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AbstratThe real promise of the fratal haraterization framework is that it suggests a very simpleway to handle the omplex struture of network traÆ. This work does not aim at arguingin favor of or against the fratal-type traÆ modeling. Rather, it tries to answer somepratial questions. The objetive is threefold. Firstly, an eÆient parameter estimationmethod of a traÆ model based on frational Brownian motion is proposed. Seondly, theperformane impliations of long-range dependene in networking is investigated. Finally,a real-time queue length monitoring method is proposed to approximately estimate thee�etive bandwidth of the traÆ.

xi



KivonatA frakt�alis forgalomle��r�as nagy ��g�erete, hogy k�epes lehet a h�al�ozati forgalom �osszetettstrukt�ur�aj�at egyszer}u formul�akkal megragadni. A jelen dolgozatnak nem �elja, hogy afrakt�alis forgalom-modellez�es mellett vagy �eppen ellene �erveljen, ink�abb n�eh�any gyakor-lati k�erd�esre pr�ob�al meg v�alaszt adni. A �el h�armas. Els}ok�ent egy a frakt�alis Brown-mozg�ason alapul�o forgalommodell param�eterbesl�es�ere ad hat�ekony m�odszert. M�asodszor ahossz�uidej}u �osszef�ugg}os�eg h�al�ozatok teljes��tm�eny�ere gyakorolt hat�as�at vizsg�alja meg. V�eg�ula forgalom e�ekt��v s�avsz�eless�eg besl�es�ere ad egy val�osidej}u sorhossz-monitoroz�ason alapul�oelj�ar�ast.

xii



AknowledgementsA number of people have diretly or indiretly ontributed to this thesis. To all these peopleI express my deepest gratitude.The supervisor of this Ph.D. Dissertation has been Dr. S�andor Moln�ar. First of all I wishto thank him for his enouraging support and guidane.My researh work started �ve years ago at the High Speed Networks Laboratory at theDept. of Teleommuniations and Telematis, Tehnial University of Budapest. Speialthanks to all members and Ph.D. students of the department, and in partiular, to themembers of HSN Lab. I also would like to express my appreiation to the head of ourlaboratory, Dr. Tam�as Henk.Nine months of researh work was done at the Laboratory of Teleommuniations Teh-nology, Helsinki University of Tehnology. I wish to thank Prof. Jorma Virtamo for thisopportunity and for his ontinuous guidane during my stay in Finland. His door wasalways open to me.Another fruitful half year was spent at the Multimedia Networks Laboratories, NipponTelegraph and Telephone Corp., Tokyo, Japan. I would like to aknowledge Dr. HiroshiSaito for his supervision during this time.My olleagues and friends, Istv�an Mariza and Szabols Malomsoky deserve speial thanksfor all the help they have provided during the years.I am very thankful to my family. Throughout the years of my study, they provided me astable bakground and there is no doubt that their inspiration and love made it possible forme to arry out my researh.Last but not least, speial thanks are due to all those people who helped me and inspiredme during this work either in profession or in private life.
Budapest, Attila Vid�asDeember 1, 2000 xiii





IntrodutionUnderstanding the nature of traÆ in high speed networks is essential for engineering,operation, and performane evaluation. TraÆ harateristis in high speed paket basednetworks di�er substantially from those in telephone networks. The omplexity inherentin this new type of traÆ arises from the wide range of appliations and servies provided.Therefore, the problem of obtaining an aurate and tratable haraterization of pakettraÆ is of partiular importane.Statistial analysis of a large number of traÆ traes taken from a variety of networkingenvironments revealed that the traÆ variations are dominant over a wide range of timesales [3, 19, 24, 31, 44℄. These variations an be parsimoniously desribed using the oneptsof long-range dependene (LRD) and self-similarity [23, 42, 55℄. The real promise of theself-similar traÆ modeling approah is that it suggests a very simple way to handle theextremely omplex struture of network traÆ.However, this work does not aim at arguing in favor of or against the self-similar oneptin traÆ modeling. Rather, it tries to answer some pratial questions suh as how toparameterize a self-similar traÆ model, or what are the performane impliations of long-range dependene, and how to apply the results of self-similar traÆ modeling in networking.One the traÆ is deided to be modeled as a self-similar proess, one of the simplestand most studied models for aggregated data traÆ is the frational Brownian motion(fBm) model, whih is the only self-similar Gaussian proess [42℄. In its basi form themodel has only three parameters, the mean rate m, the variane parameter a and the Hurstparameter H desribing the saling behavior of the traÆ. However, the estimation of even asmall number of parameters poses a problem for long-range dependent traÆ. The problemarises, for example, in the estimation of the Hurst parameter H. As H desribes the salingbehavior of the traÆ variability, a large number of sample points may be required to overseveral time sales, i.e., the total time range must be several orders of magnitude greaterthan the �nest time resolution in the measurement. Therefore to develop an algorithmwhih is able to do the parameter estimation of the model eÆiently is of great importane.When we deal with fratal-like traÆ within the networks, �rst we want to detet long-range dependene and any presene of self-similar features. One identi�ed, these propertiesshould be somehow quanti�ed. The estimation and interpretation of the Hurst parameter Has a desriptor of the degree of self-similarity (or long-range dependene) is far from beinga trivial task. Some pitfalls must be avoided at any ost, sine blind appliation of di�erenttest methods may lead to useless (or even misleading!) results. One H is aptured and1



2under ontrol, we want to look for various networking mehanisms to intervene and inuenethe fratal behavior (e.g., to get rid of it if it is harmful for ertain reasons.) Unfortunately,the long-range dependene property is muh more robust than one would think, thereforeremoving it is rather diÆult. Finally, if|despite our e�orts|we have to live together withlong-range dependene within the network, we would want to know exatly its impat onkey quality of servie parameters suh as ell loss ratio, for example.In asynhronous transfer mode (ATM) networks, ell loss ratio (CLR), ell delay and elldelay variation (CDV) are onsidered to be the major quality of servie (QoS) fators. Cellloss and ell delay mainly our in the output bu�ers of the network nodes. Traditionalqueueing analyses based on parametri models have the drawbak that sine the traÆpattern of ATM streams may be quite omplex, the appropriate statistial model seemsto be diÆult to identify (if possible at all). Moreover, the presene of a saling propertyin the traÆ has a strong impat on queueing behavior [22, 26℄. In order to avoid thisdiÆulty traÆ ontrol methods based on real time measurements have been proposedreently [20, 49, 54℄. If the atual ell loss performane of an ATM output bu�er ouldbe determined in real time, the rate of the server (that is, the VP bandwidth) ould beadjusted suh that the ell loss would be smaller than a pre-determined threshold. Thee�etive bandwidth approah is one possibility to deal with this problem. A simpli�ede�etive bandwidth formula with the CLR objetive and some easy-to-measure quantitiesas parameters ould be a useful tool in network management.Outline of the dissertationThe objetive of the dissertation is threefold.� In the �rst part the goal was to develop an eÆient parameter estimation methodof a traÆ model based on a Gaussian self-similar proess alled frational Brownianmotion.At �rst, Chapter 1 briey summarizes the mathematial bakground of the onepts ofself-similarity and long-range dependene. The frational Brownian motion proess is alsointrodued.Chapter 2 ontains the proposed maximum likelihood estimation (MLE) method toestimate the parameters of the frational Brownian traÆ model. After the introdutionof the model in the �rst setion, Setion 2.2 gives the detailed desription of the exatMLE method for general sampling sheme. Next, results for the ordinary linear samplingare given, and in Setion 2.4 a geometrial sampling sheme is investigated and di�erentapproximate MLE methods are proposed for this ase. In Setion 2.5 omputer simulationresults are given to validate the proposed approximations. The approximate MLE withgeometrial sampling is also ompared to the linear sampling ase as well as to the wavelet-based Abry-Veith parameter estimation method. Finally, Setion 2.6 onludes the hapter.� In the seond part the performane impliations of long-range dependene in network-ing was investigated.



3Chapter 3 deals with this topi. The results are based on experimental studies using realdata. The �rst setion desribes the measured data sets and the measuring on�guration,as well as the Hurst-parameter estimation tehniques used. Setion 3.2 examines somerobustness issues of H estimation (i.e., dependene on estimation tehnique, time sale,nonstationary level shifts). Setion 3.3 investigates the e�ets of network mehanisms suhas shaping, poliing and multiplexing on the H estimates. Setion 3.5 reveals the impats ofsaling behavior of input traÆ on ell loss in queueing. A new set of ATM measurementswas used for this purpose and are desribed in this setion.� In the third part the aim was to estimate the e�etive bandwidth of the traÆ usingreal time traÆ measurements. An algorithm to estimate the CLR in real time basedon bu�er measurements was also proposed, whih works for both short-range andlong-range dependent input traÆ.The e�etive bandwidth approah is widely used in network dimensioning and operation.In Setion 4.1 a very simple (and thus tratable!) approximate e�etive bandwidth formulais presented. To evaluate this formula based on on-line measurements, a three-point bu�ermonitoring method is proposed in Setion 4.2 to estimate the CLR. The validation ofthe proposed method is also given using simulations. Setion 4.3 improves the previouslymentioned e�etive bandwidth formula by inorporating the self-similarity parameter Hinto it.Chapter 5 summarizes the main results of the dissertation.Appendix A and B give some tehnial derivations for the results of the MLE parameterestimation method in Chapter 2. Appendix C presents an approximate method to alulatethe e�etive bandwidth funtion for Chapter 4.



Chapter 1Self-Similarity and Long-RangeDependeneThe following brief summary is mainly based on [48℄, [4℄ and [31℄.Self-similar proesses1 are invariant in distribution under saling of time and spae. Thesaling oeÆient or index of self-similarity is a non-negative number denoted H. They areimportant in probability beause of their onnetion to limit theorems and they are ofgreat interest in modeling [48℄. Lamperti [30℄ showed that self-similarity arises in a naturalway from limit theorems for sums of random variables. The theorem (see [30℄ and alsoin [4℄) essentially says that whenever a proess is the limit of normalized partial sums ofrandom variables, it is neessarily self-similar. Thus the role of self-similar proesses amongstohasti proesses is analogous to the entral role of stable distributions among probabilitydistributions [4℄.A non-degenerate self-similar proess annot be stationary, but an have stationaryinrements (H-sssi). The inrements of H-sssi proesses an display long-range dependene,i.e., the ovarianes deay very slowly to zero, like a power funtion.The existene of moments of H-sssi proesses limits the possible values of H. Forexample, for �nite variane proesses H is between zero and one. For a given H 2 (0; 1),there is a single Gaussian H-sssi proess, namely frational Brownian motion (fBm). Theinrements of fBm (also alled frational Gaussian noise) exhibit long-range dependene,when 0:5 < H < 1.1.1 Self-similarityDe�nition 1.1.1. [48℄ The real-valued proess fX(t); t 2 Rg is self-similar with indexH > 0 (H-ss) if for all a > 0, the �nite-dimensional distributions of fX(at); t 2 Rg are1Note, that the term self-similar is also used in the ontext of the saling of non-random objets, suh asfratals [33℄. 4



5idential to the �nite-dimensional distributions of faHX(t); t 2 Rg; i.e., if for any d � 1,t1; t2; : : : ; td 2 R and any a > 0,(X(at1);X(at2); : : : ;X(atd)) d= (aHX(t1); aHX(t2); : : : ; aHX(td)): (1.1)Note: Eq.(1.1) will be expressed suintly as follows2:fX(at); t 2 Rg d= faHX(t); t 2 Rg: (1.2)Eq.(1.1) states that a hange of the time sale is equivalent to a hange in the statespae sale. Thus, typial sample paths of a self-similar proess look qualitatively the same,irrespetive of the time-sale from whih we look at them. (It does not mean that the samepiture repeats itself exatly, it is rather the general impression that remains the same dueto the same statistial harateristis [4℄.)A non-degenerate H-ss proess annot be stationary. However, there is an importantorrespondene between self-similar and stationary proesses.Theorem 1.1.2. [48℄ If fX(t); 0 < t <1g is H-ss, thenY (t) = e�tHX(et); �1 < t <1; (1.3)is stationary. Conversely, if fY (t);�1 < t <1g is stationary, thenX(t) = tHY (ln t); 0 < t <1; (1.4)is H-ss.Theorem 1.1.2 shows that there are many di�erent self-similar proesses. From the ap-pliations point of view, those that have stationary inrements are of great interest beausethey give rise to stationary sequenes with remarkable features.De�nition 1.1.3. [48℄ A real-valued proess fX(t); t 2 Rg has stationary inrements iffX(t+ h)�X(h); t 2 Rg d= fX(t) �X(0); t 2 Rg; for all h 2 R: (1.5)De�nition 1.1.4. [48℄ The proess fX(t); t 2 Rg is alled H-sssi if it is self-similar withindex H and has stationary inrements.2The shorthand notation X(at) � aHX(t) will also be used sometimes.



6 The existene of moments limits the possible values of H.Lemma 1.1.5. [48℄ Suppose that fX(t); t 2 Rg is a (non-degenerate) H-sssi �nite varianeproess. Then 0 < H � 1; (1.6)X(0) = 0 almost surely; (1.7)and Cov [X(t1);X(t2)℄ = 12 �jt1j2H + jt2j2H � jt1 � t2j2H	Var [X(1)℄ : (1.8)Moreover, in the ase 0 < H < 1 from Eq.(1.2) we getE [X(t)℄ = 0: (1.9)In the following, let fX(t); t 2 Rg be a non-degenerate H-sssi �nite variane proesswith 0 < H < 1. The inrement sequene of fX(t); t 2 Rg in disrete time an be de�nedas Yk = X(k + 1)�X(k); k 2 Z: (1.10)The autoovarianes of the inrements are of the formCov [Yi; Yi+k℄ = 12 �jk + 1j2H � 2jkj2H + jk � 1j2H	Var [Y1℄ : (1.11)1.2 Long-range dependeneLet (�) denote the autoovariane funtion of fYi; i 2 Zg de�ned by(k) = Cov [Yi; Yi+k℄ ; k 2 Z; (1.12)and �(�) denote the autoorrelation funtion of the proess given by �(k) = (k)=(0). Thespetral density f(�) of fYi; i 2 Zg an be de�ned asf(�) = 12� 1Xk=�1(k)eik�; � 2 [��; �℄ (1.13)where i = p�1:



7De�nition 1.2.1. [4℄ fYi; i 2 Zg is alled a stationary proess with short-range dependene(or short memory) if there exists a onstant 0 < 0 < 1 suh thatlimk!1 �(k)k0 = 1: (1.14)De�nition 1.2.2. [4℄ fYi; i 2 Zg is alled a stationary proess with long-range dependene(or long memory) if there exists a real number � 2 (0; 1) and a onstant � > 0 suh thatlimk!1 �(k)�k�� = 1; (1.15)or equivalently (by virtue of the Tauberian theorem [4℄), if there exists a real number � 2(0; 1) and a onstant f > 0 suh thatlim�!0 f(�)f j�j�� = 1: (1.16)It is important to note that the de�nition of long-range dependene is an asymptotide�nition. It only tells us something about the ultimate behavior of the orrelations as thelag tends to in�nity. In this generality, it does not speify the orrelations for any �xed �nitelag. Moreover, it determines only the rate of onvergene, not the absolute size whih isgiven by the onstants � and f . Eah individual orrelation an be arbitrarily small, onlythe deay of the orrelations is slow. This makes the detetion of long-range dependenediÆult [4℄.The asymptoti behavior of �(�) (see Eq.(1.11)) follows by Taylor expansion:�(k) = H(2H � 1)k2H�2 + o(k2H�2): (1.17)Aording to De�nition 1.2.2 the proess fYi; i 2 Zg with 0:5 < H < 1 is long-rangedependent with parameter � = 2� 2H in Eq.(1.15) or with � = 2H � 1 in Eq.(1.16). Thisalso means that the orrelations are nonsummable:1Xk=�1�(k) =1: (1.18)(For H = 0:5 the inrements are unorrelated, and for 0 < H < 0:5 the orrelations sumup to zero [4℄.)The spetral density of fYi; i 2 Zg is given by [4℄f(�) = 2f (1� os �) 1Xj=�1 j2�j + �j�2H�1; � 2 [��; �℄ (1.19)



8with f = 12� sin(�H) �(2H + 1)Var [Y1℄ : (1.20)The behavior of f(�) near the origin follows by Taylor expansion at zero [4℄:f(�) = f j�j1�2H +O �j�jmin(3�2H;2)� : (1.21)The approximation of f(�) by f j�j1�2H is in fat very good even for relatively large fre-quenies.Eq.(1.21) is used when estimating H in the frequeny domain (see periodogram plotmethod in Setion 3.1.2).1.3 Aggregated proessLet fYk; k 2 Zg be a stationary stohasti proess in disrete time with �nite variane. Foreah m = 1; 2; : : : , let fY (m)k ; k 2 Zg denote a new time series obtained by averaging (andresaling) the original series Yk over non-overlapping bloks of size m. That is,Y (m)k = 1mH kmXi=(k�1)m+1 Yi; k 2 Z (1.22)with some 0 < H < 1. Note that for eah m, the aggregated proess is also stationary andhas �nite variane. Let �(m)(�) denote its autoorrelation funtion.De�nition 1.3.1. The proess fYk; k 2 Zg is alled seond-order self-similar with parame-ter H, if �(m)(k) = �(k); m = 1; 2; : : : : (1.23)In other words, the proess is seond-order self-similar if the aggregated proessesfY (m)k ; k 2 Zg are indistinguishable from fYk; k 2 Zg as far as their seond order statistialproperties are onerned [31℄.Note that in the above de�nition the stationary proess fYk; k 2 Zg is alled self-similar.This is seemingly in ontrast to the de�nitions in the previous setions, where nonstationaryproesses in ontinuous time ful�lled the requirements of self-similarity. The link betweenthe two an be explained as follows. Assume now that the proess fYk; k 2 Zg is theinrement proess of some proess fX(t); t 2 Rg. If fX(t); t 2 Rg is a H-sssi proess then



9its inrement proess ful�lls the requirements of De�nition 1.3.1. Moreover, in ase of H-sssiproesses a more stringent statement is valid: their aggregated inrement proesses satisfyfYk; k 2 Zg d= fY (m)k ; k 2 Zg: (1.24)It follows from Eq.(1.23) that the autoorrelation funtion of a seond-order self-similarproess is of the form�(k) = r(k) def= 12 �jk + 1j2H � 2jkj2H + jk � 1j2H	 : (1.25)Note, that r(k) is the autoorrelation funtion of the inrement proess of a H-sssi proess(see Eq.(1.11)). Hene a seond-order self-similar proess with 0:5 < H < 1 is long-rangedependent.Eq.(1.23) is a rather strit onstraint to �(m)(�) and, as a result, �(k) is determined forall the values of k. If we only require that �(m)(�) approahes r(�) as the aggregation levelinreases we get the following de�nition:De�nition 1.3.2. The proess fYk; k 2 Zg is alled asymptotially seond-order self-similarwith parameter H if limm!1�(m)(k) = r(k): (1.26)The striking feature is that the aggregated proesses possess a nondegenerate orrelationstruture as m tends to in�nity. As a result, the proesses whose autoorrelation funtionsatis�es Eq.(1.26) will satisfy Eq.(1.15) in De�nition 1.2.2. In other words, asymptotialseond-order self-similarity with 0:5 < H < 1 and long-range dependene are equivalentonepts.As a summary, Figure 1.1 shows the onnetions between the self-similarity relatedde�nitions. (The label 'H-�x' denotes the set of proesses whih satisfy Eq.(1.24), alled as�xed-point self-similar proesses.)1.4 Cumulative arrival proessThis setion provides the basis of how self-similar proesses an be used in traÆ modeling.Let A(t) represent the amount of traÆ arrived within the interval (0; t℄. The umulativearrival proess fA(t); t > 0g an be modeled byA(t) = mt+X(t); t > 0 (1.27)
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H-ss H-sssiH-�x 2nd.o.H-ssasympt.2nd.o.H-sssi (stationary inrements)

Figure 1.1: Connetions between self-similarity related de�nitions.where m > 0 is the mean arrival rate, and fX(t); t 2 Rg is a H-sssi proess with varianeVar [X(1)℄ = �2. The proess fA(t); t > 0g has the following mean and variane:E [A(t)℄ = mt; (1.28)Var [A(t)℄ = t2H�2: (1.29)The following properties of A(t) are useful when one tries to estimate the parameter H (seelater in Setion 3.1.2).The variane of A(t)=t an be written asVar [A(t)=t℄ = t2H�2�2: (1.30)The property in Eq.(1.30) forms the basis of the variane-time method to estimate H (seeSetion 3.1.2).The index of dispersion for ounts (IDC) de�ned byIDC(t) = Var [A(t)℄E [A(t)℄ (1.31)an be alulated as IDC(t) = t2H�1m�1�2: (1.32)This property forms the basis of the IDC plot method (see Setion 3.1.2).



111.5 Frational Brownian motionSuppose that fZ(t); t 2 Rg is a H-sssi proess with 0 < H < 1. The expeted valueof the inrement proess Yi = Z(i + 1) � Z(i) (i = 0; 1; 2 : : : ) is zero (see Eq.(1.9)), andthe ovarianes of Yi are given by Eq.(1.11). Furthermore, suppose that the inrementproess is Gaussian. Then the distribution of the proess is fully spei�ed by the mean andovarianes. Therefore for eah value of H 2 (0; 1) there is exatly one Gaussian proessfYk; k 2 Zg that is the stationary inrement of a self-similar proess Z(t). The inrementproess is alled frational Gaussian noise (fGn) and the orresponding self-similar proessfZ(t); t 2 Rg is alled frational Brownian motion. By de�nition [48℄:De�nition 1.5.1. [48℄ A Gaussian H-sssi proess, 0 < H � 1, is alled frational Brow-nian motion (fBm) and is denoted fZ(t); t 2 Rg. It is alled standard frational Brownianmotion if Var [Z(1)℄ = 1.The fBm proess is widely applied in modeling, partiularly in the ontext of long-rangedependene, when 0:5 < H < 1. A standard fBm with Hurst-parameter H 2 [0:5; 1) isharaterized by the following properties [41℄:1. Z(t) has stationary inrements;2. Z(0) = 0, and E [Z(t)℄ = 0 for all t;3. Var [Z(t)℄ = E �Z(t)2� = jtj2H for all t;4. Z(t) has ontinuous sample paths;5. Z(t) is a Gaussian proess, i.e., all its �nite-dimensional marginal distributions areGaussian.In the speial ase H = 0:5, Z(t) is the standard Brownian motion.The fBm proess will play a entral role in this dissertation.



Chapter 2Parameter Estimation of FrationalBrownian TraÆThe parameter estimation of a traÆ model based on the frational Brownian motion (fBm)is studied. The model has three parameters: mean rate m, variane parameter a and theHurst parameter H. Expliit expressions for the maximum likelihood (ML) estimates m̂and â in terms of H are given, as well as the expression for the log-likelihood funtion fromwhih the estimate Ĥ is obtained as the maximizing argument. A geometri sequene ofsampling points, ti = �i, is introdued, whih �ts neatly the self-similar property of theproess and also redues the number of samples needed to over several time sales. It isshown that by a proper \desaling" the traÆ proess is stationary on this grid leading toa Toeplitz-type ovariane matrix. Approximations for the inverted ovariane matrix andits determinant are introdued. The auray of the estimations is studied by simulations.Comparisons with estimates obtained with linear sampling and with the wavelet-basedAbry-Veith estimator show that the geometrial sampling improves indeed the auray ofthe estimate Ĥ with a given number of samples.2.1 Frational Brownian traÆOne of the simplest and most studied models for aggregated data traÆ is the frationalBrownian motion (fBm) model [45℄, whih is a model for self-similar Gaussian traÆ.Though the model has its limitations and, in partiular, breaks down at small time sales,it has gained popularity beause of its simpliity [42℄. In its basi form the model ontainsonly three parameters, and a small number of traÆ parameters is a very desirable featurefrom the appliability point of view for traÆ engineering purposes.Norros [41℄ has suggested the following modelX(t) = mt+paZ(t); (2.1)12



13where X(t) represents the amount of traÆ arrived in (0; t). The model has three parame-ters, m, a and H with the following interpretations and intervals for allowed values: m > 0is the mean input rate, a > 0 is a variane parameter, and H 2 [0:5; 1) is the self-similarityparameter of the standard frational Brownian motion Z(t).Sine Z(t) is a H-sssi proess, its saling behavior is de�ned by the Hurst parameter Has follows Z(�t) � �HZ(t): (2.2)The ovariane struture of the proess is given byCov [Z(t1); Z(t2)℄ = 12 �t2H1 + t2H2 � jt2 � t1j2H	 : (2.3)The proess X(t) has the following properties:E [X(t)℄ = mt; (2.4)Var [X(t)℄ = at2H ; (2.5)Cov [X(t1);X(t2)℄ = a2 �t2H1 + t2H2 � jt2 � t1j2H	 : (2.6)It follows from Eq.(2.1) and the above properties of Z(t) that (X(t + 1) � X(t)), theamount of traÆ arrived in the unit interval [t; t+1), has the following mean and variane:E [X(t+ 1)�X(t)℄ = m; (2.7)Var [X(t+ 1)�X(t)℄ = a: (2.8)Thus, the fator a gives the variane of arrivals over one unit of the hosen time-sale.2.2 Exat Gaussian MLE for general sampling shemeThroughout this work the maximum likelihood estimation (MLE) method [4℄ is applied.(The MLE method was previously applied to this problem by Derihe and Tew�k [15℄ andNinness [40℄ using ordinary linear sampling.) Expliit formulas for the estimators of m anda are given along with the log-likelihood funtion for determining the estimator for H.Assume that the traÆ has been observed at n time instanes forming the vetor t =(t1; : : : ; tn)t. And let X = (X(t1); : : : ;X(tn))t be the vetor of observed traÆ values atthese instanes. Sine X(t) is Gaussian, the joint probability density funtion of X is equalto h(x) = (2�)�n2 j�j� 12 e� 12 (x�m)t��1(x�m); (2.9)where x = (x1; : : : ; xn)t 2 Rn , m = mt, and j�j is the determinant of the ovariane matrix� = hCov [X(ti);X(tj)℄ ii;j=1;::: ;n: (2.10)



142.2.1 MLE (m̂j a;H)The ML estimate m̂ an be derived as follows. The log-likelihood funtion is given bylog h(X;m) = �n2 log 2� � 12 log j�j � 12(X�mt)t ��1 (X�mt): (2.11)The MLE of m is obtained by maximizing log h(X;m) with respet to m. Or, equivalently,by minimizing the funtionL(X;m) = (X�mt)t ��1 (X�mt): (2.12)This minimization problem an be reformulated in terms of the �rst partial derivatives.The MLE m̂ is the solution ofL0(X; m̂) = ��mL(X; m̂) (2.13)= 2m̂tt ��1 t� 2tt ��1X = 0and using the relationships (AB)t = BtAt and (At)�1 = (A�1)t valid for any matries Aand B, and the fat that � is symmetri, we getm̂ = m̂(H) = tt ��1Xtt ��1 t : (2.14)The expetation and variane are important properties of an estimator. Sine the ex-petation of X is mt we have E [m̂℄ = tt �̂�1H E [X℄tt �̂�1H t = m; (2.15)where �̂�1H def= ��1H (Ĥ), i.e., the estimate is unbiased (irrespetive of whether our estimatefor H is orret or not).The variane of m̂ an also be alulated. For the time being we assume that H is knownexatly, Ĥ = H. (It will be interesting and important to onsider also the ase where Ĥitself is a random variable!) Finally we get (see Appendix A):Var [m̂℄ = att ��1H t : (2.16)2.2.2 MLE (âjm;H)Next, onsider the estimator for a. Note, that � = �(a) is a simple linear funtion of a:� = �(a) = a�H (2.17)



15where, using the notation Z = (Z(t1); : : : ; Z(tn))t, �H is given as�H = E �ZZt� = hCov [Z(ti); Z(tj)℄ ii;j=1;::: ;n: (2.18)Hene the log-likelihood funtion is given bylog h(X; a) = �n2 log 2� � 12 log an j�H j � 12a (X�m)t ��1H (X�m): (2.19)The MLE of a is obtained by minimizing the a-dependent part of the log-likelihood funtionmultiplied by �2, and that isL(X; a) = n log a+ 1a(X�m)t ��1H (X�m): (2.20)The MLE â is the solution ofL0(X; â) = ��aL(X; â) (2.21)= n̂a � 1̂a2 (X�m)t ��1H (X�m) = 0and from this we get â = â(m;H) = 1n(X�m)t ��1H (X�m): (2.22)2.2.3 MLE (m̂; âjH)If we do not know the mean input rate m in advane, in Eq.(2.22) m should be replaedby m̂t. Using Eq.(2.14) and Eq.(2.22) we getâ(H) = 1n(X� m̂t)t ��1H (X� m̂t) (2.23)= 1n (Xt ��1H X)(tt ��1H t)� (tt ��1H X)2tt ��1H t :Next onsider the properties of the estimator â = a(H). Again, for the time being weassume that H is known exatly and alulate the expetation of â (see Appendix A), whihis nE [â℄ = (n� 1)a: (2.24)Thus the variane estimator has the \usual" (n�1)=n bias. The \na��ve" estimator [45℄ had amuh larger bias beause the orrelations between the samples had not been \deorrelated".The next step is the alulation of the variane of â (see Appendix A):Var [â℄ = 2(n� 1)n2 a2: (2.25)If we use the bias-orreted estimator (n=(n� 1))a, the variane isVar � nn� 1 â� = 2a2n� 1 : (2.26)



162.2.4 Likelihood funtion and its derivative for ĤFinally, we are left with the estimation of H. The task is to maximize the log-likelihoodfuntionlog h(X;H) = �n2 log 2� � 12 log jâ(H) �H)j � 12â(H)(X� m̂(H)t)t ��1H (X� m̂(H)t)(2.27)or equivalently, the minimization ofL(X;H) = log jâ(H) �H j+ 1â(H) (X� m̂(H)t)t ��1H (X� m̂(H)t) (2.28)= log ân(H) j�H j+ 1â(H) (Xt ��1H X)(tt ��1H t)� (tt ��1H X)2tt ��1H t= n log (Xt ��1H X)(tt ��1H t)� (tt ��1H X)2tt ��1H t � n log n+ log j�H j+ n! min;i.e., essentially we have to minimize~L(X;H) = j�H j1=n (Xt ��1H X)(tt ��1H t)� (tt ��1H X)2tt ��1H t : (2.29)The �rst term is a dereasing funtion of H, and the seond term is an inreasing funtion ofH. The minimum is obtained for some value Ĥ whih is the ML estimate; the orrespondingML estimates for m and a are m̂ = m(Ĥ) and â = a(Ĥ).The major diÆulty in this method is the alulation of the inverse and determinant ofthe ovariane matrix appearing in the likelihood funtion.Alternatively, Ĥ an be alulated as the solution ofL0(X;H) = ��H � log j�H j�+ n ��H log "(Xt ��1H X)� (tt ��1H X)2tt ��1H t # = 0: (2.30)Using the notations u = (tt ��1H t)X and v = (tt ��1H X)t, after some alulations we haveL0(X;H) = ��H � log j�H j�+ n(u+ v)t � ��H��1H � (u+ v)(u+ v)t ��1H (u� v) = 0: (2.31)If we use the relationships (where Tr(�) denotes the trae of a matrix)���A�1� = �A�1� � ���A��A�1� ; (2.32)��� log jA�j = Tr�A�1� ���A�� (2.33)



17valid for any matrix A� depending on a parameter � [16℄ we have (with �0H = ��H�H)L0(X;H) = Tr(��1H �0H) + n(v + u)t ���1H �0H ��1H � (v + u)(v + u)t ��1H (v � u) = 0: (2.34)It is important that in order to solve Eq.(2.34) we do not need to alulate the determinantof �H .2.3 Exat Gaussian MLE using linear samplingA speial (and most ommon) ase of the general sampling sheme is when the samplesare taken uniformly in time. Let X = (X(t1);X(t2); : : : ;X(tn))t be the vetor of observedtraÆ values at instanes ti = in; i = 1; 2; : : : ; n: (2.35)The inrement sequene (Y1; Y2; : : : ) with Yi = X(ti) � X(ti�1) (substituting X(t0) �X(0) = 0) is a strongly orrelated stationary sequene withCov [Yi; Yj℄ = 12an�2H �ji� j + 1j2H + ji� j � 1j2H � 2ji� jj2H� (2.36)for i; j = 1; 2; : : : ; n: The formulas for the exat Gaussian MLE for this inrement proessare nearly the same as in Setion 2.2, we only need to replae the ovariane matrix � with� = [Cov [Yi; Yj ℄℄i;j=1;2;::: ;n, and the vetor t with the vetor (1=n; 1=n; : : : ; 1=n)t. Aftersome minor simpli�ations we get an estimate for mm̂ = m̂(H) = 1t ��1Y1t ��1 1 � n (2.37)where 1 is a vetor of ones, and � = a�H . For a we have the estimatorâ(H) = 1n  Yt��1H Y � �1t ��1Y�21t ��1 1 ! : (2.38)Again, �nally we have to minimize~L(Y;H) = log j�H j+ n log Yt��1H Y � �1t ��1Y�21t ��1 1 ! : (2.39)The minimum is obtained for some value Ĥ whih is the ML estimate.



182.4 Exat Gaussian MLE using geometrial samplingThe Hurst parameter H desribes the saling behavior of the traÆ. Therefore, in order todetermine its value from measured data, the sample points must over several time sales,i.e., the total time of the measurements must be many orders of magnitude greater thanthe smallest interval between the sampling points. With the ordinary linear sampling, i.e.,sampling points at onstant intervals, this leads to the requirement of a very large numberof samples. Obviously, beause of the orrelations, there is a lot of redundany in measuredtraÆ values at these points. In order to use the measurements more eÆiently, a geometrisequene of sampling points an be introdued: ti = �i, i = 1; : : : ; n, with some � betweenzero and one.In addition to distributing the sampling points in a better way on di�erent time sales,geometri sampling �ts neatly with the self-similar behavior of the fBm traÆ. By a simpletransformation we an obtain from the fBm proess another proess whih is a stationaryproess on logarithmi time sale. As a geometri sequene orresponds to equidistant pointsin logarithmi time, the samples of the modi�ed proess onstitute a stationary sequene.This leads to a simple Toeplitz-type struture of the ovariane matrix and allows us todevelop approximations to the inverse and determinant of the ovariane matrix. (Similarideas were presented in [10, 11℄ where the notion of sale-stationarity was used. The MLestimation tehnique was also investigated to some extent, but no approximations were usedto make the method pratially tratable.)2.4.1 Desaled proessThere is a one-to-one orrespondene between self-similar and stationary proesses: Y =fY (t); t � 0g is self-similar with parameter H if and only if fe�tHY (et);�1 < t < 1g isstationary (see Theorem 1.1.2 in Setion 1.1). This transformation an be ahieved by �rstdesaling the proess and then distorting the time axis exponentially. The desaled proessan be obtained from the original proess by multiplying it with the term t�H , and the timedistortion an be ahieved by hanging the proess' index to logarithmi time.Z(t) has the self-similar property Z(�t) � �HZ(t). Now onsider the desaled proess~Y (t) def= t�HZ(t) (2.40)whih has the saling property~Y (�t) � (�t)�HZ(�t) = t�HZ(t) = ~Y (t): (2.41)Further let us take a new time variable u = � log t and denoteY (u) def= ~Y (e�u) = ~Y (t): (2.42)Now we haveY (u� log�) = ~Y (e�u+log�) = ~Y (�e�u) = ~Y (�t) � ~Y (t) = Y (u): (2.43)



19Thus the proess Y (u) is stationary and has the following properties:E [Y (u)℄ = 0; (2.44)Var [Y (u)℄ = 1; (2.45)Cov [Y (u1); Y (u2)℄ = 12eH(u2�u1)�1 + e�2H(u2�u1) � �1� e�(u2�u1)�2H� (2.46)= g(�); where � = u2 � u1; 0 < u1 < u2:If we `desale' the proess X(t) we get~W (t) def= t�HX(t) = mt1�H +pa ~Y (t); (2.47)and using u = � log t we �nally haveW (u) def= ~W (e�u) =me(H�1)u +paY (u): (2.48)Thus the proess W (u) has the following properties:E [W (u)℄ = me(H�1)u; (2.49)Var [W (u)℄ = a; (2.50)Cov [W (u1);W (u2)℄ = a2eH(u2�u1)�1 + e�2H(u2�u1) � �1� e�(u2�u1)�2H� : (2.51)2.4.2 Geometrial samplingThe idea here is that a geometrial sampling grid overs several time sales with fewerpoints. The seond point is that the geometrial grid, being \self-similar", �ts well withthe traÆ proess and gives rise to a simple struture in the ovariane matrix.Let X = (X(t1);X(t2); : : : ;X(tn))t be the vetor of observed traÆ values at instanesti = �i�1; i = 1; 2; : : : ; n; 0 < � < 1: (2.52)The auto-ovariane matrix ~� of the desaled samples W = (W (u1);W (u2); : : : ;W (un))twith ui = � log ti = (1� i) log � an be written as~� = E �WWt� = a � E �YYt� : (2.53)Note that our geometrial grid is now equally spaed with regard to u. Thus, if we use thenotation Yi = Y (ui) the proess Y = (Y1; Y2; : : : ; Yn) is a stationary proess in disrete timewith zero mean and unit variane and its auto-orrelation funtion �(k) an be de�ned as�(i� j) = Cov [Yi; Yj ℄ ; i; j = 1; 2; : : : (2.54)



20and thus ~�ij = a�(i� j); i; j = 1; 2; : : : ; n: (2.55)From Eq.(2.44) and Eq.(2.52) we get�(i� j) = 12e�Hji�jj log��1 + e2Hji�jj log� � �1� eji�jj log��2H� (2.56)= 12��Hji�jj�1 + �2Hji�jj � �1� �ji�jj�2H� :With the notations g(x) = (1 + x2H � (1 � x)2H)=2 and � = ��H the matrix ~� has thefollowing struture:
~� = a �

0BBBBBBBBBBBBBBB�
1 �g(�) �2g(�2) � � � �n�1g(�n�1)�g(�) 1 �g(�) . . . ...�2g(�2) �g(�) 1 . . . �2g(�2)... . . . . . . . . . �g(�)�n�1g(�n�1) � � � �2g(�2) �g(�) 1

1CCCCCCCCCCCCCCCA : (2.57)
2.4.3 Desaled MLEWhen doing the maximum likelihood estimation of the model parameters m, a and H, thealulation of the inverse and determinant of the ovariane matrix � an be problemati. Toease the alulations, one an utilize the stationarity and short-range dependent propertiesof the desaled proess. Using the `desaling matrix' D = diag(t�H1 ; : : : ; t�Hn ) we anproeed as follows: ~� = E �WWt� (2.58)= E �(DX)(DX)t�= DE �XXt�D= D�D:From this one an easily dedue that ��1 = D ~��1D: (2.59)



21Substituting Eq.(2.59) into Eq.(2.14) the MLE m̂ ism̂(H) = ttD~��1DXttD~��1Dt : (2.60)Similarly, the same result holds when estimating a as in Eq.(2.23) with ��1H =D~��1H D,namely, â(H) = 1n(X� m̂t)tD~��1H D (X� m̂t) (2.61)= 1n (XtD~��1H DX)(ttD~��1H Dt)� (ttD~��1H DX)2ttD~��1H Dt :Finally, we have to minimize~L(X;H) = j�H j1=n (XtD~��1H DX)(ttD~��1H Dt)� (ttD~��1H DX)2ttD~��1H Dt : (2.62)The determinant j�H j an be also alulated asj�H j = jD�1 ~�H D�1j (2.63)=  nYi=1 tHi ! j~�H D�1j=  nYi=1 t2Hi ! j~�H j=  nYi=1�2H(i�1)! j~�H j= �Hn(n�1)j~�H jThe minimum of Eq.(2.62) is obtained for some value Ĥ whih is the MLE estimate; theorresponding MLE estimates for m and a are m̂ = m(Ĥ) and â = a(Ĥ).2.4.4 Approximate MLEIn pratie, the exat MLE poses omputational problems beause of the omputation timeneeded in ase of large data sets. To avoid these problems, one an use approximate methodsto alulate the estimates. In [4℄, several possible approahes to approximating the Gaussianlikelihood funtion are disussed, among them the well known Whittle's approximate MLE.In our ase the fous is on the properties of the ovariane matrix �H , and we try totake advantage of its speial struture and to �nd eÆient approximations for its inverseand determinant.
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Figure 2.1: (a) The graphs of g(x) for H = 0:6, 0.7, 0.8 and 0.9.; (b) Error of approximationg(x) � x for H = 0:6, 0.7, 0.8 and 0.9.Linear approximation of g(x)Using the notation g(x) = 12 �1 + x2H � (1� x)2H� ; (2.64)the elements of the autoorrelation matrix ~�H an be written as[~�H ℄i;j = ��Hji�jjg(�ji�jj); i; j = 1; 2; : : : ; n: (2.65)It is interesting to note, that g(x) is nearly ompletely linear for x 2 (0; 1). Figure 2.1shows the funtion g(x) and the di�erene of g(x) � x for di�erent values of H. It an beseen from the plot that the largest absolute di�erene is less than 0.02 for eah value ofH. This observation gives us the idea to use the approximation g(x) � x. So ~�H an beapproximated as ~�H � R, where R is a Toeplitz-type matrix of the form[R℄ij = ji�jj; i; j = 1; 2; : : : n; (2.66)with  = �1�H .



23Approximations for ~��1 and j~�jUsing the approximation ~� � aR, the inverse of R an be easily alulated as [46℄
R�1 = 11 � 

0BBBBBBBBBBBBBBBB�
1 �1 0 � � � 0�1  + 1 �1 . . . ...0 �1  + 1 . . . 0... . . . . . . . . . �10 � � � 0 �1 1

1CCCCCCCCCCCCCCCCA ; (2.67)
and the determinant of R is given by [46℄jRj = (�1)n�1 n�1Yi=1 ������ 1�i i�1�i i ������ � n�1 = (1� 2)n�1: (2.68)Approximate MLEFrom Eq.(2.60) with ~� � aR the approximate MLE m̂ ism̂(H) = ttDR�1DXttDR�1Dt : (2.69)Using ttDR�1Dt = 1 and ttDR�1D = (1; 0; : : : ; 0), we getm̂(H) = X(1): (2.70)Similarly, from Eq.(2.61) we getâ(H) = 1n �XtDR�1DX�X21� : (2.71)Finally, we have to minimize (see Eq.(2.62)L(X;H) = n� 1n log ��nH(1� �2�2H)�+ log �XtDR�1DX�X21� (2.72)to get the estimate Ĥ.



24 Note that due to the relatively simple struture of R�1 the matrix produt termXtDR�1DX an be alulated asXtDR�1DX = (DX)tR�1(DX) (2.73)= 2 n�1Xi=1 2 � 1 �t�Hi Xi��t�Hi+1Xi+1�+ X21 + �t�Hn Xn�21� 2 + n�1Xi=2 1 + 21� 2 �t�Hi Xi�2= 2 n�1Xi=1 ��H(2i�1)2 � 1 XiXi+1 + X21 + ��2H(n�1)X2n1� 2 + n�1Xi=2 (1 + 2)��2H(i�1)1� 2 X2iIt should be noted that though the linear approximation g(x) � x is rather aurate,the resulting inverse matrix R�1 of Eq.(2.67) is rather poor an approximation to ~��1 forlarge n. Nevertheless, the use of R�1 in the log-likelihood funtion Eq.(2.72), as we willsee, yields a good estimate for H, while the estimate of a su�ers more.Improved approximation for ~��1Sine the matrix ~� is a Toeplitz-type matrix with dereasing elements as we go farther fromthe diagonal, we expet that its inverse an be well approximated with a band matrix ofthe form:
C =

0BBBBBBBBBBBBBBBBBBBBBBBBBBB�

̂1 ̂2 ̂3 � � � ̂p�1 p 0 � � � 0̂2 ̂01 2 � � � p�2 p�1 p . . . ...̂3 2 1 � � � p�3 p�2 p�1 . . . 0... ... ... . . . ... ... ... . . . p̂p�1 p�2 p�3 � � � 1 2 3 ̂p�1p p�1 p�2 � � � 2 1 2 . . . ...0 p p�1 � � � 3 2 1 . . . ̂3... . . . . . . . . . . . . . . . . . . ̂20 � � � 0 p ̂p�1 � � � ̂3 ̂2 ̂1

1CCCCCCCCCCCCCCCCCCCCCCCCCCCA
: (2.74)

so that ~��1H � C. Our aim is to set the p parameters 1; : : : ; p to get C~�H � E. Forexample, this an be ahieved by solving the equation(p; : : : ; 2; 1; 2; : : : ; p) � � = (0; : : : ; 0; 1; 0; : : : ; 0); (2.75)



25where G = (~�H)(2p�1)�(2p�1) and from this we havei = G�1p(p+i�1); i = 1; 2; : : : ; p: (2.76)With this approximation we only need to alulate the inverse of a (2p � 1) � (2p � 1)matrix1. To improve the approximate inverse, its elements in the upper-left and lower-rightorners an be further orreted by solving the following set of equations:C1;� � (~�H)�;1 = (1; 0; : : : ; 0); (2.77)C2;� � (~�H)�;2 = (0; 1; 0; : : : ; 0);...Cp;� � (~�H)�;p = (0; : : : ; 0| {z }p�1 ; 1; 0; : : : ; 0);where the notations Ci;� and (~�H)�;j denote the i-th row and j-th olumn of the matriesrespetively.Note, that to get C we need to alulate the inverse of a (2p � 1) � (2p � 1) matrixinstead of an n�n matrix. As we inrease the auray of the approximation (i.e., p! n),we pay for this with inreased alulation omplexity. The orner-orretion helps a lotwhen p is small.Approximation for ��1H in ase of linear samplingHowever, to alulate the inverse and the determinant of �H (see Setion 2.3) the sameproblems arise as in the ase of geometrial sampling with the ovariant matrix ~�H . Sine�H is also a Toeplitz type matrix, the same method as desribed in this setion an be usedto approximate ��1H with C of Eq.(2.74).The only di�erene is that we need the determinant j�H j, or at least an approximationof it, to alulate the estimate of H using Eq.(2.39). Fortunately, the determinant of C anbe alulated (see Appendix B for the main idea and the solution for the p = 2 ase), andwe get j�H j � jCj�1.2.5 Validation with simulationsComputer simulations with Matlab were used to validate the proposed estimation methodsand approximations, as well as to demonstrate the advantage of geometrial sampling overthe traditional linear sampling sheme. In ase of Ĥ the proposed estimation method wasalso ompared to the wavelet-based method of Abry and Veith [53℄ whih is known to bea fast and eÆient estimator.This setion desribes the details and results of the simulations.1More exatly|sine the matrix is symmetri|, we only need to solve p equations.



26Data setsFor small (up to 103) sample sizes the fBm samples were generated using the fat Z ��1=2H N (or, orrespondingly, Z � �1=2H N for the linear sampling) where N is a vetor ofindependent standard Gaussian variables. To generate larger data sets, the onditionedRandom Midpoint Displaement (RMD) algorithm presented in [35℄ was used. This methodprovides a fast and aurate approximation of frational Brownian motion. (The RMD-mnsimulator is available over the Internet [35℄.)In the simulations presented here the model parameters were set as m = 1, a = 1and H = 0:8 as an example, but similar results were obtained for di�erent values of theparameters.The 95% on�dene interval was obtained by repeating the simulations 100 times andalulating the sample variane of the estimates.Parameter �Using geometrial sampling the traÆ is sampled at time instanesti = �i�1; i = 1; 2; : : : ; n; 0 < � < 1: (2.78)Parameter � ontrols the number of samples and the total sampling time. (Note thatEq.(2.78) implies t1 = 1 and tn = �n�1 < 1 resulting in dereasing ti values. This reverseorder of samples is used only to make the notations more simple. The total sampling timeis also normalized to unity in this way.) With a given number of samples the ratio of thetotal measurement time to the shortest time interval between sample points (resolution) isgreater if � is smaller. To over many time sales a small � is desirable. On the other hand,the resolution of the measurement annot be arbitrarily �ne beause of pratial limitations(e.g., the smallest time di�erene our measurement equipment an reord is given, or itstime stamp preision is �nite).The parameter � for the geometrial grid was hosen so that the di�erene between thenearest two measurement time instants (the `resolution' of the measurement) was 10�6 inall ases, exept when the method was ompared to the A-V estimator. The resolution inthe latter ase was 10�4.2.5.1 Geometrial vs. linear samplingEstimates of HFigure 2.2 shows the results of H estimates as a funtion of the number of sample pointsusing both geometrial and linear sampling. In the geometrial ase Eq.(2.72) was mini-mized while for the linear sampling we used the formula Eq.(2.39), where the inverse of �Hwas approximated with the band matrix of type Eq.(2.74) with p = 2.
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Figure 2.2: Estimates of H using geometrial and linear sampling.The results show that the estimates using geometrial sampling have muh smallervariane and are unbiased for sample sizes larger than 25. However, the variane of theestimates is always higher with linear sampling. For example, the variane for 800 samplesusing linear sampling is nearly the same as for only 50 geometrially sampled points.Estimates of aThe next question was how the two di�erent sampling methods a�et the estimates forthe variane parameter a. Figure 2.3 displays the results, assuming H is known. Thesesimulations were useful to test whether our approximations in alulating the inverse anddeterminant of the ovariane matries are adequate or not. Figure 2.3 presents two dif-ferent approximations for the geometrial sampling. First, the simple approximate inverseovariane matrix of Eq.(2.67) in Eq.(2.23) with Eq.(2.59) was used (denoted by light graydots and labeled `linear approximation' in the �gure). As an be seen, the estimates of aare strongly biased and the bias is getting larger as the number of samples inreases. Sothis estimate is learly inadequate, therefore the approximation had to be re�ned. Next,we used the approximation of Eq.(2.74) for ~��1H with �ve parameters (p = 5). As we seefrom Figure 2.3, the strong bias from the â estimates disappeared and the variane of theestimates is only slightly higher than the theoretial value whih an be alulated usingEq.(2.26). (Note, however, that the bias for sample sizes of 400 and 800 seems to be slightlyinreased.) Finally, the linear sampling method was used. Its estimates are asymptotiallyunbiased and have approximately the same variane as expeted. The approximate inversematrix used was as in Eq.(2.74) with only two parameters (p = 2).Figure 2.4 shows the MLE â estimates without any a priori knowledge about the model
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Figure 2.3: Estimates of a using geometrial and linear sampling and di�erent approxima-tions, assuming H is known.
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Figure 2.4: Estimates of a (when H is also estimated) using geometrial and linear samplingand di�erent approximations.



29parameters. All the approximations used here were the same as in the previous ases.Sine H is not known and an only be estimated with a given variane, the estimatesof a have larger varianes than in the previous simulations. The question is how robustthose estimates are when Ĥ an have a slight bias (see Figure 2.2). As for the geometrialsampling, the bias of â gets smaller and its variane is also dereasing rapidly as the samplesize inreases. On the other hand, for the linear sampling ase the estimates seem to bebiased for larger sample sizes and their variane does not seem to derease. The reason forthis behavior lies in the fat that the linear sampling for estimating H is less aurate thanthe geometrial sampling. The bias in Ĥ together with its higher variane is responsiblefor the bias and variane of â, even if the linear sampling seems to be a better hoie toestimate a than the geometrial one for known H (see Figure 2.3).Estimates of mAs for the ML estimates for m the geometrial sampling does not give any extra advantageor disadvantage ompared to the linear sampling. In fat, the approximate ML estimategives bak the sample mean as an estimate (see Eq.(2.70)). For example, using 400 samplesthe estimate m̂ was 1.05 with variane 0.9.2.5.2 Geometrial sampling vs. wavelet-based methodThe fous here is on the H parameter estimation only.Wavelet-based estimatorHere we use the notations of Veith and Abry [53℄. The ontinuous wavelet deompositiononsists of the olletion of oeÆientsfTX(a; t) = hX; a;ti; a 2 R+ ; t 2 Rg (2.79)that ompares the signal X to be analyzed with a set of analyzing funtions (or wavelets)� a;t(u) � 1pa 0�u� ta � ; a 2 R+ ; t 2 R� : (2.80)This set of analyzing funtions is onstruted from a referene pattern  0, alled the mother-wavelet.Beause the wavelet transform represents in a plane the information ontained in asignal, it is a redundant transform. A mathematial theory, the Multiresolution Analysis,proves that it is possible to keep, among the fTX(a; t)g, only a disrete set of oeÆientswhile still retaining the total information in X. The disrete (or nonredundant) wavelettransform onsists of the olletion of oeÆientsX(t)! nfaX(J; k); k 2 Zg; fdX(j; k); j = 1; : : : ; J; k 2 Zgo: (2.81)
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X dx(1; �)dx(2; �)dx(3; �)ax(3; �)Figure 2.5: Filter bankThe fdX (j; k)g onstitute a subsample of the fTX(a; t)g, loated on the so-alled dyadigrid dX(j; k) = TX(2j ; 2jk). These oeÆients an be omputed by a fast reursive �lter-bank based pyramidal algorithm (see Figure 2.5) with low omputational ost [13℄. (TheoeÆients of the low-pass (LP) and band-pass (BP) �lters are derived from the hosenwavelet.)When X is a self-similar proess, the wavelet oeÆients dX(j; k) exatly reprodue theself-similarity through the saling property [14℄, i.e.,dX(j; k) d= 2j(H+0:5)dX(0; k) (2.82)for all j and k. If we add the requirement that X has stationary inrements, we haveE �dX(j; k)2� = 2j(2H+1) C(H; 0); (2.83)with a onstant C(�) dependent on H and the mother-wavelet, but independent of j.The quasi-deorrelation of the dX(j; k) oeÆients allows us to e�etively use the simple`time average' as an estimate of E �dX(j; �)2��j = 1nj njXk=1 dX(j; k)2; (2.84)where nj is the number of oeÆients at otave j (i.e., essentially nj = 2�jn where n is thelength of the data). This quantity is an unbiased and onsistent estimator of E �dX(j; �)2�[1℄. The power-law form in Eq.(2.83) suggests that the saling exponent 2H + 1 ould beextrated simply by onsidering the slope in a plot of log2(�j) against j. However, areshould be taken sine nonlinearity is introdued by the log2, whih biases the estimator. Thefundamental approah underlying the Abry-Veith estimator proposed in [53℄ is a weightedlinear regression of log2(�j) on j.Simulation resultsThe MLE method using geometrial sampling was ompared to the wavelet-based Abry-Veith estimator. Figure 2.6 shows similar results as previously, namely that the estimates
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Figure 2.6: Estimates of H using MLE with geometrial sampling, and the wavelet-basedAbry-Veith estimator.using geometrial sampling have muh smaller variane and bias than the wavelet-basedestimates. For a given variane of Ĥ the redution in the number of samples is about oneorder of magnitude in favor of MLE using geometrial sampling.2.6 ConlusionIn this setion the ML estimation of the parameters of frational Brownian traÆ wasinvestigated. Closed form expressions for the estimators of m and a were derived as well asthe log-likelihood funtion from whih the estimator of H an be obtained. Approximationswere developed for the inverse and the determinant of the ovariane matrix, needed for thealulation of the estimates. With these approximations the evaluation of the log-likelihoodfuntion is fast and the maximization with respet to H an easily be made.The idea of using geometrial sampling was also investigated. The intention with thissampling was to redue the number of sampling points required for a given prede�nedon�dene level. Intuitively, the geometrial sampling distributes the sampling points ad-vantageously at di�erent time sales, whereas linear sampling stresses the �nest time sale.The experiments with simulated traÆ showed that the proposed approximate methodsworked well, and geometrial sampling does indeed give a better estimate for H leading toa redution of sample points. (In one example the number of required points was reduedfrom 800 to 50.) For the estimation of a the geometrial sampling does not give any diretadvantage, but as the estimator â atually depends on the estimator Ĥ, the overall aurayobtained is better. For the estimation of m, di�erent sampling shemes give essentially the



32same result, the estimate is basially the observed average rate.It should, however, be noted that the experiments in this setion were made only withsimulated traÆ with `exat measurements'. If the measured values were `noisy' in a sensethat the traÆ deviates from the fBm modeling assumption, then the estimates ould bedistorted as well. The wavelet-based Abry-Veith estimator, for example, shows good perfor-mane in terms of robustness and omputational ost. Similar investigations are neessaryfor the proposed method and are the topi of future study. As a �rst step, to get a glimpsehow the proposed method works in pratie, in Setion 3.1.2 the approximate MLE withgeometrial sampling is applied for estimating H of measured traÆ.Though the geometrial sampling has been shown to give better results than the linearsampling, it is not laimed that it onstitutes the optimal sampling sheme. So there remainsthe theoretial question: What is the best way of loating a given number of sampling pointsin the interval [0; 1℄ with the onstraint that the smallest distane between any pair of pointsis greater than or equal to a given minimum resolution.



Chapter 3Charaterization and Control ofSaling TraÆPratial questions and problems are investigated in this hapter, whih are to be onsideredwhen using the self-similar modeling onept in ase of real traÆ.One self-similar proesses are hosen to model the traÆ, the most important questionis the detetion of self-similarity and the estimation of its parameter H. When performingthe estimation, ertain pitfalls must be avoided in any osts. In Setions 3.1 and 3.2empirial studies are presented in this topi. In Setion 3.3 the impats of di�erent networkmehanisms (i.e., shaping, poliing and multiplexing) on the H parameter estimates areinvestigated. Finally, in Setion 3.5 queueing and shu�ing analysis are performed in orderto investigate the e�ets of saling behaviour on ell loss in a simple queueing environment.
3.1 Hurst parameter estimation of real traÆThe estimation of the Hurst parameter is not easy in pratie. The problem is that wealways deal with �nite data sets so it is not possible to hek whether by de�nition atraÆ trae is self-similar or not. Therefore it is only reasonable to speak about self-similarbehavior over a given time sale for a given data set. I will refer to this phenomenon as\saling property" in the following.In pratie, using measured data sets the estimated values of H obtained from di�erentanalysis methods are inuened by several fators (e.g., estimation tehnique, sample size,time sale, nonstationary traÆ utuations). Four di�erent H estimation method wereinvestigated: the variane-time analysis, the losely related Index of Dispersion for Counts(IDC) analysis, the R/S analysis and the periodogram-based method.33



343.1.1 ATM traÆ measurementsResults reported here were obtained by statistial analysis of measured data. The measure-ments were made on the FUNET ATM WAN network.The FUNET network`FUNET' stands for `Finnish University and Researh Network', whih provides primarilyInternet servies to its members based on TCP/IP-protool. All these servies are providedby CSC|Center for Sienti� Computing whih is a national servie enter that speial-izes in sienti� omputing and data ommuniations providing modeling, omputing andinformation servies for universities, researh institutes and industry. (The FUNET long-distane network was built on Teleom Finland's (now Sonera) ATM network at the timewhen the measurements were made.) All the Nordi national networks (FUNET, DENnet,ISnet, SUNET and UNINETT) are onneted to the Nordi Bakbone Network (NOR-DUnet) whih has a onnetion point in Stokholm, Sweden. NORDUnet has onnetionsto the US bakbones, the European bakbones and to networks in entral and easternEurope [32℄.Measuring tool and on�gurationThe measurement was made at the CSC in Espoo, Otaniemi in 1996. This loation is in thelogial enter of the whole network. All the international links start from here, inludingthe main rosslink to Stokholm. Our measurement equipment was inserted between thenetwork and the high-apaity ATM swith situated in Espoo (see Figure 3.1). From thatpoint all the ATM traÆ from the FUNET network transported through the swith and thetraÆ generated at the CSC and transmitted to the rest of the world ould be monitored.The measurements were made by an HP Broadband Series Test System equipment. Duringour work only the ell apture apability of the measurement unit was used: 131,072 ATMells mapped into a 155 Mbps SONET/SDH signal an be reorded into the 8MB of apturememory of this equipment. All ells are timestamped with the alendar time with resolution0:1 �s.The measured dataThe aggregated traÆ at the most heavily loaded point of the FUNET network was mea-sured, inluding Internet traÆ, data transfer and superomputer usage. During the mea-surements, two types of data olletions were made. In the �rst senario the measureddata was the time stamp of the arrival time instant for every single ell on the link. Be-ause of the upper limit for the number of aptured ells eah measured data �le ontains131,072 time stamps only, whih orresponded to about 3{5 seonds aording to the net-work load. For the long-term analysis longer measurement periods were needed, so in the
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Telecom Finland's

ATM Network

HP Broadband Series
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FORE A SX -200
A TM Switch

155 Mbps
OC3 - STM 1

The FUNET Network

CSC - Espoo, OtaniemiFigure 3.1: The FUNET measuring on�guration.
Table 3.1: Quantitative desription of the measured data sets.Filename #ells Time (se)FUNET1 131,072 3.9FUNET2 131,072 5.1FUNET3 131,072 4.4FUNET4 131,072 6.4FUNETSTA.T3 14,807,546 425FUNETSTA.T4 43,768,430 1964

seond measurement senario the reorded data was the number of ells reeived in a oneseond interval. In this ase the time interval of the observation ould take several minuteslong. A summary of these data sets is given in Table 3.2. The �les FUNET1, FUNET2 andFUNET3 ontain traÆ data aptured from the inoming traÆ from the whole ountry tothe CSC, and the FUNET4 measurement was made on the outgoing link. In the ase of thelast two measurements in Table 3.1, the registered data was the number of ells reeived inevery seond on the inoming link. The average traÆ load was about 14 Mbps for the �rstthree measurements, and about 8 Mbps in the ase of the FUNET4 data. In the following,we refer to the data above as the `FUNET measurements'.
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Figure 3.2: The struture of the FUNET1 traÆ trae.
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Figure 3.3: The bandwidths of on-netions in the FUNET1 data.The traÆ strutureAs for the �rst four data sets, the measurement unit was able to register the VPI and VCI�elds from the ell headers, too. Using this extra information we an reveal the strutureof the aggregated traÆ stream. Comparing the VPI/VCI �elds the aggregated ell streaman be divided into independent onnetions. (Note that onnetion means a ell streamwith ommon VPI and VCI �elds in the headers. We do not have any information aboutthe type of traÆ arried by these ell streams.) The most important piee of informationfor us is the number of onnetions and their relative ell rate ompared to eah other.A detailed analysis was made for the FUNET1 data set. Figure 3.2 shows the separatedell streams shematially. (Beause of the huge number of ells eah hair-ross representsevery 50th ell arrival in a onnetion.) As an be seen from the �gure, during the 4 seondmeasured time period 24 onnetions were in progress. The onnetion with highest rateontains about 30 000 ells whih is about 24% of the whole aggregated traÆ as well asthe �rst dozen with highest intensity ontain 99% of all the ells. Figure 3.3 shows thepie-hart of bandwidths of onnetions.In our investigation the question of stationarity is fundamental. As far as it an beonluded from Figure 3.2 without a omprehensive stationarity analysis, the ell streamsare homogeneous enough in time apart from the bursty nature of ATM traÆ. There isno onnetion turned on or o� in the middle of the measurement time and the rates apartfrom the burstiness are not hanging onsiderably.



373.1.2 Hurst parameter estimation tehniquesOur modeling assumption is that the samples are taken from the arrival proess given byA(t) = mt+X(t); t > 0 (3.1)where m > 0 is the mean arrival rate, and fX(t); t 2 Rg is a H-sssi (or at least asymp-totially self-similar) proess with variane Var [X(1)℄ = �2. The task is to estimate theH parameter of the self-similar omponent proess. Next, �ve di�erent statistial tests arepresented.Exat Gaussian MLE using geometrial samplingThe previously proposed exat Gaussian MLE using geometrial sampling (see Setion 2.4)an be applied to estimate H only. Here we assume that fX(t); t 2 Rg in Eq.(3.1) is afrational Brownian motion. Based on this assumption and a geometri sampling sequene,Ĥ is given as the minimizing argument of Eq.(2.62) on page 21.The measured FUNET data was re-sampled geometrially, where 100 sample pointswere hosen with resolution 10�5, i.e., the di�erene between the losest two measurementtime instants was 10�5 while the total measurement time was normalized to unity. Foreah FUNET data set two suh geometri sample series were generated. The time intervalbetween the points is inreasing exponentially in the �rst ase, while in the seond ase themeasuring time instants are getting denser towards the end of the measurement time. (I.e.,the series of sampling instants are reversed in time.)Table 3.2 shows the estimated Ĥmle values. The estimates onsistently fall in the rangeof values typial for this kind of network traÆ. Sine the estimation method was developedand justi�ed only for exat frational Brownian traÆ, no further onlusions an be drawnfrom the results obtained from real measurements. The estimated values an be validatedby omparing them with results of other estimation methods. Note, however, that we usedonly 100 sample points for the estimation, whih an be a great advantage of the method.The linear sampling sheme with 100 sample points was also examined as a omparison,but the method did not provide any results (i.e., the estimates of H were not even withinthe [0:5:1) interval.)Index of dispersion for ountsThis ommonly used measure for apturing the variability of traÆ over di�erent time salesis provided by the index of dispersion for ounts [12℄. For a given time interval of length t,the index of dispersion for ounts (IDC) is given by the variane of the number of arrivalsA(t) during the interval of length t divided by the expeted value of the same quantity:IDC(t) = Var [A(t)℄E [A(t)℄ : (3.2)



38Self-similar proesses produe a monotonially inreasing IDC (see Eq.(1.32) in Setion 1.4)of the form IDC(t) = m�1t2H�1�2: (3.3)Plotting log IDC(t) against log t, this property results in an asymptoti straight line withslope 2H � 1 [31℄. (This behaviour is in ontrast to traditional proesses where the IDC isbounded.)For a �nite data set, the variane of A(t) an be alulated by dividing the whole seriesinto nonoverlapping bloks of length t and treating them as di�erent instanes of A(t).Figure 3.4(a) depits the IDC urve orresponding to the trae FUNET1. The sequeneof ell ounts in every 100�s interval was analyzed. The IDC urve for the FUNET1 �leinreases monotonially throughout a time span that overs 3{4 orders of magnitude andshows an asymptoti slope that is stritly di�erent from the horizontal line and is estimatedto be about 0.4, resulting in an estimate Ĥ of 0.7.The same analysis was made for all the data sets. Table 3.2 shows the results: thevalues of the estimated Hurst-parameter Ĥ. As an be seen from the table, the values of Ĥare pretty muh the same for all the data sets. It is remarkable that in the ase of the lasttwo data sets the analyzed proess was the sequene of ell ounts in eah seond insteadof 100�s as in the ase of the �rst four sets. In spite of the fat that the time sale was fourorders of magnitude higher the Hurst-parameter remained the same.Variane-time analysisThis method is based on the property that a self-similar proess has slowly deaying vari-anes (see Eq.(1.30) in Setion 1.4). The so-alled variane-time plot is obtained by plottinglog Var [A(t)=t℄ against log t and by �tting a simple least squares line through the resultingpoints in the plane, ignoring the small values of t. Values of the estimated asymptoti slope�̂ between -1 and 0 suggest self-similarity, and the estimate for degree of self-similarity isgiven by Ĥ = 1 + �̂=2 [31℄.The orresponding plot for the FUNET1 data set an be seen in Figure 3.4(b). Theestimated values of Ĥ are listed in Table 3.2. Sine the variane-time plots and the IDCdiagrams are losely related statistial methods, the results obtained from this method arethe same as in the previous subsetion.R/S analysisThis method tries to apture parameter H based on the resaled adjusted range statistis.The R/S method is based on the followings.Given an empirial time series fXk : k = 1; : : : ; Ng of length N , the whole series isdivided into K nonoverlapping bloks. Now, ompute the so-alled resaled adjusted rangeR(ti; d)=S(ti; d) for a number of values d, where ti = bN=K(i � 1) + 1 are the starting
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40points of the bloks whih satisfy (ti � 1) + d � N .R(ti; d) = maxf0;W (ti; 1); : : : ;W (ti; d)g �minf0;W (ti; 1); : : : ;W (ti; d)g; (3.4)where W (ti; k) = kXj=1Xti+j�1 � k � �1d dXj=1Xti+j�1�; k = 1; : : : ; d: (3.5)S2(ti; d) denotes the sample variane of Xti ; : : : ;Xti+d�1. For eah value of d one obtainsa number of R/S samples, whih dereases from K for larger values of d. One omputesthese samples for logarithmially spaed values of d.For a long range dependent data the R/S statistis is haraterized byE [R(d)=S(d)℄ � onst � d�; (3.6)as d!1 and 0:5 < � < 1.Plotting logR(ti; d)=S(ti; d) vs. log d results in the R/S plot. Next, a least squares lineis �tted to the points, where both the R/S samples of the smallest and largest values of dare omitted. The slope of the regression line is an estimate for � [45℄.In our ase the analyzed data set is the inrement proess of A(t) whih is long-rangedependent. Hene the slope of the regression line is the estimate of H, namely Ĥ = �̂.Figure 3.4() shows the R/S plot for the FUNET1 data. The analyzed proess was thesequene of ell ounts in every 100�s. The estimated value of H for this data set is 0.68,whih is nearly the same as the values alulated by the two previous methods.The same analysis was made for all the FUNET measurement data sets (see Table 3.2).Periodogram-based analysisThis method is used to identify the manifestation of self-similarity by frequeny domainanalysis of the measured data. Let I(�) denote the sample periodogram (i.e., power spetrumas estimated using a Fourier transform) de�ned byI(�) = 12�N ������ NXj=1Xjeij�������2 ; � 2 [0; �): (3.7)As mentioned in Setion 1.2, the spetral density of the inrements of self-similar proessesobeys a power law near the origin (see Eq.(1.21) in Setion 1.2),i.e.,I(�) � onst � j�j� (3.8)when � ! 0 with � = 1 � 2H. Thus, the �rst idea to determine H is simply to plot theperiodogram in a log-log grid, and to ompute the slope of a regression line whih is �tted
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Table 3.2: The values of Hurst-parameter H alulated from di�erent statistial methodsFilename Ĥmle Ĥid Ĥvar Ĥrs ĤperFUNET1 0.74, 0.75 0.7 0.7 0.68 0.68FUNET2 0.72, 0.7 0.67 0.67 0.67 0.73FUNET3 0.63, 0.76 0.66 0.66 0.68 0.68FUNET4 0.77, 0.83 0.72 0.72 0.74 0.78FUNETSTA.T3 - 0.70 0.70 0.82 0.94FUNETSTA.T4 - 0.67 0.67 0.79 0.90to a number of low frequenies. This should be an estimate of 1 � 2H. In most of theases this will lead to a wrong estimate of H sine the periodogram estimation method isunbiased and inonsistent. However, this method an reveal the power spetrum near theorigin. The periodogram plot is obtained by plotting log(I(�)) against log �.Figure 3.4(d) presents the periodogram plot for the FUNET1 data set, where the an-alyzed time series was the number of ells in every 1 mse. The slope of the low fre-queny part|in the present ontext, the regression line was �tted to the lowest 50% of allfrequenies|is learly di�erent from zero, the slope estimate is about �0:36 whih yieldsH = 0:68. This result orresponds to the previously alulated values of H.The analysis was made for all the data sets, and the results are listed in Table 3.2.SummaryTo summarize the results listed in Table 3.2, it an be onluded that:� The estimated values of the parameter H are de�nitely greater than 0:5 for all ases.� The values of H are nearly the same for all of the four analysis methods and for allthe data sets. The ommon value of it is about 0:7. (Apart from the last two valuesfor the FUNETSTA data sets.)In spite of this, it would be too early to say that it follows from the results above thatthe measured traÆ is self-similar with self-similarity parameter 0:7. To establish suh astatement, one would need to arefully examine the struture of the analyzed data sets inmore details.In the next setion, I investigate the problems arising during the estimation of theparameter H and determine those e�ets whih an inuene the results onsiderably.



423.2 Impats on the Hurst parameterIn pratie, using measured data sets the estimated values of H obtained from di�erentanalysis methods are inuened by the following irumstanes:� dependene on estimating tehnique;� dependene on sample size;� dependene on time sales;� dependene on data struture.Next, these points are investigated to see how the alulated self-similarity parameteris a�eted. The fous is on the robustness of Ĥ against these e�ets.3.2.1 Estimating tehniqueIn Setion 3.1.2 four di�erent statistial methods were presented testing for and estimatingthe degree of self-similarity, but this list is still far from being omplete.The absene of any results for the limit laws of the previously mentioned statistis makethem inappropriate when a more re�ned data analysis is required. In ontrast, a morere�ned data analysis is possible using periodogram-based methods in the frequeny domain.Several periodogram-based estimators an be found in the literature, suh as maximumlikelihood type estimates (MLE) and related methods [55℄. In partiular, for Gaussianproesses Whittle's estimate MLE has been studied extensively. Using these approahes,more information an be olleted on the H-estimate, suh as on�dene intervals.In pratie, when the required preliminary onditions for the statistial tests are notfully satis�ed, the di�erent methods an give slightly di�erent estimates of H. (As an beseen in Table 3.2.) To give a fully detailed analysis for all four statistial methods is beyondthe sope of this study. Next, I hoose one of them, the IDC plot for further investigation.This method, being simple and e�etive, requires small omputation power and the resultingplot is desriptive enough to visualize the hanges when the analyzed data set is modi�ed.3.2.2 Sample sizeFor a given time interval t the IDC value is de�ned by Eq.(3.2) in Setion 3.1.2. For aself-similar proess, this value is inreasing without limit as t tends to in�nity. In pratie,we only have �nite data sets and the value of t an not exeed the sample size. Furthermore,to get a reliable estimate of IDC(t) the maximum window size is limited approximately tothe 10% of the sample size. (This is beause using nonoverlapping windows of length t weneed at least about 10 values to alulate the variane with aeptable on�dene.) Thus,the alulated IDC(t) value is getting more and more inaurate as t inreases. As a result,the IDC plot beomes more and more noisy as t inreases.
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Table 3.3: Calulated values of Hurst-parameter H estimated from di�erent subsets of theFUNET1 data. FUNET1 (100%) 50% 25%H = 0:70 H1 = 0:69 H1 = 0:61, H2 = 0:57H2 = 0:70 H3 = 0:71, H4 = 0:62Example 1.1 In our analysis the ritial issue is to examine the robustness of the esti-mated values of H against the sample size. To do this, the Hurst-parameter was estimatedfor di�erent subsets of the whole FUNET1 data set. First the data was divided into twoand four equal parts and the Hurst parameter was estimated in eah ase. Table 3.3 showsthe alulated values.Disussion 1.1 When the full data set was split into two parts, the estimates of Hremained the same in both ases. However, when the data was split further, the estimatedvalues for three subsets out of four di�er from the original Ĥ.3.2.3 Time salesIn our ase the analyzed proess is the number of ells arriving in a �xed time intervalof length t. The t represents the time sale at whih the proess is examined. Our tasknow is to �nd the appropriate time sales at whih the IDC urve of the proess inreasesmonotonially. (As for the upper limit of t, the same holds as in the previous setion,namely, the IDC is getting more and more inaurate as t inreases.)Example 2.1 This terminology makes it possible to take advantage of the longer but notso detailed FUNETSTAmeasured data sets. Calulating the IDC values for FUNETSTA.T3and plotting the result together with the IDC urve of the FUNET1 data set|taking intoonsideration the di�erent time sales(!)|we get Figure 3.5. (Note, that there was a timegap between the FUNET1 and FUNETSTA.T3 measurements (about 30 min). Here weassume again, that the measured traÆ was stationary.) Another drawbak of bringingtogether the two plots is that the middle part of the urve is noisy and unertain.Disussion 2.1 Using a simple linear regression is a rough guess for this plot andestimating Ĥ gives the rather approximate value of 0.81. But the main result is that theurve inreases monotonially throughout a time span that overs six orders of magnitude.Example 2.2 In the previous example the plot tried to over as many time sales aspossible. Here I examine the Hurst parameter1 when estimated at shorter but di�erent timesales. To do this, the regression line was �tted to di�erent parts of the IDC urve using asliding window whih overs only one deade of time. The resulted values of H estimatedfrom (t; 10t) interval and plotted at the middle of eah interval an be seen on Figure 3.6.1Stritly speaking, the term \Hurst parameter" should not be used when only a spei� time sale is
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Figure 3.5: IDC plot for FUNET1 and FUNETSTA.T3 data sets.
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Figure 3.6: Hurst parameter estimates for di�erent time sales.



45Disussion 2.2 The results show that estimating the Hurst parameter at di�erent timesales yields to values of Ĥ from 0.68 to 0.8. This is a lear indiation of the importaneof the problem of \what time sale to hoose for Hurst parameter estimation" in pratie.Moreover, the example also demonstrates that it is possible to have saling traÆ withdi�erent saling parameters whih should be distinguished from the Hurst parameter.3.2.4 Level shiftingDuring the analysis I always assumed that the statistial properties of the measured ellstream are independent from time. This assumption is questionable, but|sine the greatestpart of statistial analysis methods require stationarity as a basi preliminary ondition|itannot be avoided. Stritly speaking, we assume that the measured proess is stationaryin the wide sense whih means that its mean is �nite and independent of time, and itsautoorrelation funtion is �nite and is invariant of time shift. (If we deided to treat ourmeasured data sets as nonstationary sequenes it would be almost impossible to make aomprehensive analytial study with meaningful results general enough to use elsewhere.Furthermore, in the ase of �nite data sets it is not possible to disriminate a stationarylong-range dependent sequene from a nonstationary one.)In this setion the ase when the assumption of stationarity does not hold was inves-tigated (i.e., there is a level shift present in the measured traÆ traes.) I examine howrobust our statistial test is in ase of a nonstationary ell sequene with a hange in themean as a funtion of time.Example 3.1 In this �rst simple model nonstationarity is introdued by adding a CBRtraÆ to the seond half of the measured data. (Note, that this example represents not justa theoretial problem but a possible event in pratie: while measuring the network traÆsuddenly a new soure may start to emit ells with onstant ell rate.) Figure 3.7 showsthe alulated IDC plots for these new multiplexed data sets. 2.8 Mbps (CBR20|20% ofthe load of FUNET1) and 7 Mbps (CBR50|50% of the load of FUNET1) CBR rates wereapplied.Disussion 3.1 The e�et on the IDC plot is learly visible. For the FUNET+CBR20plot the upper part of the urve is moved up a bit as well as the lower segment shifteddown slightly. As a result, the estimated Hurst parameter is greater, about 0.72. For theFUNET+CBR50 ase the e�et is sharper, Ĥ being 0.8.Example 3.2 To understand the e�ets of level shift on the IDC plot more deeply, Iinvestigated a simple CBR model in this example. As a starting point a CBR traÆ traeis hosen with the same rate as the mean rate of the FUNET1 traÆ. The nonstationaritywas introdued by inreasing the CBR rate by 10, 20 and 50 perent abruptly at half timeof the investigated time period. The IDC(t) value for an ideal CBR soure without jitteris zero for all t whih annot be plotted on a logarithmial sale. The alulated IDC plotsfor the CBR traes with level shift an be seen on Figure 3.8.onsidered. Instead, the \saling parameter of a given time sale" would be appropriate here.
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Figure 3.7: IDC plot for FUNET1 multiplexed with nonstationary CBR traÆ.
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Figure 3.8: IDC plot for a CBR ell stream with level shift.



47Disussion 3.2 As an be seen from the �gure, all the IDC urves are straight lineswith slope 1. The only di�erene is that the IDC values are higher when the level shift isstronger.The simpliity of the examined CBR model makes it possible to alulate the IDC(t)values analytially. (In pratie, alulating the IDC plot for a �nite data set means evalu-ating a double sum to estimate the mean and the variane. The following results are derivedfrom this IDC estimator.) The IDC(t) for the above data sets is of the form:IDC(t) = (a1 � a2)22(a1 + a2) t; (3.9)where a1 and a2 are the ell rates for the �rst and seond half of the data respetively. Fora1 6= a2 the IDC plot is given by:log IDC(t) ' onst+ log t; where onst = log (a1 � a2)22(a1 + a2) (3.10)whih gives us a straight line with slope 1.The main result here is the fat that although the CBR data with level shift has nothingto do with self-similarity, the estimated IDC is a monotonially inreasing straight line withslope 1.Example 3.3 The �rst example is generalized here by replaing the CBR traÆ witha Poisson proess. Again, the FUNET1 data was modi�ed by adding a Poisson traÆ tothe seond half of the measured data to inrease the mean rate by 20 and 50 perent. Thealulated IDC plots an be seen in Figure 3.9.Disussion 3.3 The e�et of nonstationarity in the plots is the same as in Example 1.The upper part of the urves moved up and the lower-left segments are shifted down simul-taneously, resulting in higher Hurst parameter estimates.Example 3.4 To make the e�et of level shifts on the IDC plot learer, in this example asimple but inhomogeneous Poisson proess is examined whih hanges its intensity in time.Here I onsider the ase when the Poisson soure emits ells with rate �1 and suddenlyhanges its intensity to �2. Figure 3.10 presents the analysis result for these data sets. (Forevery proess �1 was set to 1 and �2 hanges as noted in the �gure.)Disussion 3.4 For suh simple inhomogeneous Poisson proesses the IDC estimatean be derived analytially. Let �1 and �2 denote the intensity parameters of the proessfor the two halves. Then, the IDC(t) value an be alulated as follows:IDC(t) = 1 + (�1 � �2)22(�1 + �2) t: (3.11)For the appropriate IDC plot for �1 6= �2 and t!1 we get:log IDC(t) ' onst+ log t; where onst = log (�1 � �2)22(�1 + �2) : (3.12)This equation gives a straight line with slope 1 as an asymptote.



48

0 1 2 3 401
23
0

: FUNET1 (H = 0:7): FUNET1+POIS20 (H = 0:73): FUNET1+POIS50 (H = 0:8)
log10 t

log 10IDC(t)

Figure 3.9: IDC plot for FUNET1 multiplexed with a nonstationary Poisson traÆ.
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Figure 3.10: IDC plot for inhomogeneous Poisson proesses
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Figure 3.11: IDC plot for shu�ed FUNET1 data.The main message from this example is again that a monotonially inreasing IDC doesnot neessarily ome from the self-similar nature of the analyzed data. Instead, the reasonbehind an be the nonstationarity present in the sample trae. A linearly inreasing IDCurve over many time sales (see Eq.(3.12)) an also be reated even with a simple stationaryMarkovian model (e.g., with an Inhomogeneous Poisson Proess in our example). In thisase the inreasing IDC urve again has nothing to do with self-similarity.3.3 Impats of network mehanisms on ĤIn this setion I examine how the estimated Hurst-parameter is a�eted when the strutureof the measured data set is modi�ed by shu�ing, shaping, poliing, and disturbing the ellstream.Example 4.1 This �rst example is just a theoretial one without any pratial meaningbut gives us useful information about the orrelation struture of the analyzed traÆ. Inorder to show the di�erene from a short term orrelated data a new data set was generatedfrom the original FUNET1 data by mixing the sequene of ell interarrival times randomlythus building a new ell stream. The long-term orrelations were obviously removed by thisrandom shu�ing whih an be investigated in Figure 3.11.Disussion 4.1 As for the shu�ed FUNET1 data the IDC urve starts as in the aseof the original plot but soon it stops inreasing and remains onstant for values of log10 t
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Figure 3.12: IDC plot for shaped FUNET1 data.greater than 1. The self-similar feature disappeared but the resulting proess is still burstyand possesses short-range dependene.Example 4.2 This example investigates the e�ets of traÆ shaping. Our shapingalgorithm was the leaky buket shaping whih fores nononforming ells to be delayed.Consider a leaky buket with leak rate r and buket size M . Cells whih �nd the buketontent smaller than M are diretly admitted to the network; otherwise, they are queuedwith FIFO disipline and admitted to the network with rate r.The FUNET1 data (with average rate 33 072 ell/s whih is about 14 Mbps) was shapedwith parameters M = 0 (measured in ells), r = 50 Mbps (F1-3-0); M = 0, r = 20 Mbps(F1-8-0) and M = 128, r = 20 Mbps (F1-8-128). The analysis results are illustrated inFigure 3.12.Disussion 4.2 The orrelation of the shaped ell streams are slightly a�eted due tothe shaping proedure. The IDC plot demonstrate the remained long-term orrelation inthe data. These results are onsistent with the results reported in [39℄. For the purposeof removing long-range dependene a drasti shaping is needed whih means that shaperswould have to use very large bu�ers whih annot be used in many appliations due to theextreme introdued delay. The shaping e�et, however, resulted in even higher values forthe estimated Hurst parameter. The explanation and further disussion about this resultis reported in Setion 3.4.Example 4.3 Instead of shaping, a poliing algorithm was used whih is nearly thesame as our shaper but disards every nononforming ell instead of delaying it. As aresult, the polied ell stream ontains less ells but will be onforming with the spei�edrate r and buket size M . The parameters r and M were hosen as previously. The IDC
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Figure 3.13: IDC plot for polied FUNET1 data.plots for the polied ell streams an be seen in Figure 3.13.Another interesting question is the struture of the disarded ell stream. Figure 3.14represents the IDC urves for this kind of overow proess.Disussion 4.3 As the Figures show, the IDC urves are almost the same in the ase ofboth the polied ell streams and the overow (dropped) ell streams with approximatelythe same Hurst parameter estimates. It an be onluded that the self-similarity feature ismore robust for poliing than for shaping. The results are onsistent with the engineeringintuition that FIFO queues behave like low-pass �lters and the long-range orrelations ofthe self-similar traÆ (having power spetra divergene at low frequenies) are not a�eted.Example 4.4 Finally, I examined how the traÆ trae is modi�ed when owing througha multiplexing stage. The FUNET1 data (whose rate is about 9% of the link speed) wasmultiplexed with Poisson traÆ with rate 90% of the link speed. Next, the IDC plot wasalulated for those ells of the aggregated ell stream whih ells belonged to the originalFUNET1 data. The result an be seen on Figure 3.15.Disussion 4.4 The results show that the IDC urve is only slightly modi�ed by multi-plexing a Poisson traÆ with even a high load ompared to our measured traÆ. This alsoindiates the robust nature of the deteted feature of self-similarity.3.4 Disussion on the Hurst parameter estimatesIn this setion the problem of interpretation of estimated Hurst parameter is disussed basedon the previous results.
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Figure 3.14: IDC plot for the overow proess of polied FUNET1 data.
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Figure 3.15: IDC plot for the multiplexed FUNET1 data.



53The shaping example showed that the long-range dependene feature persisted but theestimated Hurst parameter was di�erent and the diretion of hange in the value was veryinteresting. The estimated Hurst parameter is inreased due to shaping. This an be ex-plained as follows. On short time sales the shaper is e�etive and it smoothes the ellstream. That is why the variane of the number of ells in a given window is dereasingon short time sales whih results in a shifting IDC urve to smaller values. However, onlarge time sales there is no signi�ant e�et of the shaping so there is no hange in theIDC urve as an be seen in Figure 3.12. Therefore, it is obvious that the estimated Hurstparameter will be higher. This result is ontrary to the usual interpretation of estimatedHurst parameter beause the Hurst parameter is believed to be a measure of burstiness. ForPoisson traÆ, whih is a smooth proess, it is 0.5 and when inreasing burstiness the Hurstparameter is inreasing. However, our example shows that if we are smoothing the traÆthe estimated Hurst parameter is inreasing! If the proess is a pure self-similar proessthere is a good interpretation of the estimated Hurst parameter, see e.g., [42℄. However,it is not obvious what the interpretation of the Hurst parameter is in pratie where thetraÆ struture is modi�ed by several mehanisms (shaping, queueing, multiplexing, et.)and the proess is not a pure self-similar proess. Can it be used as a burstiness measure?The investigations suggest the answer to be negative. Can we gain any information fromthe estimated Hurst parameter? Can we use it for dimensioning purposes?The Hurst parameter ould represent an important and ompressed information (thedegree of self-similarity) about a pure self-similar proess but in pratie when several e�etsmodify the struture of the traÆ they may distort the Hurst parameter estimates so muhthat its original meaning is hidden. It ould also happen that there is no useful informationthat we ould gain from the estimated and distorted Hurst parameter. This result raises thequestion how to avoid these distorting e�ets, e.g., how to hek level shifts present in thedata, or how to identify misleading ases like an inhomogeneous Poisson proess when tryingto apture long-range dependene. To answer these questions it is not a trivial task and isbeyond the sope of this dissertation left for further studies. (Some ideas how to hek levelshifts in the data was published in [43℄.) In ertain ases more harateristis are neededto desribe the omplex traÆ and the appealing fratal haraterization with only a fewparameters will not be appropriate. In this ase we an use more saling parameters ondi�erent time sales and the framework of multifratal haraterization should be introdued(see, e.g., [34℄).The statements above highlight the di�erene between theory and pratie. In theory,it is possible to speak about self-similar proesses with in�nite struture, and long-rangedependene whih refers to the orrelation struture at in�nite lags. In pratie, we onlyhave �nite measures and sample traes that show ertain features whih are losely relatedto the mathematial onepts above. To avoid any onfusion aused by the improper useof the onepts of self-similarity, I will all a sample trae whih shows self-similar features\saling data" or \traÆ with saling behavior". From an engineering point of view, Iall a (neessarily �nite) sample path long range dependent, if there are signi�ant orrela-tions present for (arbitrarily) large time sales. Similarly, the \estimated Hurst parameter"haraterizes the saling behavior of the data at the examined time sales.



543.5 Impat of LRD on ell loss3.5.1 ATM measurementsLAN interonnetion is one of the most popular servies provided by Telia, the Swedishnetwork operator, on its ATM wide area network. Apart from business ustomers, di�erentparts of the Swedish University Network (SUNET) are also attahed to the Swedish ATMWAN. The aggregated traÆ on the SUNET were analyzed during summer 1996 in the
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Figure 3.16: The on�guration of measurements on the SUNET.framework of a ommon trial between the SUNET ommunity and Telia Researh. TheLAN traÆ of universities in the northern region, around Uppsala are onneted to anFDDI bakbone whih is onneted via R1, R2 routers and a 34 Mbps PDH link to the ATMbakbone in Stokholm (Figure 3.16). This network joins the northern LANs of SUNETto the international Internet bakbone and to the southern university networks aroundG�oteborg. A CBR onnetion with 90 000 ps (38.16 Mbps) ell rate was established on theSDH link between the routers R4 and R5 for the trial. The measurements reported herewere performed on the onnetions between Uppsala and G�oteborg. ATM traÆ streamswere dupliated by means of optial splitters avoiding impats on original traÆ ows. Thedupliated traÆ streams were routed on dediated links to Telia Researh in Haninge,where almost one hundred traÆ traes were olleted with more than 8 million ell arrivals
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Figure 3.17: Estimated values of H as a funtion of traÆ load.in eah trae using a non-ommerial ustom built measurement instrument developed inthe RACE Parasol projet [36℄.These onnetions used Telia's Guaranteed TraÆ Class thus the inuene from othertraÆ in the network was negligible. A good assumption is that the traÆ was an ordinarymix of ommon Internet traÆ types suh as HTTP, FTP, telnet, hat, IPphone et.3.5.2 Saling analysisTo estimate the Hurst-parameter H, the R/S and variane-time analysis (see Setion 3.1.2and also in [4℄) were performed for 45 data sets.The obtained values of Ĥ are plotted on Figure 3.17. To get more information aboutthe estimated Hurst-parameter of the measured traÆ, Ĥ is plotted against the averageload of the traes. As an be seen on the �gure, Ĥ varies within the range (0:8; 1) anddoes not depend signi�antly on the load. Figure 3.18 reveals an interesting phenomenon,namely, that there is a knee-point in the R/S diagram that separates two linear regions ofsample points. Sine LRD is an asymptoti property, the linear region to the right (samplepoints marked with an 'x') was used to determine the estimate of H. The same knee-pointwas found in all the data sets. Sine the analyzed proess was the number of ell arrivalsin onseutive 0.1 mse time intervals, the knee-point is approximately at 0.3-0.4 seonds.The origin of this behaviour ould be revealed by examining the burstiness struture ofthe data more deeply. (The authors of [37℄ showed that somewhat similar behavior an beexperiened when there is a level shift in the data.)
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Figure 3.18: R/S values plotted against the logarithm of blok size.3.5.3 Relevane of time sales in queueingAn important question is what is the impat of LRD on queueing. Several engineeringissues, suh as bu�er dimensioning and traÆ ontrol, are related to this question whihmakes it extremely important. There are two opposing viewpoints on this problem. Onelaim is that the queueing performane is determined by the time sale of busy periods of thequeues and there is no pratial impat of orrelations above this time sale [26, 27, 28, 47℄.The ontraditing laim is based on several studies [22, 31℄ and states that LRD is one ofthe main harateristis of the traÆ with signi�ant e�et on queueing behaviour. In thissetion we present some experimental results in order to larify this question.Queueing setupIn the performane analysis the queueing set-up shown in Figure 3.19 was used. The pre-reorded traes were taken from our SUNET database. The orrelation struture of theoriginal data was arti�ially modi�ed by a `shu�er' (see next setion). The funtionalityof this shu�er was investigated by omputer simulation. The performane measures un-der investigation were the omplementary queue length distribution and the ell loss ratio(CLR).External shu�ingIn the analysis, external shu�ing was used as a tool to modify the orrelation struture ofthe measured traÆ traes. Using the terminology of [2, 22℄, I all `external shu�ing' the
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Figure 3.20: Complementary queue length distributions.following method. First, divide the sequene of interarrival times2 into bloks of size m. Fora measured traÆ trae ontaining N ell arrivals, there are N=m suh bloks. Then theorder of the bloks is shu�ed, while preserving the ell sequene inside eah blok. Thus,for di�erent values of m the short-range orrelations (up to lag m) are preserved whileeliminating the long-range orrelations (beyond lag m).Therefore by plotting the omplementary queue length distributions for the original andthe shu�ed traes with di�erent blok sizes we have a simple tool to investigate the e�etof short-term and long-term orrelations in queueing (see Figure 3.20).2Beside the permutation of a sequene of interarrival times, one ould perform the same shu�ing on thesequene of the number of arrivals in onseutive time slots [2℄.
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Figure 3.21: Cell loss ratio with external shu�ing.3.5.4 Queueing properties of LRD inputIn ase of LRD traÆ input, the tail of the omplementary queue length distribution deaysslower than exponentially. The uppermost solid line related to the original traÆ trae inFigure 3.20 shows this phenomenon. (The bu�er size was set to 4000 ells and the servierate was hosen so that the utilization � was 0.7. The shu�ing blok size m is shown on the�gure for eah simulated urve.) By shu�ing the input traÆ, it an be observed that ifthe blok size is inreased the urve approahes the distribution urve of the original trae.It means that we an �nd the time sale of the relevant orrelations, i.e., the blok size ofshu�ing where the distribution is approximately the same as for the original ase, whihare important for queueing. It an also be onluded that beyond that time sale there isno signi�ant e�et of orrelations. In our ase this time sale is in the range of 4{5 seonds(blok size of 105) for load 0.7. This �nding is in aordane with the results reported in[26℄.3.5.5 Impats of LRD on ell lossThe queue length distribution in the in�nite bu�er ase gives an upper bound on the ell lossratio (CLR) for the �nite bu�er ase. In pratie, the latter is of interest. To investigate thee�ets of saling behavior on CLR, simulation studies were performed with the measuredtraes as input for three di�erent bu�er sizes (512, 4000 and 15000 ells). The rate of servie



59was set to obtain utilizations 0.7 and 0.9. The results are plotted on Figure 3.21.It an be observed in Figure 3.21 that there is an upper time sale determined by thebu�er size and the load where there is no e�et of orrelations on ell loss if we go beyond thattime sale. For example, in the experiments above ell lag 105 (approximately 5 seonds)the ell loss urves are pratially onstant even for the large (15000 ells) bu�er ase. Itsupports the �nding derived from Figure 3.20, namely, that there is a time sale whihdetermines the biggest lag of orrelations whih has e�et on the ell loss. However, thisupper time sale seems to be dependent on many parameters. Firstly, it depends on thebu�er size, i.e., the bigger the bu�er the bigger the upper time sale. For moderate andlarge bu�ers there is a sharp ut-o� in ell loss as a funtion of the shu�ing blok size butfor small bu�ers the appearane of this upper time sale is not very pronouned. Seondly,this upper time sale is also dependent on the load, the urves are shifting left as the loadinreases although the shifting of ut-o� lag is not signi�ant. In the experiments it anbe observed that the ut-o� lag is always above the bu�er size but typially not more thanone deade above the bu�er size. These �ndings give us simple pratial engineering ruleof thumb for estimating the range of relevant orrelation time sale.3.6 ConlusionIn this hapter, pratial questions and problems were investigated regarding the detetionof self-similarity and the estimation of its saling parameter H. The goal was to investigatethe e�ets of traÆ ontrol mehanisms on the Hurst parameter estimates. Furthermore,the e�ets of saling property present in the input traÆ on CLR in queueing was alsoexamined. The results were obtained by empirial studies using measured data from ATMwide area networks.In pratie, using measured data sets the estimated values of H obtained from di�erentanalysis methods are inuened by several fators. Four di�erent H estimation methodwere investigated: the variane-time analysis, the Index of Dispersion for Counts (IDC)analysis, the R/S analysis and the periodogram-based method. Aording to the resultsthe analyzed data sets showed self-similar behavior with Hurst parameter H � 0:7.It an be also onluded that the traÆ an have di�erent saling parameters at di�erenttime sales. Therefore the relevant time sale has to be spei�ed prior to H estimation.The hoie of the relevant time sale should be based on traÆ engineering onsiderations.It was also shown that the presene of level shifts in the data an have disastrous e�et onthe Hurst parameter estimates. The estimate is seriously distorted, thus level shift ausedby nonstationarity must be removed prior to H estimation. This result emphasizes that itould also happen that there is no useful information we ould gain from the estimated anddistorted Hurst parameter.The e�ets of the leaky-buket shaping and poliing mehanisms on the estimated Hurstparameter were also investigated. The results show that the estimated parameter Ĥ isinreased due to shaping, and was pratially una�eted by the poliing mehanism. Thus,it an be onluded that the self-similar feature is a robust property. (Note, that it is not



60obvious how to interpret the parameter H in pratie, where the traÆ struture is modi�edby several mehanisms and the proess is not a pure self-similar proess.)To investigate the e�ets of saling traÆ on the ell loss ratio in queueing, simulationstudies with measured traes as input were investigated. The obtained results show, thatthere is an upper time sale determined by the bu�er size and the load where there is noe�et of orrelations on CLR if we go beyond that time sale. This time sale also dependson the bu�er size (i.e., the bigger the bu�er the bigger the time sale of interest) and onthe load (i.e., the higher the load the smaller the time sale). In the experiments one anobserve that this ut-o� lag is always above the bu�er size but typially not more than onedeade above the bu�er size. The �ndings above give pratial engineering guidelines forestimating the range of relevant orrelation time sales.



Chapter 4E�etive Bandwidth FormulaBased on Queue LengthMonitoringIf the atual ell loss performane of an ATM output bu�er ould be determined in realtime, the rate of the server (that is, the VP bandwidth) ould be adjusted suh that theell loss would be smaller than a pre-determined threshold (CLRobj). Shioda and Saitopresented a method for estimating the ell loss ratio in real time, and applied it to VPbandwidth estimation and all admission ontrol [49℄. They utilized the large deviationresult of Glynn and Whitt [25℄, when the input is short-range dependent and the ell lossratio (CLR) deays exponentially as the bu�er size inreases.For long-range dependent traÆ the asymptotis of the queue length distributions areno longer exponential. Reent results from the literature show that for self-similar traÆinput the tail of a stationary queue length distribution is Weibullian [6℄.The aim is to estimate the e�etive bandwidth of the traÆ even if it shows long-rangedependent properties. To do this, a simpli�ed e�etive bandwidth formula an be derivedthat only requires the knowledge of the atual CLR and the utilization. I have proposedan algorithm to estimate the CLR in real time based on bu�er measurements, whih worksfor both the long-range and the short-range dependent ase. I have also given an improvedapproximate e�etive bandwidth formula whih takes into aount long-range dependene.4.1 Approximate e�etive bandwidth equationConsider a single server queue that has an in�nite bu�er with stationary and ergodi ellarrivals from a single soure. Let A(t) denote the amount of traÆ arrived in (�t; 0℄, andthe workload proess is de�ned by W (t) = A(t)� Ct; (4.1)61



62where C is the amount of traÆ that an be served in unit time. The virtual waiting timein the queue in the stationary state is given by [50℄Q = supt�0 W (t): (4.2)Results from queueing analysis based on the large deviation priniple reveal that for awide range of traÆ input (that does not have LRD!), the asymptoti tail distribution of thequeue length deays exponentially [17℄. The probability that the queue ontents exeed agiven (large) threshold k is thus haraterized by two parameters, the asymptoti onstant� and the asymptoti deay rate �, suh thatpk def= P (Q � k) � �e��k: (4.3)It is known that the CLR of a single server queue with a �nite bu�er size K is less than pK[17℄. Hene, we have CLR � �e��K : (4.4)From Eq.(4.4) we get that the QoS objetive of the CLR, CLRobj , is satis�ed if� � �obj def= log � � logCLRobjK : (4.5)Results from large deviation theory [25℄ yield the following neessary and suÆientondition for meeting the QoS objetive of the CLR:�(�obj) def= MA(�obj)�obj � C; (4.6)where MA(�) is the umulant generating funtion of A(t). The funtion �(�) is alledthe e�etive bandwidth funtion of the soure subjetive to the ondition that the taildistribution of the queue length has the deay rate �. In partiular, �(�obj) is simply alledthe e�etive bandwidth, given the deay rate objetive �obj .Shioda and Saito gave an approximation to alulate Eq.(4.6) using umulant expansionand heavy traÆ expansion tehniques [49℄ (see Appendix C). Here I propose a not sorigorous but a more intuitive and lighweight method to get an approximate formula for thee�etive bandwidth.A simple approximation formula has been given for the M/D/1 system [45℄ that isaurate when the load is high (heavy-traÆ assumption). This formula suggests that theasymptoti deay rate in Eq.(4.3) an be approximated as� � 21� �� (4.7)



63with � = A=C where A denotes the mean arrival rate. (Note that the results in [45℄ showthat this approximation is very aurate even for small values of k.) Assuming further that� � 1 (whih is not true in ertain ases), for a given K from Eq.(4.3) and Eq.(4.7) we getlog pK � �2K 1� �� : (4.8)Although Eq.(4.8) was derived under the assumption that the input proess is Poisso-nian, I expet that a similar result of the formlog pK � 1d 1� �� (4.9)holds approximately for a wider lass of input proesses with some onstant d, beausemany similar formulae have been developed. Shioda and Saito [49℄ showed that Eq.(4.9)an be derived with d = � 12K limt!1 V arfA(t)gEfA(t)g : (4.10)Norros [41℄ studied a storage model with frational Brownian input. In the limiting asewhen H = 0:5, the result redues to Eq.(4.8) (or equivalently, d = �1=(2K) in Eq.(4.9)).Rearranging Eq.(4.9) we get C = A(1 + d log pK): (4.11)Sine the CLR of a single-server queue with a �nite bu�er of size K is less than pK [17℄,from Eq.(4.11) the e�etive bandwidth of the soure an be approximated by�(�obj) � A(1 + d logCLRobj): (4.12)(Eq.(4.12) is the same as Eq.(C.12) on page 90.) Note the main di�erene between CLRobjand pK . While CLRobj is the desired (or objetive) ell loss ratio, pK an be onsidered asthe atual experiened loss rate.By ombining Eq.(4.11) and Eq.(4.12) we �nally have�(�obj) = A�1� logCLRobjlog pK �+C logCLRobjlog pK : (4.13)To alulate the e�etive bandwidth, aording to Eq.(4.13) we only need to measure theaverage arrival rate A and the probability pK . (Note, that the �ner details of the omple-mentary queue length distribution are not important for us. We only need to know onespei� point of it.)



644.2 Three-point bu�er measurement methodWhen the traÆ does not possess long-range dependene, the queue length distribution isasymptotially exponential (see Eq.(4.3)). Shioda and Saito showed [49℄ that for this asethe parameters � and � an be estimated by monitoring the bu�er oupany levels at twodi�erent thresholds.For long-range dependent traÆ input the queue length asymptotis are rather hara-terized by a Weibullian distribution [6℄:pk = �e��k ;  2 (0; 1℄: (4.14)It should be noted, that not in all the ases of LRD input is the queue length distributionWeibullian. For example, ertain on-o� type models an generate algebrai deays [52℄.However, ompared to the exponential approximation, having the additional parameter the Weibullian distribution ensures a better �t than the exponential one. Furthermore,for some types of LRD traÆ models, theoretial investigations show that the tail in theasymptoti region is Weibullian [6, 18, 41℄.Beause log pK is a funtion of K instead of K, three thresholds are needed insteadof two to monitor the queue length. Suppose that at thresholds k1, k2, and k3 the bu�eroupany levels pk1 , pk2 and pk3 are observed. To make the alulations easier, assumethat the ratios of the thresholds satisfy k2=k1 = k3=k2 = , with  > 1 (for example, for = 2, one possible setting is k1 = 5, k2 = 10, and k3 = 20). The asymptotis of the queuelength distribution (Eq.(4.14)) yieldlog pK = log pk2 � log pk1k2 � k1 K + k2 log pk1 � k1 log pk2k2 � k1 ; (4.15)where  = log(log pk2 � log pk3)� log(log pk1 � log pk2)log  : (4.16)Figure 4.1 helps to explain the seemingly ompliated formulae Eq.(4.15) and Eq.(4.16).Having the unknown parameters �, � and  in Eq.(4.14) we need to solve the three equationslog pki = log � � �ki ; i = 1; 2; 3: (4.17)One we know the three parameters, pK an be alulated using Eq.(4.14).4.2.1 Bu�er thresholds, length of monitoring intervalThe atual bu�er-monitoring thresholds depend on the bu�er length, the CLR objetive,and the length of the monitoring interval, as well as on the rate and burstiness of the traÆ.Here I propose some rules-of-thumb and simple formulas for alulating them.
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Figure 4.1: Three-point bu�er monitoring methodThe number of ell arrivals per monitoring interval (�A) an be alulated by �xing thelength of the monitoring interval (�) and taking into aount the average arrival rate (A) ofthe inoming traÆ (whih an be determined based on measurement). Beause we wantto measure the probability pk3 of rossing the threshold k3, to obtain a statistially reliableestimate, we need an adequate number of rossing events as the queue utuates in thebu�er. The smallest probability we an monitor is (�A)�1 whih orresponds to the asewhen only one ell is ounted. Smaller probabilities annot be monitored at all (see thedark-shaded area in Figure 4.2). Sine ell arrivals are bursty in nature, we need at leastin the order of 102 rossing events to get reliable probability estimates (see light-shadedarea in Figure 4.2). Therefore the largest monitoring threshold k3 has to be set so that theprobability estimate pk3 satisfy: log pk3 � 2� log(�A): (4.18)Assuming that the VP bandwidth is set so that the CLR objetive is satis�ed (pK �CLRobj), an upper bound k3 for the largest threshold k3 an be alulated using Eq.(4.14)with � � 1, and Eq.(4.18): k3 � k3 = K � logCLRobj2� log(�A)�1= : (4.19)To proeed further  has to be spei�ed somehow in Eq.(4.19). It an be assumedthat the traÆ does not possess long-range dependene, and thus  = 1. However, thisassumption would overestimate the upper bound for setting the monitoring thresholds, andthis is beause of the onvexity of the Weibullian urve on the logarithmi plot. A more
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Figure 4.2: Bounds for setting the monitoring thresholds k1, k2 and k3.realisti approah is when we try to alulate  assuming that the traÆ is well modeled witha self-similar proess with index H. Assume that H is known, or an be estimated based onprevious measurements. (Note, that for our purpose a rough estimate is adequate.) Resultsfrom the literature show that for self-similar traÆ input Eq.(4.14) holds with  = 2� 2H.Based on this result the upper bound k3 an be alulated now.The last step is to determine the atual threshold values. Sine they must be integers,alulate k1 �rst as k1 = �k32 � ; (4.20)where b� denotes the integer part. Finally, setk2 =  � k1; and k3 =  � k2: (4.21)In setting the lower thresholds, k1 and k2, we should note that our queue length asymp-totis are valid only for the tails of the distribution. However, as stated earlier, the thresh-olds annot be set arbitrarily far from the origin. This sometimes results in the fat thatthe thresholds are set to the \pre-asymptoti" region. In this ase the Weibullian �t is,so to say, used for the entire queue length distribution. Fortunately, this is usually nota problem but an approximation that works reasonably well (see, for example, Figure 4.6later). Nonetheless, the three thresholds should over a span wide enough to yield a reliableestimate for log pK . The value of this tradeo� an be evaluated only for the individualappliation.



674.2.2 Validation with simulationsSimulation experiments are desribed in this setion to study the Weibullian approximationfor the queue length distribution ompared to the exponential one. Three ases are exam-ined. First, the aggregated traÆ is short-range dependent with low burstiness. In this ase,the queue length distribution an be well approximated by an exponential distribution withasymptoti onstant � lose to one [9℄. Seond, the o�ered traÆ is short-range dependent,but more bursty, implying � << 1. Finally, the traÆ is long-range dependent.
Short-range dependent traÆConsider N idential but independent on-o� soures with alternating ativity periods (Ton)and silene periods (To�). In the on-states, ells were o�ered at a onstant rate, while inthe o�-states the soure remained silent. The duration of eah on-state and eah o�-statewere exponentially distributed. (This model is referred as the `on-o� soure'.) The ellsfrom the multiplexed on-o� soures arrived at the monitored bu�er. This bu�er ould hold128 ells.For the short-range dependent input, ten soures were multiplexed, and ells were o�eredfrom eah soure at a rate of 2 Mbps during exponentially distributed on periods with mean0.543 ms in the `non-bursty' ase, and 5.43 ms in the `bursty' ase. The average rate of eahsoure was set to 0.2 Mbps. At three di�erent thresholds (5, 10, and 20), the frequeniesin whih the number of ells in the bu�er were greater than or equal to the thresholdswere measured every 20 minutes. The servie was set so that the estimated CLR wasapproximately 10�4 and it was 2.35 Mbps for the `non-bursty' ase and 6.05 Mbps for the`bursty' ase.The simulated CLR is plotted together with the estimated values using Weibullian andexponential approximations for the queue length distributions in Figure 4.3 and Figure 4.5.(The `theoretial CLR' is the probability that the queue length exeeds K in the ase of anin�nite bu�er, as alulated from the queue length asymptotis. Atually, this should bean upper bound on the atual CLR for the �nite-bu�er ase.)In the ase of `non-bursty soures', the parameter  in the Weibullian distribution(Eq.(4.14)) beomes ' 1, and the �tted distribution is lose to the real one (Figure 4.4).The proposed method works well, and gives only slightly higher CLR estimates as theexponential one.In the ase of `bursty soures' (Figure 4.6)|although the tail asymptotis for the dis-tribution are exponential,| monitoring the queue at two points and estimating the queuelength distribution by an exponential distribution is not appropriate here, the CLR is un-derestimated. The three-point measurement method works better in this ase (Figure 4.5).
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Figure 4.3: CLR estimates using the proposed measurement method (non-bursty ase).
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Figure 4.4: Queue length distribution for non-bursty on-o� soures.
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Figure 4.5: CLR estimates using the proposed measurement method (on-o� soures).
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Figure 4.6: Queue length distribution for on-o� soures.



70Long-range dependent traÆUsual (�nite state spae) Markovian soure models are apable of generating only short-range dependent traÆ. Therefore, to generate long-range dependent traÆ, we need to�nd an appropriate method. Paxson disussed six di�erent suh methods [44℄. For thesimulator, the on-o� model originally proposed by Leland et al. [31℄ is suitable.To introdue LRD into the on-o� model, assume a heavy tail for the distribution ofthe ativity periods Ton while the o� periods remain exponentially distributed [6℄. The(transformed) Pareto distribution is used for Ton, whereP (Ton � t) = 1�� �t+ ��3�2H (4.22)for some � > 0, t > 0, and 0:5 < H < 1; therefore, periods of heavy-tailed ativity generateLRD with Hurst parameter H. (This soure model is referred as a `Pareto-type soure'.)It has been shown that, under the onstraints of a large number of suh soures and ahigh load, the aggregated traÆ, properly normalized, onverges to an exatly self-similarGaussian proess [31, 7℄.In the simulation the number of soures was set to 100. The mean duration of the onperiod was 0.1 ms, and the parameters of the Pareto distribution were set using H = 0:7.The servie rate was 26 Mbps, and all the other parameters were retained unhanged.As shown in Figure 4.7, the di�erene between the exponential and Weibullian estimates isabout four orders of magnitude. The measured CLR values are bounded by the two esti-mates, and are of the order of 10�5. The reason that the exponential �tting underestimatesthe CLR is shown in Figure 4.8. Any exponential estimate would underestimate the CLR.In omparison, the Weibullian approximation �ts the queue length distribution relativelywell, and the estimate of pK again turns out to be an upper bound on the atual CLR.4.3 Improved e�etive bandwidth formulaThe greatest advantage of the e�etive bandwidth formula of Eq.(4.12) omes from itssimpliity. It is rather simple in the sense that only one parameter, d, desribes the relevantharateristis of the traÆ. However, in ertain ases this simpli�ed equation is not fullyadequate.4.3.1 Saling properties of the e�etive bandwidthThe e�etive bandwidth satis�es the additive property, that is, the e�etive bandwidth ofthe aggregation of independent soures is equal to the sum of the e�etive bandwidths ofaggregated soures.On the other hand, when independent and bursty soures are multiplexed on a singlelink, the independene in the statistial variations of the individual soures o�ers the po-tential for a redution in the bandwidth required for the aggregated stream. There is no
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Figure 4.7: CLR estimates using the proposed method for Pareto-type soures.
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Figure 4.8: Queue length distribution for Pareto-type soures.



72need to inrease the bandwidth proportionally as the number of soures inrease if we wantto keep the desired ell loss ratio. This ahievable multiplexing gain is missing from thee�etive bandwidth approah.Next, I try to desribe this e�et quantitatively. This setion addresses the e�ets of theHurst parameter H, and asymptoti onstant � to the e�etive bandwidth formula. For theparameter H, an idea is presented for estimating and inorporating it into the algorithm.4.3.2 The asymptoti onstant �As for the asymptoti onstant � (see Eq.(4.3), when deriving the very simple and e�etivebandwidth formula we assumed that � � 1. This simple approximation is onvenientbeause � is hard to obtain; it is also onsistent with the notion of e�etive bandwidth.However, in ertain ases its value an be very di�erent from one when the number ofomponent arrival proesses is large [9℄. (Note, that Elvalid et al. made an intuitive andquite lear argument about the asymptoti onstant [21℄: they gave an approximate formulafor multiplexed on-o� soures with their peak and average rate given.)The asymptoti onstant � is in fat inorporated in the proposed method. The three-point bu�er monitoring algorithm was onstruted from Eq.(4.14) whih ontains �.4.3.3 The Hurst parameter HBurstiness aross di�erent time sales is desribed by the Hurst parameter, hene the multi-plexing gain is also a�eted by H [29℄. Next I desribe how the parameter H ould be usedexpliitly in the algorithm. (Note that, similar to �, H is also already impliitly onsideredbeause the assumption of the Weibullian queue length distribution orresponds to the LRDphenomenon.) For this, results for the well-known frational Brownian traÆ model [41, 42℄are used with the following notations and assumptions:� The frational Brownian traÆ model with parameters fm;a0;Hg is a good approxi-mation for the aggregated ell stream, i.e.,A(t) = mt+pma0Z(t): (4.23)Note the di�erent variane parameter a0 in Eq.(4.23) (f. Eq.(2.1) on page 12 where a =ma0). This assumption is validated by �ndings in [51℄, namely, that the superposition ofmany on-o� soures whose on- and/or o�-periods have heavy-tailed distribution an produeself-similar aggregate network traÆ, i.e., onverges to the frational Brownian traÆ model.� When the number of soures is hanged, a0 and H of the aggregated traÆ remainunhanged, while the mean rate m is saled appropriately.The reason behind this seond assumption is the following: The parameter a0 an usually beassumed to have a �xed value independently from m. Indeed, onsider a superposition of N



73independent and identially distributed umulative traÆ proesses A(t) =PNi=1Ai(t) suhthat E [Ai(1)℄ = m0 and Var [Ai(1)℄ = a0m0: we have Var [A(1)℄ = a0E [A(1)℄ independentof N . Thus, H and a0 haraterize the type of the traÆ mix while m gives its amount [41℄.From the saling property of the frational Brownian storage system (see [42℄) the fol-lowing results an be derived:C � m+ ��(H)p�2 log pK�1=H a01=(2H)K(H�1)=Hm1=(2H) (4.24)with �(H) = HH(1 � H)1�H . (Note that the only approximate part of Eq.(4.24) withinthe framework of this model is the oeÆient in front of the powers of a0, K, and m.) IfEq.(4.24) is used as a substitute for the e�etive bandwidth formula, instead of Eqs.(4.9)and (4.12), with A � m we an writedH = A� C(�A log pK)1=(2H) ; (4.25)�(�obj) = Â� d̂H(�Â logCLRobj)1=(2H); (4.26)where dH = �H(1�H)(1�H)=H (2a0)1=(2H)K(H�1)=H (4.27)desribes the onnetion between a and dH . As an be seen from Eq.(4.26), the alulatede�etive bandwidth C is a nonlinear funtion of the traÆ arrival rate A for H > 0:5. In thisase, when the number of (bursty) soures is doubled (A = 2A0), the bandwidth is inreasedonly moderately (�(�obj) = (2H + 1)=(2H)C0). As for H = 0:5, it is easy to see that Eqs.(4.25) and (4.26) give the same results as Eqs.(4.9) and (4.12), with dH � d = a0=(2K).4.3.4 Hurst parameter estimationTo expliitly inorporate the Hurst parameter into our method, an on-line H estimatoris needed that is unbiased under very general onditions and robust against the preseneof deterministi trends, and that also an be implemented eÆiently. Well-known simpleestimators are not pratial for our purposes beause they annot ful�ll these three require-ments [38℄.In using a Weibullian approximation for the queue length distribution, we already as-sumed that the distribution has the formP (Q > K) � �e��K ; (4.28)with  = 2� 2H. Based on queue length monitoring, a �rst approah ould be to estimateH as Ĥ = 1 � =2. However, this does not work in pratie. Monitoring the system fora short period of time is insuÆient for estimating the Hurst parameter. To estimate it, anew method based on a di�erent approah must be applied that takes into onsiderationthe traÆ struture at longer time sales.Reently, a wavelet-based tool for analyzing long-range dependene was introdued [1℄.This tool is intended to be used in an on-line measuring environment; thus it seems to beappropriate for this purpose.



744.4 ConlusionIn this hapter, the goal was to estimate the e�etive bandwidth of the traÆ using real-time measurements. To ahieve this goal an approximate e�etive bandwidth formula wasdeveloped, that only requires the knowledge of the atual CLR and the utilization. Analgorithm to estimate the CLR in real time using bu�er measurements was also proposedwhih works also for the ase when the input proess is long-range dependent. The atualbu�er monitoring thresholds depend on several fators. Guidelines and simple formulae weregiven for setting these thresholds, and the proposed method was validated by simulationsusing di�erent types of input traÆ. Finally, a modi�ed version of the approximate e�etivebandwidth formula was proposed to inorporate the saling e�et aptured by the Hurstparameter.



Chapter 5Summary of the DissertationThe mathematial bakground of self-similarity and long-range dependene was founded inChapter 1. The three main goals of this dissertation were as follows. In Chapter 2 thegoal was to develop an eÆient parameter estimation method of the frational BrowniantraÆ model. In Chapter 3 the performane impliations of long-range dependene wasinvestigated. Finally, in Chapter 4 the aim was to estimate the e�etive bandwidth of thetraÆ based on real-time measurements.5.1 Parameter estimation of frational Brownian traÆI have studied the parameter estimation of a traÆ model based on frational Brownian mo-tion in Chapter 2. Throughout my work I have applied the maximum likelihood estimation(MLE) method.� I have given an expliit expression for the maximum likelihood (ML) estimates m̂and â in terms of H, together with their variane. I have also given a simpli�edexpression for the log-likelihood funtion from whih the estimate Ĥ is obtained asthe maximizing argument. The maximization an be done in an alternative way thatwe do not need to alulate the determinant of the autoovariane matrix, nor thederivative of its inverse whose parametri form is unknown.A major diÆulty in the Gaussian MLE method is the alulation of the inverse anddeterminant of the ovariane matrix appearing in the likelihood funtion. To furtherimprove the estimation method (i.e., to alulate the inverse more eÆiently), it is desirableto redue the number of samples on one hand, and on the other hand, to �nd an eÆientalulation method for the matrix inversion. The use of geometrial sampling helps in bothases.� I have proposed an e�etive alulation method to provide the model parameter es-timates using geometrial sampling sheme. To make it pratially tratable, I havedeveloped approximation methods to further redue the omputational power needed.75



76Computer simulations were used to validate the proposed estimation methods and ap-proximations, as well as to demonstrate the advantage of geometrial sampling over thetraditional linear sampling sheme.The geometrial sampling sheme with the matrix-alulation formulae helps in twoways. First, the alulation omplexity is dereased to O(n2) and thus the method an beused up to a few hundred sample points. Seond, the samples are distributed in a betterway on di�erent time sales, thus the estimation of H beomes more reliable. Aordingto my experiene, using geometrial sampling the estimate Ĥ is unbiased for sample sizeslarger than 25 and its variane is also redued to about one third, when ompared to thelinear sampling sheme.For H the proposed estimation method was also ompared to the wavelet-based methodof Abry and Veith whih is known to be a fast and eÆient estimator, and turned out tobe very eÆient. For a given variane of Ĥ the redution in the number of samples is aboutone order of magnitude in favor of MLE using geometrial sampling.The results showed that the geometrial sampling sheme gives a great advantage.(Though the proposed approximations do not work in favor of a, the joint estimation of Hand a performs muh better.) The proposed approximations work well if applied appropri-ately and onsiderably redue the omputation power needed, making it possible to applythe ML method for larger sample sizes.The work presented in Chapter 2 was made within the framework of the COM2 projetfunded by the Aademy of Finland. It is part of the Researh Programme for Teleom-muniation Eletronis initiated by the Aademy of Finland in 1997 to further advanesienti� researh in the �eld of tele- and data ommuniations. A program library of Mat-lab routines has resulted from the work and is now available freely on the Internet [T6℄. Theresults were published in [C1, C2, T1℄ and [T6℄, and are also ontributions to the EuropeanCOST 257 projet.5.2 Charaterization and ontrol of saling traÆIn Chapter 3, I have given engineering guidelines to be onsidered when using the self-similarmodeling onept in ase of real traÆ. I have investigated the impats of traÆ ontrolmehanisms on the Hurst parameter estimates, and onluded that the saling property isquite robust. I also investigated the e�ets of saling property on CLR in queueing.To do this, empirial studies using data taken from ATM wide area networks wereperformed.5.2.1 Hurst parameter estimation of real traÆThe estimation of the Hurst parameter is not easy in pratie.



77� I have shown that real traÆ an have di�erent saling parameters at di�erent timesales. Therefore the relevant time sale has to be spei�ed prior to H estimation.� I have investigated the e�ets of level shifts present in the data and showed that thepresene of suh level shift an have a disastrous e�et on Ĥ, i.e., the estimate isseriously distorted. Therefore level shifts aused by nonstationarity must be removedprior to H estimation.This result emphasizes that it ould also happen that there is no useful information weould gain from the estimated and distorted Hurst parameter estimates. This happens whenthe assumption of stationarity is violated, and the real problem is that it is not possible todisriminate a stationary long-range dependent sequene from a nonstationary one in thease of �nite data sets.5.2.2 Impats of network mehanisms on HI have investigated the impats of traÆ shaping and poliing on the struture of the traÆand the Hurst parameter estimates.The applied shaping algorithm was the leaky buket shaping whih fores nononformingells to be delayed.� I have found that the estimated Hurst parameter was inreased due to shaping, andwas pratially una�eted by the poliing mehanism.It an be onluded that the self-similar feature is more robust for poliing than forshaping. If the proess is a pure self-similar proess there is a good interpretation of theHurst parameter. However, it is not obvious how to interpret it in pratie, where thetraÆ struture is modi�ed by several mehanisms and the proess is not a pure self-similarproess.5.2.3 Impat of saling property on ell lossThere are di�erent onerns about whether LRD is an important traÆ desriptor for ellloss estimation or not. I have investigated this question and tried to identify the relevantorrelation time sales of atual measured traÆ. Queueing and shu�ing analysis wereperformed in order to investigate the e�et of saling on ell loss. Simulation studies wereperformed with measured traes as input for di�erent bu�er sizes and di�erent utilizations.I have shown, that:� There is an upper time sale (also alled as ritial time sale) determined by thebu�er size and the load where there is no e�et of orrelations on ell loss if we gobeyond that time sale. The ritial time sale depends on the bu�er size, i.e., thebigger the bu�er the bigger the upper time sale. The ritial time sale also dependson the load, i.e., the higher the load the smaller the time sale of interest.



78Stritly speaking, the existene of suh ut-o� lag exludes the mathematial notion ofLRD (whih is an asymptoti de�nition and only tells us something about the behaviorof the orrelations as the lag tends to in�nity). In pratie, however, the real questionremains: "How long is long-range dependene?" The �ndings above give us simple pratialengineering rules of thumb for estimating the range of relevant orrelation time sale fromell loss point of view.The results of Chapter 3 provide guidelines whih are to be onsidered in many aspets oftraÆ haraterization and network management when dealing with traÆ with long-rangedependene and self-similar features. The queueing analysis results an form the basis ofbu�er dimensioning. The results were published in [C4, C5, C8, C9, T2, T3℄.5.3 Measurement-based e�etive bandwidth formulaIn Chapter 4, the methodology used was to estimate the e�etive bandwidth of the traÆusing real time traÆ measurements. To do this, an approximate e�etive bandwidthformula was developed, whih only requires the knowledge of the atual CLR and theutilization.5.3.1 Three-point bu�er monitoring methodWhen the traÆ does not possess long-range dependene, the queue length distribution isasymptotially exponential. In this ase Shioda and Saito showed [49℄ that the parameters� and � in Eq.(4.3) on page 62 an be estimated by monitoring the bu�er oupany levelsat two di�erent thresholds.For a self-similar traÆ input the queue length asymptotis are rather haraterized bya Weibullian distribution, and in this ase three thresholds are needed instead of two tomonitor the queue length.� I have proposed an algorithm to estimate the CLR in real time based on bu�er mea-surements, whih works for both the long-range and the short-range dependent ase.The atual bu�er-monitoring thresholds depend on the bu�er length, the CLR objetive,and the length of the monitoring interval, as well as on the rate and burstiness of the traÆ.� I have proposed some guidelines and simple formulae for setting the bu�er monitoringthresholds k1, k2 and k3.The proposed three-point bu�er monitoring method was �rst validated by simulationsusing di�erent types of traÆ input.



795.3.2 Improved approximate e�etive bandwidth formulaWhen independent and bursty soures are multiplexed on a single link, the independene inthe statistial variations of the individual soures o�ers the potential for a redution in thebandwidth required for the ombined stream. This ahievable multiplexing gain is missingfrom the e�etive bandwidth approah.Burstiness aross di�erent time sales is desribed by the Hurst parameter, hene themultiplexing gain is also a�eted by H. I have investigated how the parameter H ould beused expliitly in the approximate e�etive bandwidth formula.� I have given a modi�ed version of the proposed approximate e�etive bandwidthformula to inorporate the saling e�et aptured by H.The results in Chapter 4 form the basis of a real time VP bandwidth ontrol algorithm pub-lished in [J1℄ and [J2℄. The proposed methods are subjet to a Japanese patent appliation[T4℄ submitted.



Appendix ASome Remarks on the Estimates
A.1 Variane of m̂(H)For the time being we assume that H is known exatly, Ĥ = H. We haveVar [m̂℄ = E h(m̂� E [m̂℄)2i (A.1)= a � E24 tt ��1H Ztt ��1H t!235= a � E h(tt �̂�1H Z)(Zt �̂�1H t)i(tt �̂�1H t)2= a � tt ��1H E �ZZt� ��1H t(tt ��1H t)2= a � tt ��1H t(tt ��1H t)2= att ��1H t :where we have made use of the de�nition E �ZZt� = �H .80



81A.2 Expetation of â = a(H)Next onsider the estimator Eq.(2.23) for a, â = a(H). Again, for the time being we assumethat H is known exatly and alulate the expetation of â,nE [â℄ = E �Xt ��1H X�� E �(tt ��1H X)2�tt ��1H t (A.2)= E �(mt+paZ)t ��1H (mt+paZ)�� (��1H t)t E �XXt� (��1H t)tt ��1H t= m2(tt ��1H t) + aE �Zt ��1H Z�� (��1H t)t(Var �XXt�+ E [X℄ E �Xt�)(��1H t)tt ��1H t= m2(tt ��1H t) + aE �Zt ��1H Z�� tt ��1H (a�H +m2ttt) ��1H ttt ��1H t= (n� 1)a;where we have used E �Zt ��1H Z� = E �NtN� = n sine Z � �1=2H N where N is a vetor ofindependent standard Gaussian variables.A.3 Variane of â(H)The next step is the alulation of the variane of â:Var [â℄ = E �â2�� E [â℄2 (A.3)= E �â2�� (n� 1)2n2 a2:To alulate E �â2� �rst we rewrite Eq.(2.23) as follows:â = 1n(tt ��1H t) �(Xt ��1H X)(tt ��1H t)� (tt ��1H X)2� (A.4)= an(tt ��1H t) �(Zt ��1H Z)(tt ��1H t)� (tt ��1H Z)2�| {z }A(Z)and now we have E �â2� = a2n2(tt ��1H t)2 � E �A(Z)2� : (A.5)



82To alulate the expetation E �A(Z)2� we use the following equation:E �A(Z)2� = E"A� ��s�2 estZ#s=0 (A.6)= "A� ��s�2 E hestZi#s=0= "A� ��s�2M(s)#s=0with M(s) = E hestZi = e 12 st�Hs: (A.7)To proeed further, it is useful to derive the following expressions (with rts = �=�s andusing rsM(s) = (st �H)M(s)):(tt ��1H rs)M(s) = (tt ��1H �H s)M(s) (A.8)= (tt s)M(s);(tt ��1H rs)2M(s) = �(tt s)2 + (tt ��1H t)�M(s); (A.9)(rts ��1H rs)M(s) = (rts ��1H �H s)M(s) (A.10)= (rts s)M(s)= �n+ (st �H s)�M(s):Next we deriveA(rs)M(s) = �(rts ��1H rs)(tt ��1H t)� (tt ��1H rs)2�M(s) (A.11)= �(tt ��1H t) �n+ (st �H s)�� �(tt s)2 + (tt ��1H t)�	M(s)= �(tt ��1H t) �(n� 1) + (st �H s)�� (tt s)2	M(s);and now we are ready to alulateA(rs)2M(s) = (n� 1)(tt ��1H t)A(rs)M(s)| {z }T1(s) (A.12)+ A(rs) �(tt ��1H t)(st �H s)� (tt s)2�M(s)| {z }T2(s)



83Aording to Eq.(A.6) we need to get T1(0) and T2(0), As for the �rst term we haveT1(0) = (n� 1)2(tt ��1H t)2: (A.13)However, for T2(0) we haveT2(s) = A(rs) �(tt ��1H t)(st �H s)� (tt s)2�| {z }T3(s) M(s) (A.14)= �(rts ��1H rs)(tt ��1H t)� (tt ��1H rs)2�T3(s)M(s):To solve Eq.(A.14) it is useful to alulate the following terms:(tt ��1H rs)T3(s)M(s) = (tt s)T3(s)M(s) (A.15)+ �2(tt ��1H t)(tt ��1H �H s)� 2(tt ��1H t)(tt s)�| {z }0 M(s)= �(tt s)(tt ��1H t)(st �H s)� (tt s)3�| {z }T4(s) M(s);(tt ��1H rs)2T3(s)M(s) = (tt ��1H rs)T4(s)M(s) (A.16)= (tt s)T4(s)M(s)+ 3(tt ��1H t) �(tt ��1H t)(st �H s)� (tt s)2�M(s);(rs ��1H rs)T3(s)M(s) = T3(s)(rtss)M(s) (A.17)+ 2(tt ��1H t)(rtss)M(s) � 2(tt ��1H rs)(tt s)M(s)= T3(s) �n+ (st �H s)�M(s)+ 2(tt ��1H t) �n+ (st �H s)�M(s)� 2 �(tt ��1H t) + (tt s)2�M(s):Note that in Eq.(A.17) we used the results from Eq.(A.10). Sine all terms in Eq.(A.15)are zero when s = 0, from Eq.(A.14) using Eq.(A.17) and the fat that T3(0) = 0 we getT2(0) = 2(n� 1)(tt ��1H t)2: (A.18)Substituting this result and Eq.(A.13) into Eq.(A.6) using Eq.(A.12) we haveE [A(Z)℄ = T1(0) + T2(0) = (n2 � 1)(tt ��1H t)2; (A.19)and from Eq.(A.5) we get E �â2� = n2 � 1n2 a2: (A.20)



84Finally, from Eq.(A.3) we get the variane of the estimate â asVar [â℄ = 2(n� 1)n2 a2: (A.21)



Appendix BInverse and Determinant of BandMatries
B.1 General aseConsider the following symmetrially partitioned hypermatrixH = 0� A BC D 1A ; (B.1)where B(r� r) and C(q� q) matries are quadrati. Assume now, that the inverse of H isknown and is of the form H�1 = 0� U LS V 1A ; (B.2)where S(r � r) and L(q � q) are quadrati. The determinant of submatrix C of matrix Han be alulated as [46℄ jCj = (�1)rq ������ A BC D ������ � jSj (B.3)85



86Assume further that matrix C is an n-by-n band matrix of the form
C =

0BBBBBBBBBBBBBBBBBBBB�
(1)1 (2)1 � � � (p)1 0 � � � 0(2)1 (1)2 � � � (p�1)2 (p)2 . . . ...... ... . . . ... ... . . . 0(p)1 (p�1)2 � � � (1)p (2)p . . . (p)n�p+10 (p)2 � � � (2)p (1)p+1 . . . ...... . . . . . . . . . . . . . . . (2)n�10 � � � 0 (p)n�p+1 � � � (2)n�1 (1)n

1CCCCCCCCCCCCCCCCCCCCA
: (B.4)

To alulate the determinant jCj, Eq.(B.3) is suitable with properly hosen submatries A,B and D suitable for our purpose. Let A and D be of the form
A(p�1)�n = 0BBBBBBBB� 1 0 0 � � � 0 � � � 00 1 0 � � � 0 � � � 0... . . . . . . . . . ... ...0 � � � 0 1 0 � � � 0

1CCCCCCCCA ; Dn�(p�1) =
0BBBBBBBBBBBBBBBBBBB�

0 0 � � � 0... ... ...0 0 � � � 01 0 � � � 00 1 . . . ...... . . . . . . 00 � � � 0 1

1CCCCCCCCCCCCCCCCCCCA ;
(B.5)and B is a (p�1)-by-(b�1) matrix full of zeros. Hene, the determinant of the hypermatrixH an be alulated as ������ A BC D ������ = n�p+1Yi=1 (p)i : (B.6)Thus, from Eq.(B.3) and Eq.(B.6) we getjCj = (�1)n(p�1) � jSj � n�p+1Yi=1 (p)i : (B.7)



87Eq.(B.7) ontains the determinant of the (p � 1)-by-(p � 1) submatrix S. The matrix San be alulated by solving a reursive set of equations. The following setion gives thealgorithm for the simplest ase when p = 2. The idea an easily be generalized for largervalues of p.B.2 p = 2 aseLet C be a symmetri ontinuant matrix of the form
C = 0BBBBBBBBB�

a1 b1 0 � � � 0b1 a2 b2 . . . ...0 b2 a3 . . . 0... . . . . . . . . . bn�10 � � � 0 bn�1 an
1CCCCCCCCCA (B.8)

with bi 6= 0. Aording to Eq.(B.2) the inverse of the lower-triangular hypermatrix H is ofthe form0BBBBBBBBBBBB�
1 0 0 � � � 0 0a1 b1 0 � � � 0 0b1 a2 b2 . . . ... ...0 b2 a3 . . . 0 0... . . . . . . . . . bn�1 00 � � � 0 bn�1 an 1

1CCCCCCCCCCCCA
�1 = 0BBBBBBBBB�

u1 0 � � � 0 0u2 l21 . . . ... ...... ... . . . 0 0un ln1 � � � ln(n�1) 0s v1 � � � vn�1 vn
1CCCCCCCCCA ; (B.9)

or, equivalently, with supressed notations we have0� et1 0C en 1A�1 = 0� u Ls svt 1A : (B.10)The submatrix S (the single value s in the present ase) an be alulated using the followingreursive equations: u1 = 1; (B.11)u2 = � 1b1a1;ui+1 = � 1bi (aiui + bi�1ui�1); i = 2; 3; : : : ; n� 1;s = anun + bn�1un�1:



88The determinant of C an be alulated asjCj = (�1)n � s � n�1Yi bi: (B.12)Note, that the following approximation works reasonably well in pratie:jCj � n�1Yi jbij: (B.13)



Appendix CDerivation of the E�etiveBandwidth FormulaThe following derivation was published in [49℄.Provided that the input proess satis�es some mild tehnial onditions, the e�etivebandwidth funtion �(�) (see Eq.(4.6) on page 62) stritly inreases for � [8℄. Hene, � isgiven by the unique solution of the following equation:�(�) = C: (C.1)The e�etive bandwidth funtion �(�) an be expanded by � (Cumulant Expansion) asfollows: �(�) = limt!1 1t� log E �eAt�� (C.2)= limt!1 1t� 1Xk=1 hAkt ik! �k;where hAkt i is alled the k-th umulant. It is easy to see the following:hAkt i = E [At℄ ; (C.3)hA1t i = Var [At℄ : (C.4)Eq.(C.2) is further simpli�ed as follows:�(�) = A 1Xk=0 d(2)k �k; (C.5)where d(2)k = limt!1 hAk+1t i(k + 1)!hA1t i : (C.6)89



90 Regarding the asymptoti onstant �, we also have the following similar expansion by� [5℄: log � = 1Xk=1 d(1)k �k; (C.7)where d(1)k = � limt!1�hAkt i �� limt!1 hAkt it � t� : (C.8)One we know the oeÆients, fd(1)i g and fd(2)i g, the e�etive bandwidth of the soure anbe estimated simply. For example, by taking only the �rst term in the expansion of � inEq.(C.8), we have �obj = log � � logCLRobjK (C.9)� d(1)1 �obj � logCLRobjK ;and from this we have �obj = logCLRobjd(1)1 �K : (C.10)We therefore have�(�obj) = A8<:1 + d(2)1 logCLRobjd(1)1 �K + d(2)2  logCLRobjd(1)1 �K !2 + � � �9=; : (C.11)Approximating �(�) further by taking only the �rst two terms in Eq.(C.11), we get�(�) � A f1 + d logCLRobjg (C.12)with d def= d(2)1d(1)1 �K : (C.13)Note, that for Gaussian proessesd(1)1 = 0; (C.14)d(2)1 = 12 � IDC def= 12 limt!1 Var [A(t)℄E [A(t)℄ ; (C.15)d(2)i = 0 for all i � 2: (C.16)(The �rst two are valid even for the ase where A(t) is not Gaussian.)
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