorithms for distrib-
uted channel allocation [10, 12], but it is difficult to adapt
them to the specific area of DTM networks. DTM uses dual
bus architecture as with DQDB networks. However, the
main disadvantage of DQDB, which prevented its wide
acceptance, was unfair operation in the case of high network
loads [11]. Because of this similarity, fairness is an interest-
ing issue in the case of DTM networks as well. Though we
recommend a modification to the KTH channel allocation
procedure [1], which makes it fair in the examined circum-
stances, an extensive fairness study is out of the scope of this
paper.

The main emphasis is on the performance characteristics
of the network, such as average set-up time and blocking
probability. Both of these parameters are especially impor-
tant if burst-switching [3] is applied. Computer traffic has a
bursty behaviour, which is the basis of the train model [9]
and the basis of the traffic model of our simulation [8]. Burst
switching can result in a better utilisation. However, if
different bursts have considerably different set-up times
and bursts are blocked within the call, then there is less
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QoS guarantee for the whole connection. That is, the main
benefits of circuit switching (like low and deterministic
delay during the connection) are lost. Consequently optimis-
ing the mentioned characteristics is advantageous for burst-
switching as well.

The paper is structured as follows: in Section 2 we intro-
duce the general DTM concept. The next section describes
network elements of the simulation model. In Section 4 we
compare set-up time and blocking parameters of various
algorithms. The algorithms are variants of two basic meth-
ods. We recommend a modification to one of the basic
methods, which is fair in the case of homogeneous network
load in contrast to the know version. The other algorithm is
developed by the authors, and is aimed to improve the
performance parameters of the network due to background
channel allocation. We examine the effect of status tables,
limited channel allocation retries and limited control capa-
city. Finally, in Section 5 we conclude the paper.

2. Dynamic synchronous transfer mode

The operation of DTM is based on multirate and either
unicast or broadcast channels. It is designed for a unidirec-
tional medium with multiple access. The total medium capa-
city is shared by all connected nodes. Previous proposals
and implementations are based on dual-bus topology. The
architecture can be extended to include a large number of
connected buses using switching nodes.

The most important elements of a DTM network are the
nodes and the hosts. Nodes are networking devices
connected to the dual bus. Hosts are end-devices with a
simple interface that connects them to a node. Host–host
communication is based on the assistance of nodes. Nodes
are responsible for resource allocation, connection estab-
lishment and release along the bus. Fig. 1 shows the set-
up of a single-bus network.

Buses can operate at different bit-rates so as with the
existing computer and telecommunication networks, a hier-
archical structure spanning from local area networks to wide
area networks can be constructed. The total communication
channel on the physically shared medium is realised by a
time-division multiplexing scheme. The total capacity of the
bus is divided into cycles of 125ms, which are further
divided into slots. A slot consists of a 64-bit data-word

and some additional management bits. The sequence of
slots at the same position in successive cycles is called
DTM channel.

There are two types of slots (and so DTM channels): data
and static slots.

Data slots are used for data transfer. The number of data
channels specifies the bit-rate of a DTM connection in a
cycle. There is a token for each DTM channel, which is
assigned to one of the nodes. Both free and used data chan-
nels are assigned to nodes. Each channel has exactly one
owner at a time. If a node owns the token for a channel, then
it has full control over its use: it can set up a connection on
it, release a connection using the channel, or give the chan-
nel ownership to another node.

At system start-up, data channels (tokens) are allocated to
the nodes, but they are transferred between nodes dynami-
cally during the operation. Nodes can ask others for a free
channel if they have not got enough free data channels to
serve a new request. This procedure is called channel real-
location.

The other type of slot, called a static slot, is used for
broadcast control channels between nodes. Nodes send
control information in their static slots and listen to all the
other static channels to receive control information.

3. Simulated network structure

The analysis of channel allocation algorithms can be done
based on different assumptions regarding the network struc-
ture. This section explains the main assumptions and deci-
sions we made when choosing the simulated network
structure. It has three parts as shown in Fig. 1: network
model, node model and host model.

3.1. Network model

In this paper we examine a network consisting of a dual-
bus and 100 nodes. The total bus length is 10 km. One host
is assigned to each node. Hosts, which act like traffic genera-
tors in the simulator, generate the same amount of traffic
with the same distribution (described in Section 3.3). The
parameters of the traffic generators are varied to set the
proper offered load for the network.

The destination of all point-to-point bi-directional
connections is the host connected to the node at the end of
the bus (server host), independently of the generator host.
The host at the end of the bus is referred to as server and the
others as clients, because it can be a model of a client–
server network. There is no data transfer between any two
client hosts.

DTM is based on a ‘‘sender-based channel reservation’’
algorithm. That is, bi-directional point-to-point connections
correspond to two unidirectional point-to-point connections
at the DTM access control level. In the direction towards the
server, client nodes are responsible for channel reservation.
In the backward direction, the server reserves the channels.
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This network model results homogeneous offered load
along the bus. In the direction towards the server, client
nodes generate the same load and compete for tokens
while the server is idling. In the other direction all nodes
are idling, only the server builds up connections and trans-
mits data, therefore there is no competition for tokens.

This homogeneous load will help us to find the reasons
why KTHCF channel allocation is unfair (see in Section 4).
This model allows us the simplified discussions of the BCA
algorithm (see in Section 4) because the right choice of
priorities is a difficult task in a general situation, but
straightforward in this case. Though this model is simple,
it is appropriate for the performance analysis of different
variants of channel allocation methods. A sophisticated fair-
ness analysis requires a more difficult network model, where
the load of the bus is irregular. A thorough fairness study is
the subject of our future work.

3.2. Node model

Building up a proper node-model is essential if we want
to analyse the operation of the network in the case of differ-
ent overload situations. In the case of overloaded processing
capacity, input control buffers are used for storing messages
that are waiting for the node processor. If control capacity is
too low, output control buffers are needed to delay control
messages until free control slots are available. The node
model can be seen in Fig. 2.

Input control buffer is used to store control messages
received from other nodes or local hosts until the processor
can serve them. The buffer-size should be large enough to
store control messages of a few cycles. We assumed that the
processing time for all control messages is the same (5ms).

Nodes have output control buffers for buses in both

directions. The first control message in an output buffer is
transmitted to the proper bus if the next control slot assigned
to the node arrives. For simplicity, we assume that each
control message can be transmitted in a single time-slot
(64 bits). We assign one control channel to each node.

In order to keep even a congested node in operation,
message dropping and call blocking mechanisms have to
be applied at the node. We assume the following rules inde-
pendently from the used channel allocation algorithms.

Control messages from other nodes that require a reply
(connection set-up request, channel request, connection
release request, BCA request), or necessary for the node
to continue its operation (connection set-up reply, channel
request reply, BCA reply) are never dropped even if the
input buffer overflows. If these types of messages were
discardable, only time-outs would solve the problem of
closing broken channels, which should be avoided in a
high-speed network.
Control messages from other nodes that do not require a
reply (e.g. status table updates) are dropped if the input
buffer exceeds a given value. Though it causes small incon-
sistencies (e.g. in status tables), it does not set back the
operation of the nodes while the number of messages wait-
ing for the node processor is decreased.
Auxiliary messages sent to all other nodes (e.g. status table
updates and balancing messages) are dropped if the output
buffers exceeds a given value. This reduces the congestion
in the control capacity, while it causes only a small incon-
sistency in the operation.
Set-up requests from a local host are blocked immediately,
and they are not passed to other nodes, if the output buffer
exceeds a given value. This rule moderates the congestion in
the signalling capacity as well.
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If the output buffer of an initiator node overflows, the calls
being set up are blocked, if the node tries to send a connec-
tion set-up request for this call.

3.3. Host model

Hosts are traffic generators in our model. Our traffic
model is based on World Wide Web (WWW) traffic
because, according to the present network traffic predic-
tions, a dominant part of future data services will generate
WWW traffic. The analysis of Web traffic showed that the
user-initiated TCP session arrival process could be well
modelled by Poisson processes as in classical telephony
[14]. However, the Poisson process cannot be used for
modelling the arrival of WWW requests because it contains
several non user-initiated requests. When a user requests a
page, the browser program generates a series of additional
requests to download the images of the requested page.
Several studies suggest the use of long-tailed distributions
such as Weibull or Pareto distributions for modelling the
arrival process of WWW and for estimating the size of
requested documents [8, 7].

Our traffic model defines the distribution of three para-
meters based on these studies:

interarrival time, which is the time between the connection
set-up requests
holding time, which is the duration of a connection
bandwidth, which is the bandwidth reserved for the
connection

The inter-arrival timeX is modelled by a Weibull distri-
bution given by the probability density function

f �x� � lBbxb21e2�lx�B �1�
where the parametersb and the parameterl depend on the
generated traffic profile. Analytical studies of arrival process
of WWW requests suggested the use of parameterb � 1/3
[8]. With this value the mean of the inter-arrival time is

E�x� � l

6
�2�

The holding timeT of a request is modelled by the Pareto
distribution given by the probability density

f �t� � a
ka

ta11 �3�

where the parameter is chosen to bea� 1.9. The parameter
k depends on the assumed mean size of the files to be trans-
mitted.

The mean holding timeT of a requested connection is

E�t� � a

a 2 1
k �4�

The parameters were selected based on the analysis of
measured WWW traffic [8].

In our model, all hosts initiate bi-directional point-to-
point connections and they require the bandwidth of one

channel in both directions. That is, the requested bandwidth
is deterministic and its value is 512 kbps.

4. Channel allocation algorithms for DTM

In this section we examine the two types of channel allo-
cation algorithms: set-up time [4, 1] and background alloca-
tion.1 A modification to the set-up-time method and
background channel allocation is proposed here. In Section
4 we evaluate the variants of these algorithms without using
status tables at nodes. The effect of limiting the number of
channel allocation cycles is also shown here.In Section 4 we
evaluate the same algorithms when status tables are used.
The effect of limited control capacity is shown there.

4.1. Algorithms combined with set-up-time channel
allocation algorithms without status table

4.1.1. Set-up-time channel allocation algorithms
DTM uses a distributed channel allocation algorithm [5].

Its operation is based on set-up-time channel allocation,
which works as follows (without specifying all the details).

At the reception of a connection request from a host, the
node first checks its local pool to see if it has enough chan-
nels to satisfy the request. If so, it immediately sends a
connection establishment message to the destination node.
Otherwise, the node first requires data channels from other
nodes on the bus. The node that receives this request and has
unused data channels, offers them to the sender node. We
refer to this operation as set-up-time channel allocation
because a node asks for channels after connection set-up
was initiated and it noticed that the call could not be served
from local free channels.

[4] proposed a procedure for channel allocation, which
we callKth algorithm. The algorithm works as follows. If a
host requires a connection withM channels and the node has
N free channels whereN , M, it sends out requests request-
ing M 2 N channels. The node first sends a request to the
closest node. The node that receives the request forK chan-
nels and has an amount ofJ free channels will always offer
min(J,K) channels. If the node transferredJ channels (J ,
K), then the requester node sends a message with channel
request to the second closest node, and so on. The requester
node sends out messages until the number of retries reaches
a limit or the necessary number of channels is collected. If
the required number of channels is together, the node sends
a set-up request to the destination node. After the acknowl-
edgement arrives from the destination, data transmission
can start immediately.

In this algorithm, channel requests are sent out in the
order of physical distance measured from the requesting
node. In the case of bus topology, this channel allocation
algorithm is unfair. First, nodes in the middle part of the bus
need more processing power to answer channel requests.
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Second, they have less free slots on average. As a result of
these two effects, outside nodes are in a more favourable
situation than middle ones, this can be reflected in blocking
parameters as well.

It can be seen intuitively too that the ends of the buses
cause unfair operation. The difference between nodes at
different locations can be seen in the following figures.
Fig. 3 presents the average number of free channels at differ-
ent nodes. It can be seen that nodes in the middle have fewer
free channels on average in the case of KTH algorithm. The
ending part of the buses effects the free channels of just a
few nodes in the outer parts of the bus (, 10 nodes at each
end).

Fig. 4 shows the average connection set-up time at differ-
ent nodes along the bus in the case of different offered loads
if no retry limit is applied. In this case set-up times are
shorter for nodes in the outer parts of the bus. The reason

of this effect can easily be derived from Fig. 3: nodes in the
outer part of the bus have more channels on average. The
closer a node is to the end of the bus, the closer it is to the
‘‘channel source’’, the fewer channel allocation retries are
needed to ask from the ‘‘channel source’’, the shorter is the
set-up time.

Offered load here, and in the paper, is the ratio of the sum
of the requested volumes (holding time of the call*band-
width of the call) duringT and the maximum transmittable
volume duringT (T*total bandwidth of the bus) whereT q

0.
The blocking of algorithm with no retry limit is

fair because nodes can ask all other nodes for chan-
nels. Blocking occurs if there is no free channel in
the system. The location of nodes affects only the
number of necessary retrials that is reflected in the
set-up times. If we limit the allowed number of
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retrials, this effect will be shown in the blocking as
well.

If the retry limit is 5, then the unfair distribution of free
channels is reflected in the blocking probability as well. It
can be seen in Fig. 5 that nodes in the outer parts of the bus
have lower blocking probabilities than ones in the middle in
the case of KTH algorithm. The difference can be as high as
0.1. Set-up times remain unfair too.

The unfair operation can be corrected in the case of
homogeneous network load, if nodes of a bus are ordered
into a logical ring and the order of channel requests is based
on the location in the ring instead of the bus (logical ring
KTH algorithm, KTHLR). If a node needs channels, it first
asks its first neighbouring node along the ring, then the
second ring-neighbour and so on. If propagation time
differences are negligible, then the operation is fair. Fair
distribution of free channels among the nodes can be seen
in Fig. 3.

We used a logical ring, where the sum of the square of
distances between neighbouring nodes is minimal. It can be
constructed so that the second neighbouring nodes of outer
nodes on the ring are the first and second neighbours on the
bus. The structure is illustrated in Fig. 6.

Set-up time with retry limit 5, and blocking with no retry

limit can be seen in Figs. 4 and 5 in the case of logical ring
assignment. We can see that the operation became fair.
Though we can expect a small improvement of performance
due to fair operation [6], this effect is not significant.

We have seen so far that KTH algorithm is unfair even in
the case of homogeneous network load. KTHLR algorithm
was proposed to provide fairness in the case of the examined
model.

Both KTH and KTHLR algorithms have the drawback
that even in the case of normal load conditions the number
of channel requests before a connection can be established is
high. Fig. 7 shows the probability mass function of the
number of requests sent before a connection was established
(only for successful calls). We can see that even if the
offered load as low as 70% the probability of channels are
needed from other nodes is 1002 45� 55%.

We propose a background channel allocation algorithm,
which is aimed to decrease the number of retries. The next
subsection presents this algorithm.

4.1.2. Background channel allocation algorithms
In the background channel allocation algorithm (BCA

algorithm) [1], channel allocation is performed in the back-
ground, independently of set-up requests coming from
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hosts. Its goal is to decrease (or eliminate) the need for slot
allocation during call set-up. It can work parallel with any
set-up-time algorithms.

In the algorithm nodes regularly exchange free channels
with direct neighbours.

The goal of the exchange in the case of homogeneous
network load is to distribute free channels evenly amongst
the nodes. In order to achieve this goal, nodes check regu-
larly if there is any difference between the number of local
and neighbouring nodes’ free channels. This process
provides that neighbouring nodes have nearly the same
number of free channels at any time instant, thus free chan-
nels are always distributed almost evenly amongst the
nodes. Simulation results show that the possibility of having
no free channels, the blocking probability and the set-up
time became lower when the algorithm was added to the
set-up-time algorithms.

This idea can be extended to a real algorithm, which
considers the case of normal operation when the load is
different at each node. The difference between nodes is
reflected in a priority value for buses in both directions,
that is each node has a priority number for each bus,
which depends on the traffic load to the given bus. Priorities
can be constant or can change dynamically when adapting to
the actual load of the network.

The exchange of free channels depends on the value of
free channels and priorities. Based on the notions of Fig. 6,
node i initiates channel allocation to nodei 1 1 if the
expression

u�free channels of nodei�·�priority of nodei 1 1�
ÿ �free channels of nodei 1 1��priority of nodei�u �5�

can be decreased by channel allocation. The amount of
channels to be transferred is determined so as to minimise
Eq. (5) and considering that only free channels can be trans-
ferred. Nodei asks channels from nodei 1 1 if the first term
of expression Eq. (5) is below the value of the second term
and transfers channels if the first term is the higher one. That
is, in the case of equal priorities, nodei transfers one

channel to nodei 1 1 if its number of free channels is higher
by 2 than the ones of nodei 1 1.

Node i calculates expression Eq. (5) whenever a local
connection is set up or released (number of local free chan-
nels changed).

If the priority of a node is equal to zero, then it is left out
from the ring. The next successive node is the exchange
partner instead of it. For example, if the priority of node
i 1 1 is 0 for one of the buses, then nodei 1 2 is the partner
of nodei for the allocation of free channels on that bus.

The BCA algorithm is based on the comparison of the
amount of local and neighbouring free channels. This is why
it requires a very small status table, where nodes keep a
record of free channels of the downstream neighbouring
node on the ring. Nodes send administration messages to
the first upstream neighbouring node along the ring after
each change in the number of local free channels in order
to provide information for maintaining up-to-date tables.

Priority defined above does not effect directly the amount
of bandwidth available for a node. It is rather related to the
possibility of setting up a channel without slot reallocation,
independently of the bandwidth used. This definition of
priority can be used for optimising the network utilisation
and channel set-up times. Priorities can be dynamic and
static as well. In the case of dynamic priorities, a traffic
estimation procedure modifies the priority of the node.
Estimators use parameters of previous connection (e.g.
amount of required bandwidth and interarrival times) to
calculate the current priority. If the characteristics of
the traffic are known, effective estimators can be
constructed. However, estimators can be built without
preliminary information about the traffic as well. This
type of priority is not used in this examination. The
other solution is to assign static priorities to the nodes
where the priorities are changed at the management level.
In this case the basis of the priority assignment can be the
role of the node in the network or the price paid by the
customer of the node.

If the priority is based on the role of the node, we can
assign higher priority to nodes connected to servers or to
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switching nodes, and lower priority to nodes connected to
clients.

If the priorities are proportional to the charges paid by the
customers then it is a better solution to rewrite expression
Eq. (5) so that those priorities are compared with the number
of all the channels owned by nodes.

In this case priority is related to the bandwidth that can be
used by the connections of the node without reallocation
during set-up. If the priority is high, many channels can
be used without the additional delay of channel reallocation.
If the slots of the node are used by connections, then channel
allocation is required at every new connection set-up. This
kind of priority use is appropriate for charged systems,
because the customer who pays more can build up more
connections without the delay of set-up-time channel allo-
cation. There are significantly fewer channel allocations in
this system compared with the one using the number of free
channels for calculating the function.

From the above variants of the BCA algorithm, we simu-
lated the one where the comparison is based on free chan-
nels because our goal was to optimise the operation of the
network. We used static priorities for the algorithm because
there is no need for adaptation to the varying traffic load as
we assumed static network model in Section 3. The priori-
ties of the nodes were chosen to be fair. Precisely, the prior-
ity of a node to one direction of the bus was chosen to be
proportional to the load sent to that bus. Priority of client
nodes for the bus to the server equals to 1, the priority of the
server on this bus is 0. On the other bus, clients have 0
priority and the server’s priority value is 1.

BCA algorithm was applied in line with KTHLR algo-
rithms in the case of various values of the channel allocation
retry limit.

We proposed the BCA algorithm because we expected
that the number of channel allocation retrials necessary to
establish a connection would decrease. As a consequence of
this effect, we expected that the set-up times decreased in
average. As another result, if the number of channel alloca-
tions were limited the blocking probability at nodes would
also decrease.

In Table 1 Table 2 we can see that the BCA algorithm
improved both the set-up time and blocking probability
parameters. The numbers in parenthesis after the names of
algorithms show the allowed channel allocation retrials.

In Table 1 the absolute minimum of the set-up time is
shown at the BCA algorithm. This algorithm does not use
set-up-time channel allocation, this is why the time shown
here is the connection set-up time without any channel allo-
cation delay. The addition of BCA algorithm to KTHLR
decreased the set-up time with about 1024 s, which is in
the order of one cycle time.

In Table 2 we can see the effect of BCA algorithm on
blocking probability. We can conclude from the values that
the proposed algorithm is the most effective one if channel
allocation retry limit is low. In the case of 50% offered load
and retry limit 2, the algorithm decreased the blocking prob-
ability from 5% to 2.3%, which means 2.7% improvement
in the throughput. In the case of other offered loads with
retry limit 2 the throughput increased 2–4%. If the retry
limit is increased, then the gain of BCA algorithm is
decreased. In the case of retry limit 5 the gain is between
0.5% and 1.5%. If the retry limit is equal to the number of
nodes (with previous terminology: there is no retry limit),
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Fig. 9. Effect of retry limit on average set-up time (KTHLR1 BCA
algorithm).



the difference between KTHLR and KTHLR1 BCA algo-
rithms is not significant.

We have seen that though the BCA algorithm improved
the performance of the system, the effect of limiting the
number of channel allocation retrials has more significant
impact on its behaviour. In contrast to the BCA algorithm,
which improved both set-up time and blocking parameters,
applying a retry limit has the opposite effect on these two
characteristics. If lower retry limit is applied, the blocking
probability increases and the set-up time decreases. In order
to find the compromise between the two most important

performance characteristics of the system, we examined
them by evaluating the KTHLR1 BCA algorithm as the
function of channel allocation retry limit.

Fig. 8 shows how blocking probability is affected by the
limit. Fig. 9 displays how the set-up time depends on the
limit.

Blocking probability decreases almost exponentially if
we increase the number of allowed channel allocation
retrials. In the case of lower offered loads, the gradient of
the blocking curves is bigger; in other words, it increases
faster. There is no blocking at the offered load level of 50%

C. Antal et al. / Computer Communications 21 (1998) 1597–1609 1605

Table 1
Comparison of average set-up times in the case of different algorithms and retry limits

Av. Set-up time(ms) Channel allocation algorithms

Retry limit � 2 Retry limit� 5 Retry limit� 99

Offered load
(%)

BCA KTH KTHLR KTHLR
1BCA

KTH KTHLR KTHLR
1BCA

KTH KTHLR KTHLR
1BCA

50 0.191 0.255 0.256 0.206 0.295 0.294 0.226 0.311 0.309 0.234
70 0.191 0.277 0.278 0.226 0.375 0.376 0.303 0.552 0.529 0.435
90 0.191 0.294 0.294 0.244 0.445 0.446 0.388 1.953 1.645 1.66
110 0.191 0.304 0.304 0.261 0.495 0.498 0.452 4.516 4.195 4.199

Fig. 10. Comparison of average connection set-up time of algorithms with and without status table.

Table 2
Comparison of blocking probabilities in the case of different algorithms and retry limits

Blocking probability Channel allocation algorithms

Retry limit � 2 Retry limit� 5 Retry limit� 99

Offered load
(%)

BCA KTH KTHLR KTHLR
1 BCA

KTH KTHLR KTHLR
1 BCA

KTH KTHLR KTHLR
1 BCA

50 0.068 0.051 0.051 0.023 0.006 0.005 0.003 0 0 0
70 0.159 0.129 0.126 0.089 0.045 0.045 0.034 0 0 0
90 0.249 0.219 0.219 0.174 0.127 0.121 0.113 0.010 0.009 0.010
110 0.333 0.301 0.298 0.267 0.219 0.216 0.203 0.103 0.106 0.106



and 70% if the retry limit is higher than 10 and 30, respec-
tively.

The shape of the set-up time vs retry limit curve depends
on the load of the system. At low offered load (50–70%), the
limit has a minor effect on set-up time. At higher offered
loads (110%), it is closely linear. The optimal operation of
the system depends on the specific requirements. If set-up
time is more important than throughput, a lower retry limit
can be chosen. If keeping blocking on a low level is the high-
est priority, than a higher retry limit can be applied. As block-
ing decreases more dramatically in a general case, it is better
to determine the retry limit based on the blocking function.
The optimal limit is different for every load condition.

4.2. Algorithms combined with set-up-time allocation using
status table

In the previous subsection we examined the behaviour of
set-up-time channel allocation algorithm with and without
additional background channel allocation and with different
retry limits. The performance of KTH and KTHLR algo-
rithms can be enhanced without background allocation if
nodes maintain a status table [4] about the amount of free
channels of other nodes. If status tables are up-to-date,

nodes only try to get free channels from nodes that have
them, therefore they can radically decrease the amount of
unsuccessful set-up-time channel requests. The operation is
slightly modified if status tables are used.

A node uses its status table if it wants to ask other nodes
for channels. If a host requires a connection withM channels
and the node hasN free channels, whereN , M, it sends
requests asking forM 2 N channels. The node sends
requests to a node with free channels. If this node does
not have enough free channels according to the status
table, then it sends a query also to another node with free
slots, and so on. The node sends requests in the first round
until the asked nodes have at leastM 2 N free slots accord-
ing to the local status table. After this, the node waits until
all the replies arrive. If the necessary channels are not
collected, a new round begins. The channel allocation is
finished if the required channels are collected, or all the
nodes which have free channels are asked for channels. If
the required number of tokens is collected, the node sends a
set-up request to the destination node. After the acknowl-
edgement arrives from the destination, data transmission
can start immediately.

The maintenance of the status tables is based on
administration messages received in control channels. A
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Fig. 11. Comparison of blocking probability in case of algorithms with and without status table.

Table 3
Effect of overloaded control capacity on blocking probability

Blocking probability Channel allocation algorithms

Retry limit � 100 Retry limit� 10 BCA

File size KTHs KTHLRs KTHLRs1 BCA KTH KTHLR KTHLR 1 BCA

2 Mb 0.010 0.009 0.010 0.077 0.075 0.070 0.249
512 kB 0.008 0.009 0.012 0.078 0.075 0.070 0.254
64 kB 0.012 0.008 0.014 0.079 0.070 0.073 0.253
8 kB 0.030 0.025 0.020 0.078 0.075 0.067 0.264
1 kB 0.133 0.133 0.180 0.106 0.010 0.128 0.330



node sends a broadcast administration message if the
number of its free channels has changed.

Administration messages have low priority at receiver
nodes compared with other (e.g. set-up, release) messages.
If the processing capacity of a node is overloaded, it drops
incoming administration messages. If the outgoing control
capacity is overloaded, outgoing administration messages
are dropped (see the rules in Section 3). That is, in normal
condition nodes have up-to-date status tables, but if control
or processing capacity is overloaded, status tables become
outdated.

First let us see the comparison of algorithms with and
without status tables, when the control capacity and the
processing capacity of the nodes are not overloaded. Fig.
10 and Fig. 11 show the comparison of seven algorithms.
KTH, KTHLR and KTHLR 1 BCA algorithms are
compared when

no status table is used and the retry limit is 10 (notion: 10)
status table is used and the retry is 100 (notion: s)

For reference purposes, we displayed the BCA algorithm
without any set-up-time method as well.

Both figures show that algorithms with status tables
perform better than their counterparts.

Fig. 10 also demonstrates the power of adding BCA algo-
rithm to set-up-time methods. In the case of 50% offered
load KTHLR1 BCA algorithm has even lower average set-
up time than KTHs and KTHLRs algorithms. Though it is a
small difference, it is due to the increased probability of
having free channels, when BCA is applied.

In the case of high offered loads applying BCA is not
effective, because it increases the set-up time. This is
because the number of nodes is higher than the number of
free channels, so the distribution of free channels does not
improve the performance.

Fig. 10 also shows that if the offered load increases, the
difference between the set-up time of algorithm with and
without status table increases.

In Fig. 11 we can see that the effect of BCA algorithm to
the blocking probabilities is not significant. The omission of
status tables moreover increases the blocking probability.
The importance of status tables is most obvious around
100% offered load. At lower and higher loads the difference

is smaller. The largest difference is 6.5% in the simulated
example.

In the above comparison, the control and processing
capacity available for nodes were not overloaded. If the
network load consists of the frequent transfer of short
files, then the increased control load will effect the perfor-
mance characteristics. Table 3Table 4 show this effect.

We can see in Table 3 that the blocking of algorithms
with status table is more dependent on control capacity. In
the case of 1 kB file sizes, blocking of these algorithms
becomes higher than blocking of those without tables.
This is due to various facts.

1. Calls are blocked if the control capacity become over-
loaded (se in the node model).

2. Administration messages are dropped if the control capa-
city is overloaded (see in the node model). This results in
status tables with incorrect data. If a table shows that a
node has no free channels (even if it has), the owner node
of this status table will not ask for channels. It means that
only a fraction of the nodes will be contacted for chan-
nels.

3. If messages are short the percentage of channels that are
being transferred (nor free or occupied) become higher.

All the above mean that the more control messages are
used by an algorithm, the more the blocking probability is.
This is true for the BCA algorithm too. Adding BCA to
other algorithms increases the blocking probability.

In Table 4 we can see the same effect, namely that in the
case of short but frequent file transfers, algorithms without
status tables perform better. A strange effect can be shown
on this figure: the set-up time for KTHs and KTHLRs algo-
rithms in case the average message size is 1 kB is lower than
in the case of 8 kB. It can be explained by the huge differ-
ence between the blocking probabilities (and throughputs).
In other words, it justifies using a right node model, which
can cope with increased control capacity.

5. Conclusions

Low connection set-up time (burst set-up time) and small
blocking probability are important requirements if burst
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Table 4
Effect of overloaded control capacity on average connection set-up time (ms)

Av. set-up time Channel Allocation Algorithms

(ms) Retry limit� 100 Retry limit� 10 BCA

File size KTHs KTHLRs KTHLRs1 BCA KTH KTHLR KTHLR 1 BCA

2 Mb 0.333 0.332 0.318 0.624 0.629 0.562 0.191
512 kB 0.335 0.335 0.325 0.626 0.627 0.562 0.191
64 kB 0.364 0.358 0.380 0.628 0.623 0.574 0.192
8 kB 3.572 3.773 2.931 0.842 0.861 0.831 0.272
1 kB 2.255 2.359 3.35 1.928 1.927 2.112 0.471



switching is applied in the area of fast circuit switching
networks. Fairness is basic criteria for all communication
networks. This article proposed two channel allocation tech-
niques for DTM networks that fulfil these needs. When the
developed algorithms were applied, the performance of the
examined network was improved and fairness was provided.

The benefits of background channel allocation were most
obvious when the network operated in normal conditions
(control and data capacity were not overloaded). When
data capacity was overloaded, the improvement of back-
ground channel allocation was lower. When control capa-
city was too high the BCA algorithm degraded the
performance of the network. In order to avoid these over-
loaded situations, network dimensioning can be done based
on the results presented here.

The effect of status tables, overloaded control capacity
and limit on the number of set-up-time channel allocation
retrials on combination of channel allocation algorithms
(KTH, KTHLR and BCA) was investigated. It was shown
that the performance of set-up-time algorithms was signifi-
cantly increased when status tables were applied. When
control channels became overloaded, algorithms with less
overhead outperformed the sophisticated ones (KTHs,
KTHLRs, with and without BCA). Decreasing the limit on
the number of channel allocation retrials, the set-up time
was decreased and the blocking probability was increased.
The optimum value of the retry limit can be dimensioned
based on the simulation results.

Main directions of future work are an extensive fairness
study. The study should include the examination of general
traffic load along the bus, the investigation of the optimal
priority values for BCA algorithm, and the possibilities of
using dynamic priorities for changing traffic load. To study
the benefits of applying slot reuse in the DTM operation is
another direction of our future research.
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