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Abstract—In this paper we present the design and prototype
implementation of a multi-domain congestion control framework
based on a non-ossifying Lightweight Performance Enhancing
Proxy. We demonstrate that our solution can be both used for
evolved protocols such as end-to-end encrypted QUIC and for
evolved cellular access networks like 5G. We also show the per-
formance of our Multi-Domain Congestion Control algorithm by
a simulation study. Moreover, we expose its behavior in realistic
use cases like sudden capacity changes in 5G mmWave cellular
networks. Our results highlight that significant performance
improvements can be achieved by cooperative traffic management
frameworks in protocols and networks of the future.

Index Terms—QUIC, PEP, Network Management, Congestion
Control, 5G

I. INTRODUCTION

One of the main obstacles of the evolution of transport
protocols is the ossification of the transport layer. It has long
been known that TCP is very hard to extend [1], and a recent,
large-scale measurement study [2] has revealed the prevalence
of TCP/IP middleboxes. It has also pointed out the significant
share of harmful ones among them. Google’s QUIC (Quick
UDP Internet Connections) protocol aims to overcome this
by encrypting the transport headers resulting in immuninty to
middlebox interference. As a regrettable side effect, this will
make all potentially useful middlebox interactions (e.g., for
performance improvement) impossible.

The new radio access technologies introduced in 5G en-
able extremely high data rates and low delays, however, the
available capacity is very sensitive to line-of-sight (LOS) and
non-line-of-sight (NLOS) transitions. To take advantage of the
available capacity in 5G mmWave network, fast adaptation to
the available bandwidth is going to be a crucial property of
congestion control (CC) algorithms. It has been shown [3] that
there is a clear general tradeoff between the above property
and TCP fairness in CC algorithms. However, [3] assumes
end-to-end congestion control, but if the sender can utilize
additional information from the network and the CC can adapt
its behavior to the location of the bottleneck, it is possible to
provide both fast adaptation and TCP fairness.

The results presented in this paper are an outcome of
our research carried out in recent years. We have presented

the concept of a non-ossifying Lightweight Performance En-
hancing Proxy (LwPEP) in [4] followed by the first design
concepts and initial performance evaluation results of our
Multi-Domain Congestion Control (MD CC) algorithm in [5]
with its LTE simulation study in [6]. By utilizing the feedback
from the LwPEP, MD CC has been shown to deliver significant
performance benefits in LTE networks, while also being able
to preserve TCP fairness.

In this paper, we present the prototype implementation
of our Lightweight Performance Enhancing Proxy, which
provides cooperative management support for both TCP and
QUIC traffic. We show that the PEP handles encrypted traffic
without privacy violation adding minimal delay to the end-
to-end communication. We also discuss the important use-
cases of Multi-Domain Congestion Control and bottleneck
detection. In addition, we present interesting simulation results
of our framework analyzing the performance in 5G mmWave
networks.

The paper is organized as follows. Section II summarizes
the related work on TCP performance in 5G mmWave cellular
networks, multi-domain congestion control and QUIC man-
ageability. The design and implementation of the Lightweight
PEP prototype is presented in Section III, and the two main
usecases are described in Section IV. After that, in Section V
we illustrate the performance benefits of MD CC in mmWave
simulations, and Section VI concludes the paper.

II. RELATED WORK

A. TCP performance in 5G mmWave networks

A wide range of questions regarding the interplay between
transport layer mechanisms and 5G environments were ex-
plored by the authors of [7]. One key simulation result showed
that Controlled Delay (CoDel) active queue management
(AQM) is a viable technique to achieve low latency in 5G,
however, with loss-based CC algorithms, the throughput is
reduced compared to using an adequately sized droptail buffer.
The paper also shows a significant difference in loss-based
TCP performance between edge - and remote servers, which
means that TCP benefits greatly from a short control loop in
such dynamic radio conditions, and prompts the question of
the role of TCP-splitting in 5G. The tradeoff between latency



and throughput was also studied by the authors of [8], where
they have shown that it is in general difficult for TCP to deliver
both high throughput and low latency when the link capacity
varies as much as a mmWave link may vary between LOS and
NLOS states [8].

A comprehensive performance evaluation of CC algorithms
in 5G mmWave simulations was presented in [9]. The paper
claims that a 7MB Radio Link Control (RLC) buffer achieves
maximum throughput and mitigates the bufferbloat effect. The
results show that while Scalable TCP [10] and CUBIC [11]
can optimally recover after short NLOS periods, when high
channel quality degradation is considered after a longer NLOS
period, CUBIC attempts to recover from slow start and the
success is highly variable.

B. Performance Enhancing Proxies and their alternatives

The prevalence of TCP splitting PEPs were explored in [12],
where the authors showed that 86% of studied cellular net-
works employed such proxies. The authors of [13] used an
LTE testbed and emulated mmWave-like bandwidth fluctua-
tions to show the potential performance gains of TCP splitting
PEPs in 5G mmWave networks.

Both [14] and [15] are targeting cooperative performance
enhancement in 5G networks. In [14] the authors propose
Milliproxy, an entity that modifies the advertised window in the
acknowledgements sent by the client based on a flow window
policy and relays them back to the server. The effective
congestion window is determined as the minimum of the
advertised window and the congestion window. An enhanced
transport solution was designed specifically for Edge Cloud
scenarios in [15]. The initial window is carefully inflated based
on the state of the network buffer, provided by a Traffic Probe
and a Traffic Control Function entity. The solution is based
on the observation that in Edge Cloud scenarios, the radio
access network is responsible for the resource sharing instead
of the transport layer congestion control algorithm on the
whole path. Both proposals showed promising performance
results in simulations, however, both have open deployment
questions.

ABC (Accel-Brake Control) [16] is a novel, cooperative
congestion control mechanism for wireless networks. The
ABC router computes a target rate and echoes a 1-bit signal
(either accelerate or brake) to the sender through the client.
Each ACK can instruct the sender to increase or decrease the
congestion window by one packet, and thus, ABC is excep-
tionally scalable. Deployability, however, could be a serious
concern as ABC signals are implemented by reinterpreting
the ECN bits (using ECT(1) as accelerate and ECT(0) as
brake). There are currently two proposals in the networking
community for enhanced congestion signaling; SCE (Some
Congestion Experienced) [17] and L4S (Low Latency, Low
Loss, and Scalable throughput) [18] both of which use the
ECT code points differently, and thus both would most likely
be incompatible with ABC.

C. The QUIC protocol

The QUIC protocol successfully aimed at decreasing In-
ternet latency by introducing a shorter handshake procedure
(one - or even zero round-trip times), and multiplexing in
the transport layer. However, QUIC is also designed from
the ground up to minimize the risk of potential pathological
behavior caused by middleboxes, and it encrypts most of the
transport header. This presents serious challenges for network
operators interested in managing QUIC traffic, as the built-
in encryption of QUIC imposes limits to the capabilities of
on-path management solutions.

QUIC supports passive round-trip time (RTT) measurement
for middleboxes via an unencrypted spin bit in the header.
The QUIC client sends packets with the same spin bit as the
last received value from the server, while the server changes
the last received value, and thus the on-path middleboxes can
infer the RTT from the observed changes in the spin bit. An
enhancement was presented in [19], where two additional bits
are used for validation. There are recent ideas (e.g., [20],
[21]) which would allow explicit cooperation between QUIC
endpoints and middleboxes, however, these concepts are still
very much in development. There are no published transparent
solutions that could replace traditional Performance Enhancing
Proxies for encrypted traffic.

III. LIGHTWEIGHT PEP PROTOTYPE: DESIGN AND
IMPLEMENTATION

A. Acknowledging encrypted traffic without privacy violation

In [4] we have presented our concept for a PEP that
sends safe-to-ignore, incrementally useful PEP-ACKs to TCP
servers. In case of TCP, these ACKs would contain the
sequence numbers seen by the proxy, as shown in the upper
figure of Fig. 1 and can be used by the server as an input
for enhanced congestion control schemes. However, if the
transport headers are encrypted (as in QUIC) we need a
different solution for acknowledging data seen by the PEP. Our
solution to this problem is that, instead of sequence numbers,
some parts of the original server message are sent back by the
PEP. The amount of data to be sent back is chosen in a way
that it also contains some part of the payload of the original
server message even if long headers are used. The server needs
to maintain a mapping between the sequence numbers and the
payload slices, and thus, when it receives a PEP-ACK, the
server can determine the sequence number from the encrypted
payload slice sent back by the LwPEP. This also enables the

Fig. 1. Wire format of the PEP-ACKs for TCP and QUIC



server to verify that the PEP has seen the given packet. It
is useful that the PEP includes a magic number in the ACK
that helps identifying the PEP-ACKs on the server side. This
results in the wire format shown in the lower figure of Fig. 1,
used in the prototype implementation. Besides, the PEP could
also send a digital signature that can identify the PEP. The PEP
should also send its public key certificate, which is sufficient
to be sent in the first few messages.

B. Implementation

The Lightweight PEP prototype was implemented as a
userspace application using the netfilter queue [22] library in
Linux, which has proven to be efficient for userspace proxy
applications in previous works [23]. The block diagram of
the proxy can be seen in Figure 2. An iptables policy selects
the packets to be sent to the queue, which in the QUIC case
means filtering UDP packets on port 443. The packet number
field in the QUIC header is of variable length, which is given
by the encrypted packet number length field. This means that
when parsing the QUIC packets, the proxy has to assume the
maximum of the potential length of the header so that the size
of the payload slice sent back to the server is 10 bytes. After
parsing the filtered packets, the proxy immediately forwards
them to the client with negligible added delay to the end-
to-end communication. After the forwarding is complete, the
LwPEP starts assembling the PEP-ACK, which is then sent
back to the server via a RAW socket.

To illustrate the performance of the prototype in terms of
delay, we have set up a mininet testbed with simple topology
consisting of a server, a client and the LwPEP deployed
between them. We used iperf to generate TCP traffic, and
a LiteSpeed web server [24] with the IETF QUIC imple-
mentation, which powers 97% of the QUIC-enabled websites
worldwide.

Table I shows an illustration of processing performance
of the userspace LwPEP prototype. The LwPEP calculates
a running average of both the time it takes to parse the
incoming packets and forward them (Time to Forward) and
the time it takes to assemble the PEP-ACKs and send them
back through the RAW socket (Time to Ack). It can be seen
that on average, the LwPEP adds a 0.06 ms delay to the end-

Fig. 2. Block diagram of the Lightweight PEP prototype

TABLE I
AVERAGE TIME OF FORWARDING AND PEP-ACK GENERATION FOR TCP

AND QUIC

Protocol Time to Forward [ms] Time to Ack [ms]
Min Average Max Min Average Max

TCP 0.055 0.060 0.531 0.063 0.072 0.806
QUIC 0.053 0.200 0.518 0.156 0.695 1.295

to-end connection for TCP and 0.2 milliseconds for QUIC.
Generating the PEP-ACKs takes an additional 0.012 ms for
TCP on average and 0.495 ms for QUIC. These processing
times are slightly larger for QUIC due to the complexity of the
protocol. The userspace implementation provides flexibility for
prototyping, however, note that the delays could be further
decreased by an implementation in hardware, e.g., using P4.

IV. USE CASES

A. Multi-Domain Congestion Control

With the LwPEP placed on the border of the wired- and
cellular domains, the server can utilize the feedback from the
proxy to optimize congestion control. Providing fairness is
not the responsibility of the congestion control algorithm in
the cellular access domain, however, maintaining traditional
TCP fairness in the wired domain is still important when the
bottleneck is located there.

By utilizing both the PEP-ACKs and the regular end-to-end
ACKs, it is possible to design a Multi-Domain CC scheme as
we have shown it in [5]. MD CC runs two internal congestion
control algorithms in parallel. The PEP-ACKs are clocking
a CUBIC algorithm, while the client ACKs are clocking a
Scalable TCP algorithm with increased aggressiveness. The
effective congestion window is always set to the minimum of
the two components and thus a multi-domain CC algorithm
built on the LwPEP feedback can effectively adapt to the
location of the bottleneck.

In [6] we have shown that in LTE networks, MD CC
achieved a 7.3% average improvement in long term throughput
over CUBIC. Also, in cases of sudden increases in available
capacity, MD CC was able to utilize the new bandwidth
faster. We have also shown that Multi-Domain CC achieves a
significant reduction in short flow completion times compared
to CUBIC. Section V of this paper shows simulation results
on how the Multi-Domain CC can achieve better utilization
than CUBIC in 5G mmWave networks.

B. Bottleneck detection

Detecting whether the bottleneck is in the wired - or the
cellular domain can benefit servers and server-side applications
in multiple ways. One example is when a server detects that
the bottleneck is not in the cellular domain, then the traffic
could potentially be routed to the destination by avoiding
this bottleneck. Bottleneck detection is an intensively studied
problem with mature and efficient proposals, however, we
argue that our framework presents a unique solution with
passive, vendor-agnostic server-side bottleneck detection.



A passive, client-side technique was presented for LTE
networks in [25], where the UE is able to differentiate be-
tween cellular - and wired bottlenecks based on the observed
allocation pattern in a bandwidth exploration algorithm. This
bottleneck information is utilized in the calculation of an
optimal congestion window which is then relayed to the server.
The framework is able to quickly detect the bottleneck (in
a few RTTs), however the explicit bottleneck location is not
available to the server. BurstTracker [26] is another client-
side algorithm, and it works by exploiting observations on
the behavior of the downlink scheduling algorithms in LTE
networks, which reveal the status of downlink queues. The
authors state that while the core principle of the solution is
future proof, the algorithm built on it is LTE specific and thus
it is likely not suitable for 5G cellular networks.

QProbe [27] is an active approach, meaning that it sends
probing traffic from the server, and observes the arrival times
at the client. The bottleneck detection algorithm is based on the
the different behavior of the FIFO queues in the wired domain
and the proportional fair schedulers in the cellular domain.
The authors show that QProbe is able to differentiate between
WAN and cellular bottlenecks in time the order of 700 ms.
The paper also presents a comprehensive measurement study
across numerous operators and countries, where the bottleneck
was found to be in the cellular domain for 68.9% and 25.7%
of the cases for 3G and LTE, respectively.

The implicit bottleneck detection used in Multi-Domain
Congestion Control can be provided for servers as an explicit
bottleneck detection solution in addition to the benefits of
running the advanced CC. Built on the acknowledgements
from the Lightweight PEP, MD CC can provide bottleneck
detection for servers that is:

• passive,
• vendor-agnostic and
• non-ossifying.

V. PERFORMANCE IN 5G MMWAVE NETWORKS

A. Simulation environment

The simulations were carried out using the mmWave mod-
ule [28] developed for the ns-3 network simulator. The Direct
Code Execution (DCE) cradle [29] was also used, extended
with our MD CC implementation in the linux kernel (version
4.7.0. which is the latest available version in the NUSE [30]
library operating system’s network stack). Figure 3 depicts
the topology used. We have tested varying RTTs in the
Internet-domain between 2 and 40 ms. The RLC was used in
Acknowledged Mode, with different (fixed) buffer sizes and a
CoDel AQM. The LwPEP is co-located with the PGW. Table II
enumerate values used for various parameters in the topology.
The physical environment and mobility is accounted for in
coordinates, with the user moving steadily between its start
and stop way-point; the rectangle obstacle is defined by two
opposite corners.

Fig. 3. Topology used in the simulations.

TABLE II
CONFIGURATION OF NS3.

Parameter ns-3 value
Internet link RTT {2 - 40} ms

Internet link bandwidth 100 Gbps
Core network RTT 2 ms

Coordinates of eNodeB (0, 0, 30) m
User start point (50, 15, 1.5) m
User end point (50, -15, 1.5) m

Obstacle corner 1 (40, -4, 0) m
Obstacle corner 2 (45, 4, 30) m
MAC Scheduler MmWaveFlexTtiMacScheduler
Pathloss model BuildingsObstaclePropagationLossModel

Carrier frequency 28 GHz
RLC mode AM

RLC buffer size {2,7,20} MB
Chunk per RBs 72

CoDel target delay 5 ms
Traffic generator Iperf

B. Performance results

We have simulated 15 seconds of bulk TCP transmission us-
ing iperf, with an approximately 5 seconds long NLOS period
in between periods of LOS. The bandwith of the Internet link
was set to 100 Gbps in order to simulate a wireless bottleneck
in both periods. The transition to NLOS decreases the available
capacity significantly, and as can be seen in Figure 4, TCP
throughput is also decreased for both MD CC and CUBIC.
The extent of this decrease however is very different. The
throughput results for three different RLC buffer sizes are
depicted for the duration of the whole transmission. In the
NLOS period, it can be seen that CUBIC can not utilize
the available capacity if the link is underbuffered (2MB).
Smaller buffers benefit MD CC’s performance compared to
CUBIC in the LOS periods as well. With a 2MB buffer,
CUBIC is not able to utilize the available capacity even before
the NLOS transition. A large buffer (20MB) can improve
CUBIC’s recovery after the NLOS period at the cost of
significantly increased delay. The throughput of the MD CC
flow is relatively insensitive to the buffer size, mainly because
its resilience against losses due to the aggressiveness of the
end-to-end component.

The effect of the RLC buffer size on the performance
benefits of MD CC is further studied in Table III. The
table shows that MD CC achieves nearly the same average
throughput in the 2-20 MB range. The only configuration when
the performance of CUBIC is comparable is the one with a
large buffer, where the difference in average throughput is
3.5%. If deep buffers are avoided in order to achieve lower
latency, MD CC with PEP feedback outperforms CUBIC, with



Fig. 4. Throughput of MD CC and CUBIC with different buffer sizes

TABLE III
AVERAGE THROUGHPUT AND RTT WITH DIFFERENT RLC BUFFER SIZES

RLC buffer size Avg throughput [Mbps] Avg RTT [ms]
CUBIC Multi-Domain CC CUBIC Multi-Domain CC

2 MB 1256 2348 22 26
7 MB 1811 2358 31 44
20 MB 2283 2366 48 87

the performance gains ranging from a 23.2% in the 7MB case
to 46.5% with a 2MB buffer. The average smoothed RTT seen
by the transport shows an interesting trend, as for the same
buffer size, CUBIC achieves lower latency, which is expected
as MD CC fills the buffer aggressively, however, if we compare
the latency in the cases with similar average throughput, the
latency is 45.8% lower with MD CC and a 2MB buffer than
with CUBIC and a 20MB buffer.

Next, we studied the performance benefits of MD CC
with different RTTs on the Internet leg. Figure 5 summarizes
our findings in the 2-40ms RTT range for both a 7MB
droptail buffer and a CoDel AQM used in the RLC. CUBIC
achieves comparable average throughput only in the 2ms RTT

Fig. 5. Average throughput of MD CC and CUBIC flows with different RTTs

case, which corresponds to an edge computing scenario with
servers placed very close to the user. As the Internet link
RTT increases, the average throughput of MD CC is only
slightly affected compared to the steep decrease in CUBIC’s
throughput. Both algorithms perform better with a 7MB fixed
buffer, where MD CC consistently outperforms CUBIC with
a difference in average throughput between 13.9% and 86%.
When CoDel is used, MD CC achieves higher throughput than
CUBIC by 73.5%, 163.1% and 263.9% in the cases of 10, 20,
and 40 ms Internet link RTT, respectively.

VI. CONCLUSION

In this paper, we have presented the design and implemen-
tation of a non-ossifying Lightweight Performance Enhancing
Proxy, to support cooperative management of both TCP and
QUIC traffic. By sending back parts of the encrypted payload,
the PEP is able to acknowledge encrypted traffic without
privacy violation. Based on our measurements we demonstrate
that the PEP adds only a minimal delay to the end-to-end
communication resulting in minimal impact on the end-to-end
performance because of adding PEP on path.

One key use case of the feedback provided by the proxy
is Multi-Domain Congestion Control (MD CC) that has been
proven to adapt more rapidly to cellular conditions already for
LTE so the expectation was that this is even more pronounced
for the higher-bandwidth, but more volatile 5G access. We
have shown in mmWave simulations considering typical LOS-
NLOS transitions that MD CC significantly outperforms CU-
BIC in a wide range of different RLC buffer configurations
and Internet-domain round-trip times.

The above results show that the Lightweight PEP concept
could be a powerful tool to include in cooperative traffic
management frameworks in order to enhance the performance
not only in current networking scenarios but also in the future
ones with evolved transport protocols and cellular access
networks. Our future work therefore focuses on understanding
the ecosystem that enables cooperating with such a PEP.
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