
Annals of Telecommunications
https://doi.org/10.1007/s12243-021-00898-0

Oddlab: fault-tolerant aware load-balancing framework for data
center networks

Aymen Hasan Alawadi1,2 · Sándor Molnár1

Received: 5 May 2021 / Accepted: 3 November 2021
© The Author(s) 2021

Abstract
Data center networks (DCNs) act as critical infrastructures for emerging technologies. In general, a DCN involves a multi-
rooted tree with various shortest paths of equal length from end to end. The DCN fabric must be maintained and monitored
to guarantee high availability and better QoS. Traditional traffic engineering (TE) methods frequently reroute large flows
based on the shortest and least-congested paths to maintain high service availability. This procedure results in a weak link
utilization with frequent packet reordering. Moreover, DCN link failures are typical problems. State-of-the-art approaches
address such challenges by modifying the network components (switches or hosts) to discover and avoid broken connections.
This study proposes Oddlab (Odds labels), a novel deployable TE method to guarantee the QoS of multi-rooted data center
(DC) traffic in symmetric and asymmetric modes. Oddlab creatively builds a heuristic model for efficient flow scheduling
and faulty link detection by exclusively using the gathered statistics from the DCN data plane, such as residual bandwidth and
the number of installed elephant flows. Besides, the proposed method is implemented in an SDN-based DCNwithout altering
the network components. Our findings indicate that Oddlab can minimize the flow completion time, maximize bisection
bandwidth, improve network utilization, and recognize faulty links with sufficient accuracy to improve DC productivity.

Keywords Load balancing · Software-defined networking (SDN) · Data centers · Fault-tolerant · Elephant flows

1 Introduction

Data center networks (DCNs) are employed in various
fields, including web services, scientific computing, and
MapReduce operations. These services typically demand
high available bandwidth, fast response, and high avail-
ability. Hence, the fat-tree DC topology (see Section 2.1),
for instance, is designed symmetrically to achieve a high

� Aymen Hasan Alawadi
aymen.alawadi@edu.bme.hu

Sándor Molnár
molnar@tmit.bme.hu

1 Department of Telecommunication and Media Informatics,
Budapest University of Technology and Economics,
Budapest, Hungary

2 Department of Computer Science, Faculty of Education,
University of Kufa, Najaf, Iraq

bisection bandwidth because of multi-rooted paths between
the end-hosts. Many traffic engineering (TE) methods have
been employed to efficiently leverage multi-rooted paths.
However, conventional TE methods, such as equal-cost
multi-path (ECMP) [1], are based on local DCN switches to
handle flow scheduling. Local optimization mainly under-
goes local flow collisions that lead to severe congestion,
weak network utilization, and significant flow latency [2].
Thus, implementing an effective DCN flow scheduling tech-
nique based on the current network state is needed to avoid
potential flow collisions. Moreover, link failure is a crucial
issue in DCN fabrics [3]. Consequently, maintaining a sym-
metric situation for the duration of network operations is
difficult. In particular, DCN link failures include partial and
complete failures [3]. The DCN topology becomes asym-
metric when a failure occurs. Nevertheless, a scheme, such
as ECMP, was deployed to hash every flow to a different
path to handle traffic congestion in standard DC operations
when considering a complete failure without monitoring
network states.

http://crossmark.crossref.org/dialog/?doi=10.1007/s12243-021-00898-0&domain=pdf
http://orcid.org/0000-0001-7581-1682
mailto: aymen.alawadi@edu.bme.hu
mailto: molnar@tmit.bme.hu

Ann. Telecommun.

Several solutions and opportunities related to DCN TE
solutions have emerged after introducing the Software-
Defined Networking (SDN) as a new network administra-
tive paradigm. The new paradigm has introduced a new
orientation in managing DCN operations through a central-
ized controller. For reliable and effective resource handling,
SDN decouples the control and data planes. The OpenFlow
protocol [4] is a primary mechanism for separating traffic
and communication between a centralized SDN controller
and distributed switches. The SDN controller can collect
statistical information from the entire network, including
information regarding the current flows and port states in
the data plane because it is centrally located in the control
plane.

In the existing DCNs, SDN has been often applied
in flow scheduling and traffic load balancing [5, 6].
However, several issues must be addressed before adopting
SDN solutions in a DCN TE method. For instance,
central SDN controllers can manage only a specified
packet in requests per second [7]. Moreover, TCAM
(Ternary Content-Addressable Memory) space restrictions
of OpenFlow switches affect the flow entries that the SDN
controller can handle per second. For instance, HP 5130 EI
switches can only handle 20 rules per second [8]. Regarding
decision-making, frequent flow rerouting may degrade TCP
performance through packet reordering.

Benson et al. [9] analyzed simple network management
protocol logs for several DCNs to classify DCN flows, and
found that most of the DC traffic (80%) comprised small
TCP flows within a size of 10 kB for a duration of less than
11 s. In contrast, most DC bytes originate from only 10% of
TCP long-lived flows (elephant flows).

DCN flow demand cannot be previously predicted to
obtain an appropriate route without cooperating with other
devices, such as the sFlow [10] or the end-hosts [11].
Other TE solutions tend to reroute the active elephant flows
detected within the DCN, as discussed in Section 2.3).
However, Roy et al. [12] discovered that the TCP elephant
flows in Facebook DCN are not extremely large over long
periods; therefore, the elephant flow rescheduling may not
be an efficient solution.

In this study, we propose Oddlab, a heuristic and dynamic
TE approach to balance the traffic load of a DCN based
on a centralized SDN controller. The basis of our approach
relies on the flow sampling (1:1 ratio) at the DCN edge
switches between proactive paths defined by the ECMP and
reactive paths obtained by the SDN controller. Nevertheless,
it significantly differs from our previously published results
in [13] and [14] in two main aspects. First, in the reactive
method, the number of elephant flow entries [15] is utilized
in addition to the path residual bandwidth to define the best
path. Therefore, we achieved fewer installed flow entries by
abandoning the frequent elephant flow rerouting procedure.

Alternatively, we adopted the DCN edge sampling method
in addition to forwarding the incoming flow over the less
overloaded path, even when it was not the shortest one.
Second, Oddlab detects and avoids the faulty links inside
a DCN and reroutes the elephant flows from the affected
paths to deliver high availability. Our proposed faulty link
detection procedure method depends on the state of the
DCN load temporally correlated with the highly congested
links at the core switch layer, which needs to be the most
reliable part of the DCN fabric.

Oddlab includes several stages. The controller begins to
learn the topology and indicates the shortest paths of the
edge host of the DCN that directly connects to the end-hosts.
Subsequently, the controller periodically monitors the ports
of the DCN switches to determine the residual bandwidth
and number of installed flow entries that belong to the
existing elephant flows. This stage includes estimating the
DCN utilization state based on the number of edge switches
that exceed a certain threshold and correlating it with the
congested links at the core switches to detect the potential
faulty links. Consequently, elephant flows on the affected
link are rerouted to the least-congested paths. In general,
Oddlab introduces a deployable, light, yet effective load-
balancing framework that functions on the basis of SDN
in symmetric and asymmetric DCN topologies without
altering network components or TCP packets.

In summary, the key contributions of Oddlab are as
follows:

1. We introduce a new SDN load-balancing framework
to guarantee the QoS of the multi-rooted DCN traffic
in symmetric and asymmetric DCN topologies, where
flows are forwarded equally based on the controller
and edge switches using ECMP. The proposed adaptive
scheduling considers the detected healthy paths, avail-
able bandwidth, and active elephant flows to determine
the best paths.

2. We present an adaptive flow scheduling based on the
global view of DCN component information with a
minimum flow scheduling overhead and without the
need for frequent flow rerouting and altering of network
components.

3. We formulate the faulty link detection problem in
DCN as a temporal correlation between the number of
loaded edge switches based on the Odds ratio, and the
throughput of the core switch links to gain sufficient
accuracy in identifying the faulty links at the core
switches.

4. Finally, we evaluate the performance of the proposed
method by conducting extensive experiments on various
traffic patterns with synthetic and real workloads. We
found that the proposed method can identify faulty links
and noticeably improves the bisection bandwidth and

Ann. Telecommun.

moderate link utilization with an overall average flow
completion time (FCT) reduction by up to 30, 25.7,
62, and 5% as compared to that of ECMP, Hedera,
PureSDN, and Sieve, respectively.

The remainder of this paper is organized as follows. In
Section 2, we present a preliminary background, including
an overview of the existing studies. In Section 3, we introdu-
ce the design of the Oddlab framework. Section 4 presents
the main algorithms of proactive sampling on DCN edges,
proactive flow scheduling (ECMP), adaptive flow schedul-
ing, faulty link detection procedure, and elephant flow
rescheduling. In Sections 5, 6, and 7, we analyze, imple-
ment, and evaluate the Oddlab experimental results, respec-
tively. Finally, Section 8 provides the concluding remarks.

2 Preliminary background

This section describes the DCN topology in addition to an
overview of DCN traffic congestion and failures, followed
by an overview of the existing studies.

2.1 DCN topology

In general, the fat-tree DCN topology [16] is widely
used because it delivers high scalability through the tree
structure of the switches. The fat-tree contains three layers
of connected switches, including the core, aggregate, and
edge switches. The DCN end-hosts are directly connected
to the edge switch layer. The edge switches are combined
with the aggregate switches in pods, where each fat-tree
DC contains K pods. Each pod should be connected to
(K/2)2 end-hosts, and each switch has (K/2) ports. The
DC pods are aggregate switches connected to (K/2) core
switches on the upstream side and (K/2) edge switches on
the downstream side. The total number of end-hosts that

the fat-tree DCN can support is (K3/4). For every pair of
these hosts, the fat-tree provides (K/2)2 equal-cost paths
to achieve a high bisection bandwidth between each source
and destination inside the DCN environment.

In the SDN paradigm, the central controller monitors the
ports of each switch in the DCN data plane to effectively
handle traffic flows and make decisions based on the
gathered information. Hence, all DCN switches must be
remotely connected to the SDN controller, as shown in
Fig. 1. This study uses a K − 4 fat-tree DCN topology with
16 end-hosts.

2.2 Adaptive flow scheduling in DCN

Adaptive flow scheduling primarily improves the DC
productivity by avoiding congested paths. For instance, in
Hedera [2], the initial flows are scheduled based on pre-
defined flow entries that follow proactive paths using the
ECMP hashing method and reroute the elephant flows only
with adaptive rerouting. In our previous studies (Sieve
[13] and [14]), we leveraged ECMP hashing together with
the adaptive routing calculated by the SDN controller
periodically based on the shortest path that guarantees
the best available bandwidth. Furthermore, Sieve [13]
attempted to reroute the fraction of elephants on an edge
switch when the switch reaches a specific load threshold
to a different path based on the residual bandwidth to
achieve a better FCT. Still, such a mechanism may produce
further congestion and flow contention, particularly for
newly arrived flows.

As shown in Fig. 2, in T1, an elephant flow A originated
from host H1 in pod 1 to host H11 in pod 3. Because
the links in the core switches are highly congested layers
in the DCN, local congestion in T2 may occur between
aggregation switches (Agg. 2) and (switch 3) in the core
layer. In addition, a severe bottleneck at the core layer
may lead to a link failure [3]. In Hedera [2] and Sieve

Fig. 1 K − 4 fat-tree DC
topology with a central SDN
controller

Ann. Telecommun.

Fig. 2 Flow collisions and
rerouting in fat-tree DC topology

[13], elephant flows in Edge1-Agg.2 links are rerouted
to another path in T3. This decision may derive further
congestion and delay the current active flow, particularly
to the growing elephant flows. In T4, elephant flow B
originated from H4 in pod 1 to H9 in pod 3. When all
paths to the destination host H9 are congested, the path
containing the link (Agg.2–switch3) may be considered. In
this case, TCP congestion control reduces the number of
packets passing through the congested link so that the edge
switch may not bypass the rerouting threshold to reroute
the congested elephant flow. Therefore, the current active
elephant flows inside the DCN must be considered in the
incoming flow scheduling decision. This example clearly
explains that frequent flow rerouting may not achieve a
high productivity, particularly for unsplittable flows [17].
Nevertheless, the rerouting decision must avoid possible
link failures in adaptive flow scheduling.

2.3 Related studies

Several studies have proposed practical methods to solve
the flow scheduling problem. Hopps [1] proposed ECMP, a
flow hashing method based on distributing the flows among
the available paths without considering the path status. The
ECMP-supported switches are configured with proactive
paths to route the arrived packets based on their header
values. Methods such as Hedera [2] and Mahout [5] leave
the baseline schedule for the mice to flow to the ECMP
routing method. Hedera [2] assumed that every flow is a
mouse flow until it reaches more than 10% of the total
capacity of the edge link capacity to classify it as an elephant
flow. Subsequently, Hedera reroutes the elephant flow to the
best available path based on the global first fit and simulated
algorithms. The hypothesis of handling the mice flows

based on ECMP affects the FCT of such flows because the
elephant flows would occupy the total link capacity either
way.

Sharma et al. introduced DevoFlow in [18] based on
the OpenFlow switch to schedule mouse flow using the
wildcard rules to select the output port according to a
probability distribution. The DevoFlow controller reacts to
the elephant flows only after detecting them on the edge
switches within a threshold (1–10 MB) to redirect them to
the least-congested paths using the bin-packing algorithm.
The performance of mice flow FCT has not been presented
in the study to evaluate the effect of the wildcard rules on
this criterion. BLEND was presented in [19], which relies
on the DCN end-hosts and controller for flow scheduling.
The end-hosts periodically monitor all the outgoing flows
to verify elephant flows and select the paths for the
remaining flows based on the lowest estimated round-trip
time (RTT). Moreover, the controller maintains the global
queuing calculation and elephant flows routing. However,
the deployment in a productive DCN is complicated.
Modifying the transport layer of the end-hosts is not a viable
solution. In addition, many channels are required between
the SDN controller and end-hosts to transfer the flow
information. Some low-latency applications may bypass the
host kernel to perform the transport process [20]. Levi
et al. proposed an elephant flow detection and rerouting
method in [21]. The method relies on exploiting the path
diversity of the DCN topology so that the elephant flows
are rescheduled on less congested shortest and non-shortest
paths. The method is mainly based on Hedera’s strategy to
schedule the initial flows using the proactive paths (ECMP).
Subsequently, elephant flows reaching 10% of the link
capacity are rerouted on a congestion threshold. Then, the
best path is selected based on the path congestion rank and

Ann. Telecommun.

the estimated path delays. Although the proposed method
enhanced elephant flow latency, it did not investigate the
average overall FCT.

DCN undergoes various uncertainties in its operation,
such as traffic dynamics, failures, and asymmetric topology
[22]. Many approaches have been introduced to address
these challenges. In [20], Alizadeh et al. presented CONGA,
in which the concept of flowlet (packet-level granularity)
was introduced to achieve optimal flow distribution in an
asymmetric topology by collecting the congestion feedback
from the switches. Flowlet is a small chunk of a flow
sent dynamically across the switch ports depending on
the congestion feedback. This process affects the FCT
of mice flows and packet reordering in flowlet rerouting
on congestion or failure detection. However, the switch
hardware needs to be altered to provide a congestion
feedback. Hermes is a congestion-aware load-balancing
technique that was proposed in [22]. Hermes functions on
packet routing and flow scheduling on congestion or failure.
In congestion detection, the method depends on the explicit
congestion notification (ECN) and RTT. Although Hermes
is deployable because hardware modification is not needed,
all end-hosts in the DCN need to participate in the sensing
process. Therefore, the sensing technique is challenging to
accomplish without an end-host aid. CAPS was presented
in [23], which is an end-host-based local congestion-aware
technique. The method includes three main modules: the
packet encoder and decoder on each DC host, in addition to
random packet spraying (RPS). In CAPS, traffic flows are
divided into mice and elephant flows, where elephants are
scheduled using ECMP and mice flows are scattered to all
available paths based on RPS. This method requires changes
in the software of end-hosts in addition to the availability
of RPS switches. End-hosts have also been leveraged in
SAPS [24] to handle flow scheduling in an asymmetric
topology by providing virtual symmetric paths to each flow
using an SDN controller and group tables. In SAPS, the
elephant flows are identified based on the number of bytes
sent inside each end-host. Hence, the shim layers of these
hosts should be visible. The deployment of such a method is
costly and may be restricted to cloud environments. DRILL
was proposed in [25] as a per-packet scheduling technique
that relies on random spread of packets to the shortest-
and least-congested queues based on the power of the
two-choice approach. The technique was evaluated under
different loads on the leaf and spine switches in the Clos
DCN topology and required hardware changes at the level
of the DCN switches. Recently, FlowFurl was introduced
in [26] as a flow-level routing approach that works in an
asymmetric DC topology. The method reroutes the flows
based on the ECN-bit state transferred between the source

Table 1 Comparison of DCN load-balancing methods

Method DCN changes Gran. Failure handler

ECMP [1] × Flow Full failure

Hedera [2] × Flow PortLand protocol

Sieve [13] × Flow ×
CONGA [20] Switches Flowlet �
DRILL [25] Switches Packet ×
SAPS [24] Hosts Packet �
Hermes [22] × Packet/Flow �
FlowFurl [26] Hosts & switches Flow �
Oddlab × Flow �

and destination over the intermediate switches to detect and
discover the healthy paths. FlowFurl requires modifications
to the end-hosts because it is in charge of flow rerouting, in
addition to the DC intermediate switches.

Table 1 presents a comparison between the most relevant
DCN load-balancing methods regarding DCN hardware or
software components (switches/end-hosts), load-balancing
granularity, and failure resilience.

However, this study investigates the possibility of
introducing a deployable, light, yet effective load balancing
technique that can be used in symmetric and asymmetric
DCN topologies utilizing the SDN concept without altering
the network components or TCP packets. We proved
the performance of our proposed solution in a fat-tree
symmetric topology in [13] and [14]. In this study, we
demonstrate the performance of the proposed solution
(Oddlab) for both symmetric and asymmetric topologies.

3 Framework design aspects

This section describes the main design aspects of Oddlab,
starting with problem formulation, followed by a model
description.

3.1 Problem formulation

The DCN is modeled as a directed graph G = (V , E),

where V is the set of nodes V = {v0, v1, ..., vn} and E is a
set of directed edges E = {e0, e1, ..., en}. Network traffic is
routed through flows between every source s ∈ V and target
t ∈ V with path P = (v0, v1, ..., vn),

∀v ∈ V . A directed graph defines the flow network as
G = (V , E, c), where each edge (u, v) ∈ E has a capacity
c(u, v). The flow network can be classified into the single-
and multi-commodity types. There are only single sources
and targets (s, t) in a single commodity flow K , where

Ann. Telecommun.

s, t ∈ V, and s �= t . Moreover, multi-commodity flows
contain Ki commodities originating from a set of (si , ti),
where (si, ti) ∈ V . In general, the routing problem in flow
assignment should satisfy four constraints: (i) the amount
of all flows fi(u, v) routed on a link should not exceed
its capacity c(u, v); (ii) the number of flows entering a
node v equals the flows that exit from the same node;
(iii) A flow must leave its source node completely; and,
(iv) a flow must enter its target node completely. The
load-balancing dilemma is based on scheduling the flows
with their demands di among all links’ capacities c(u, v)

distributed evenly, as shown in the link utilization U(u, v)

(Eq. 1), where (u, v) ∈ E.

U(u, v) =

k∑

i=1

fi(u, v).di

c(u, v)
. (1)

An obvious solution to this problem is to minimize the
maximum utilization of the links Umax . In wired networks,
the physical link capacity is fixed; however, inevitable
failures affect it remarkably. Moreover, the flow demand
di is not consistent, and its monitoring to deliver a more
effective utilization is expensive. A cost of t (u, v).f (u, v)

exists when each flow is scheduled and monitored on (u, v).
Therefore, we intend to minimize the flow scheduling cost
f cost (Eq. 2) by employing the ECMP flow hashing
method and SDN controller based on the power of the
two-choice concept [27], as explained in Section 4.1.

f cost = Min
∑

(u,v)∈E

(t (u, v)

k∑

i=1

fi(u, v)). (2)

Owing to the cost of scheduling flows fi(u, v) among the
edges (u, v) in DCN to a particular path p = (v1, v2, ..., vn)

among n paths, where ∀v ∈ V , the process of choos-
ing the path should be efficient so that rerouting is not
frequently needed to handle the congestion. Therefore,
Oddlab finds the least-congested path so that the max-
imum total cumulative throughput total thr is achieved
(Eq. 3).

total thr = Max

k∑

i=1

di . (3)

The process of path p choices by the SDN controller for
each pair of nodes (si , di) satisfies the following constraints:
(i) the throughput le/Ce of every link e between the
aggregate and the core switch layer should not be less
than (potential link failure ratio) h th (Eq. 4), where le is

the current load, and Ce is the physical link capacity, (ii)
minimum number of active elephant flows Pel

already active
on any link e (Eq. 5), and, (iii) maximum path p residual
bandwidth from source si to target ti (Eq. 6).

le

Ce

� h th, (4)

Pel
= Min

n∑

e=1

Ele, (5)

Pb = Max

n∑

e=1

(Ce − le). (6)

The first constraint is to detect the potential link failure at
the core links to avoid the path with this link in the adaptive
flow scheduling model. This restriction is based on the DCN
utilization status, determined by the edge switch load Odds

ratio. Second, instead of estimating each incoming flow’s
load (di), Oddlab filters the path with the least number
of elephant flows. Therefore, elephant flow collisions are
avoided to a feasible extent. The third constraint states that
the chosen path p has the maximum residual bandwidth
among all available paths pn.

3.2 Model description

In Oddlab, two main issues are considered: load balancing
and flow scheduling. It is essential to detect and avoid
potential link failures so that flows are scheduled to healthy
and symmetric paths. Initially, we assumed that all the DCN
links functioned appropriately. Therefore, we leveraged
hash-based routing (ECMP) and adaptive flow scheduling
for flow scheduling depending on the number of installed
flow entries belonging to active elephant flows beside the
available bandwidth on the ports [15]. The primary purpose
for the hashing part of the flows on ECMP to the pre-defined
paths is to decrease the flow scheduling cost, thereby
mitigating the controller overhead.

We considered three steps on the data plane to detect and
avoid potential faulty links. In these steps, we established a
temporal correlation between the loading state at the edge
switches and possible link failure at the core switches.
The main components of Oddlab and considered steps
are presented in Fig. 3. The SDN controller represents
the control plane, which contains the main functions of
Oddlab and periodically collects network information. This
information includes ports and flow states based on the
OpenFlow protocol. Subsequently, the obtained data were
utilized to determine the best paths between every pair of
end-hosts in the data plane and to label the loaded edge
switches. Thus, in Step 1, the labeling process (the red

Ann. Telecommun.

Fig. 3 OddLab approach on
K − 4 fat-tree DC

label in Fig. 3) starts after the SDN controller detects in
any monitoring period that specific amounts of traffic pass
on the upstream side of the edge switches (Ports 1 and
2). In this step, the ratio of the number of edge switches
that meet the utilization condition to the number of non-
loaded switches is calculated (the Odds calculation) to
determine the extent of DCN utilization. As depicted in
Fig. 3, three edge switches fulfilled the utilization condition,
except one edge switch in Pod 4, indicating that DCN is in
the utilization state. Whenever the controller determines that
most edge switches are sufficiently utilized, Step 2 begins
by searching the faulty links, whose load level falls beyond
1% of the total link capacity. In Step 3, all the elephant flows
found on the detected faulty links are rescheduled to other
healthy paths. Subsequently, the adaptive flow scheduling
model is updated; thus, the incoming flows avoid the
affected paths. The entirely failed links typically continue
to convey less throughput, while the DCN is in the loading
state (Step 1). Consequently, the weighting function of the
ECMP hashing at the aggregate switches is altered in Step
4 to avoid these links even in the proactive paths. Finally,
an alert is also issued, including the information of the
affected links, so that the DCN administrator can handle the
failed links.

4 Oddlab framework within the SDN
paradigm

The proposed model was designed using the control and
data planes of the SDN paradigm. As shown in Fig. 4, we
utilized Oddlab in three phases for flow scheduling and
detecting failed links. The first phase resides in the DCN
data plane, where the future flows are randomly hashed
at the edge switches owing to the adopted flow sampling
technique (1:1). The hashing technique is built based on the
OpenFlow group tables supported by Open vSwitch in the
data plane. Thus, a layer three packet forwarding occurs
so that when the incoming packet can be handled by the
controller when it does not match the pre-installed flow
entries or the proactive group in the ECMP path. Moreover,
the second phase is in the control plane and contains two
main sub-models. The first sub-model is used for port stats
polling and storing them into a directed graph, and the
second one is used for Odds calculation and labeling based
on the edge switch consumption. In the third phase, the
best path calculation and link health checking are estimated
based on the network-directed graph’s information to define
the healthy paths and update the aggregate switch bucket
weight in the data plane.

Ann. Telecommun.

Fig. 4 OddLab SDN
architecture

4.1 Flow sampling at the DCN edges

Leveraging the SDN controller to compute an appropriate
path for each flow in the network is not feasible. In Oddlab,
we utilized an edge flow sampling method, which was
introduced in our previous study [13]. Thus, we sample the
incoming flows based on the OpenFlow SELECT group
type with two buckets; thus, the packet in request of a
flow is either directly scheduled to the ECMP pre-defined
path or sent to the SDN controller. The selected group is
defined with weighted buckets, and each bucket can perform
specific actions on the switch port, that is, dropping or
forwarding the packets. As depicted in Fig. 5, identical
weights have been set for the proactive path (ECMP table)
and control handling.

We defined multiple flow entries, including direct and
polling flow entries at the edge switches. The direct flow

entries contain the target end-host’s IP address and a direct
output port directly connecting the host to the edge switch.
However, the polling flow entry contains information

Fig. 5 The sampling group entry at the edge switches

Ann. Telecommun.

on (Ip src, Ip dst, transport src prt, transport dst prt, and
action: the output of the edge switch port). Subsequently,
if the incoming packet does not match any existing flow
entries at the edge switch, it is dynamically forwarded to
the Oddlab controller or the ECMP table with a uniform
probability.

4.2 ECMP proactive scheduling

ECMP proved to be a fast flow scheduling technique
because it spread the flows across all available paths without
considering the path status. Therefore, flow collisions
frequently occur, causing packet losses and significant
delays in the FCT.We reduce such collisions and congestion
using an efficient adaptive flow scheduling of the SDN
controller.

Additionally, we defined the SELECT group table with
two buckets on the upstream side of the DC switches for
ECMP path implementation. For instance, we established
two buckets on the edge switches connected to the
aggregate switches with actions (OUTPUTPORT:1 and
OUTPUTPORT:2) and identical bucket weights to balance
the incoming flows between the upstream ports evenly
(Fig. 5). Consequently, the same procedure is applied to
aggregate switch ports connected to the core switches
on the upstream ports (Ports 1 and 2). In the fat-tree
DCN topology, the DCN downstream side traffic cannot
be balanced because the link is directly connected to the
destination end-host through the core switch and aggregate
switch until the edge switch. Therefore, we defined
flow entries with fixed priority values for the directly
connected sub-networks on the DCN downstream ports
(Ports 3 and 4).

4.3 Oddlab SDN-based adaptivemodel

One of the objectives of Oddlab is to identify the potential
faulty links based on the only DCN traffic. We observe
and correlate two subsequent events inside a DCN between
the edge switches (traffic source) and core switches
(intermediate nodes) to achieve such a mission. The first
event includes estimation of the DCN utilization state,
calculated based on the traffic passing through both the
upstream ports of the edge switches. The second event
involves the presence of core switch links within an
underutilized state (i.e., passing throughput less than the
pre-defined threshold).

Algorithms 1, 2, 3, 4, and 5 illustrate the fundamental
functionalities of the adaptive Oddlab model. This section
presents the design perspectives and the main decisions of
the framework.

Ann. Telecommun.

Ann. Telecommun.

4.3.1 DCN utilization state estimation

We consider the DCN utilization state estimation as valid
evidence that the detected congested links in the core
layer are potential link failures with high probability
P(f ailed link|loaded DC). As depicted in Algorithm
1, Oddlab periodically invokes all port statistics from
the switches using the OFPPORTStats messages based
on the pre-defined polling rate (Pr = 2 s). We
leverage the collected port information in several functions
to estimate the DCN loading state, such as finding a

port free bandwidth function (save f ree bw), finding a
path bottleneck (min bw links), and detecting the faulty
links (save health). First, the save f ree bw function is
defined to store the throughput consumption information
(f ree bw) of the DCN switch ports (dpid, prt no) in a
directed graph G(V, E). Thus, the primary flow scheduling
procedure relies on the reserved graph free bandwidth
values (min bw links) when defining the path bottleneck.
Gradually, this function guarantees that the selected path
has the best available bandwidth from the available paths
between each end-host.

However, we utilize the obtained information of port
(dpid, prt no) consumption (f ree bw) to determine the
DCN utilization. To this end, we only filter the available
bandwidth values of the edge switch ports on the upstream
side (Ports 1 and 2). Here, the edge switch is labeled as
loaded Le if the residual bandwidth value of each port is at
least 95% of the link capacity for both ports. Subsequently,
the Odds value is calculated based on the number of
labeled switches to the number of unlabeled switches
NLe (Eq. 7).

Odds =
∑

Le∑
NLe

. (7)

Table 2 presents the variables used in Oddlab algorithms.

4.3.2 Oddlab adaptive flow scheduling

The adaptive method enhances the scheduling performance
by avoiding hashing collisions and choosing the best paths
with minimum flow entries for active elephant flows and
better residual bandwidth. Consequently, we define the flow
entries with a 5-tuple <IP protocol, src port, src IP, dst port,
and dst IP> based on the OpenFlow protocol. The Oddlab
controller reacts in two ways to the packet in requests
based on the estimated Odds value of the edge switches.
Therefore, when the DC is not fully utilized (i.e., Odds �
1), the packet in reaction regarding the best path will be
based on finding the path with less installed elephant flows
and a high available bandwidth, as shown in Algorithm
2. In this case, the maxf num of path explained in
Algorithm 3 and bottleneck of path in Algorithm 1 is
invoked to indicate the best available path between the
end-hosts (best path). Additionally, flow entry statistics
obtained from the EventOFPFlowStatsReply function will
be collected and stored in the graph G = (V , E) to estimate
the number of active elephant flows. Subsequently, only
flow entries with a data transfer speed of � 50 kbps [15]
are counted as active elephant flow entries (f num), as
illustrated in Algorithm 5 (line 4). Therefore, in this step, the
path containing the minimum active flows is considered as
the best path. Next, the free bandwidth values (f ree bw)
of all paths are gathered and stored in the graph G = (V , E)

Ann. Telecommun.

Table 2 Oddlab’s variables

Variable Description

min bw The bottleneck bandwidth of the link.

max bw Maximum available bandwidth of the path.

k Fat-tree DC order.

shortest p List of the shortest paths between src ip and dst ip.

best path The best available healthy and lightest path between src ip and dst ip.

edge thr Available bandwidth on the edge switch ports (1, 2).

dpid list List of switches’ IDs.

pr Polling rate.

flow list List of the affected active elephant flows on the aggregate switch port.

aff edge list List of the loaded edge switches.

af links List of the faulty links between aggregate and core switches.

proac ports List of aggregate switches with faulty ports whose ECMP bucket weight has been modified.

health thr Threshold of the faulty link.

non health list List of the affected switches and ports’ IDs.

max fnum The number of active elephant flows on the port.

fault iter Threshold of the fault iteration of the port (src prt or dst prt).

based on the OFPPortStatsRequest function, as explained in
Algorithm 1. Finally, the adaptive flow scheduling method
chooses the path with the least active elephant flows, and the
lightest is loaded as the best path. This method guarantees
that each flow, regardless of the flow demand, obtains the
best possible path (best path); however, not necessarily the
shortest path. Consequently, most flows do not agglomerate
into a single short path. Hence, the flow load-balancing
equation in Oddlab is as follows:

U(u, v) =

k∑

i=1

fi(u, v)

mf (u, v).(mb(u, v))
, (8)

where mf represents the maxf num of path between the
u and v nodes, and mb is the bottleneck of path value
between the same nodes.

Furthermore, Oddlab leverages the number of effective
elephant flows inside a DCN to predict the future state of
the path as compared to that presented in our previous study
[13]. Therefore, Oddlab eliminates the need to frequently
redirect elephant flows to achieve better FCT values.

4.4 Detection of the faulty links based on
spatial-temporal correlation

First, the SDN controller and OpenFlow protocol lack native
access to the network end-hosts. Therefore, the congestion
information obtained from the application layer that can be
used to determine the flow latency and packet losses may be
overlooked. In Oddlab, we only estimated the effect of link

failure based on the network throughput. In this module, we
estimated the amount of traffic mounted on the failed link
during the failure.

In DCN, link failure can be classified into hardware
and software failures based on the causes of failure and
duration. Hardware failures are typical, which are caused
by physical faults in the switch’s ports. Nevertheless,
software failures are caused by software bugs or IOS hotfix
issues [3]. In addition, hardware failures are known to be
long-lived failures that may require hardware replacement.
Simultaneously, the software type is considered short-lived
and can be automatically resolved comparable to a root
guard in the spanning tree protocol [3]. Thus, we adopted
the definitions of both faulty links in Oddlab.

The DCN traffic properties include similarities, period-
icity, and correlation [28]. Hence, we leverage the spatial-
temporal correlation between the two events in the input
data space on the edges and crossing the DCN over the
aggregate and core switches at different time intervals to
detect faulty links. The spatial-temporal correlation used in
detecting the faulty links demonstrates how the two condi-
tions of the DCN loading state and underutilized links fit
together in the DCN operation life span. As shown in Fig. 6,
the controller monitors and estimates the edge load and
links’ health based on the pre-defined thresholds. When-
ever both events are correlated in consecutive monitoring
intervals (i.e., from t3 to t5 for short-lived failures), the con-
troller indicates the affected link as “unhealthy link”, and
redirects all elephant flows found on the upstream port of
the link. As depicted in interval t6 in Fig. 6, the correla-
tion is broken; however, the link failure threshold is still

Ann. Telecommun.

Fig. 6 Process of
spatial-temporal correlation to
detect potential link failure

fulfilled. In this case, the path that contains the detected
link is avoided in the adaptive flow scheduling. When the
link is recovered (i.e., receiving regular traffic) from the
proactive paths using ECMP, it will be excluded from the
detected-links list.

Faulty link detection procedure When the number of edge
switches that fulfill the minimum loading threshold exceeds
the number of unloaded switches (i.e., Odds > 1), the
Oddlab controller invokes the second initiated reaction to
obtain the best path, as depicted in (path health check)
in Algorithm 2. The links’ health is periodically estimated
based on the port statistics initiated in OFPPortStatsRequest
together with the save f ree bw function, as shown
in Algorithm 1. First, the links of core switches are
considered healthy unless their throughput falls below
the failure threshold (i.e., health thr � 1% of the
link capacity). The number of consecutive faulty link
frequencies is calculated over the network monitoring
duration (f ault iter) to maintain the correlation conditions
(health thr and Odds), as described in Algorithm 1
(line 17). When the correlation is fulfilled, the faulty
link information is saved on the directed graph G(V, E),
including (src prt, dst prt, health,

f ault iter). Moreover, the correlation parameter of the
detected faulty links (f ault iter) is nulled when the link
throughput increases above the threshold (i.e., health thr

> 1% of the link capacity), as illustrated in Algorithm
1 (line 25). The information of the genuine faulty links,
including dpid and src prt , is stored in a list (af links)
to be applied as elephant flow rescheduling information, as
shown in Algorithm 4 (line 22).

4.4.1 Elephant flows rescheduling

The Oddlab controller uses the af links list information
to reschedule all congested elephant flows on these links.
As illustrated in Algorithm 5 (line 7), the flow information
of all ports is periodically monitored to participate in the
flow scheduling process. Thus, when the value of Odds

> 1, all elephant flows mounted on the upstream side
of the aggregate switch ports (dpid & prt no) with a
cumulative flow size of� 50 kB [9, 13] will be rescheduled
to other healthy paths. As explained in Algorithm 2, these
flows will be redirected from the end-to-end host based
on the flow source IP address (src ip) to new healthy
paths (best path). The reason for choosing end-to-end
redirection is to obtain the shortest healthy path instead of
overwhelming more links if we decide to reroute from the
aggregate switch. Moreover, the elephant flow scheduling
was decided to provide the mice flow with more resources
to pass through the affected links. In addition, rescheduling
mice flows is not reasonable because they are small and may
be significantly affected by the completion time. Finally,
the rescheduled flow information is stored in the red links

list with the switch and port number information (dpid &
prt no); thus, the port will not be checked in the following
flow monitoring round.

4.4.2 Adaptive flow scheduling after detecting the faulty
links

The identified faulty links in the (af links) list were
avoided by the Oddlab adaptive flow scheduling method. As
shown in Algorithm 2 (line 15), the Oddlab second reaction

Ann. Telecommun.

relies on the estimated Odds value (Odds > 1). The
algorithm primarily guarantees that the determined paths are
free of any faulty links in the core switches. Therefore, the
health of the path is checked before computing the active
flow numbers of the path. For simplicity, we define a high
value for max f lownum whenever a faulty link is detected
in any path to estimate the path flow number; thus, the
adaptive flow will not choose that path later in the adaptive
flow scheduling, as described in Algorithm 3 (line 8).

As an outcome of the faulty link detection, the flow
load-balancing equation is as follows:

U(u, v) =

k∑

i=1

fi(u, v)

hp(u, v).(mf (u, v))(mb(u, v)))
, (9)

where hp represents the checked healthy paths between the
u and v nodes.

Moreover, even when the value of Odds depreciates
below 1, adaptive flow scheduling avoids the defected paths
based on Eq. 9. In Algorithm 3 (line 7), we define a
statement to check the status of the detected links (af list)
and avoid the links with a large number of max f lownum

parameter in the best path decision best path.
For long-lived failures, we defined a higher value for

f ault iter � 5 (i.e., the monitoring time is equivalent
to 5 × Pr). Accordingly, the proactive bucket weight of
links that achieves this threshold will be modified; hence,
the affected port will not obtain the last equal number of
flows. Therefore, the weight value of the affected upstream
port is omitted using the OpenFlow ovs-ofctl mod-group
message (dpid , src prt), as described in Algorithm 4 (line
23). Eventually, an alert is triggered for the detected faulty
link, with the link information and whether the link has
been excluded from the service (i.e., hardware failure),
f ailure alert = (af links & proac ports)).

5 Oddlab analysis

In this section, the main characteristics of Oddlab are
analyzed and evaluated regarding the adopted DCN edge
flow sampling procedure and complexity of the adaptive
flow scheduling.

5.1 Edge sampling performs under a finite system

We assume that the flows arrive at the DCN edge switches
following a Poisson stream with a rate of λn. At the edges,
we adapted two identical bucket-forwarding decisions (d =
2). Therefore, the incoming flows are independently hashed
either to the ECMP or SDN controller uniformly. In
particular, the flows are served based on the first-in-first-out

manner with an exponential distribution for the service
time of flows. This phenomenon is associated with the
supermarket model discussed in [27]. Therefore, we used
the supermarket model to provide a precise and systematic
analysis of the Oddlab load-balancing model behavior when
the number of flows tends to be significant (n → ∞). To
obtain the expected waiting time of the flow in addition
to the maximum queue length, Kurtz’s theorem for large
numbers and Chernoff-like bounds [27] are applied as
follows:

Theorem 1 The anticipated time that the flow can wait at
the DC edge to obtain the forwarding service, whether with
ECMP or Controller (d = 2) over the period [0, T] is
limited to
∞∑

i=0

λ
di−d
d−1 + O(1), (10)

whereO(1) depends on the T and λ states, and represents
the error bound between the system state with fixed n, and
when n goes to infinity.

Theorem 2 The maximum initial queue length on the DC
edge switches with (d = 2) over the period [0, T] is equal to
log log n

log d
+ O(1). (11)

In contrast to the methods that rely solely on one decision
at the edges d = 1, the expected waiting time is 1/1 −
λ. Hence, our proposed method presents an exponential
improvement in the waiting time and queue length because
the end of queues is reduced double-exponentially rather
than single-exponentially when d = 1 [27]. In addition,
the central controller will not be overwhelmed by a large
number of packet in requests. Hence, the controller can
precisely handle the flows, and thus multiple applications
can be performed in the SDN application plane without an
excessive burden.

The central SDN controller is a central weakness of
failure in DCN management. Consequently, several security
solutions tend to use distributed controllers [29]. However,
the proposed measure can be employed to defend the
controller against DDoS attacks.

5.2 Complexity evaluation for the adaptive flow
scheduling

As explained in Section 4.3.2, the best paths are
periodically determined based on the DC edge loading
status (Odds value). The best paths are frequently
optimized based on the acquired network parameters (i.e.,
residual bandwidth and the number of active elephant flows)

Ann. Telecommun.

from the ports of the DC switches. The scheduling algorithm
does not become complicated even after identifying the
utilized switches and Odds value; additional iterations will
only be appended to the previously gathered parameters to
learn the best paths. The added complexity is in the number
of redirected elephant flows |F | from the affected paths only
when faulty links are identified.

We estimated the time and space complexity of
Oddlab by considering the worst-case scenarios regarding
DCN density (number of monitoring switch ports p),
in addition to the average number of elephant flows
|F | inside the DCN traffic. The primary adaptive traffic
scheduling algorithm depends on the collected port states
to determine the best paths (EventOFPFlowStatsReply and
OFPPortStatsRequest). In addition, the time complexity is
O(k2) because we choose not to reroute the elephant flows
in this step. Nevertheless, the time complexity includes the
number of elephant flows so that the complexity will be
(O(k2 + |F |)) in the case of elephant flow rescheduling
from the detected faulty links. As for the space complexity,
the controller memory should maintain the number of active
elephant flows, the residual bandwidth of each port, and
the number of redirected elephant flows of the affected
links on the upstream ports of the aggregate switches. For
instance, as shown in Fig. 1, out of 80 ports in the K − 4
fat-tree DCN switches, only 16 upstream ports connect the
aggregate and core switches. Hence, the space complexity is
O(k3 + |F | k

5)).
Moreover, we proved that the sampling process with two

buckets on edge switches reduced the controller overhead by
half with the means of eliminating the packet in requests
to the controller at a time interval of (t → ∞) [13].
Additionally, we adopted a commercial DCN introduced
in [9] with 10,000 end-hosts and 1,000 flows per second
for each host to prove the simplicity and effectiveness of
the proposed method when increasing the number of DCN
end-hosts. However, within 2 ms as the median arrival
time for each flow, we anticipate that the Oddlab controller
can handle 10,000×1,000

2 = 5, 000, 000 (i.e., 2,500,000
packet in requests only) [13]. This is considerably less
than the number of flows a single controller can manage per
second (more than 12 million requests [7]). Consequently,
Oddlab implementation is highly achievable in hardware
such as NetFPGA OpenFlow switches [2] owing to
uncomplicated arithmetic operations and less overhead.

6 Oddlabmodel implementation

The proposed model was implemented based on our prior
study [13]. Oddlab operates as a Python application within
the Ryu [30] controller utilizing mininet [31] as a real-
time network emulator to establish a multi-rooted K − 4

fat-tree DCN (for example, Fig. 1) in addition to OpenFlow
protocol 1.3.1 as a communication protocol. The testbed
topology includes 16 hosts interconnected to twenty 4-port
OpenFlow switches and four pods with four core switches.
Additionally, we set the link capacity through the DCN
to 10 Mbps to maintain the connection in the real-time
environment of the mininet. The controller is connected to
each DCN switch to collect the required network statistics
and maintain the network flows, as illustrated in Fig. 1. Our
DCN deployment was implemented using a commodity PC
with an Intel Core i5-8400 2.80 GHz CPU, 16 GB RAM
running Ubuntu 16.04.

6.1 Experimental environment and evaluation
metrics

We conducted extensive experiments on different traffic pat-
terns with synthetic and realistic workloads of productive
DCNs. The traffic scenarios are conducted both symmet-
rically, in which all links are healthy, and asymmetrically
with a certain number of unhealthy links in the DCN to
evaluate the performance of Oddlab in addressing these
challenges. In this scenario, we use the same communica-
tion pattern applied to evaluate the performance of Hedera
[2], introduced in [32]. The generated communication pat-
tern consists of random and staggered probability patterns,
according to the following details:

1. Random: every end-host transmits traffic to another
end-host in the DCN with a uniform probability.

2. Staggered probability (Edge p, Pod p): every end-
host transmits traffic to another host in the same edge
with a probability of (Edge p), to the same pod with
a probability of (Pod p) and to other pods in the DCN
with a probability of (1 − Edge p − Pod p).

The simulation results involve the following fundamental
QoS metrics:

– Average bisection bandwidth: One of the most impor-
tant features of a multi-rooted topology is to grant
full bisection bandwidth among the connected end-
hosts. However, without an efficient flow scheduler,
the amount of the DCN bisection bandwidth consider-
ably decreases as it appears in ECMP owing to flow
collisions [2]. The average accumulative throughput
received at the downstream side of the edge switches is
compared to the full bisection bandwidth of the fat-tree
DCN topology.

– FCT: It denotes the efficiency of the flow scheduler
algorithm to deliver different flows rapidly. For Oddlab,
we present the overall average flow completion time
(AFCT) of the transferred flows for each end-host.

Ann. Telecommun.

– Link utilization: It refers to the average DCN link
consumption comparing to the actual capacity. Here,
we determine how the proposed scheduling method will
achieve a moderate link utilization so that links will not
become prone to congestion.

– Faulty link detection: As mentioned in Section 4.4,
failed links can occur for several reasons and directly
affect the multi-rooted DCN. In general, failed links
degrade the overall DCN throughput and notably
increase the FCT due to the lack of symmetry of the
multi-rooted DCN topology. Therefore, we present the
results when Oddlab detects these links and redirects
the affected elephant flows.

We compare the obtained results with those of ECMP
as a standard existing industrial flow forwarding method,
in addition to Hedera [2] as a dynamic elephant flow
scheduling method, and PureSDN [15] as a performance
reference for a completely adaptive flow scheduling
solution that solely depends on the SDN controller.
Besides, we compare the obtained results from the bisection
bandwidth experiment with those of the ideal network
situation using nonblocking, where the switch is directly
connected to all end-hosts. In the FCT experiment, we
included the results presented in our previous study (Sieve
[13]) in the comparisons because it has been proposed to
reduce the FCT in a symmetric DCN topology.

7 Experimental results

This section discusses and analyzes the results obtained for
the adopted load-balancing and flow scheduling strategies
in symmetric and asymmetric DCNs, including faulty link
detection. Moreover, we made the data on the Oddlab
GitHub repository1 available publicly.

7.1 Performance under symmetric DCN topologies

In this scenario, we conducted two benchmark tests. The
first test includes the average bisection bandwidth and link
utilization tests. The second test was used to examine the
FCT. We performed tests on 16 hosts of the DCN topology,
where flows were generated using TCP Iperf [33] according
to the traffic patterns described earlier. We repeated the
average bisection bandwidth test for 10 independent runs to
obtain more reliable and realistic results. Each run lasted
60 s, during which the average bisection bandwidth was
accumulated using bandwidth-NG (BWN-NG) [34] on the
edges downstream, as implemented in the case of Hedera
[2] and [15].

1https://github.com/aymeniq/Oddlab

Figure 7 presents the average bisection throughput
obtained under the randomized and staggered patterns with
stressed TCP flows. The experimental results confirm that
the static hashing method (ECMP) achieved the lowest
throughput owing to collisions produced by scheduling
multiple elephant flows along the same path. Oddlab out-
performed Hedera and ECMP in random and stag0.1 0.2.
Moreover, most of the traffic (70% in stag0.1 0.2) will be
among different pods in these patterns. Thus, most flows
benefit from the bisection bandwidth granted by the multi-
rooted DCN topology. The average throughput in the rest
patterns is slightly higher because of the resource con-
tention, and the collision rate decreases when the traffic is
within the same edge switch or in the same pod.

The PureSDN method outperforms the random and
stag0.1 0.2 patterns at a high controller overhead expense.
It depends on the central controller to find an optimal path
for each incoming flow. In addition, Oddlab scheduling
depends on the central iterative optimization with the help
of ECMP, which enables the proposed method to operate
with less burden on the controller and delivers a notable
improvement in the average bisection bandwidth.

Figure 8 illustrates the CDF (Cumulative Distribution
Function) of Oddlab link utilization compared to that of the
other scheduling algorithms under different traffic patterns.
The majority of the links were underutilized in the case of
ECMP. For instance, the random and stag0.1 0.2 patterns for
ECMP showed that 50% of the links (x-axis) were occupied
with less than 20% of the total capacity (y-axis) owing to
entirely random flow scheduling. Compared with the other
comparison methods, Oddlab performs at the medium level
under various traffic patterns. Analyzing the stag0.1 0.2
pattern reveals that 70% of links were occupied by 75% of
capacity in Hedera, 82% in Oddlab, and 90% in PureSDN.

Consequently, most of the links in PureSDN reached
an overutilized situation, which makes it prone to more
congestion, and thus increases the FCT.

The FCT experiment was conducted to prove the
effectiveness of Oddlab on the flow scheduling by reducing
the flow delay. To this end, we applied real workloads to
obtain the inter-flow dynamics and traffic burstiness, as
used in a production DCN. Hence, two different workloads
were utilized: web search [35] and cache jobs [12]. In the
web search dataset, 33% of the data had a size of less than
1 kB, 93% had a size in the range of 1–10 kB, and that of
the rest was between 10 and 300 kB. Regarding the cache
workload, the data size distribution was as follows: 18% of
the data had a size of less than 0.1 kB, 38% had a size in
the range of 0.1–10 kB, less than 90% had a size of 1 MB,
and the rest had a size of less than 10 MB. In addition,
each end-host in the DCN started to transmit samples of the
workloads (16 flows for each dataset) to another end-host
based on the same traffic patterns to implement the test in

https://github.com/aymeniq/Oddlab

Ann. Telecommun.

Fig. 7 Average bisection
throughput for the comparison
TE methods under different
traffic patterns

the mininet environment. The flows are initiated based on
the Poisson process with a certain mean value to simulate
realistic traffic between the DCN end-hosts. Therefore, 512
flows were transmitted within 126 s as the traffic simulation
time for each traffic pattern.

Figure 9 presents the average overall FCT for the
scheduled flows using each method under different traffic
patterns. Oddlab significantly reduces flow delays with an
increasing number of flows passing through the bisection
part of the DCN (refer to random pattern) when compared
with the other comparison methods. As shown in Fig. 10,
Oddlab reduces the overall average FCT by up to 30, 25.7,
62, and 5% compared to that of ECMP, Hedera, PureSDN,
and Sieve, respectively. Nevertheless, PureSDN relies on the
wildcard flow entry rules for TCP flows, whereas flows that

belong to the same source and destination IP addresses are
scheduled on the same path. Hence, the selected path in the
case of PureSDN is highly saturated.

Moreover, Hedera and ECMP perform in significantly
different ways. Because Hedera scheduling for mice flows
is based on ECMP, it only reroutes elephant flows to the
best path once a flow reaches 10% of the link capacity.
Consequently, flow collision is inevitable, which necessarily
delays the arrival of the flows. As for Sieve, the frequent
elephant flow rerouting reduces the delay for the mice
flows, as proved in [13]. This procedure affects the arrival
time of the elephant flows. In addition, the newly added
flow entry rules into the DCN switches manage the
rerouted elephant flows. The adaptive scheduling of Oddlab
attempts to avoid congested paths without the necessity

Fig. 8 CDF of link bandwidth utilization for the four algorithms under different traffic patterns

Ann. Telecommun.

Fig. 9 Average overall FCT for
the five methods under different
traffic patterns

for rerouting the elephant flows. Figure 9 shows that
ECMP and Hedera outperform in reducing the average FCT
in the traffic patterns stag0.2 0.3 and stag0.4 0.3 where
most of the traffic is inside the same pod. In this case,
Oddlab may choose farther paths based on the shorter
path conditions, which may affect the arrival time of
the flows.

In summary, the symmetric DCN topology results reveal
that the proposed flow scheduling of Oddlab delivers better
average throughput, moderate link bandwidth utilization,
and reduced average overall FCT as compared to the other
the existing methods.

7.2 Performance under asymmetric DCN topologies

DCN topologies are imperatively asymmetric because
of multiple factors, such as partial failures. In this
experiment, we modified some link bandwidths to achieve
an asymmetric fat-tree topology. To this end, we set the

capacity of some links between the aggregate and core
switches to shift to 5 Mbps, while other links remain at 10
Mbps [19]. This experiment used the same workloads as
the web searches and cache jobs. Moreover, the FCT values
for the flows were significantly affected by the bandwidth
reduction. Therefore, we assessed the performance based on
the achieved FCT by the comparison TE methods. In this
experiment, we applied a random traffic pattern to allow
sufficient flows to pass over the core switches. Hence, the
asymmetric topology effect was recognized at the end-host
application layer.

Figure 11 shows the achieved reduction of the overall
average FCT values. The results demonstrate that the
Oddlab scheduler can finish the overall flows within 19.4
s as an average FCT, which is better by up to 12, 8, and
10% compared with that of ECMP, Hedera, and PureSDN,
respectively. This experiment proves that the decrease in the
link bandwidth was not considerably high, and the adaptive
scheduling of Oddlab achieved a better FCT reduction

Fig. 10 Average overall FCT
relative changes for Oddlab
compared with ECMP, Hedera,
PureSDN, and Sieve

Ann. Telecommun.

Fig. 11 Average overall FCT for
Oddlab compared with ECMP,
Hedera, and PureSDN under
asymmetric DCN topology

by avoiding congested paths without a complicated flow
rerouting.

7.3 Failure detection

The failure detection experiment was employed to investi-
gate multiple failures between the aggregate and core switch
links with a severe bandwidth reduction. Therefore, we set
the capacity of specific core links to 0.01 Mbps between
switches 1 and 1 and between switches 4 and 4, as shown
in Fig. 2. The bandwidth failure threshold in Oddlab was
assumed to simplify the faulty link simulation, and the algo-
rithm could be adjusted manually to any required bandwidth
severity. Additionally, the same experiment was repeated on
real workloads in an asymmetric DCN topology with ran-
dom traffic patterns. We set the link fault threshold iteration
(f ault iter) to be larger than one.

Consequently, the faulty links were expected to maintain
an identical link faulty threshold of health thr = 0.01
Mbps for at least two monitoring periods in a row when
Odds > 1. After detecting the faulty links, all the active

elephant flows on the upstream side of the aggregate
switch were rescheduled to other healthy paths. Thus, all
incoming flows could still obtain symmetric paths of the
DCN topology by avoiding faulty links. The remaining
flows at the faulty link were mice flows (i.e., flow size < 50
KB). When the link productivity increases the throughput
to the slow start of a TCP flow, it will be excluded from
the list of affected links (i.e., false-positive cases). However,
when the link remains at the same productivity rate (long-
lived failure) with Odds > 1 for further monitoring
periods, then the upstream hashing weight will be altered
accordingly. The evaluation of this experiment was based
on the obtained average FCT values for redirected elephant
flows after redirection. This experiment was conducted in
five runs because different numbers and sizes of elephant
flows were randomly scheduled on the faulty links based on
the edge switch flow sampling and adaptive flow scheduling
decisions. During the experiment, we found that only 97
elephant flows were found on the faulty links and recovered
based on the adaptive flow scheduling. Figure 12 shows
the average FCT for the rescheduled elephant flows found

Fig. 12 Average FCT for the
redirected elephant flows after
failure detection

Ann. Telecommun.

on the detected faulty links. The initial FCT refers to the
primary determinate FCT value on the end-host application
layer for each flow over the faulty links. We found unusual
initial outlier FCT values (i.e., more significant than 1,000
s) for three elephant flows with a size larger than 6 MB.
Therefore, we omitted them to obtain more precise average
results. As depicted in Fig. 12, Oddlab considerably reduces
the average FCT for the redirected elephant flows over
the initial determined FCT owing to detecting the faulty
links and adaptive flow scheduling. After detecting the
faulty links, the Oddlab adaptive scheduling model spreads
the flows across the available paths without significant
congestion in the paths, depending on the proposed adaptive
scheduling, as discussed in Section 4.4.2. Hence, the new
average FCT for redirected elephant flows is acceptable
considering their sizes.

7.4 Discussion and comparison of faulty link
detection strategies

In specific TE methods, such as Hedera [2], Mahout [5], and
Sieve [13], the elephant flows are rescheduled only when a
certain threshold is reached or based on the availability of
sufficient bandwidth on other paths. For instance, Hedera
adopted Portland specialized mechanisms [36] for link
failure detection and flow rerouting to manage the faulty
link issue.

DCN end-hosts can indicate early elephant flows using
the initially determined FCT at the cost of altering
all end-hosts to monitor each flow and participating in
routing decisions, such as SAPS [24], Hermes [22], and
FlowFurl [26]. Furthermore, end-host sensing does not
provide sufficient information about the affected DCN
links; therefore, network administrators cannot efficiently
explore the problem. Consequently, the experimental results
reveal Oddlab feasibility and advantages using the SDN
controller and OpenFlow protocol.

Regarding the detection of faulty links inside a DCN
topology, Gill et al. [3] correlated link failure logs with
the earlier observed traffic link in a 5-min time window.
Although this type of correlation requires a link-state
memory for each DCN link defined in each monitoring
time, the link should not fail because of a preceding traffic
decline. For instance, the current state of the link could be
in a typical traffic situation because of a routine service
reduction from the end-hosts. Therefore, multiple false-
positive detections may occur. Moreover, the correlation
process of Oddlab occurred with current and upcoming
events in a shorter time (2 s of the information polling rate).
Hence, when the correlation breaks in an upcoming event,
the link is identified as a false-positive detection and returns
to normal.

In our tests, we may achieve some false-positive results,
particularly when the simulation is near the end and no more
traffic exists; thus, Oddlab cannot delete the false-positive
detections. The faulty link detection sensitivity (the true
positive rate) was 100% accurate in detecting faulty links.
The true negative rate of Oddlab was 92.85% specific in
identifying the correct faulty links (i.e., one false-positive
link out of 14 normal links).

Although we adopted ECMP paths to overcome the
controller overhead, we encountered the dilemma of not
identifying the precise number of flows that the edge switch
handles. Therefore, we counted the port consumption in
edge labeling. However, faulty link detection by Oddlab is
based on the following observation: “As far as most edge
switches are labeled based on the odds concept, the faulty
paths can be detected quickly”. Consequently, the expected
time for identifying faulty links relies on the network traffic
demands and monitoring time to achieve a high detection
precision.

8 Conclusion and future studies

This study presented Oddlab, a novel hybrid and deployable
load-balancing approach that guarantees the QoS of
multi-rooted DCN traffic in symmetric and asymmetric
topologies, including faulty link detection. We employed
proactive and adaptive scheduling for flow scheduling that
considers the healthy paths, available bandwidth, and active
elephant flows to determine the best paths and avoid
significant flow rescheduling. The procedure of identifying
faulty links relies on correlating two events within the
DCN: loaded edge switches and underutilized core links.
Therefore, Oddlab employs the statistics of the DCN
switches on a single and central SDN controller to detect
faulty links and achieves promising results in both the
symmetric and asymmetric topologies. However, extensive
experiments were conducted on a wide range of traffic
patterns with synthetic and realistic workloads to prove
the feasibility of Oddlab without altering any network
component, including hosts or switches. The results
indicated that Oddlab significantly improves the bisection
bandwidth and link utilization with an overall average FCT
reduction of up to 30, 25.7, 62, and 5% compared to that
of ECMP, Hedera, PureSDN, and Sieve, respectively. We
demonstrated that Oddlab functions with considerably low
complexity and low computational overhead on the SDN
controller. Therefore, Oddlab has the potential to be applied
to commercial DCNs at a low cost.

Nevertheless, further investigation is needed to examine
the effectiveness of the proposed method on different
DCN topologies, including multi-stage topologies such as

Ann. Telecommun.

the Clos network. In addition, the proposed faulty link
detection strategy functions only on a three-stage topology
and beyond, including the k − 4 fat-tree topology. Hence,
a possible approach to overcome this issue is to correlate
other events, such as queue lengths of the paths.

Acknowledgements Aymen Hasan Alawadi would like to thank
the University of Kufa – Iraq, the Tempus Public Foundation
(TPF) – Stipendium Hungaricum program, and the Department of
Telecommunication and Media Informatics in Budapest University
of Technology and Economics- Hungary for supporting his Ph.D.
scholarship.

Funding Open access funding provided by Budapest University of
Technology and Economics. Project no. 135074 has been implemented
with the support provided from the National Research, Development
and Innovation Fund of Hungary under the FK 20 funding scheme.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indicate
if changes were made. The images or other third party material in this
article are included in the article’s Creative Commons licence, unless
indicated otherwise in a credit line to the material. If material is not
included in the article’s Creative Commons licence and your intended
use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright
holder. To view a copy of this licence, visit http://creativecommons.
org/licenses/by/4.0/.

References

1. Hopps C (2000) Analysis of an equal-cost multipath algorithm
(No. RFC 2992). https://doi.org/10.17487/RFC2992

2. Al-Fares M, Radhakrishnan S, Raghavan B, Huang N, Vahdat
A (2010) Hedera: Dynamic Flow scheduling for datacenter
networks. In: Nsdi (vol 10, No 2010. https://doi.org/10.5555/
1855711.1855730

3. Gill P, Jain N, Nagappan N (2011) Understanding network
failures in data centers: Measurement, analysis, and implications.
In: Proceedings of the ACM SIGCOMM 2011 Conference, pp
350–361. https://doi.org/10.1145/2018436.2018477

4. McKeown N, Anderson T, Balakrishnan H, Parulkar G, Peterson
L, Rexford J, Shenker S, Turner J (2008) OpenFlow: Enabling
innovation in campus networks. ACM SIGCOMM Computer
Communication Review 38(2):69–74. https://doi.org/10.1145/
1355734.1355746

5. Curtis AR, Kim W, Yalagandula P (2011) Mahout: Low-
overhead datacenter traffic management using end-host-based
elephant detection. In: Infocom, vol 11, pp 1629–1637,
https://doi.org/10.1109/INFCOM.2011.5934956

6. Wang CA, Hu B, Chen S, Li D, Liu B (2017) A switch migration-
based decision-making scheme for balancing load in SDN. IEEE
Access 5:4537–4544. https://doi.org/10.1109/ACCESS.2017.
2684188

7. Erickson D (2013) The Beacon OpenFlow controller. In: Proceed-
ings of the second ACM SIGCOMM workshop on hot topics in
software defined networking, pp 13–18. https://doi.org/10.1145/
2491185.2491189

8. Zhao G, Xu H, Fan J, Huang L, Qiao C (2020) Achieving
fine-grained flow management through hybrid rule placement in
SDNs. IEEE Transactions on Parallel and Distributed Systems
32(3):728–742. https://doi.org/10.1109/TPDS.2020.3030630

9. Benson T, Akella A, Maltz DA (2010) Network traffic character-
istics of data centers in the wild. In: Proceedings of the 10th ACM
SIGCOMM Conference on Internet Measurement, pp 267–280.
https://doi.org/10.1145/1879141.1879175

10. Tang F., Zhang H., Yang LT, Chen L (2019) Elephant flow
detection and differentiated scheduling with efficient sampling
and classification. IEEE Transactions on Cloud Computing.
https://doi.org/10.1109/TCC.2019.2901669

11. Irteza SM, Bashir HM, Anwar T, Qazi IA, Dogar FR (2018) Effi-
cient load balancing over asymmetric datacenter topologies. Com-
put Commun 127:1–12. https://doi.org/10.1016/j.comcom.2018.
05.010

12. Roy A, Zeng H, Bagga J, Porter G, Snoeren AC (2015) Inside
the social network (datacenter) network. In: Proceedings of
the 2015 ACM Conference on Special Interest Group on Data
Communication. pp 123–137. https://doi.org/10.1145/2785956

13. Zaher M, Alawadi AH, Molnár S (2021) Sieve: Flow scheduling
framework in SDN-based data center networks. Comput Commun
171:99–111. https://doi.org/10.1016/j.comcom.2021.02.013

14. Zaher M, Alawadi AH, Molnár S (2020) Class-based flow-
scheduling framework in SDN-based data center networks.
In: 2020 International Conference on Computing, Electronics
& Communications Engineering (iCCECE), IEEE, pp 51–56.
https://doi.org/10.1109/iCCECE49321.2020.9231052

15. Machi H (2017) Research on data center network traffic
scheduling strategy based on SDN, Chongqing university of posts
and telecommunications, Chongqing, China. https://wap.cnki.net/
touch/web/Dissertation/Article/10617-1018972647.nh.html

16. Al-Fares M, Loukissas A, Vahdat A (2008) A scalable, commodity
data center network architecture, vol 38

17. Onogi F, Kasuga H, Shinomiya N (2020) On approximate
approaches the unsplittable flow edge load factor balancing
problem. In: 2020 35th International Technical Conference on
Circuits/Systems, Computers and Communications (ITC-CSCC),
IEEE, pp 73–77. https://doi.org/10.5555/795663.796365

18. Curtis AR, Mogul JC, Tourrilhes J, Yalagandula P, Sharma P,
Banerjee S (2011) DevoFlow: Scaling flow management for
high-performance networks. In: ACM SIGCOMM Computer
Communication Review, Vol 41, No 4, ACM, pp 254–265.
https://doi.org/10.1145/2018436.2018466

19. Liu L, Jiang Y, Shen G, Li Q, Lin D, Li L, Wang
Y (2019) SDN-based hybrid strategy for load balancing
in data center networks. In: 2019 IEEE Symposium on
Computers and Communications (ISCC), IEEE, pp 1–6.
https://doi.org/10.1109/ISCC47284.2019.8969673

20. Alizadeh M, Edsall T, Dharmapurikar S, Vaidyanathan R,
Chu K, Fingerhut A, Varghese G (2014) CONGA: Distributed
congestion-aware load balancing for datacenters. In: Proceedings
of the 2014 ACM Conference on SIGCOMM, pp 503–514.
https://doi.org/10.1145/2740070.2626316

21. Levi C, Segal M (2021) Avoiding bottlenecks in networks by short
paths. In Telecommun Syst 76(4):491–503. 10.1007/s11235-020-
00720-7

22. Zhang H, Zhang J, BaiW, Chen K, ChowdhuryM (2017) Resilient
datacenter load balancing in the wild. In: Proceedings of the
Conference of the ACM Special Interest Group on Data Commu-
nication, pp 253–266. https://doi.org/10.1145/3098822.3098841

23. Hu J, Huang J, Lv W, Zhou Y, Wang J, He T (2019) CAPS:
Coding-based adaptive packet spraying to reduce flow completion
time in data center. IEEE/ACM Trans Netw 27(6):2338–2353.
https://doi.org/10.1109/TNET.2019.2945863

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.17487/RFC2992
https://doi.org/10.5555/1855711.1855730
https://doi.org/10.5555/1855711.1855730
https://doi.org/10.1145/2018436.2018477
https://doi.org/10.1145/1355734.1355746
https://doi.org/10.1145/1355734.1355746
https://doi.org/10.1109/INFCOM.2011.5934956
https://doi.org/10.1109/ACCESS.2017.2684188
https://doi.org/10.1109/ACCESS.2017.2684188
https://doi.org/10.1145/2491185.2491189
https://doi.org/10.1145/2491185.2491189
https://doi.org/10.1109/TPDS.2020.3030630
https://doi.org/10.1145/1879141.1879175
https://doi.org/10.1109/TCC.2019.2901669
https://doi.org/10.1016/j.comcom.2018.05.010
https://doi.org/10.1016/j.comcom.2018.05.010
https://doi.org/10.1145/2785956
https://doi.org/10.1016/j.comcom.2021.02.013
https://doi.org/10.1109/iCCECE49321.2020.9231052
https://wap.cnki.net/touch/web/Dissertation/Article/10617-1018972647.nh.html
https://wap.cnki.net/touch/web/Dissertation/Article/10617-1018972647.nh.html
https://doi.org/10.5555/795663.796365
https://doi.org/10.1145/2018436.2018466
https://doi.org/10.1109/ISCC47284.2019.8969673
https://doi.org/10.1145/2740070.2626316
https://doi.org/10.1145/3098822.3098841
https://doi.org/10.1109/TNET.2019.2945863

Ann. Telecommun.

24. Irteza SM, Bashir HM, Anwar T, Qazi IA, Dogar FR (2018) Effi-
cient load balancing over asymmetric datacenter topologies. Com-
put Commun 127:1–12. https://doi.org/10.1016/j.comcom.2018.
05.010

25. Ghorbani S, Yang Z, Godfrey P, Ganjali Y, Firoozshahian A
(2017) DRILL: Micro load balancing for low-latency data center
networks. In: Proceedings of the Conference of the ACM Special
Interest Group on Data Communication, ACM, pp 225–238

26. Sharma K, Yadav RN (2020) An adaptive, fault tolerant, flow-level
routing scheme for data center networks. Computer Networks
175:107235. https://doi.org/10.1016/j.comnet.2020.107235

27. Mitzenmacher M (2001) The power of two choices in randomized
load balancing. IEEE Transactions on Parallel and Distributed
Systems 12(10):1094–1104. https://doi.org/10.1109/71.963420

28. Liu Y, Zhang J, Li W, Wu Q, Li P (2021) Load balancing-
oriented predictive routing algorithm for data center networks.
Future Internet 13(2):54. https://doi.org/10.3390/fi13020054

29. Al Awadi AHR (2017) Dual-layer SDN model for deploy-
ing and securing network forensic in distributed data center.
Current Journal of Applied Science and Technology, pp 1–11.
https://doi.org/10.9734/CJAST/2017/34752

30. Ryu: Ryu SDN Framework. https://ryu-sdn.org (Accessed 22Mar.
2021)

31. Mininet: A realistic virtual network. http://mininet.org (Accessed
22 Mar. 2021)

32. Al-Fares M, Loukissas A, Vahdat A (2008) A scalable, commodity
data center network architecture. ACM SIGCOMM Comput
Commun Rev 38(4):63–74. https://doi.org/10.1145/1402946.140
2967

33. iPerf - The ultimate speed test tool for TCP, UDP, and SCTP.
https://iperf.fr (Accessed 4 Apr. 2021)

34. BWM-ng - Bandwidth Monitor NG (Next Generation). https://
www.gnutoolbox.com/bwmng (Accessed 4 Apr. 2021)

35. AlizadehM, Greenberg A, Maltz DA, Padhye J, Patel P, Prabhakar
B, Sengupta S, Sridharan M (2010) Data center tcp (dctcp). In:
Proceedings of the ACM SIGCOMM 2010 Conference, pp 63–74.
https://doi.org/10.1145/1851275.1851192

36. Niranjan Mysore R, Pamboris A, Farrington N, Huang N, Miri
P, Radhakrishnan S, Subramanya V, Vahdat A (2009) Portland: a
scalable fault-tolerant layer 2 data center network fabric. In: Pro-
ceedings of the ACM SIGCOMM 2009 conference on Data com-
munication, pp 39–50. https://doi.org/10.1145/1594977.1592575

Publisher’s note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.1016/j.comcom.2018.05.010
https://doi.org/10.1016/j.comcom.2018.05.010
https://doi.org/10.1016/j.comnet.2020.107235
https://doi.org/10.1109/71.963420
https://doi.org/10.3390/fi13020054
https://doi.org/10.9734/CJAST/2017/34752
https://ryu-sdn.org
http://mininet.org
https://doi.org/10.1145/1402946.1402967
https://doi.org/10.1145/1402946.1402967
https://iperf.fr
https://www.gnutoolbox.com/bwmng
https://www.gnutoolbox.com/bwmng
https://doi.org/10.1145/1851275.1851192
https://doi.org/10.1145/1594977.1592575

	Oddlab: fault-tolerant aware load-balancing framework for data center networks
	Abstract
	Introduction
	Preliminary background
	DCN topology
	Adaptive flow scheduling in DCN
	Related studies

	Framework design aspects
	Problem formulation
	Model description

	Oddlab framework within the SDN paradigm
	Flow sampling at the DCN edges
	ECMP proactive scheduling
	Oddlab SDN-based adaptive model
	DCN utilization state estimation
	Oddlab adaptive flow scheduling

	Detection of the faulty links based on spatial-temporal correlation
	Faulty link detection procedure
	Elephant flows rescheduling
	Adaptive flow scheduling after detecting the faulty links

	Oddlab analysis
	Edge sampling performs under a finite system
	Complexity evaluation for the adaptive flow scheduling

	Oddlab model implementation
	Experimental environment and evaluation metrics

	Experimental results
	Performance under symmetric DCN topologies
	Performance under asymmetric DCN topologies
	Failure detection
	Discussion and comparison of faulty link detection strategies

	Conclusion and future studies
	References

