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Chapter 1

Introduction

In recent years, the Internet and its TCP/IP protocol suite have had unprecedented success and
impact on the way we interact and communicate. The Internet has become the single global and
most successful network used by millions of users around theworld. So why has the Internet
been such a phenomenal success? The likely answer to this question is that its design is based
on a set of enduring principles, that is, simplicity, soft state protocols, scalability, distributed
architectures, and the end-to-end principle [SRC84, Cla88].

Simplicity is a property that makes the TCP/IP protocol so flexible and suitable to enable the
building of thousands of applications on top of it. Simplicity proves to be more important than
more optimal resource usage that could have been possibly achieved by a more sophisticated,
but less flexible protocol suite. Soft-state protocols and distributed algorithms are important
principles to achieve network robustness, not just againstunreliable protocol implementations
or hardware failures, but importantly also robustness against unforeseen but otherwise allowable
network usage. For example, a new “killer application” may cause the system to collapse if
it overloads a weak point in the architecture. The principleof scalability was one of the main
requirements behind every standard of the Internet Engineering Task Force (IETF) mandating
that all solutions have to scale up to even higher data rates and larger number of hosts than
anyone would anticipate for the future.

The end-to-end principle is intimately related to all of theabove Internet goals. According
to the end-to-end principle most of the intelligence shouldbe in the end hosts and only the nec-
essary minimum intelligence should be implemented in the interconnecting routers. Thus the
routers on a connection’s path more or less just dumbly forward the packets toward the destina-
tion without making any further consideration about the applications running in the end hosts,
or their traffic demands. In turn, the network hosts at the edges have to cooperate in a distributed
manner to avoid network congestion collapse. This is achieved by the TCP congestion control
mechanism introduced by Van Jacobson in [Jac88]. Every network host and every TCP con-
nection autonomously estimate the network load, continuously adjusting their own traffic rate
to avoid network congestion. This simple, robust distributed algorithm proves to be sufficient
to keep the network congestion at an acceptable level, in a wide range of scenarios, from low
to very high link speeds and traffic load levels. Though several improvements have been added
to the original TCP algorithm, such as fast retransmit, fastrecovery, or selective acknowledge-
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ments, the basic principles remained untouched (i.e., thatflow control is performed at the edges).
Although these design principles have obvious advantages,they do not come without costs. As
a result, it is significantly more complicated to understandwhat is happening in the network at
any point of time compared to other networking architectures and protocols. Consequently, it is
significantly more difficult to design and operate TCP/IP networks efficiently.

1.1 Motivation of the Research

Currently, because of the lack of precise analytical methods, network engineers have to rely on
heuristics and overprovisioning when they want to design and manage TCP/IP networks. These
methods are sufficient in backbone networks, because the economy of scale allows providers to
operate high capacity backbone links even at low utilization levels. However, the cost of network
capacity in access networks is expensive. Consequently, access networks are usually operated at
much higher levels of utilization, leading to the frequent,serious degradation of service quality.
Future advances of Differentiated Services (DiffServ) [BBCD98] will demand more predictable
and robust network performance than traditional best-effort service even in backbone networks.
The necessary level of robustness cannot be achieved by heuristics in a cost effective way any
more.

Precise analyticnetwork performance models, in contrast to pure heuristics, would help
network operators to more deeply understand the state and performance of the network. Network
performance models establish mathematically proven relationship among:

1. models of network elements (e.g., packet classification,scheduling mechanisms);

2. models of network protocols (e.g., Ethernet, TCP);

3. traffic demand (e.g., WWW, voice traffic); and

4. performance metrics (e.g., delay, loss).

Application of precise performance models would enable network operators to engineer their
networks for higher and more robust grades of services. There has been extensive research on
all of the items listed above, from traffic models to quality of service metrics. State of the art in
performance modeling, however, does not allow us to achievethe necessary precision yet, and
heuristic network engineering is still the most widely applied method.

The reason why performance models are not precise is becausethere are a number of un-
resolved problems when the modeling components listed above are applied in a common per-
formance management framework. The central argument of this thesis is that these components
have strong impact on each other, and to develop precise performance models, we have to con-
sider how network protocols, mechanisms, and traffic demands interact. Our objective is to
analyze the interaction of modeling components and to develop practical performance models
based on the new insights gained from the research.

In this thesis, we classify two different performance-modeling frameworks for wired and
wireless TCP/IP networks. The specifics of the radio channelrequire special wireless control
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protocols (e.g., wireless Medium Access Control, mobilityprotocols) suited for the wireless
channel with different properties than wired scheduling algorithms. In addition, the statistical
properties of traffic in wireless networks may be different than in wired networks due to host
mobility and the time varying nature of the radio medium. On the other hand, both wired and
wireless networks share almost the same higher layer TCP/IPprotocols and applications, thus,
most of the results from TCP/IP traffic modeling can be applied to both wired and wireless
scenarios.

During the research presented in this thesis, we found that conventional analytic techniques,
which analyze only one aspect of performance models at a time, are not sufficient. The analysis
of the problem requires new modeling assumptions, measurement techniques, and sometimes
even new mathematical tools to work with the new models. Although it is the TCP/IP design
principles that can be regarded as being responsible for thefailure of conventional methods,
without these principles the Internet would have probably never reached its current growth.
Thus it is desirable to assume that it is not the principles that have to be drastically modified
to improve the Internet, but the methods of performance modeling, network management, and
design that have to better suit these principles.

The thesis is organized around the above arguments. In the first part of the thesis, we present
research results on the interaction between performance modeling components. We discuss the
previously accepted assumptions that now have to be reconsidered, and demonstrate that new
modeling techniques and assumptions lead to a better understanding of network mechanisms.
Based on these new insights gained from the first two chapters, the second part of thesis presents
performance models and performance management methods forwired and wireless IP networks.

1.2 New Insights in TCP/IP Traffic Modeling

In what follows, we summarize the key previous work in the field of TCP/IP traffic modeling,
introduce our motivation for research, and our contributions to this area.

Our research methodology is to apply mathematical modelingtechniques in the analysis of
TCP/IP traffic related problems to establish a sound basis for handling more practical problems
that arise during the operation and design of TCP/IP networks. During our research we placed
an emphasis on strengthening the relationship between mathematical models and real network
mechanisms.

Mathematical models are always “distilled” versions of real-life mechanisms that focus on
the important aspects of reality and disregard the less important aspects. Probably the most
serious mistake a researcher can make is not to take into account an important property present
in real life when developing a mathematical model. In this thesis, we take special care to ensure
that both the assumptions used in the models and the conclusions derived from the models are
compared with measurements and simulations from realisticscenarios whenever possible.

1.2.1 Previous Work on TCP/IP Traffic Models

The basis of using conventional queuing networks and Markovmodels for the analysis of TCP/IP
networks was first brought into question when it was discovered that traditional, relatively easy-



10 Introduction

to-use, and well understood, short memory models have serious pitfalls [LTWW93, PaFl95,
PaFl97]. Beginning in the early 90s, research on Internet traffic indicated that TCP/IP traffic has
fractal nature, in particular, statistical self-similarity, long-range dependence and multifractals
[LTWW93, BSTW95, CrBe96, CTB96, TTW97, FGW98]. The consequences of these findings
are far reaching, for example, it is shown that in the presence of long range correlations, the
performance of a network may be significantly worse than the results obtained using “classical”
network theory [Nor94].

Initial work in the field of fractal traffic models has changedmany previously held assump-
tions of classic network theory [PaFl95]. One very basic assumption that remained intact is that
the network can be modeled separately from the traffic sources. When solving a problem, a re-
searcher would first decompose the model into a model describing networking mechanisms (e.g.,
buffering, scheduling and routing), and a separate model describing the traffic passing through
these network elements. Then, one would calculate the performance of the traffic flow, (e.g.,
delay variation, or packet loss probability). Recent research demonstrates that this approach
does not hold forcing this “last” assumption to be dropped. When modeling network perfor-
mance, network and source models cannot be separated [ArKa99, GCM00] since network and
source mechanisms are interconnected by adaptive mechanisms. TCP plays an important role
here because it is the most important adaptive protocol in the current Internet. A new research
area has been dynamically developing, which focuses on so-called macroscopic TCP models
[MSMO97, PFTK98]. The macroscopic models establish connections between TCP throughput
and end-to-end path properties (e.g., packet loss and delay).

The macroscopic models analyze the connections between source mechanisms and network
properties, however, the assumptions on end-to-end path properties as well as the performance
outputs of the models lack the detailedness of packet dynamics found either in conventional or
fractal traffic models. The motivation of our research in this area is to “bridge” the research gap
between fractal models and the research in TCP models and to develop traffic models that take
into consideration both properties of TCP/IP traffic, namely, the complex correlation structure
of Internet traffic and TCP congestion control dynamics.

1.2.2 Contributions to TCP/IP Traffic Modeling

In this thesis, we analyze two important properties of the TCP protocol that have impact on
TCP/IP traffic dynamics. Chapter 2 introduces a novel approach to model the competition be-
tween multiple TCP connections sharing a common bottleneckbuffer. Chapter 3 analyzes the
adaptation property of TCP congestion control. We discovered that both competition and adap-
tation of the TCP protocol, contrary to common wisdom, have an impact on a wide range of
timescales of Internet traffic dynamics. They even contribute to the wide scale self-similarity
observed in the Internet in at least two ways: competition can lead to generation [C2, W3] and
adaptation causes propagation [C3, W2, J2] of self-similarity. To provide strong foundations for
our arguments, we demonstrate our findings by simulations, real Internet measurements, as well
as mathematical analysis.
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Modeling Competition for Resources among TCP Flows

TCP flows continuously intertwine in the Internet competingwith each other for service capacity
and buffer space in bottleneck routers. Competition is controlled by the window based flow and
congestion control algorithms implemented in end-hosts. In Chapter 2, we explore the dynamics
of this competition, that is, how to describe the way severalTCP flows share a common resource
as time evolves.

Previous work on TCP modeling is based on stochastic modeling techniques. We found that
if we approach the problem using deterministic modeling techniques, we are able to explain
several real-life phenomena that cannot be understood using stochastic models. Our main con-
tribution, in Chapter 2, is that we demonstrate that the end-to-end congestion control used by the
TCP protocol, while competing for networking resources, generates deterministic chaos. An im-
portant message of our work is that random traffic behavior isnot exclusively due to “random”
effects, but also due to complex chaotic behavior of TCP.

Chaotic systems, although completely deterministic, produce time-series seemingly indistin-
guishable from stochastic processes; this is why the most obvious approach is to use stochastic
models. On the other hand, chaotic systems have unique properties and they are able to pro-
duce a diversity of phenomena. In Chapter 2, the most important of these chaotic properties and
phenomena are demonstrated and analyzed:

• fractal attractors of a system consisting of competing persistent TCP flows;

• extreme sensitivity to initial conditions;

• phase transitions between chaotic and non-chaotic states;and

• for certain parameters TCP dynamics produce self-similar traffic.

We introduce a method to visualize the attractor of a system consisting of two TCP connec-
tions based on the monitoring of the congestion window variable of the TCPs. The chaotic and
non-chaotic regimes are distinguishable by using this visualization technique. We measure the
dimension of the attractors in several simulation configurations, and demonstrate that while in
the chaotic regime, the system’s measured attractor has fractal dimension. On the other hand,
when the system is the periodic regime, the attractor has an integer dimension.

We introduce a method to measure the Lyapunov exponent of a network configuration using
simulation. The Lyapunov exponent indicates the sensitivity of the system to initial conditions
or external effects. We demonstrate that for a network configuration the exponent is positive,
which means that small perturbations grow exponentially intime.

We show that competing TCP connections can go through phase transitions from simple
periodic to seemingly random, chaotic, and finally self-similar behavior. The regime a system is
in depends on the system parameters (e.g., buffer space, service rate, and number of competing
TCPs). The transition can happen intermittently as indicated by the experiments.

By showing that TCP/IP networks can be considered as being chaotic, it is now possible to
use the models and tools developed in other fields of science where chaos has been used before
successfully.
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Modeling Adaptation of TCP Congestion Control

Competition and adaptation are related aspects of the TCP congestion control mechanism. Pre-
vious work, as well as our results in Chapter 2, demonstrate that self-similarity can emerge in the
network for several reasons. In Chapter 3, our goal is to investigate how network path properties,
especially self-similarity, impact the end-to-end dynamics of TCP traffic.

The main contribution of Chapter 3 is that we demonstrate andanalyze that TCP approx-
imates a linear system, efficiently adapting to any stochastic background traffic process it en-
counters in a bottleneck buffer and propagates the correlation structure of the background traffic
process toward the end-hosts. If the background process is self-similar, TCP inherits and prop-
agates this self-similarity with the same degree of self-similarity characterized by the Hurst
exponent. We demonstrate the presence of self-similarity in a number of wide-area TCP mea-
surements in the Internet. The significance of this result isthat the performance of TCP-based
applications as seen by the end-user can be affected by long-range correlations originating from
a distant point in the network. Long-range correlations mayhave serious impact on networking
and application protocols, consequently the end-user perceived network performance might be
seriously degraded due to this effect.

Our research results presented in Chapter 3 analyze some aspects of this propagation effect
using simulations and mathematical analysis. We found thatthe propagation property of TCP is
independent of how self-similarity is generated: it propagates any kind of self-similarity, even if
it is not generated by TCP itself. If a TCP connection passes abottleneck buffer with long-range
dependent traffic load, it will inherit the correlation structure of that process and carry it towards
both end-systems. Our analysis reveals that the mechanism of propagation is independent of the
TCP version. This propagation effect takes place above a characteristic timescale that depends
on the end-to-end path properties. We derive a simple estimation of the characteristic timescale
based on previous results from macroscopic TCP models.

We prove analytically that, in certain cases, TCP may even strengthen self-similarity in the
network by propagating the largest Hurst exponent encountered on the end-to-end path. The
significance of propagation is that traffic fluctuations in different parts of the network can be
closely related, thus, when analyzing and trying to improvethe performance of the network we
have to take a wider, end-to-end perspective. This is especially important at possible bottlenecks
(e.g., access networks or traffic exchange points).

1.3 Provisioning Differentiated Services in Wired and Wireless Net-
works

Chapters 2 and 3 argue that source and network mechanisms arestrongly related because of the
end-to-end congestion control mechanism of TCP. As a consequence, a wide range of packet
dynamics can be observed in the Internet, characterized by complex correlation structures and
strange attractors. One of the first questions a network engineer asks is:‘How do we design and
manage the network based on this knowledge?’

In the second part of the thesis, we apply the results from Chapters 2 and 3 in a wider context
of performance models and performance management. Since performance management is par-
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ticularly important if service quality is to be maintained,we discuss the problem of performance
management in Differentiated Services networks [BBCD98].DiffServ represents the core QoS
architecture for the future Internet. It is envisioned thatDiffServ will be able to support several
levels of services, from the traditional best-effort to real-time services. DiffServ offers certain
quality of service assurances while still maintaining architectural scalability.

1.3.1 Previous Work on Provisioning DiffServ

Previous work in the field of provisioning quality of servicein data networks has several limi-
tations. Although there have been a number of publications in this field, most methods used in
practice are still heuristic. There are no analytic proofs of the performance of these heuristics,
which is limiting because it is also not known how they would perform if the traffic mix changes.
This is why our goal is to develop methods that have an analytic basis.

Analytic methods developed before are not well suited to Differentiated Services networks
because of the following main reasons:

• Methods that are based on deterministic bounds are too conservative and waste resources,
or methods that rely on precise and complex flow descriptors or homogeneity of appli-
cations, which are not feasible because of the apparent diversity of Internet applications.
[PaGa93, PaGa94, WKLZ96, LeB98]

• Some methods assume certain statistical properties, such as short-range dependence or
Markovian properties [KWC93, KoMi98, Kel96, KWC93], whichare not realistic be-
cause of the wide-range presence of long-range dependence in the Internet. This is also
underlined by our research on TCP dynamics as discussed earlier.

• Some methods are suited for ATM networks, where the guarantees are very strict, e.g.,
losses below10−12. In DiffServ networks the guarantees do not have to be so strict. We
can categorize methods based on Large Deviation Theory (LDT) in this group (see e.g.,
[CLTR97]).

There are also requirements that originate from the DiffServ architecture:

• Detailed per-flow measurements are not feasible in DiffServdue to scalability reasons.

• Complex packet schedulers, which require non-scalable per-flow states in the scheduling
hardware are also not feasible.

• The guarantees should not be just asymptotically accurate,for example if the number of
flows and buffer sizes are very large or packet loss probability is very small.

There has not been sufficient research into how to address allthe above problems for Diff-
Serv networks within the same performance management framework. These problems arise in
both wired and wireless DiffServ networks. Wireless networks have other properties due to
mobility and the specifics of packet scheduling on the radio channel. There have been several
suggestions how to support service guarantees in wireless networks before. Previous work on
wireless performance management has the following additional problems:
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• Some of the proposals require central scheduling nodes, which has the disadvantage that
the central entity has to be able to know not only where mobilehosts are and when they
want to send packets, but the central node has to cooperate with other central entities
operating in the same radio channel.

• Some proposed solutions do not require central control, butwould restrict the traffic flows
to sending packets in predefined, order (e.g., periodic patterns).

Although the problem of central scheduling can be solved using complex, centralized control
algorithms and sophisticated protocols, we would obviously sacrifice flexibility. In addition,
the solution would not be suitable for ad-hoc wireless networks where central entities are non-
existent.

The problem with the second proposal is that traffic patternsare usually difficult to predict
because of the diversity of applications and protocols. From the research in Chapters 2 and 3
we know that TCP traffic patterns depend on both end-to-end mechanisms operating in end-
hosts and the network. The traffic statistics of a wide-area TCP connection, for example, can
show both short-range of long-range dependence depending on the end-to-end path. Due to
the propagation effect discussed in Chapter 3, the packet arrival dynamics may depend on the
dynamics of the bottleneck of the end-to-end TCP path. The competition between TCP flows
in a bottleneck (possibly at the wireless hop itself) can also give rise to a diversity of packet
arrival patterns, as shown in Chapter 2. Therefore, the solution has to be robust in respect to the
properties of the traffic flows over the wireless channel.

1.3.2 Contributions to Provisioning Differentiated Services

In Chapters 4 and 5, we introduce methods to provision Differentiated Services in wired and
wireless networks, respectively. We discuss the specifics of DiffServ and the requirements and
practical limitations of implementation. The proposed methods follow the main design princi-
ples of TCP/IP networks and are based on the insights from TCP/IP traffic modeling discussed
in Chapters 2 and 3.

Performance Management for Wired DiffServ Networks

Our aim is to approach the above problem on analytic ground and develop practical methods that
can be implemented in real networks. Our analytic approach is within the context of effective
bandwidth theory introduced in [GAN91, Kel96, GiKe97]. We first analyze what assumptions
have to be considered to establish robust and precise mathematical models for the calculation of
the effective bandwidth while avoiding the problems found in previous work.

In our analysis, we first derive general mathematical boundsfor DiffServ service classes,
given that we are not constrained by the limitations of networking implementations, so we have
instant and full knowledge about the most important statistical properties of traffic flows. This
first step allows us to prove several important general theorems that describe important relation-
ships between traffic statistics, network mechanisms and network performance. Following this
we derive several other theorems that take into consideration these constraints. The benefit of
this methodology is that the results can be later extended asthese networking constraints change
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(e.g., as more precise measurement techniques, improved traffic shapers/policers and resource
reservation protocols are developed). These methods can beused for network dimensioning or
can be implemented to perform flow admission control in bandwidth brokers.

We develop effective bandwidth formulae for throughput sensitive Assured Forwarding (AF)
[HBWW99] and delay sensitive Expedited Forwarding (EF) [DCBB02] classes. For AF classes,
we develop methods to estimate the probability of link saturation. The analytic methods devel-
oped for EF classes estimate delay and loss values on a per-class level. These methods are based
on the following assumptions:

• per-class average load measurements;

• simple DiffServ policers at the edges;

• arbitrary correlation structure; and

• arbitrary traffic rate distribution.

We further improve the precision of resource estimation by adding a little extra complexity in
the measurement/classification process:

1. per-class average load and rate variance measurement; and

2. per-group measurements within a class based on statelessgrouping.

We analyze the tradeoff between the requirements of scalability involved in traffic flow clas-
sification and resource efficiency. This analysis also evaluates the price we pay for aggregate
traffic handling compared to per-flow processing. We found that most of the achievable statisti-
cal multiplexing gain can be utilized with only slight increase in architectural complexity, which
supports the end-to-end principle from an analytic perspective.

Performance Management for Wireless DiffServ Networks

Chapter 4 introduces resource management methods for wiredTCP/IP networks. Wireless
packet networks require other methods because of the peculiarities of the radio environment.
These peculiarities include relatively large bit error ratios due to interference and radio prop-
agation effects, shared channel, scarcity of radio bandwidth, and host mobility. All of these
characteristics have impact on traffic management. In Chapter 4, we assume that the scheduler
on a link has a well-known service capacityC, which has to be managed to serve several traffic
classes. In a wireless environment, the channel capacity available to a node is not constant, and
the wireless Medium Access Control has to take into account the effect of shared radio channel,
interference, collisions, overlapping cells, and it has tobe aware of the packets waiting in the
queues at other nodes as well.

Because of the above challenges, our goal is to develop methods not just for DiffServ re-
source management, but introduce a complete traffic control“suite”, which incorporates meth-
ods for robust, flexible, distributed DiffServ packet scheduling, resource estimation, and traffic
control algorithms. A more complete solution improves the compatibility between the IP layer
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and the lower radio specific data-link and physical layers, improving resource efficiency, which
is desirable due to the scarcity of radio bandwidth.

The arguments and results presented in Chapter 5 are valid for a broad class of shared
channel wireless data technologies. To be able to demonstrate the validity of the arguments,
we choose a particular wireless technology, the IEEE 802.11b standard, since currently IEEE
802.11b is the most popular wireless LAN standard in use [IEEE802.11]. The solutions pre-
sented in this chapter are extensions of this standard, and current implementations could be
easily modified.

Our basic research methodology and objectives are the same as in Chapter 4: (1) under-
stand the protocols and the wireless environment using mathematical models; (2) analyze the
model to develop methods to improve network performance, while making sure the methods
follow the main design principles of the Internet; and (3) evaluate the proposed solutions with
measurements and simulations.

The distributed wireless DiffServ solution has to take intoaccount the impact of the wireless
channel as well as the impact of TCP/IP dynamics. However, during the modeling phase, be-
cause of the complexity of the problem, we decided that only the impact of the radio channel of
the above two aspects are modeled in detail analytically andwe use a simplified traffic model to
keep the model mathematically tractable. Because of this limitation the model is not sufficiently
precise to be applied for traffic management directly. Nevertheless, the analytic model can be
used to evaluate the parameter-space of the wireless MediumAccess Control (MAC) protocol
qualitatively. The results provide clues of how to improve the network performance, and how to
modify the original best-effort MAC protocol to offer better than best effort services.

Since efficient resource management cannot be based on this analytic model, it is not pos-
sible to apply the same methodology of resource management developed for the wired infras-
tructure as discussed in Chapter 4. We solved this problem with the Virtual MAC (VMAC)
algorithm, which is a pragmatic solution for precise resource estimation: it is not completely
analytic yet it is not completely heuristic. The VMAC algorithm takes as an input passive moni-
toring data of real traffic patterns overheard on the channeland applies an accurate model of the
real MAC algorithm on it. As a result, we are able to take into account both the complexity of
traffic arrivals (e.g., correlation structure propagated from a distant bottleneck) and the complex-
ity of the distributed wireless MAC algorithm. This approach allows us to precisely estimate the
available resources and the QoS of DiffServ classes on the channel.

To evaluate the efficiency of the above ideas, we implementedand evaluated the VMAC
algorithm using both real-life measurements and simulations. We demonstrate that a stable state
can be achieved by using these distributed algorithms throughout the wireless network consisting
of a large number of wireless hosts.



Chapter 2

Chaotic Nature of TCP Congestion
Control

Traffic models used to model current Internet traffic can be categorized into two major groups:
link/sourceandnetwork level models. Link level models fit statistical models to measurements
of traffic on network links or traffic sources for example a WWWserver. Recently, a major
contribution to this area concerned the exploration of fractal and long-range dependent property
of traffic, namely that the second order statistics of trafficvolumes observed at different scales
does not change. This result revolutionized performance modeling and questioned previous
models based on Markovian behavior (see Paxson and Floyd [PaFl95]). We mention two major
publications in this area: Leland, Taqqu, Willinger and Wilson demonstrated through rigorous
tests that Ethernet traffic is self-similar [LTWW93], Crovella and Bestavros proved how WWW
as the major contributor to current Internet traffic can cause long-range dependence and self-
similarity [CrBe96]. Chaotic-maps appeared as efficient methods to generate packet traffic on
the link/source level, see for example the work by Erramilliand Singh [ErSi90] and the same
authors with Pruthi [ESP94].

The drawback of link/source level models is that they disregard one of the major properties of
today’s Internet, namely that the majority (80-90%) of traffic is generated and controlled by the
TCP protocol, which is adaptive in nature. The consequence of adaptivity is that the source be-
havior cannot be disconnected from the network configuration (e.g., routing, scheduling, buffer
management). Traffic statistics change if the network configuration changes, so a link/source
model is valid only for the configuration (and all other circumstances) that is present at the time
of model fitting. A recent paper by Arvidsson and Karlsson [ArKa99] demonstrates that adap-
tive simulated traffic behaves significantly differently inthe buffers than would be indicated by
link/source models.

This problem motivatesnetwork level models, which attempt to form a unified model taking
into account the cooperation of all source and network mechanisms. Due to the complexity of
this problem the models published in this area are still in their early phase of development.
Mathis, Semske, Mahdavi and Ott [MSMO97] published an analytic model concerning the
macroscopic behavior of TCP, while Padhye, Firoiu, Towsleyand Kurose [PFTK98] also model
the impact of the timeout mechanism on TCP throughput. The drawback of these models is that
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they assume that TCP congestion control always behaves in a nice periodic and predictable fash-
ion, and that apparent randomness in TCP traffic is due to stochastic effects exclusively. This is,
however, in contradiction with the measurements and simulations of TCP traffic.

In this chapter, we bridge the two modeling approaches by modeling the network level be-
havior of aggregate TCP flows while reproducing the complexity found in link/source level
models. The key finding presented in this chapter is that cooperating TCP congestion control
processes together form a deterministic chaotic system, which is able to produce periodic and
non-periodic, predictable and non-predictable, short-range dependent and also self-similar be-
havior. We demonstrate some of the key properties of chaoticsystems present in the Internet.

A system is called chaotic if it satisfies the following conditions [Ott93, DiMu95]:

• nonlinearity;

• determinism;

• order in disorder;

• sensitivity to initial conditions, or the “butterfly effect”; and

• unpredictability.

Nonlinearitymeans that the system is controlled through nonlinear functions. In case of TCP,
nonlinear functions are used for round-trip time (RTT) measurements, slow start and congestion
avoidance.

Determinismmeans that the system’s future is fully described by the past. This is also true
as TCP works in a self-clocking manner: no randomness is usedand every event (e.g., sending
of a packet or time-out) is completely determined by the past.

We are not going to discuss these two properties because theyare obviously characteristic
of TCP. However, the other conditions need more insight and proof. In this chapter, we discuss
these other properties.

The current network level models for TCP/IP traffic assume periodic and stable behavior.
Such behavior is demonstrated by simulations in Section 2.2; however, in Section 2.3 and Sec-
tion 2.4, we prove that this behavior is not universal by giving examples for more complex
periodic, and finally, non-periodic patterns.

In Section 2.3, we introduce the notion ofattractors– hidden multidimensional trajectories
of the TCP process, and give a method to efficiently visualizethem, thus, making it possible to
examine the hidden order in an otherwise seemingly random process.

A system satisfying thebutterfly effectis extremely sensitive to small changes in the initial
parameters or minute perturbations of the system. This property is the major trademark of
chaotic systems. In Section 2.5, we demonstrate this property of TCP and quantify the sensitivity
of the system by measuring theLyapunov exponentof the system’s trajectory.

Although deterministic, the chaotic nature of TCP has inhibited correct network level mod-
els in this area so far. This property results in a qualitative difference compared to previous
macroscopic models. In Section 2.6, we show that TCP can generate traffic that shows scal-
ing behavior spanning several timescales. This finding throws new light on self-similar traffic
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modeling, explaining self-similarity with deterministicchaotic mechanisms and not with higher
layer stochastic mechanism [CrBe96].

Finally, in Section 2.7, we demonstrate the existence of some of the above phenomena in a
real network. We show that by modifying certain configuration parameters, the system changes
from a stable, periodic to a seemingly random, non-periodicbehavior.

By showing that TCP congestion control leads to deterministic chaos, we can introduce a
new set of analytical tools to be applied in TCP/IP traffic modeling. Some of the chaos tools
have been developed in other fields of science, for example, physics, meteorology, biology or
medicine. These analytic tools offer new insights into TCP/IP traffic dynamics. For example, by
using chaos tools, we can revisit and explain certain phenomena observed in TCP/IP networks,
now in a unified manner (e.g., phase effects, duality of periodicity and randomness).

2.1 TCP Congestion Control

The TCP protocol [RFC793][Jac88] provides reliable data delivery between two computers us-
ing data acknowledgements and retransmissions. TCP uses the so-called window based con-
gestion control to control its data transfer rate over the interconnecting networks. The window
controls the amount of data that can be outstanding unacknowledged in the network at any time.
So if the window isx bytes, then at mostx bytes can be delivered maximum during the end-to-
end round-trip time between the two computers.

TCP does not have explicit information about the optimal congestion window it should use,
so it uses implicit information instead by means of detecting packet losses and estimating the
round-trip delay. TCP assumes that packet losses are indications of network congestion. When
a packet loss happens, TCP drops its window (and thus reducesits speed). In between losses,
TCP gradually increases its sending rate. If the congestionwindow is small, TCP increases fast;
it increases by one packet after it received an Ack of each sent packet (slow-start phase). After
it has reached the so-called slow-start threshold, it increases by one packet every round-trip time
(congestion avoidance phase).

There are several optimizations of this basic algorithm, like fast retransmit, fast recovery, or
selective acknowledgements, just to name the most important ones [RFC1072][RFC2001][RFC2018].

2.2 Macroscopic Models’ Assumptions: Periodicity and Order

First we take a simple configuration containing just two greedy TCP connections sharing a single
link. This configuration helps us to explain the graphical methods used later in the chapter. We
used thens-2[NS] simulator1 and the TCP Tahoe version for all simulation experiments (later
in Section 2.7 we present real network measurements as well). The link parameters are: link
rateC = 0.2 Mbps, delayd = 10 ms, buffer sizeB = 20 packets. The receiver window is set
to a very large value so that the congestion window (cwnd) is the limitation. We used the Tahoe
version of TCP.

1Exact verson of the simulation platform was ns-2.22
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The two TCPs are started simultaneously. After a short transient (6 cycles ofcwnd) the
two TCPs settle down into a periodic pattern, one of them always a little ahead of the other,
but both follow the same pattern of slow start, congestion avoidance, packet loss and backoff.
This is clearly visible in Figure 2.1. Another way of displaying the system evolution is to use
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Figure 2.1: The congestion window processes of two competing TCP sources: a) with transient
part b) transient removed.

a spatio-temporal graph where the window size of a TCP is displayed as a shaded strip: the
larger the window, the brighter the shade (we borrowed the idea from [BLD95]). This method is
used in Figure 2.2, the two TCPs are displayed on top of each other: the first TCP is displayed
in the first row, the row below corresponds to the second TCP. The periodic pattern appears as
synchronized “waves”, the back-off times colored as black strips are always close to each other
for the two TCPs.

Figure 2.2: Spatio-temporal evolution of the congestion window processes.

One can observe the system’s evolution not only as a functionof time, but also by draw-
ing the trajectory of the system as it moves in the phase space. The phase space is a multi-
dimensional space where each dimension represents a systemvariable, thus each point in the
phase space represents a unique state of the system. If we plot the evolution of the system in this
space, then – as the system is completely deterministic – if the system gets back to a previous
point, it will continue that path again, creating a closed loop. If the system is periodic, then
the corresponding trajectory will be a loop andvice versa, if the system evolution can be repre-
sented by a loop in the phase space, the system is periodic. This method is thus very appealing
to examine the periodicity of a multi-TCP system.

Even in this 2-TCP system the number of state variables that completely describe the system
is very large (e.g., the whereabouts of previously sent packets, internal variables of the sending
and receiving TCPs), it is not possible to draw them on a single piece of paper but it is possible
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to properly choose a section of the phase space. We chose the TCP congestion window (cwnd)
size because it has a close relation with the sending rate of TCP. We have logged thecwnd
values every 10 ms for each TCP. Figure 2.3 shows this plot forthe previously examined simple
configuration. The transient part is removed from the right graph. As can be seen from the
figure, the process gets into a periodic loop, although the period is fairly large. Interestingly, this
loop is very stable, which means that it does not matter how wedisturb the system (e.g., drop a
packet randomly) or choose the initial conditions (e.g., westart the second TCP a few seconds
later) eventually the system will return to the same pattern. The graph also reveals that the two
TCPs are synchronized, they move along a “staircase”; that is, they increase theircwndone after
the other, finally at the top loss is detected and both TCPs decrease theircwnds to 1 packet at
which time the period starts over again.
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Figure 2.3: The congestion window processes of two competing TCP sources. a) with transient
part b) transient removed. (The connecting lines are not data points, they show the movements
between points.)

This behavior is unsurprising and is assumed widely when calculating macroscopic perfor-
mance values. Unfortunately, this nice behavior is not universal as will be shown later in this
chapter.

2.3 Complex Periods and Attractors

Can this simple system produce different behavior? Surprisingly, yes. If we change the system
parameters: link rateC = 0.5 Mbps, delayd = 10 ms, buffer sizeB = 4 packets, we get a
period again, but it is more complex, see Figure 2.4 and Figure 2.5. There is still an underlying
regular beat, but on a larger timescale there is an alternating pattern: one gains speed over the
other for a given time and then the other takes over.

By changing the parameters further, we can make this simple system change from a simple
regular beat to a very complex pattern; here our form of graphical representation reaches its limit.
The problem is that the chosen set of system variables (i.e.,the cwnds) is just a subset of the
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Figure 2.4: The congestion window processes of two competing TCP sources.C = 0.5 Mbps,
d = 10 ms,B = 4 packets.

Figure 2.5: Spatio-temporal graph:C = 0.5 Mbps, d = 10 ms, B = 4 packets (the same
configuration was used as for Figure 2.4).

complete set of system variables and the value ofcwndare not continuous. This means that it is
not possible to efficiently visualize periods for complex behavior, because only a limited number
of points will be touched, thus meeting and then diverging trajectories are indistinguishable.
Another problem is that the congestion window process at a certain time instant does not reveal
the underlying state of the system in a comprehensive manner.

In [PCFS80] the authors propose to use the time shifted past values[xt, xt−δt, xt−2δt, ...] of
an easily measurable quantity for complex systems to equivalently reconstruct the underlying
multidimensional trajectories if there is no access to the state variables. The choice ofδt can be
nearly arbitrary in a wide range. The result is a multidimensional vector that is projected to the
2D plane simply by averaging the valueŝX = 1/n(xt + xt−δt + ...). The method described
above is used for thecwndvalues:

x[i] =
1

n

n∑

j=1

cwndx[i − j] (2.1)

y[i] =
1

n

n∑

j=1

cwndy[i − j] (2.2)

Herex andy denote the two TCPs.n controls the scale over which the congestion windows are
averaged, the larger the value is, the more hidden dimensions can be reconstructed. The method
has two other benefits:
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• The number of possible points on the(x, y) plane is increased fromW 2 whereW is the
number of possiblecwndvalues to(nW − n)2 (if cwndis counted in packets).

• Consecutive resultsx[i] andx[i + 1] are placed close to each other, actually no further
than(2 ∗ W − 2)/n. Thus using this construction the generated graph can be made as
smooth as required.

A nice property of the graph is that it preserves the periodicity property: periodic trajectories
are displayed as closed loops in (x, y). (If we choosen equal to the period, then we get a single
data point - a degenerate loop.)

Figure 2.6 shows the periodic trajectories of the simple (staircase) and the more complex
(alternating) periodic systems discussed so far. The alternating behavior can be easily observed
on the right graph. Both systems are represented as closed loop, which is a sign of periodicity,
but the complexity of the two loops is significantly different. The “staircase” system has a nice
simple loop, while the “alternating” system has a more complex but more or less symmetric
trajectory. Although being very complex, both trajectories prove to be very stable: disturbing
the system, (e.g., changing the relative starting times of TCPs thus giving gain to one of them or
perturbing the congestion control by artificially changingthe size of thecwnd), does not destroy
the trajectory. After a short detour both systems revert back to the same regular pattern. Such
trajectories are calledattractors. An attractor is a set of points to which nearby trajectoriesare
attracted to. A more formal definition of an attractor can be found in [PJS92].

(a) C = 0.2 Mbps,d = 10 ms,B = 20 packets,
time shiftsn = 100

(b) C = 0.5 Mbps, d = 10 ms, B = 4 packets,
time shiftsn = 90

Figure 2.6: Periodic attractors of two competing TCP sources.
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2.4 Strange Attractors

For certain parameter sets (i.e., the number of competing TCPs, service rates, buffer sizes or
transmission delays) the system exhibits simple behavior,and for other sets, very complex be-
havior. It is not difficult to find parameters, where the system seems to never repeat itself. Such
a parameter set isC = 0.1 Mbps, d = 10 ms, B = 4 packets. Of course as the variables
of the system are discrete, the trajectories will always be periodic, but the size of the period is
extremely large. The attractor of this system is displayed in Figure 2.7. The structure of the
trajectory is very fine and the result represents four hours of simulation.

(a) Time shiftsn = 100 (b) Time shiftsn = 300

Figure 2.7: Strange attractor.C = 0.1 Mbps,d = 10 ms,B = 4 packets.

A very interesting experiment can be made to show the fine structure of the attractors pre-
sented previously, namely we show that the projection of theattractor has fractal dimension.
When one considers a simple drawing on a two-dimensional plane (e.g., a loop), this can easily
be measured to determine its length. This is not the case for fractal structures whose length de-
pends on the size of the unit used for the measurement [PJS92]. The dimension of such an object
is represented by a non-integer value. We can, for example, measure the attractor’s box-counting
dimensionD, which is done in the following way: choose a grid on the planeof sizes, then
count the number of boxes which have a part of the object in it.Denote this number asN(s).
Then changes to cover several scales (e.g., half it each step). Finally, plot the valueslog(N(s))
versuslog(1/s). If the object is fractal, thenlog(N(s)) ∼ Dlog(1/s), whereD is a non-integer
value. In practice one should fit a least-squares regressionto the logarithmically spaced sample
pointssi and calculate its slope. As the graph is made up of a finite number of points, the final
dimension is 0 so the last few values are dropped, and also thefirst few values ofsi are omitted
because they are in the scale of the object itself. In betweenthis lies the area where the fractal
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property holds. Figure 2.8 shows the calculated fractal dimension of the “staircase” and the
“nonperiodic” trajectories. The fitted regression followsthe plot through 4-5 magnitudes, which
supports the significance of the measurements.

The simple periodic “staircase” system has an attractor with dimensionD ≈ 1 which equals
a simple 1 dimensional line and so it is not fractal. In the case of the “nonperiodic” system we
can calculateD ≈ 1.61, which is significantly different from 1, but below 2 - the attractor is a
fractal. Attractors with fractal properties are calledstrange attractors. Furthermore, if a system
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Figure 2.8: Box-counting dimension of the simple periodic “staircase” and “nonperiodic” tra-
jectories (time shiftsn = 300 was used for the “nonperiodic” andn = 100 for the “staircase”
trajectory).

shows sensitivity to the initial conditions, then the corresponding attractor is called astrange
chaotic attractor.

Note that there exist chaotic systems with non-fractal attractors and strange attractors of
non-chaotic systems.

2.5 Sensitivity to Initial Conditions

In this section, we demonstrate that in certain cases TCP congestion control is prone to large
sensitivity to initial conditions, which means that very small perturbations in the system may
cause that the trajectory departs from the original, unperturbed, system’s trajectory within a very
short time. The distance can grow to the range of the signal itself. This is one of the major
properties of chaotic systems.

In the following experiment we increase the number of simultaneous TCP sessions to 30.
(C = 1 Mbps, d = 15 ms, B = 60 packets). First, we let the system evolve for a while,
then att = 50 s we artificially increased the congestion window of one of the TCPs with one
packet. Then we plotted the spatio-temporal graph of both systems, see the original system in
Figure 2.9 (top) and the perturbed system in Figure 2.9 (middle). The length of the plot is 100s
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so the perturbation is done right at the middle of the plot. Ifwe compare the two systems, first
the differences are invisible, but a few seconds later the two systems look completely different.
To make this more visible, we plotted the difference of the two systems in a way that each dot
was colored according to the distance defined asd(i, t) = |worig(i, t) − wpert(i, t)|, wherei
andt is the id. of the TCP and the time respectively,worig(i, t) is thecwndof ith TCP in the
original system at timet andwpert(i, t) is the same for the perturbed system. See Figure 2.9
(bottom). The first part is white, which means that the two systems are identical, then a few dim
dots appear and a few seconds later the difference looks likethe original plots themselves.

Figure 2.9: Spatio-temporal graph of the original system (top). Spatio-temporal graph of the
perturbed system (middle). Difference between the two systems (bottom).

To quantify how fast this divergence happens, we define the distance between the two sys-
tems at timet as the Euclidean distance in thecwndspace:

E(t) =

√√√√
N∑

i=1

(worig(i, t) − wpert(i, t))2. (2.3)

See Figure 2.10.
The rate at which the systems diverge after a small perturbation of theith TCPǫi at timet0

can be described by the so calledLyapunov exponent, which we approximate by measuring the
time∆t it takes for the two systems to reach a given distanceE(t0 + ∆t) > Ê, then:

λ(t0, i) ≈
1

∆t
ln |E(t0 + ∆t)

ǫi
| (2.4)

For the experiment we chosêE = 10 andǫi = 1. The motivation to calculate anexponentis that
trajectories diverge at an exponential rate. However, as the two systems cannot get arbitrarily far
from each other (as the phase space is limited) only the increasing part of Figure 2.10 should be
considered, this explains the choice ofÊ = 10.

The Lyapunov exponent is the rate at which the two systems diverge from each other every
time unit. This value of course depends onwhichTCP we perturb andwhenthe interference is
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Figure 2.10: Divergence of the original and the perturbed systems.

done. In other words, to which direction in phase space we push the system and at what part of
the phase space the system is at the time of perturbation. There are cases when even an otherwise
sensitive system is not affected by a small interference. A negative exponent characterizes this
case. We note that our approximation can be used for positiveexponents only. There is no
generally accepted definition when an attractor is called chaotic, but we can say that if sensitive
points (λ > 0) are dense on the trajectory then the attractor is chaotic.

To arrive at a more general numerical result for a given system we calculate the exponent at
many different points of the trajectory (t0) and for all 30 TCPs. Then for eacht0 we choose the
most sensitive direction where the largestλ is measured and average these values over time to
get the average maximum exponent of the trajectory:

λ = E

[
max

i
λ(t0, i)

]
(2.5)

See Figure 2.11. In the experiment we gotλ ≈ 1.11, which means that after a perturbation the
difference between the two systems increase at an average rate of eλ ≈ 3.03 every second.

2.6 Testing for Self-Similarity of the Time Series

In this section, we show that a system of competing TCPs with certain parameters generates
second-order self-similar traffic over several timescalesranging from a few round-trip times to
hundreds of seconds. A number of statistical tests were performed to search for scaling behavior:
absolute values method, wavelet analysis, periodogram andR/S method [TTW95].

Not all configurations produce self-similarity, we have observed that it is mainly theB/N
ratio that controls the behavior of the system. As the ratio decreases (i.e., the ratio of the ‘pipe’
for one TCP flow becomes smaller), the system goes through a phase transition from periodic to
chaotic behavior, and for certain parameters it produces a self-similar time-series.
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Figure 2.11: Lyapunov exponents at different points of the trajectory and for all 30 TCPs, max-
imum exponents along the trajectory are connected with a line (average maximumλ ≈ 1.11).

The simulation setup is as follows:C = 1 Mbps,d = 15 ms,B = 20 packets andN = 40
TCPs. Note that the buffer can store less packets than the number of active flows. This results
in a packet loss ratio of around16%, creating a strong bottleneck on the path. It is argued in
[Mor97] that such small pipes substantially contribute to the performance of the current Internet.

During simulation the amount of bytes sent by all TCPs is logged individually every 0.1 s.
The packet trace represents a few hours duration and consists of approximately 1.6 million data
packets, allowing us to perform tests on sufficiently large timescales. Figure 2.12 shows the
trace of one-TCP microflow filtered out from the trace.
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Figure 2.12: Time series of sent bytes by a one-TCP microflow (running average ofτ = 100s.)
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(a) Absolute values methodH = 0.79.
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(b) Periodogram methodH = 0.815.
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(c) R/S methodH = 0.813.
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(d) Wavelet methodH = 0.787, (0.754, 0.819).

Figure 2.13: LRD tests for one-TCP microflow.

Consider a weakly stationary stochastic processX, with constant mean, finite variance
and autocorrelation functionρ(k). Let X(m)(k) = 1/m

∑km
i=(k−1)m+1 X(i) denote them

aggregated series ofX. The processX is calledexactly self-similarif for all m it satisfies
X =d m1−HX(m). X is said to beasymptotically self-similarif this property holds asm → ∞.
Furthermore,X is second-order self-similarif m1−HX(m) has the same variance and autocor-
relation asX. If this holds asymptotically, thenX is asymptotically second-order self-similar
[LTWW93].

The tests were conducted over the time series of the amount ofbytes sent by a one-TCP
microflow and on the aggregate quantity sent by all TCPs as well. The results support that traffic
of one-TCP microflow is consistent with asymptotic second-order self-similarity withH > 0.5.
On the other hand, aggregate traffic of all TCPs is short-range dependent withH ≈ 0.5.

The first test is based on the behavior of the expectation of the absolute values of the series
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X(m) [TTW97, TTW95]

µ(m) =
1

N/m

N/m∑

k=1

∣∣∣X(m)(k) − 1

N

N∑

i=1

X(i)
∣∣∣. (2.6)

If X is self-similar, then on a log-log plot the absolute values increase linearly withm, with a
slope ofH − 1. Figure 2.13(a) shows the result for the absolute values method (H = 0.79).

The periodogram method approximates the spectral density of the process with the expres-
sion

I(λ) =
1

2πN

∣∣∣
N∑

j=1

Xje
ijλ
∣∣∣
2

For a LRD series the spectrum isI(λ) ∼ |λ|1−2H at the origin. Figure 2.13(b) shows the result of
the periodogram method for one-TCP microflow, resulting in an approximation ofH = 0.815.

The rescaled adjusted range statistics (R/S) [TTW95] and the wavelet analysis method [AbVe98]
are not described here, only the results are depicted in Figure 2.13(c) (R/S:H = 0.813) and Fig-
ure 2.13(d) (Wavelet:H = 0.787, with 95% quantiles at[0.754, 0.819]).

All methods resulted in a Hurst exponent ofH ≈ 0.8.
Aggregate traffic entering the bottleneck buffer shows a significantly different behavior. See

Figure 2.14 for the result of the R/S method performed on aggregate traffic. The results of other
methods are not shown here. However, all tests support that the Hurst exponent of aggregate
traffic is aroundH ≈ 0.5 (i.e., it is short range dependent).
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Figure 2.14: R/S method for aggregate traffic.H = 0.51

The aggregate effect of multiple congestion control algorithms smoothes the aggregate rate
passing through the bottleneck buffer. Nevertheless, individual TCP flows, within the aggregate,
still become long-range dependent, as shown by the Hurst parameter of individual TCP flows.

How can one then measureH > 1/2 or long-range dependence for aggregate network
traffic? There are two possible explanations:
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• The effect of TCP congestion control is mixed by higher layerprotocols with heavy tailed
properties (e.g., WWW file sizes, waiting times) [CrBe96]; or

• Individual long-range dependent TCP flows exit the bottleneck buffer and enter other non-
bottleneck buffers. There they mix with other flows coming from other buffers.

Assume that we have a number of LRD processesXis with autocovariance function given in the
form

γi(t) = ait
−δi (2.7)

If δi = 2 − 2H ≤ 1 (or H ≥ 1/2), this process is long-range dependent, on the other hand,
if δi > 1, it is short-range dependent. Let us assume that if we multiplex such streams coming
from different bottleneck buffers in a non-bottleneck buffer then they remain independent. The
autocovariance function of multiplexed traffic is then

γ(t) =
∑

i

γi(t) =
∑

i

ait
−δi ∼ t−min δi as t → ∞ (2.8)

In other words, long-range dependent traffic remains long-range dependent in a non-bottleneck
buffer, and the largest exponent characterizes it. This wayTCP aggregates can show long-range
dependence. This effect does not happen in the bottleneck buffer because there the assumption
of independence does not hold.

2.7 Periodic-Chaotic Transitions in Real Networks

In this section, we show that periodic and non-periodic behaviors are present not just in simula-
tion models but also in real networks. Three different configurations are analyzed, demonstrat-
ing stable periodic behavior, sensitive behavior when the system is on the edge of chaos, and
non-periodic chaotic behavior.

For the real network tests we used four computers, all of themrunning the Linux RedHat 6.2
operating system. As shown in Figure 2.15, the four hosts shared a single, 10 Mbps Ethernet
segment. Logically the Ethernet segment is divided to two IPsubnets, hostsA andB are in
subnet 1 and hostC in subnet 2. HostD is configured to act as a router between the two
subnets. We implemented and configured a precise shaping buffer on the interface of the router
connecting to subnet 2. The speed and buffer size is configurable and the accuracy of the packet
processing is within 1 ms.

During the experiments, hostC downloads very long files from hostsA andB at the same
time. As a result, the two parallel TCP connections have to share a single low speed link repre-
sented by the shaper. Similarly, as in the previous sections, we use the evolution of congestion
windows to analyze the system. However, because it is difficult to access thecwndvariable in
a real operating system without modifying the kernel code, we estimate its value by the number
of outstanding and unacknowledged packets at the point of the interface of the sending host, in
this experiment in hostsA andB, respectively.
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Figure 2.15: Test network configuration.

2.7.1 Stable Periodic Regime

In the first configuration, the shaping speed is set to 5 packets per second, or 60 kbps (MTU is
1500 bytes) and the buffer size to hold 10 packets. A few seconds after the TCP transactions is
started, the system settles down to a periodic pattern. To demonstrate the stability of the pattern,
we disturb the system by starting a third short TCP connection, which downloads approximately
120 kbytes. The evolution of the congestion windows are shown in Figure 2.16. The top two
graphs show thecwnd of the long TCP connections, while the third graph shows thecwnd of
the perturbing short TCP. It can be seen that after the perturbation has ended, the system returns
to the same periodic pattern within a short time.
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Figure 2.16: Stable periodic system. After a short perturbation caused by a third TCP connection
(bottom), the periodic pattern returns. Shaping speed 60 kbps, buffer size 10 packets.

The periodicity and the effect of the perturbation on the system can be demonstrated by
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displaying the trajectory of the system in the state space. The left graph of Figure 2.17 shows
the trajectory before the perturbation. It can be seen that the periodic behavior is represented
by a closed loop. On the right hand side, the trajectory of thesystem is shown right after the
perturbation is started. The effect of the perturbation is represented by a short detour off the
closed loop, but the system returns to the same pattern as in the left graph. A negative Lyapunov
exponent characterizes such a system.

Figure 2.17: Trajectories of a stable system. Averaging window w = 6 s. a) Periodic behavior
is represented by a closed loop. b) After a perturbation the system returns to the loop.

2.7.2 On the Edge of Chaos

For certain parameters the system becomes more sensitive, and stable periodic trajectories be-
come less stable. When the system is in this regime, it may switch states without any obvious
external perturbation.

During the experiment the shaping speed is set to 20 packets per second or 240 kbps and the
buffer size to 20 packets. Figure 2.18 shows that initially the two-TCP system settles down in a
periodic state, but after a few minutes, they leave the periodic pattern and enter a non-periodic
state. The two TCPs settle down again into a periodic pattern, but only after approximately 5
minutes. The new periodic state proves to be unstable, and itis maintained for a few minutes
only.

We call this behavior “the edge of chaos” when the system switches between periodic and
non-periodic behavior intermittently. The cause of these state changes can be attributed to small
perturbations in the operating systems, the inaccuracy of the shaper and perhaps infrequent col-
lisions on the Ethernet segment.

Using the technique introduced in Section 2.3 to reveal attractors, we get Figure 2.19a. The
non-periodic behavior completely hides periodic trajectories; so we modified the plotting pro-
gram to highlight those parts of the trajectory that are morefrequently visited. Although random
effects push the system away from its attractors, this technique can still help spotting orderly
behavior. The result is shown in Figure 2.19b, two sharply distinguishable closed loops indicate
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Figure 2.18: Intermittent behavior on the edge of chaos. Shaping speed 240 kbps, buffer size 20
packets.

two periodic attractors.
The observed periodic behavior indicates that the system still has negative Lyapunov expo-

nents, but the attraction is weak, and small perturbations can push the system away from the
attractor and even to thebasin of attractionof another nearby periodic attractor. Thebasin of
attraction is the set of initial points in phase space that are drawn to the attractor [Ott93].

Figure 2.19: Trajectory of the intermittent system. Averaging window w = 3 s. a) Original
trajectory. b) Filtering reveals periodic trajectories (magnified).
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2.7.3 Chaotic Regime

For certain parameters the system does not show any seemingly ordered behavior, as similarly
demonstrated by simulation in Section 2.4. Such systems have positive Lyapunov exponents
and non-periodic attractors. Because of extreme sensitivity it is almost impossible to reveal any
order in the trajectory of a real-life system prone to uncontrollable, random perturbations. An
additional challenge is that the techniques we use are limited to the observation of the congestion
window.

During the experiment the shaping speed remains at 20 packets per second or 240 kbps, as in
the previous experiment, but the buffer size is reduced to 10packets. The test results consisting
of cwnd logs shows no obvious periodic or any other orderly behavior. After applying the
filtering technique on a 3600 s long logfile using different settings, we could not observe any
periodicity either. Although non-periodic, we could stillobserve certain non-obvious, hidden
orderly behavior. First, the logfile is split into three consecutive parts, 1200 s long each, then the
trajectories were plotted using the highlighting technique. The resulting graphs of the three time
periods are shown in Figure 2.20. The three figures show certain resemblance to each other (e.g.,
similar loops appear on the trajectories 1200 s apart). We have to underline that these similarities
do not prove that the system returns to the same state as before, but obviously certain parts of
the state space are more preferred by the system than others.

Figure 2.20: Trajectories of a two-TCP system, using the highlighting technique. Averaging
window w = 0.3 s. a) 0-1200 s, b) 1200-2400 s, c) 2400-3600 s.

2.7.4 Self-Similar Regime

The traffic traces obtained from the previous configuration,although chaotic and seemingly
random, do not pass the tests of self-similarity. We found that, exactly as the simulation in
Section 2.6 suggested it, self-similarity arises when the number of TCPs increases in relation to
the size of the end-to-end pipe.

We found that if the total number of parallel TCPs is increased to four (i.e., both hostsA and
B start two parallel TCPs) then the traffic of individual hostsand also the traffic of individual
TCP microflows become self-similar withH > 0.5. Figure 2.21 shows the R/S test for the
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traffic generated by hostA. The base time of the measurement was 1 s. The estimated Hurst
exponent obtained from the test wasH = 0.83.
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Figure 2.21: R/S test of a one hour long traffic trace generated by hostA. Base time 1 s.
EstimatedH = 0.83.

The recent paper by Guo et al. [GCM00] analyses a similar scenario using a Markov chain
based model and arrives at a similar conclusion. The authorsderive that self-similarity can arise
in TCP traffic if the blocking probability reaches a certain value. Their arguments are consistent
with our observations, since small buffer/TCP ratios induce higher loss rates. The work by
Figueiredo et al. [FLMT00] further develops the model to include the congestion avoidance
phase and not just the exponential backoff phase of TCP congestion control.

The significant difference between their methodology and ours is that both papers approach
the same problem from a stochastic perspective. Our work, although it takes a significantly dif-
ferent, deterministic modeling approach, actually supports the validity of the approach discussed
in [GCM00] and [FLMT00]. The complex, chaotic nature of TCP blurs the borderline between
deterministic and stochastic techniques in traffic modeling. On the one hand, it makes it possible
to use either stochastic or deterministic modeling techniques in the analysis of a system, but it
calls for extra care to be taken before drawing conclusions.

2.8 Conclusions

In this chapter, we demonstrated how TCP can produce for certain parameters both simple and
very complex behavior. We have shown that for certain parameters TCP behaves chaotically
and that the main properties of chaos are present in TCP. We demonstrated that TCP congestion
control could create self-similar traffic with Hurst exponents showing both short-range and long-
range dependence depending on system parameters. This property is more fundamental than the
second order self-similarity property reported before in the literature because it is the property
of a low level deterministic system (TCP) itself, regardless of the applications running on top of
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TCP.
We also demonstrated some of the above behavior in an experimental network. For different

configurations we observed stable periodic, and chaotic regimes, and also the transition phase
between them. The conventional paradigm that traffic sources are treated separately from the
network has major drawbacks; that is, it is not possible to disregard the network status when we
create traffic models. Another important implication is that the randomness observed in TCP/IP
networks originates from chaotic deterministic mechanisms and not just stochastic effects.

Deterministic chaotic models offer new tools for modeling TCP/IP traffic. Some of these
techniques are applied and demonstrated in this chapter; however, many more can be applied
from other fields of science where chaos theory has been used.We hope that the results of this
chapter contribute to a better understanding of TCP/IP traffic modeling.

There are many open questions and problems not covered in this chapter. For example,
how to unite stochastic models of higher layer mechanisms (e.g., heavy tails) with the chaotic
model of TCP. One of the most promising future directions is to reuse chaos control techniques
already applied successfully to control lasers or heart beats. Chaos control techniques, which
rely on the butterfly effect and partial reconstruction of the system attractor, operate by minute
perturbations of the system. If these methods are applied toTCP/IP networks, possibly, the
system could be effectively controlled with minimum intervention, consequently, we speculate,
better throughput, fairness or delay could be achieved.

The next chapter analyzes another aspect of TCP congestion control, namely end-to-end
path adaptation. Together with competition, which was discussed in the chapter, adaptation is
the other major feature of the TCP protocol that significantly impacts the traffic dynamics in
TCP/IP networks.
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Chapter 3

TCP’s Role in the Propagation of
Self-Similarity in the Internet

In Chapter 2 we discussed a new, chaotic modeling approach toTCP modeling. We found that
TCP dynamics can cause not only seemingly random traffic fluctuations, but, for certain param-
eters it can generate statistically self-similar time series. This finding complements previous
research, which explained the emergence of self-similarity with stochastic reasons, for exam-
ple heavy tailed distributions in higher layers of the TCP/IP protocol stack [CrBe96] [CTB96]
[PaFl95] [TWS97] [WTSW97].

In this chapter we discuss another role of TCP in the wide-scale emergence of self-similarity
in the Internet. We show that TCP, apart from generation, canalso propagate self-similarity be-
tween distant areas in the Internet. This means that even if there are no reasons for self-similarity
at a certain point of the network, for example, heavy-tailedfile sizes or chaotic competition, it
is still possible that traffic fluctuations become self-similar due to the propagation effect. We
found that TCP propagates any kind of self-similarity, regardless of how it is generated. As a
matter of fact, it is shown that TCP propagates other kinds ofcorrelation structures as well, not
just long-range dependence. In this chapter we also analysethe impact of self-similarity on end-
to-end TCP dynamics, how the end-user perceived rate fluctuations depend on the end-to-end
path properties, and what are limitations of propagation.

TCP uses an end-to-end congestion control algorithm to continuously adapt its rate to per-
ceived network conditions. If network conditions are governed by large timescale fluctuations,
then TCP will “sense” this and react accordingly. Our work demonstrates that TCP adapts to
traffic rate fluctuations on several timescales efficiently.Moreover, we show that TCP can be
modeled as a linear system above a characteristic timescaleof a few round-trip times, which
implies that the correlation structure of a background traffic stream is reproduced faithfully by
an adaptive TCP flow. In particular, it is shown thatTCP can inherit self-similarity from a self-
similar background traffic stream. Since TCP has an end-to-end control, while adapting to these
fluctuations, itpropagates self-similarityencountered on its path all along from the source to the
destination host.

We also demonstrate that if a TCP stream is multiplexed with another one, it can pass on
self-similar scaling to the other TCP stream, depending on network conditions. In our model
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the network is regarded as a mesh of end-to-end adaptive streams. Intertwined TCP streams can
spread self-similaritythroughout the network contributing to global scaling. By analyzing the
effects from a network point of view we argue that, on one hand, TCP plays an important role
in balancing and propagating global scaling and on the otherhand, it keeps local scaling intact
where it is already strong. Our work complements results reported in [FGHW99]. The main
purpose of this chapter is to analyze the basic mechanisms behind these phenomena.

The chapter is organized as follows. A wide-area TCP measurement is analyzed showing
self-similar scaling for the traffic of a single long TCP connection, and a possible explanation is
presented based on a few simple assumptions in Section 3.1. Section 3.2 investigates how TCP
adapts to fluctuations on different timescales, and it is shown that TCP in a bottleneck buffer
can be modeled as a linear system above a characteristic timescale of a few round-trip times.
In Section 3.3 we investigate how an aggregate of TCP sessions with durations of heavy-tailed
and light-tailed distributions propagates self-similarity of a background traffic stream. Finally,
in Section 3.4, we present results about the spreading of self-similarity in the network case when
TCP has to pass multiple hops and compete for resources with other TCP streams.

3.1 Adaptivity of TCP: a Possible Cause of Widespread Self-Similarity

In this section, we demonstrate how TCP adaptation leads to the propagation of LRD, using wide
area network measurements. First, the test methodology is explained using a single measure-
ment, and then the test results of several other WAN TCP measurements are presented. Finally,
we introduce a simple analytic model of TCP adaptation.

3.1.1 Scaling Analysis of Wide Area TCP Measurements

During the first experiment a large file was downloaded (a traffic trace file from the Internet
Traffic Archive) from an FTP server (ita.ee.lbl.gov) to a client host 15 hops away in Hungary
(serv1.ericsson.co.hu), passing several backbone providers and a trans-Atlanticlink. At the
client side there was no other traffic present. The client wasdirectly connected to an ISP by a
128 kbps leased line, which was the narrowest link on the path. All packets were captured at the
client side with thetcpdumputility. The total amount of bytes received was 50 Mbyte and it was
logged with a resolution of 50 ms during the file transfer for 6900 s. The average throughput,
which takes into account the retransmissions and the TCP/IPoverhead, was about 58 kbps (i.e.,
some congestion was experienced in the network). The average round-trip delay between the
server and the client was 208 ms. From the packet trace we concluded that the version of the
TCP was Reno.

Tests were performed for the presence of self-similarity. Here we present three tests: the first
and second ones are based on the scaling of the absolute moments (also called absolute mean
and variance-time plots [TTW95]), and the third one is a wavelet-based analysis [AbVe98]. All
three tests are illustrated in Figure 3.1. The result of the tests suggests asymptotic self-similarity
with Hurst parameter around0.72.

We performed a wavelet based test developed by Veitch [VeAb99] to test if the scaling
exponents are constant throughout the trace. The test also spots other types of non-stationarity.
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Figure 3.1: Scaling analysis of the number of bytes logged atthe client side every 50 ms. Param-
eterm denotes the scale of aggregation. a) Absolute mean methodH ≈ 0.76. b) Variance-time
plot H ≈ 0.77. c) Wavelet analysisH ≈ 0.72 [0.68, 0.77]. d) Wavelet based analysis of
stationarity.

First the trace is cut into several non-overlapping sections. Then the sample mean and variance
and also a wavelet based scaling analysis are performed for each period. Finally, the resulting
statistics are compared with each other and against the overall values. If the values are not
within the confidence intervals, the trace is not consideredto be stationary. Based on results it is
reasonable to accept the hypothesis that the time series is stationary and it has a constant scaling
parameterH.

During the experiment, there was only one connection activeon the link, so explanations
based on the superposition of heavy-tailed On/Off processes or chaotic behavior [C2] are not
applicablelocally. However, the investigated TCP connection traversed several backbone links
where, due to the large traffic aggregations, self-similarity could arise either because of heavy-
tails or chaotic competition. Presumably, whatever the reason for self-similarity was, the TCP
connection adapted to the background traffic stream at the bottleneck link, and the effect of the
adaptation was that self-similarity was propagated to the measurement point.

We repeated the measurement between different hosts in the Internet, covering very different
networking situations. Because the scaling region has to cover at least two orders of magnitude
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server bin size duration avg. rate VT-H Wavelet-H

fr3 100 ms 1200 s 471 kbps 0.77 0.874 [0.808, 0.940]
uk 100 ms 1800 s 115 kbps 0.66 0.704 [0.621, 0.786]
au 100 ms 3346 s 566 kbps 0.8 0.94 [0.854, 1.038]
leasjan28 10 ms 3591 s 131 kbps 0.8 0.95 [0.875, 1.019]
leasjan26 100 ms 1000 s 154 kbps 0.82 0.855 [0.782, 0.929]
hu 50 ms 6900 s 58 kbps 0.77 0.72 [0.68, 0.77]
cablejan 10 ms 3601 s 474 kbps 0.85 0.831 [0.759, 0.903]
us3 10 ms 495 s 1.4 Mbps 0.53 0.562 [0.458, 0.666]
usFeb3 10 ms 1868 s 552 kbps 0.5 0.511 [0.466, 0.556]
usRog 10 ms 2115 s 98 kbps 0.89 0.889 [0.848, 0.931]

Table 3.1: Summary of WAN measurements

for the scaling analysis, the measurements have to be long enough, at least several hundred
seconds long. During such relatively long measurements, daily trends or other types of non-
stationarity may disturb the tests. Stationarity analysiswas performed to filter out and disregard
such traces. As shown in [FLMT00] and [GCM00], if the packet loss probability exceeds a
certain value, it may also cause TCP traffic to become LRD eeven if background traffic is SRD
and packet losses happen independently. Although this phenomenon may be very important in
the emergence of LRD in TCP traffic in highly congested links,since we are interested in TCP
adaptation, we also disregarded traces with excessively long timeouts.

The basic statistics of the traces that passed the above requirements are shown in Table 3.1.
The first group of measurements consists of “trans-Atlantic” measurements between hosts in
Europe and Columbia University, New York. In this group we have tracesfr3 (France),uk (UK),
au (Australia). The next three measurements are also trans-Atlantic measurements, but in these
cases the end-hosts were connected via relatively small speed leased lines, in the case ofhu the
speed of the leased line was 128 kbps, whileleasejan26andleasejan28were done on a 256 kbps
leased line of a small home-ISP, all in Budapest, Hungary. The next measurement,cablejan, was
performed between Columbia University and a host connecting with a cable modem to a public
ISP, also in New York. The last group consists of high-speed “backbone” measurements, all
within the US:us3, usFeb3, usRog, respectively. All these measurements were done between
Columbia University and WWW or FTP servers connecting to theInternet via high-speed links.

LRD was present mostly in traces where the test TCP connection possibly passed one or
more bottlenecks, (i.e., in the “trans-Atlantic”, “cable modem” and “leased line” traces). In case
of backbone measurements, LRD was not present in most of the traces, however, during peak
hours we could measureH > 0.5 as well. The following question arises: if the trace does not
show LRD, does this mean that TCP did not mix with LRD traffic atall? The answer is possibly
not. In almost all the cases when LRD was not present, we couldfind that the advertised window
and not the free capacity on the path limited the TCP rate. Another possible reason is that the
access line limits the TCP rate, in which case the resulting traffic flow is smooth. The effect
of paths with large bandwidth delay products and small windows on the propagation of LRD is
further analyzed in Section 3.3.3.
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3.1.2 Simple Analytic Model

In this section, we introduce a simple analytic model supporting the argument that TCP can
adapt and inherit LRD from background traffic. Later in this chapter, we analyze the limitations
of this simple model and we discuss how to refine it.

All relevant components of the simplified network model are depicted in Figure 3.2. A single
greedy TCP connection sends data between hostA and hostB. The path of the connection
consists of three parts: a network cloud before and after router R and a bottleneck buffer in
routerR, where the connection has to share the service capacity and the buffer space with a
self-similar background traffic flow. Self-similarity of the background traffic can be induced, for
example, by large aggregations of infinite variance On/Off streams as suggested in [CrBe96].
In the analytic model it is assumed that TCP can adapt ideallyto a background traffic stream

Bottleneck buffer

Host A

LRD traffic

Host B

bottleneck

Network before

bottleneck
Network after

Router R

LRD

LRD

Figure 3.2: Network model

in a bottleneck buffer. Under “ideal adaptivity” we mean that the TCP connection is able to
consume all remaining capacity unused by the background traffic stream. It is also assumed
that the TCP connection does not have any effect on the background traffic. The generality of
this assumption covers several practical cases, for example, if the background flow is a large
aggregate consisting of a large number of connections. The limits of these assumptions are
analyzed later in the chapter.

Denote the background traffic rate byB(t), 0 ≤ B(t) ≤ C, whereC is the service rate of
the bottleneck buffer in bit per seconds. If TCP congestion control is “ideal” and its effect on
the background traffic is neglected, then the TCP connectionwill utilize all unused service in
the bottleneck. The rate of the “ideal” TCP flow is denoted byA(t):

A(t) = C − B(t).

The resulting process is simply a shifted and inverted version of B(t), which implies that the
correlation structure of processesA(t) andB(t) are the same. In other words, TCP “inherits”
the statistical properties of the background process. In particular, let us model the background
traffic rate as Fractional Gaussian Noise (FGN):

B(t) = m +
√

aNH(t) (3.1)
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wherem is the average rate in bit per seconds [bps],a is the variance, andNH(t) is a normalized
FGN process with Hurst parameterH. Note that FGN is a discrete time process, so the rate at
time t is approximated by the amount of bytes sent during sufficiently small constant duration
time periods. Based on the arguments above, the adapting TCPwill also be an FGN with the
same statistical self-similarity exponentH. As TCP congestion control works end-to-end, the
same traffic rate can be measured along the pathbeforeandafter router R as well. This implies
that TCP propagates self-similarity or LRD to parts of the network where otherwise it would not
be present.

The result above is based on a simple scenario using a few assumptions, such as ideal TCP
adaptivity, single bottleneck, and assuming that the TCP flow does not modify the background
traffic characteristics. However, if the implications of this simple scenario are valid in real
TCP/IP networks, the consequences for traffic engineering are far reaching. Regarding this, we
are going to address the following important questions:

1. What are the limitations of TCP adaptation, i.e., how “ideal” is TCP congestion control
when propagating self-similarity or other statistical properties?

2. A single long-living connection was used in the simple network model and in the mea-
surements. Can self-similarity be propagated by short duration TCP connections?

3. We assumed that the background LRD traffic flow used is non-adaptive. Is self-similarity
still propagated if the background traffic flow is an aggregate of adaptive flows?

4. We considered a single bottleneck on the TCP path. On the other hand, in some cases
TCP connections may traverse multiple bottleneck routers and buffers multiplexing with
multiple self-similar inputs. What are the characteristics of the end-to-end TCP flow in
this case?

5. Is self-similarity propagated between adaptive connections, i.e., can self-similarity be in-
herited from one TCP to another one that has no direct contactwith the source of self-
similarity?

3.2 TCP as a Linear System

In the previous section it was assumed that TCP congestion control is “ideal”, which, as a mat-
ter of course, cannot be the case in real networks. The consequence of self-similarity is that
fluctuations are not limited to a certain timescale. When analyzing how “real” TCPs propagate
self-similarity, the adaptation of TCP to fluctuations on several timescales should be investi-
gated. In this section, it is shown that TCP in a bottleneck buffer can be modeled as a linear
system, i.e., TCP takes over the correlation structure of the background traffic through a linear
function.

TCP is an adaptive mechanism that tries to utilize all free resources on its path. Adaptation
is performed as a complex control loop called the congestioncontrol algorithm. Of course,
full adaptation is not possible, as the network does not provide prompt and explicit information
about the amount of free resources. TCP itself must test the path continuously by increasing
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its sending rate gradually until congestion is detected, signaled by a packet loss, and then it
adjusts its internal state variables accordingly. Using this algorithm, TCP congestion control is
able to roughly estimate the optimal load in a few round trip times. Since congestion control
was introduced in the Internet [Jac88], it has proved its efficiency in keeping network-wide
congestion under control in a wide range of traffic scenarios.

In this section, we analyze the adaptivity of TCP, and conclude that a simple network con-
figuration, which consists of a single bottleneck buffer shared by a “generator” flow and a “re-
sponse” TCP flow can be well modeled as a linear system above a characteristic timescale. The
cut-off timescale depends on the path properties of the connection. The linear system trans-
forms certain statistical properties, e.g., autocovariance, between the “generator” stream and the
“response” traffic stream through a transform function, which is characteristic of the network
configuration.

3.2.1 Measuring the Adaptivity of TCP on Several Timescales

In the first analysis a single, long, greedy TCP stream is mixed with random background traffic
streams. See Figure 3.3 for the configuration. The background streams are constructed in a way,
such that they fluctuate on a limited, narrow timescale.

background stream

TCP stream Router A Router B

Measurement point

Figure 3.3: Simulation model for the test of TCP adaptivity to a self-similar background traffic
stream. The two buffers are identical: service ratesC1 = C2 = 1 Mbps, propagation delays
d1 = d2 = 5 ms, buffer sizesB1 = B2 = 40 packets.

To limit the timescale under investigation, the backgroundtraffic approximates a constant
amplitude sine wave of a given frequencyf : Abackground(f, t) = a sin(2πft + α) + m where
α is a uniformly distributed random variable between[0, 2π]. The processAbackground(f, t) is
a stationary ergodic stochastic process with correlationR(τ) = a2/2 · cos(2πfτ). The power
spectrum of this process consists of a single frequency component atf . In the simulation the
background process had to be approximated by a packet stream(packet size of 1000 bytes), with
the result that the spectrum is not an impulse but a narrow spike, see Figure 3.4.

If TCP is able to adapt to the fluctuations of the background traffic flow, the same frequency
f should appear as a significant spike in the power spectrum of the TCP traffic rate process as
well. The ratio of the amplitudes of this frequency component in the spectra is a measure of the
success of TCP adaptation on this timescale. Denote themeasure of adaptivityat frequencyf
by D(f)

D(f) = Stcp(f)/Sbackground(f) (3.2)

whereSbackground(f) is the spectral density of the background traffic rate process at frequency
f andStcp(f) is the spectral density of the adapting TCP rate process at the same frequency.
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Figure 3.4a depicts an experiment with a background signal of f = 0.01[1/s]. The top
part of the figure shows the spectrum of the background trafficapproximating a sine wave of
frequencyf . The bottom part is the measured spectrum of the TCP response. The spectrum
of the response has a significant spike atf , but it also contains a few smaller spikes at higher
frequencies caused by the congestion control.

Conducting the experiment for a wide range of frequenciesf , it is possible to plot the adap-
tivity curve of TCP. Figure 3.4b shows the result for severalversions of TCP. Note that the shape
of the function only slightly depends on the TCP version. It can be seen that TCP adapts well
to frequencies belowf0 ≈ 0.15[1/s], but it cannot adapt efficiently to fluctuations on higher
frequencies in this configuration.
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Figure 3.4: a) Frequency response to a sine wave off = 0.01[1/s] (top: background sine wave,
bottom: TCP response). In this configuration the measure of adaptivity is D(0.01) ≈ 1. b)
Measure of adaptivityD(f) as a function of the frequency for several TCP variants.

At f0 a resonance effect can be observed, at this frequency TCP is more aggressive, and
gains even higher throughput than what is left unused by the non-adaptive background flow. This
frequency is equal to the dominant frequency of the TCP congestion window process when there
is no background traffic present (idle frequency), see Figure 3.5. In [MSMO97] a macroscopic
model for TCP connections is published. It is derived that ifeverypth packet is lost for a TCP
connection, then the congestion window process traverses aperiodic sawtooth and the length of
the period isT = RTT ∗ W/2, whereRTT is the round-trip time of the path in seconds and
W is the maximum window size in packets. In our case we can approximateRTT = B/C + d,
whereB is the buffer size in packets,C is the service rate in packets per second, andd is the
total round-trip propagation delay in seconds. The maximumwindow size isW = B + Cd,
which is the maximum number of packets in the pipe (buffer andlink). This gives an estimate
of T = 6.81 s andfcycle = 1/T = 0.15 [1/s]. The result agrees with the measured resonance
frequencyf0, and confirms our argument that the resonance effect observed in the measure of
adaptivity functionD(f) is due to the TCP window cycles (see Figure 3.4b).

The characteristic timescale of the TCP window cycles ranges in relatively wide ranges in
real networks, and the relation ofT ≈ RTT ∗ W/2 can be used for an approximation. For
example, if the round-trip time, which in the previous simulation was approximately 0.33 s, is
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Figure 3.5: Spectrum of TCP congestion window process when no background traffic is present.

rather in the range of a few tens of milliseconds, the cut-offtimescale drops below 1 s. Even
below this timescale TCP adapts to fluctuations, though the effectiveness is limited, as shown
by the transmission curve;f0 approximately separates traffic dynamics to “local” and “global”
scales, abovef0 it is the background process which shapes the spectrum, below f0 the spectrum
is a result of TCP control dynamics and external stochastic processes has less impact on it.

In the next section, we analyze the case when the background traffic stream is more complex
and contains fluctuations on several timescales.

3.2.2 Tests for Linearity

In real networks background traffic is not limited to a singletimescale. In the following, we
analyze the case when several frequencies are present and test whether TCP is able to adapt
to fluctuations on these timescales or not. The motivation isto prove that TCP can adapt to
fluctuations on several timescales independently of each other, more precisely, we want to show
that TCP control forms a linear system in this configuration.

By linear system we mean that if the background traffic rate isgiven byB(t), and the adapt-
ing TCP traffic rateA(t) is expressed using a functionΨ, thenA = C − Ψ(B), whereΨ is a
linear function ofB, i.e.,Ψ(a1B1 + a2B2) = a1Ψ(B1) + a2Ψ(B2). In case of ideal adaptivity,
Ψ takes the simple form ofΨ(x) = x, and the TCP rate is obtained simply asA(t) = C −B(t),
see Section 3.1. If the background traffic is a superpositionof streamsBi(t), i = 1 . . . N

B(t) =

N∑

i=1

Bi(t)

then the rate of TCP is given by

X(t) = C − Ψ(B(t)) = C −
N∑

i=1

Ψ(Bi(t)).
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This construction provides us with a simple test on linearity: we investigate the response to
the superposition of severalBi(t) streams and investigate the spectrum of the response. Fig-
ure 3.6a shows the spectral density of the background and theTCP response when the back-
ground is a composition of 10 random phase sine waves equidistantly spaced in a logarithmic
scale (the non-zero widths of the spikes are due to the fact that the background mix only approx-
imates sine waves with varying packet spacing). It can be observed that TCP was able to adapt
to all frequency components in the mix belowf = 1.

To test whether TCP really adapts to fluctuations independently, a wide range of traffic mixes
were simulated consisting of two frequenciesf1 andf2. A large number of simulations were
performed, covering a whole plane with the two frequencies,in the range of[0.05, 500][1/s].
Then, the adaptivity measure foroneof the frequencies (D(f1)) was calculated. If the system
is linear, the measure of adaptivity function at frequencyf1 should be independent of the other
frequencyf2. The results of the simulations support our conclusions, see Figure 3.6b.
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Figure 3.6: a) TCP frequency response to the superposition of 10 random phase sine waves.
top) background traffic, bottom) TCP response. b) Measure ofTCP adaptivityD(f1) when the
background process is composed of two frequenciesf1 andf2.

3.2.3 Response to White Noise

In the previous analysis the background processes were limited to superposition of sine wave
processes. In real networks background traffic streams cannot be modeled by just a few fre-
quency components, it is more appropriate to model background traffic streams as “noises”.

Two types of special noises are most relevant in traffic modeling: the White Noise (WN)
process and the Fractional Gaussian Noise (FGN) process. The White Noise process is the
appropriate signal for analyzing the frequency response ofa system and the Fractional Gaussian
Noise process frequently appears as the limit process of traffic aggregations [TWS97].

If TCP is a linear system, then it should transform the correlation of any complex stochastic
process (e.g., WN or FGN) through the same transform function. In this section, the response
of TCP to a WN process is analyzed. WN is a special noise as it has constant spectral density.
If TCP is linear, then it should respond with the characteristic curve obtained previously. The
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result is depicted in Figure 3.7. The similarity of the curveto our previous test-signal based test
supports the linearity argument. In addition, the constantflat range, which starts at a charac-
teristic timescale and spans several timescales upwards, provides us with information about the
timescale limitation of TCP adaptivity. Note that this mechanism behaves like a low-pass filter.
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Figure 3.7: a) TCP’s frequency response to white noise, spectral density (dots) and its smoothed
version (line). b) Measure of adaptivityD(f), see also Figure 3.4b

3.3 TCP Adaptation to Self-Similar Background Traffic

Once we have investigated the linearity of TCP and have shownthat the transform function is flat
below a characteristic frequency, it is quite obvious to expect that TCP, while adapting to signals
of complex frequency content, reproduces the same spectraldensity as the original signal above
a timescale, which depends on the path properties (round-trip time, size of the pipe, etc.). If,
for example, TCP traverses a link where the traffic shows self-similarity, it will adapt to it with
a spectral response equal to the spectrum of the self-similar traffic (asymptotically). As TCP’s
control algorithm works end-to-end, this property is “propagated” all along the TCP connection
path.

In the experiment we simulated a single TCP sharing the bottleneck buffer with a synthetic
FGN traffic flow ofH = 0.8. Figure 3.8 shows the power spectrums of both the TCP and FGN
traces at an aggregation level of 10ms. As suggested in the previous section, TCP shows the
same spectrum as FGN asymptotically, there is a difference only around and below the cut-off
timescale. Consequently, the TCP traffic flow is also asymptotically second-order self-similar
with the same scaling parameter as the FGN process (H = 0.8).

3.3.1 Can Adaptive SRD Traffic Propagate Self-Similarity?

So far we have analyzed cases when long greedy TCP sessions were mixed with background
traffic. It has been shown that the distribution of file sizes in Web traffic is heavy-tailed [CTB96].
This increases the probability of the occurrence of such long TCP connections. Nevertheless, it
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Figure 3.8: a) Power spectrum of background trafficH = 0.8. b) Power spectrum of TCP traffic
adapting to the FGN, estimatedH = 0.8.

is investigated whether short duration TCPs (durations with light-tailed distributions) have the
same adaptivity property to LRD traffic or not. A positive answer increases the generality of our
argument. Based on previous work [TWS97] we would expect that if On and Off durations are
light-tailed, the aggregate traffic is short-range dependent (SRD). This section demonstrates that
TCP streams have LRD properties in spite of the short-range dependent result suggested by the
On/Off model.

During the simulation we establishedk parallel sessions. Within each session TCP connec-
tions were generated independently and the durations of TCPconnections were exponentially
distributed (with meanTOn) followed by exponentially distributed silent periods (TOff ). The
simulation was started from the equilibrium state of the process. (See Figure 3.9.) Let’s denote

background stream

Router 2 (C2,B2,d2)

On/Off TCP streams

Router 1 (C1,B1,d1)

Figure 3.9: Simulation model of SRD driven TCP traffic multiplexed with self-similar back-
ground traffic (FGN withH = 0.8). C1 = C2 = 1 Mbps,d1 = d2 = 5 ms,B1 = B2 = 40
packets.k = 10 parallel sessions with exponentially distributed On and Off periods with means
TON = TOFF = 10s.

the number of active TCPs at timet by N(t), 0 ≤ N(t) ≤ k. With this constructionN(t) is a
stationary Markov process and it is short-range dependent.See the self-similarity tests forN(t)
in Figure 3.10a (H ≈ 0.5).

On the other hand, if these sessions are mixed with LRD background traffic, the aggregate
TCP traffic, i.e., the amount of bytes transmitted by all TCPs, is LRD (Figure 3.10a). The
reason is that the superposition of short duration TCPs can efficiently adapt to a background



3.3 TCP Adaptation to Self-Similar Background Traffic 51

LRD process just like one long duration TCP connection.
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Figure 3.10: a) Variance-time test for the simulated On/OffprocessN(t) (H ≈ 0.5) and the
simulated aggregate TCP traffic (H ≈ 0.72). b) Variance-time plot of traffic generated by
equal size short file transfers fromserv1.ericsson.co.huto locke.comet.columbia.edu, logging
resolution 100 ms,H ≈ 0.7.

A real network measurement also supports our argument. Short files (90 kbyte) were down-
loaded using thewgetutility from serv1.ericsson.co.huto locke.comet.columbia.edu(round-trip
timeRTT ≈ 180 ms, average download rater ≈ 160 kbps, SACK TCP)1. Whenever the down-
load ended, a new download was initiated for the same file. Theexperiment lasted for an hour,
and the file was downloaded about 800 times. The traffic was captured withtcpdumpat the client
host. The Variance-Time plot shows that the traffic rate dynamics was self-similar, in spite of the
short file-sizes, see Figure 3.10b. As a new download does notuse any memory from a previous
TCP connection, long-range correlations can be explained only by the long-memory dynamics
of the network. In case of smaller files, TCP’s capability to adapt to changing network conditions
decreases. Although 90 kbyte is larger than the current average file size in the Internet, it has to
be emphasized that a subset of connections is enough to propagate self-similarity. Furthermore,
if HTTP 1.1 replaces HTTP 1.0, persistent TCP connections will be able to adapt better to traffic
fluctuations, eventually improving the propagation effect; similarly, if a TCP implementation
preserves some state from a previous connection, the propagation effect is improved.

3.3.2 Discussion on SRD TCP Streams

For simplicity, first assume that there is only one session with On/Off TCP connections multi-
plexed with LRD traffic. In this caseN(t) takes the values 0 or 1 for exponentially distributed
durations. Assuming ideal adaptivity, when the session is active (a TCP is active) it can grab
all capacity left unused by the background LRD traffic. Then the traffic rate during theactive
periods of the On/Off session can be expressed byA(t) = F (t) whereF (t) is the free capacity
(bit rate) left by the self-similar background traffic,F (t) is an FGN process, see Section 3.1.

1Note that the access speed at theserv1.ericsson.co.huside was increased to 256 kbps during this measurement.
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During inactiveperiodsA(t) = 0. Thus the traffic rate of the TCP controlled On/Off session for
all t can be written in explicit form as

A(t) = N(t)F (t) (3.3)

Assuming that the sessions are independent of the background process (N(t) andF (t) are inde-
pendent), the autocovariance ofA(t): γA(τ) = cov(A(t), A(t + τ)) is

γA(τ) = E [(N(t)F (t) − mNmF ) (N(t + τ)F (t + τ) − mNmF )] (3.4)

wheremN = E[N(t)] andmF = E[F (t)]. Factorizing:

γA(τ) = E[N(t)N(t + τ)]E[F (t)F (t + τ)] − m2
Nm2

F (3.5)

The left hand side of the product is

E[N(t)N(t + τ)] = E[(N(t) −mN + mN )(N(t + τ)− mN + mN )] = γN (τ) + m2
N (3.6)

The same holds forF (t), and so the covariance can be written as

γA(τ) = (γN (τ) + m2
N )(γF (τ) + m2

F ) − m2
Nm2

F (3.7)

Finally,
γA(τ) = γN (τ)γF (τ) + m2

F γN (τ) + m2
NγF (τ) (3.8)

If F (t) is LRD, its autocovariance decays asymptotically asγF (τ) ∼ τ−βF as τ → ∞,
where0 ≤ βF < 1. On the other hand, ifN(t) is SRD, its autocovariance decays asymptotically
faster thanτ−βN whereβN ≥ 1.

Consequently, the covariance ofA(t) decays asymptotically at the lower rate, in this case at
the rate of the background LRD process sinceβF < βN :

γA(τ) ∼ τ−βF as τ → ∞ (3.9)

If the On/Off process is LRD as well, e.g., the On and/or Off times are heavy-tailed, then asymp-
totically the larger Hurst exponent is measured on the path.In practice, the border of the scaling
region depends on the actual shape of the covariances and themeansmA andmF .

If there are more than one On/Off streams sharing the bottleneck buffer with a self-similar
background traffic stream,N(t) takes higher values than 1 as well. However, for the adaptivity
of the aggregate it is sufficient to have at least one active connection as it was shown in Sec-
tion 3.3.1. The aggregate traffic of multiple On/Off streamsadapting to a background stream
may be approximated by

Aaggr(t) = Θ[N(t)]F (t) (3.10)

whereΘ(.) is the Heaviside-function, (Θ(x) = 1 if x > 0 and0 otherwise). Θ[N(t)] itself
is also an On/Off process. If the On/Off processes are independent and they are exponentially
distributed, thenN(t) forms a Markov process (Θ[N(t)] is the indicator process for the empty
state of this Markov chain) and it is SRD.

The conclusion of this section is that if the end-to-end service uses TCP connections, then
the traffic generated by the service is also adaptive, and in this case the adaptivity of the end-to-
end service is sufficient to “propagate” LRD to other parts ofthe network. Moreover, ifN(t) is
LRD, then the larger Hurst exponentmax(HN ,HF ) is propagated.
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3.3.3 TCP Connections Limited by the Receiver Window

In Section 3.1.1 it was found that most connections between hosts directly connected to the US
backbone do not show LRD in the tests. All of these measurements have in common that that the
bandwidth delay product on the connection’s path is large, and the TCPs traffic rate is limited
not by network congestion, but the advertised window of the receiver. Even in this case, it is
most likely that the connection shares buffers with LRD background traffic, but since TCP is not
able to utilize the full bandwidth, the adaptation effect between background traffic flow and the
TCP connection is weak.

We performed a series of simulations that reproduce the above backbone scenario. We mod-
ified the previous simulation model: the link speed was increased to 4 Mbps and the round-trip
link propagation delay to 100 ms. The buffer size remained 40packets as in the previous sim-
ulations. The background traffic flow was synthetic FGN withH = 0.8, average 0.5 Mbps
and variance also 0.5 Mbps. With these settings the average link utilization was just 12.5 %,
similarly to an overprovisioned backbone link.

We performed several simulations with a single TCP passing abuffer with FGN background
load. In consecutive simulations the TCP receiver had different window sizes between 10 to
45 packets. Each simulation lasted for 7200 s, long enough toperform LRD tests. We expect
that when the window is small, TCP is limited by the advertised window and TCP is not able to
utilize the maximum available throughput. In this case the impact of background traffic on TCP
rate is weak. As the window increases, the TCP rate also increases, finally, after some point
it flattens out as the network load becomes the limit for the TCP throughput, see Figure 3.11a.
From the end-user perspective, this is the desired operating point of the system.

After each simulation run, we performed the LRD tests. Figure 3.11b shows the results of
the Variance-Time tests. It can be seen that in all cases, asymptotically all traces have the same
slope as the VT plot of the background traffic. The differenceis in the timescale where LRD
scaling starts, as the window increases, scaling starts at smaller and smaller timescales.
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Figure 3.11: a) TCP throughput vs. receiver window size in packets. b) Variance-time plot of
the number of bytes recorded duringm for several windows sizes. The topmost graph is the VT
plot of the FGN trace.
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Today, there are still many operating systems and applications that do not support large
windows. In case of high-speed access speeds, the price is sub-optimal TCP performance since
the window limits the maximum throughput. As high speed access technologies (e.g., DSL or
cable modem) become more widespread, it is likely that operating systems and applications will
demand larger windows, moving the cut-off timescale of propagation closer to the estimated
analytic value derived in Section 3.2.1.

In this sense, propagation is a desired effect. Although larger windows cause increased
variances in all timescales, see Figure 3.3.3b, the end-user perceived end-to-end throughput also
increases significantly.

3.4 Spreading of Self-Similarity in the Network

Previously we analyzed the case when a TCP connection sharesa single bottleneck buffer with
LRD background traffic, and it was only this bottleneck that affected the rate of TCP. In this
section the network case is discussed.

Two aspects are analyzed. The first one deals with the case when the path of an adaptive
connection passes through several buffers with self-similar inputs. These buffers are candidates
to become bottlenecks occasionally during the lifetime of the connection. The second one in-
vestigates whether self-similarity can spread from one adaptive connection to the other causing
widespread self-similarity in a network area.

The presented results are intended to highlight the basic mechanisms, so the investigated
scenarios are simplified for the ease of discussion.

3.4.1 Discussion of the Multiple Link Case

A wide area TCP connection usually spans 10-15 routers alongits path, out of which there are
usually several backbone routers with high level of aggregated traffic, see Figure 3.12. A TCP

TCP stream
Router 1 Router NRouter 2

LRD HLRD HLRD H1 2 N

Figure 3.12: A TCP connection traversing multiple hops withindependent background LRD
(Hi) inputs.

connection has to adapt to the whole path. The capacity of theend-to-end path, at timet, depends
on which buffer is the bottleneck at this time. Because of traffic fluctuations, the location of the
bottleneck moves randomly from one router to the other.

Assuming ideal end-to-end adaptivity, the rate of the adaptive TCP connection is equal to
the free capacity of the bottleneck link at timet:

A(t) = min
i∈N

Fi(t) (3.11)
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whereN is the number of links andFi(t) denotes the free capacity of theith link on the path.
For simplicity, assume that the crossing background LRD streams on the links are indepen-

dent and the link at timet is either empty:Fi(t) = 1, or full: Fi(t) = 0. With this simplification
the rate of the adaptive connection can be written as

A(t) =

N∏

i=1

Fi(t) (3.12)

In the previous section it was shown that the product of independent LRD processes is also
LRD and it is asymptotically characterized by the largest exponent:

γA(τ) = τ−mini βi as τ → ∞ (3.13)

Thus, in the multiple link case it is the largest Hurst exponent among the background LRD
streams on the links that characterizes the TCP connection.

For a numerical example using more complex processes, four FGN background samples
were generated with equal mean rates, but with different Hurst exponents, to modelFi(t),
i = 1 . . . 4, see Figure 3.13. The end-to-end processA(t), which is the minimum of the FGN
processes, is asymptotically second-order self-similar,and it has the same Hurst exponent as the
largest Hurst exponent among theFi(t) processes, i.e., the result is the same as in the simple
full/empty case.
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Figure 3.13: Variance-Time plots ofFi FGN processes ofH = 0.8, 0.7, 0.6, 0.5 respectively
(identical mean rates and variance), and the end-to-end processA(t) = mini∈N Fi(t). The
end-to-end path is characterized byH ≈ 0.8 asymptotically.

Another possible interpretation of (3.11) is that we consider theFi(t) not as rate processes,
but as indicator processes of congestion. From the end user perspective it is important to analyze
whether the network is able to support the expected service level requirements, for example,
whether the file transfer rate degrades below an acceptable level or not. LetFi(t) be the indicator
process of linki indicating whether the link is congested and it cannot support the expected
service rate for the connection (Fi(t) = 0), or is not congested (Fi(t) = 1). Thus, if the
background congestion indicator processes are LRD, then itis the largest Hurst exponent that
characterizes the end-to-end service characteristics of the investigated TCP connection.
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3.4.2 Spreading of Self-Similarity among Adaptive Connections in Multiple Steps

So far, in all cases analyzed, adaptive traffic was in direct contact with self-similar background
traffic. In this section, it is investigated whether self-similarity caused by adaptation can be
passed on to adaptive traffic streams that haveno direct contact with the source of self-similarity.
A few simple conditions are given as well. Assuming that our argument is valid, self-similarity
can spread out from a localized area, consequently, strong self-similarity is balanced throughout
a wider area of the network.

A simple network scenario is used for the investigation. An adaptive traffic stream (direct
stream) shares a link with self-similar FGN (H = 0.8) background traffic. Thedirect streamis
mixed with another adaptive stream on a second link, which itself has no direct connection with
the FGN traffic (indirect stream), see Figure 3.14. Two otherstreams thus affect the data rate of

indirect stream

FGN stream

direct stream

Figure 3.14: Network model for the investigation of self-similarity spreading.

the direct stream, and also the two adaptive streams have an effect on one another. We are going
to investigate the statistical properties of both the direct and the indirect streams.

Assume ideal adaptivity and max-min fairness among the adaptive streams. Also assume
that the service rates of both links are equal (C). If the background stream was inactive, the
bottleneck would be the first buffer and the adaptive streamswould share simply half the service
rate, both sending at a rate ofC/2.

Adir(t) = Aindir(t) = C/2 (3.14)

In the presence of the FGN stream flowing through the second buffer, the rates can still remain
C/2, unless it is the second buffer which becomes the bottleneck, i.e., when the capacity left
unused by the FGN stream isC − AFGN (t) < C/2. In this case the direct stream can use at
mostAdir = C −AFGN (t), so the indirect stream can grab all remaining service capacity in the
first bufferAindir = C − Adir = AFGN . In short:

Adir(t) = min(C/2, C − AFGN (t)) (3.15)

Aindir(t) = max(C/2, AFGN (t)) (3.16)

Calculation of the autocovariance ofAdir andAindir is difficult because of theminandmax
operators. We consider two simple, extreme cases. In the first case, the rate of the background
LRD stream is always greater thanC/2, simplifying the expressions toAdir(t) = C−AFGN (t)
andAindir(t) = AFGN (t), i.e.,spreading of self-similarity is ideal. In the second extreme case
the rate of background process is always smaller thanC/2, leading toAdir(t) = Aindir(t) =
C/2, i.e.,self-similarity disappearsfrom both adaptive streams. Simulations have verified these
results as well.
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The investigated scenario demonstrates the simplest mechanism of how adaptive connections
may have effect on each other. We simulated a more complex scenario, where the syntheticFGN
stream is replaced by an aggregate stream of randomly generated short TCP file transfers. The
distribution of the file sizes is heavy-tailed. The direct and indirect TCP streams are also replaced
by aggregates, but the file sizes within these aggregates arelight-tailed.

The streams consist ofnheavy−tailed = ndir = nindir = 100 sessions. The file size distri-
butions are Pareto distributions with the following parameters: the average file size is 40 Kbytes
for all streams, the average waiting time between files is 20 sec. The shape parameters are
aheavy−tailed = 1.1 andadir = aindir = 3 for both the file size and the waiting time distribu-
tions. With these parameters only one stream has heavy-tails (aheavy−tailed < 2).

The results of the simulation experiment are shown in Figure3.15. As suggested in [CrBe96]
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Figure 3.15: a) R/S plot ofheavy-tailedstreamH = 0.82. b) R/S plot of indirect stream
H = 0.71

the traffic stream consisting of heavy-tailed file downloadsis LRD (H ≈ 0.82). Furthermore,
the indirect traffic stream, although it was created using light-tailed distributions is LRD as well
(H ≈ 0.71). The cause is that long-range dependent fluctuations are propagated via the indirect
stream.

Performing the previous experiment using different parameters, we have found that depend-
ing on the traffic mix, the spreading between indirect and direct streams can be strong but it can
be weak as well. In certain cases, spreading to an indirect stream does not happen at all, just
like in the simple analytic example assuming ideal TCP flows and max-min fairness. The exact
requirements for spreading are subjects for further study.

3.5 Conclusions

It was demonstrated how a TCP connection, when mixed with self-similar traffic in a bottleneck
buffer, takes on its statistical second-order self-similarity, propagating scaling phenomena to
other parts of the network. It is suggested that the adaptation of TCP to a background traffic
stream can be modeled by a linear system and the validity of our approach is analyzed. It was
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shown that TCP inherits self-similarity when it is mixed with self-similar background traffic
in a bottleneck buffer through the transform function of thelinear system. This property was
demonstrated for both short and long duration TCP connections.

We also investigated TCP behavior in a networking environment. It was found that if conges-
tion periods are long-range dependent in several hops on a connection’s path, the largest Hurst
exponent characterizes the end-to-end connection. It was also demonstrated that TCP flows, in
certain scenarios, can pass on self-similarity to each other in multiple hops.

As thousands of parallel TCP connections continuously intertwine the Internet, the mecha-
nisms described in this and the previous chapter can provideus with deeper insights why signifi-
cant and strong self-similarity is a general and widespreadphenomenon in current data networks.

The next chapters, Chapter 4 and 5, discuss the problems of provisioning Differentiated
Services in the Internet. We discuss the special requirements and limitations of the Differentiated
Services architecture [BBCD98], and analyze the implications of our results in Chapter 2 and 3
to the performance modeling of wired and wireless data networks.



Chapter 4

Resource Management for
Differentiated Services Networks

There is an increasing demand for Quality of Service (QoS) inthe Internet to enable a wide
variety of new services. There have been a number of attemptsto introduce QoS into the Inter-
net, but most of them have suffered from scalability limitations inhibiting global deployment,
and lack of robustness to maintain performance guarantees.Differentiated Services (DiffServ)
[BBCD98] address the limitations of Integrated Services [BCS94, Shen95] by resolving the
scalability problems. However, DiffServ leaves certain elements of the desired end-to-end QoS
architecture unspecified.

In essence DiffServ specifies local packet handling rules, called Per Hop Behaviors (PHBs).
The idea is that end-to-end services can be built up using these PHBs. For these services to
work, appropriate resource management is necessary. It is essential to ensure, for example, that
resources assigned to a class are sufficient to serve the traffic entering the class at the desired
QoS.

Resource management can be approached from two directions.First, dimensioning of class
and link resources is a preventive approach where the task isto select the correct link speed, and
equally importantly, to partition the link resources to several DiffServ classes. For this process
longer term traffic measurements and subscriber Service Level Agreement parameters can be
used. The second approach is more dynamic, and operates by controlling the amount of traffic
in the classes. This can be accomplished by signaling [Bra97] and admission control, using
bandwidth brokers or by subscription control, depending onthe network operator.

In this chapter, we introduce a set of measurement based resource estimation methods for
DiffServ networks based on the effective bandwidth conceptfirst discussed in [GAN91, Kel96,
GiKe97]. The methods are suitable for both traffic engineering and admission control purposes
and are suitable to be implemented in routers, bandwidth brokers or in off-line traffic engineering
tools. The novelty of our work is that the resource estimation methods presented in this chapter
are tailored to meet the characteristics of the DiffServ environment:

• traffic descriptors are coarse;

• only aggregate measurements are feasible;
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• scheduling redistributes service among classes;

• guarantees are “soft”; and

• traffic flows have diverse, complex statistical properties.

Hosts or edge devices that are connected to a DiffServ network can only provide minimal
and coarse information about their traffic. Coarse information means that the statistics do not
describe the traffic precisely, for example, in case of a token bucket policer the policer param-
eters would be set very conservatively. The reason for this is because of the extreme diversity
of Internet applications. It is not possible to develop accurate, yet general and flexible traffic
descriptors suitable to all applications. We assume that inthe future only very simple traffic
descriptors will be used, (e.g., token bucket descriptors,access speed), which are easy to use
and easily understood by the users. However, such simple descriptors are inherently inaccurate.
We argue that the estimation methods have to be aware of this property, and they should use
measurements of actual traffic load together with the trafficdescriptors to improve the tightness
of estimations [SaSh91, CKT96, JDSZ97, CLTR97].

In practice, because of scalability reasons, only aggregate measurements are feasible. This
precludes most measurement based admission control algorithms suited for ATM networks,
where per flow measurements are usually assumed. In our proposed methods, only scalable,
aggregate measurements of large numbers of flows are performed. These flow aggregates are
either entire queues, or large flow sets within a queue, classified based on packet header infor-
mation, e.g., the DiffServ field (TOS field) or protocol information (TCP, UDP).

Since traffic descriptors are expected to be coarse, due to highly varying rates and uncertainty
of demand, traffic flows usually do not utilize the guaranteedresources to the full extent. For
better overall network performance resources are not rigidly allocated to different queues in
DiffServ architectures. Unused bandwidth by a class is dynamically available to other classes
on a packet-by-packet basis. For example, in case of Static Priority Queuing (SPQ), when there
are no packets waiting in a queue, the scheduler will serve a packet from a lower priority queue.
This dynamic allocation of resources is a crucial property for the economy of network services
in the future Internet. Our analytic models take this property into account by estimating the QoS
in every queue of the SPQ DiffServ architecture.

Many Internet applications can operate in the absence of QoSguarantees. It is expected that
future better than best-effort applications will toleratelimited variations of the QoS, thus looser
QoS guarantees may be sufficient. This makes probabilistic approaches more desirable, as these
result in better resource efficiency than worst-case deterministic solutions [PaGa93, WKLZ96,
LeB98]. On the other hand, previous work using probabilistic bounds usually assumed asymp-
totic models, which means that the derived probability bounds are asymptotically accurate for
very small loss probabilities, for example,10−12. In reality, most real-time applications do not
require such strong guarantees, for example, voice servicecan efficiently operate even if the
loss ratio is as high as1 − 5% (depends on coding) [JaCh81]. Easing stringent QoS require-
ments enables the exploitation of more statistical multiplexing gain. In this chapter, we develop
bounds that are precise not only asymptotically, but also inthe QoS ranges expected in DiffServ
networks.
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The statistics of TCP/IP applications are diverse and the correlation structure of Internet traf-
fic is complex, this impacts the assumptions we have to make inanalytic models. The resource
estimation methods should be robust with respect to these properties to maintain the flexibility
and robustness of the Internet. Several methods assume thattraffic flows follow certain mod-
els, e.g., Markov Modulated Processes [KWC93, KoMi98, Kel96], which assumption is too
restrictive knowing the diversity of applications. Other methods are more general, but assume
that traffic flows suit certain classes of statistical processes, for example, methods based on the
assumption that traffic rate fluctuations are short-range dependent [CLTR97, KWC93]. These
methods also have limitations due to the wide-scale presence of long-range dependence in the
Internet, see for example, Chapters 2 and 3. We developed methods that do not assume that
traffic flows fit any specific distribution or correlation structure, yet they are not heuristic but
analytically precise.

The chapter is organized as follows. An overview of the DiffServ management framework
can be found in Section 4.1. Specific effective bandwidth formulae are developed for Expe-
dited Forwarding and Assured Forwarding classes to providebandwidth and delay guarantees in
Sections 4.2 and 4.3, respectively. We propose several solutions that utilize different measure-
ments and require different implementation complexity. InSection 4.4 we show how to perform
resource management of a practical DiffServ router implementation based on Static Priority
scheduling. Finally, in Section 4.5 we present some concluding remarks.

4.1 DiffServ Traffic Management Framework

The Differentiated Services standardization effort of theIETF does not specify how traffic man-
agement is performed. The guarantees supported by DiffServPHBs are relative rather than
absolute, and do not eliminate the need of appropriate traffic management tools that estimate,
anticipate and help maintain acceptable levels of network performance. To perform these tasks
efficiently, detailed information is needed about the traffic demands in the network. The most
important information is listed below:

• Traffic specifications of end-to-end or edge-to-edge flows, containing access speeds, pa-
rameters of traffic policers.

• QoS guarantees required by flows, (e.g., description of DiffServ classes AF, EF, or BE).

• Routes of the flows across the administrative domain.

• Aggregate load measurements of DiffServ classes on a link-by-link basis.

There have been considerable amount of work to obtain this data in TCP/IP networks. With
some limitations, most of this data are already used in the Network Operation Centers of ma-
jor network operators for network management [FGLR00, FGLR00-2]. However, not all the
required information is available in real-time, since it would require specific dynamic resource
reservation protocols, such as RSVP [Bra97], which have notbeen widely deployed. Although
there has been proposals to introduce dynamic DiffServ specific protocols that would solve this
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problem, it is still an open issue whether the IETF will initiate standardization in this area, or
proprietary protocols will emerge instead.

Today, traffic management has to rely on network “snapshots”, which are updated on coarser
timescales (e.g., hours). The time delay makes it impossible to perform real-time traffic regu-
lation (e.g., admission control), since measured data would be outdated. We argue, however,
that longer timescale resource management can still be efficiently performed using the currently
available data mining techniques. Longer timescale resource management includes traffic engi-
neering, which is done on an hourly basis, and network design, which is a longer timescale task,
and usually involves upgrades of links and routers.

4.2 Effective Bandwidth Bounds for Assured Classes

Assured classes are intended to provide guaranteed throughput. Throughput guarantees are
achieved by keeping the total input rate of the queue servingthe assured class below the ser-
vice rate of the queue. In practice, throughput is not interpreted as an instantaneous value but it
is defined as the average amount of bits per second transmitted over a given time period. This
softer definition cannot capture the packet arrival dynamics below a certain timescale. This
implies that even when the input rate is below the queue service rate, packets may accumu-
late temporarily in the buffer. However, long lasting congestion cannot form. Therefore, when
discussing assured classes, we ignore buffer fluctuations and consider only the rate process.

In this section, we assume that all packets belonging to an assured class share a common
queue with fixed service rateC. The flows entering this queue are individually policed/shaped
to a maximum rate at the ingress points. The total load of the queue is measured periodically.
Flows are assumed to be independent as shaping/policing is done at the edges and packet loss
is small. Flows are also assumed to be weakly stationary, (i.e. their mean and variance do not
change in time). In the following, we derive three simple effective bandwidth bounds based on
the above assumptions.

4.2.1 Effective Bandwidth Basics

The theoretical basis of our work is the concept ofeffective bandwidthdeveloped by Kelly
[Kel96]. In the following, we briefly present previous results and notations (see also [C1]).

Definition 1 Theeffective bandwidth of a traffic flow aggregate isBW if the rate process of the
aggregate traffic exceeds this value with probability less thanǫ. Denote the rate of the individual
flows by random variablesXk, k = 1 . . . N :

Pr

(
N∑

k=1

Xk ≥ BW

)
≤ ǫ. (4.1)

The objective of resource management is to maintain the above probability in the network
by regulating the amount of admitted traffic, by allocating enough resources to accommodate
the demand, or both. In either cases, it is important to precisely estimate the effective bandwidth
BW .
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First, we introduce several important inequalities in relation to the effective bandwidth. For a
positive valued random variableξ and a constanta, the Markov inequality says thatPr (ξ > a) ≤
E [ξ/a]. If we apply this inequality to (4.1), we get an upper bound for the saturation probability:

Pr

(
N∑

k=1

Xk ≥ BW

)
≤ E

[∑N
k=1 Xk

BW

]
(4.2)

or, for anys > 0, as the exponential function is monotonous:

Pr

(
N∑

k=1

Xk ≥ BW

)

= Pr
(
es

PN
k=1 Xk ≥ esBW

)
≤ E

[
es

PN
k=1 Xk

esBW

]

(4.3)

If Xk are independent, the expectation of the product is equal to the product of expectations:

E

[
es

PN
k=1 Xk

esBW

]

=

∏N
k=1 E

[
esXk

]

esBW
(4.4)

Have the logarithm of (4.4), and put in into (4.2):

ln Pr

(
N∑

k=1

Xk ≥ BW

)

≤
N∑

k=1

ln E
[
esXk

]
− sBW. (4.5)

whereE
[
esXk

]
is called the moment generating function ofXk. This inequality holds for any

value ofs > 0, (so for the minimum of the right side as well). This bound is aform of the
Chernoff bound.

The right side of (4.5) can be used as the desired value forǫ in (4.1):

ln ǫ =

N∑

k=1

ln E
[
esXk

]
− sBW (4.6)

From the above, we can introduce a parametric form of the effective bandwidthBW (s), first
published by Kelly et al.:

Theorem 1 ([Kel96]) Denote the rates of flows asXk, k = 1 . . . N . If Xk are independent, and
their moment generating functionE

[
esXk

]
exists, the parametric effective bandwidth of the flow

aggregate is

BW (s) =
1

s

N∑

k=1

ln E
[
esXk

]
+

γ

s
. (4.7)

whereγ = − ln(ǫ) ands > 0.

If we have a link of capacityC and we want to find out whether the traffic mix “fits” into the
link, we have to compareC with BW (s). If we find any value ofs > 0 whereBW (s) ≤ C,
the bound will hold; i.e., the following test has to be evaluated:

min
s>0

BW (s) ≤ C (4.8)
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Unfortunately, we need full knowledge of the distributionsof all flows to calculateE
[
esXk

]

and soBW (s), which is not feasible. However, if everyXk are bounded by a peak rate
hk (which, for example, can be the access speed) and we know (estimate, or measure) the
average ratemk of the flows,BW (s) can be bounded as well. First we apply thatesx ≤
1 + x

(
esh − 1

)
/h for all s > 0 and0 ≤ x ≤ h:

E
[
esXk

]
≤ 1 +

esh − 1

h
E [Xk] (4.9)

If we combine (4.7) and (4.9), we can boundBW (s) ≤ BW O(s). This leads to the following
theorem:

Theorem 2 ([Kel96]) If flows Xk, k = 1 . . . k are bounded by peak ratesXk ≤ hk and we
know the mean ratesmk = E [Xk], the effective bandwidth of the aggregate can be estimated by
BW O(s):

BW O(s) =
1

s
ln

N∏

k=1

(
1 +

eshk − 1

hk
mk

)
+

γ

s
. (4.10)

whereγ = − ln(ǫ) ands > 0.

This effective bandwidth formula contains only the mean andpeak rates of the flows. It can
be shown thatBW (s) = BW O(s) if sources are on/off type (i.e.Xk can only be 0 orhk). In
this respect on/off sources have the worst-case effective bandwidth.

4.2.2 A Tight Bound Based on the Aggregate Load Measurement of a DiffServ
Queue

The effective bandwidth expressionBW O cannot be used directly in DiffServ as it would require
the knowledge of the average rate of every flow individually (mk). Per-flow measurements
would require per-flow packet classification in the routers,which is not scalable because of the
large number of flows. In a DiffServ router, packets are only classified according to their PHBs,
which usually means all flows entering the same queue.

If we can measure the load of a whole queue only, we need to modify (4.10) to contain only
the aggregate mean. For this, we give an upper, conservativebound on the product part of 4.10.
First, we decompose it to two products:

N∏

k=1

(
1 +

eshk − 1

hk
mk

)
=

N∏

k=1

(
eshk − 1

hk

) N∏

k=1

(
mk +

hk

eshk − 1

)
(4.11)

As the geometric mean is smaller than the algebraic:

N

√√√√
N∏

k=1

(
mk +

hk

eshk − 1

)
≤ 1

N

N∑

k=1

(
mk +

hk

eshk − 1

)
(4.12)

If we insert 4.12 into 4.10, we get a practical upper boundBW (s) ≤ BW A(s):
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Theorem 3 If we know the peak rateshk of flowsk = 1 . . . N , and the mean rate of the aggre-
gateM , the effective bandwidth can be expressed as

BW A(s) =
N

s
ln

(
M +

∑N
k=1

hk

eshk−1

N

)

− 1

s

N∑

k=1

ln

(
hk

eshk − 1

)
+

γ

s
(4.13)

Note, that with this approximation the bound is still holding, but we have a sum of rates
instead of a product ofmk. The aggregate average rateM can be easily measured in a router
interface. The only per-flow information needed is the peak rates of flows, which are usually
available from the network management databases.

Before we can use the derived effective bandwidthBW A(s) in practice, we have to choose
an appropriate value fors. The definition of effective bandwidth tells us that the saturation
probabilityǫ is not exceeded if there is ans > 0 for whichBW A(s) < C. That is, it is sufficient
to find a single value fors, for which the bound holds to ensure the QoS guarantee. However,
performing numeric optimization every time we recalculateBW A(s) may be computationally
too expensive. Therefore, we derive a closed form solution that approximates the minimum
valueBW A = mins BW A(s), (see the derivation in Appendix A.1):

sopt =

√
8γ

Ĥ − (2M − H)2/N
whereH =

N∑

k=1

hk andĤ =

N∑

k=1

h2
k (4.14)

The resultingsopt is inserted intoBW A(s).
The derived bound has an interesting relation to previouslypublished work. In [Flo96] the

Hoeffding bound is suggested for admission control purposes. The Hoeffding bound, similarly
to ours, also uses the peak rates and the aggregate mean:

BW H = M +

√
γĤ/2 (4.15)

It can be shown that if we approximate (4.10) with a unit slopetangent inmk, we get the
Hoeffding bound, this connection was derived in [GiKe97]. On the other hand, it can be shown
that theoptimal slope tangent, which leads to the tightest bound, leads toBW A (proof can be
found in [C1]). Consequently, our bound,BW A, is always tighter than the Hoeffding bound
(see Figure 4.3). The gain of using our improved bound over the Hoeffding bound is significant
when the traffic is biased towards either high or low mean-to-peak ratios, which are the typical
cases in networking applications.

4.2.3 Improving the Bounds by Measuring the Aggregate Rate Variance

In Section 4.2.2, the effective bandwidth estimation is calculated using the measured aggregate
mean and the admitted peak rates. Theoretically, the more information we have about the dis-
tribution of flow rates (Xk), the tighter bound can be given. In this section, we give a closed
form effective bandwidth formula with an extra parameter, which is the measured variance of
the aggregate traffic rate.

The choice for variance is not ad hoc:
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1. The variance, similarly to the mean rate, sums up, so an expression with the sum of the
variances of the flows can be replaced with the variance of therate of the aggregate traffic.
The aggregate variance can be easily measured in the routers.

2. The previous bounds containing only the mean and the peak rates had to assume worst
case variance. It can be shown that on/off sources have the worst possible variance for a
given peak and mean rate. However, a large part of real-life traffic will not be on/off, so a
measurement on the variance is expected to lead to a tighter bound.

In the literature, several bounds have been proposed that use the variance. In [BrSi99],
a bound is derived for the variance from token bucket parameters. We argue that the token
bucket parameters are too loose, and measurement of the variance can lead to significantly
tighter bounds. The Central Limit Theorem (CLT) is used to estimate the effective bandwidth,
in [GAN91], using the formula

BW N = M +
√

(2γ − ln 2π)S (4.16)

whereS =
∑N

k=1 σ2
k andσ2

k is the variance of flowk. The weakness of this formula is that it
assumes large number of similar flows and the approximation is only valid around the mean value
of the distribution. The precision of the bound for more realistic cases has not been evaluated.

The variance based effective bandwidth expression presented in this section gives an upper
bound even when the assumptions of the CLT do not hold, e.g., in case of very diverse traffic
mix or relatively small number of flows. In addition, it uses the measurement of the aggregate
variance, and not the loose descriptors of the traffic policer.

To include the variance, we have to estimate the moment generating function ofXk in a
different way. First rewrite the moment generating function of Xk as:

E
[
esXk

]
= E

[
es(Xk−mk)

]
esmk (4.17)

wherees(Xk−mk) can be bounded by1

es(Xk−mk) ≤ 1 + s(Xk − mk) +
eshk − shk − 1

h2
k

(Xk − mk)
2 (4.18)

for all hk ≥ mk,Xk ≥ 0. See Figure 4.1 for an example of the estimation. Note that with this
parabolic approximation, we have a product of(Xk − mk)

2, so the expectation in (4.17) is:

E

[
es(Xk−mk)

]
= 1 +

eshk − shk − 1

h2
k

σ2
k (4.19)

1This overestimation is not the best second order one as can beseen in Figure 4.1. We could use

1 + s(Xk − mk) +
es(hk−mk)

− s(hk − mk) − 1

(hk − mk)2
· (Xk − mk)2

instead, but the resulting formulas require per flow measurements. This tighter parabola is also shown in Figure 4.1.
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Figure 4.1: Example for bounding ofes(x−m) with parabola, see Eqn. (4.18).

As we intended, this approximation of the moment generatingfunction contains per-flow vari-
ances (σk) and mean rates (mk) only. When this modified moment generating function is in-
serted into (4.7), we get

BW (s) ≤ 1

s

N∑

k=1

ln

(
1 +

eshk − shk − 1

h2
k

σ2
k

)
+ M +

γ

s
(4.20)

Finally, we apply the geometric-algebraic inequality, similarly as in the previous section.
The product becomes a sum in the expectation, so only the easily measurable aggregate variance
S and mean rateM remains, which concludes the proof of the following theorem:

Theorem 4 If we know the peak rateshk of flowsk = 1 . . . N , the mean rate of the aggregate
M , and the aggregate varianceS, the effective bandwidth takes the form

BW V (s) =
1

s

N∑

k=1

ln




S +

∑N
j=1

h2
j

eshj−shj−1

N
· eshk − shk − 1

h2
k



+ M +
γ

s
(4.21)

The approximation for the optimals is obtained similarly as in the case ofBW A(s):

sV
opt =

√
18γ

9S + Ĥ − H2/N
. (4.22)

To evaluate the tightness of an effective bandwidth formula, we consider it to be made up
of two components:BW = M + Ω, the aggregate mean rateM and an overhead termΩ,
which accounts for the burstiness of the traffic. Effective bandwidth formula can be compared
by comparing their overhead terms, for the same guaranteeǫ. In case of the Hoeffding bound
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BW H , the overhead depends on the peak rates, but in case of the CLTbasedBW N and our
BW V bounds, it also depends on the variance.

Figure 4.2 shows an example of how the varianceS influences the overhead. One can ob-
serve that the closed form approximation usingsV

opt is not very good for small variances, but
the numeric optimization stays close to the value obtained from BW N . The figure shows that
BW V > BW N which is becauseBW V is always an upper bound unlikeBW N , which is not
as robust.
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Figure 4.2: The overhead calculated usingBW H , BW N andBW V (1:closed form, 2:numerical
optimization) as the function of

√
S. 100 sources,hk = 10 Mbit/s, ǫ = 10−5.

In a summary, measuring the variance can significantly reduce the required amount of allo-
cated resources. Nevertheless, the closed form, simple approximation does not perform well in
case of small variances. In these cases, we propose the use ofsimple numeric approximation,
or use a modified, artificially inflated value of the variance,where the closed form solution is
minimal. The resulting bound is still robust and significantly tighter than the Hoeffding bound,
regardless of the composition of the traffic mix.

4.2.4 An Improved Bound using Measurement Groups

Within a DiffServ queue, a large number of flows are multiplexed with diverse statistical proper-
ties. Simply measuring aggregates hides these differences. We speculate if we know more about
the composition of the aggregate, more precise bounds can begiven.

There are two extremes concerning how detailed the measurements can be. The first means
that we only measure the total aggregate rate of all flows. Measurements of the total aggregate
provide little information about the composition of the traffic mix. On the other extreme we
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would need measurements separately for every flow. This would require complex, non-scalable
router implementation.

In this section, we investigate an alternative method that lies in between these two “ex-
tremes”. Flows within the same DiffServ class are partitioned into a fixed number of groups.
Flows are not further differentiated within a group, so onlythe statistics of whole groups are
measured. We argue, that this type of grouping can be implemented in a scalable, stateless
manner.

We expect that the more groups we make, the tighter bound can be given. The presented
numeric experiment suggests that a small number of groups are sufficient to approximate the
optimal, (but non-feasible), per flow measurement case. Theresult supports the DiffServ princi-
ple of handling only traffic aggregates from a theoretical aspect.

Effective Bandwidth Based on Measurement Groups

Let’s group theN flows in a DiffServ class intoG sets (groups).G can range from 1 (in this
case we have aggregate measurement only) to the total numberof flows (in this case per flow
measurements are done).

Theorem 5 Group flowsk = 1 . . . N into G groups: Ai, i = 1..G. Let ni = |Ai| denote the
number of flows in groupi. If we know thhe peak rates of flowshk, and we know the average
rate of the groupsMi =

∑
k∈Ai

mk, the effective bandwidth expression for the grouping case is

BW G(s) =
1

s

G∑

i=1

ni ln

(
Mi +

∑
k∈Ai

hk

eshk−1

ni

)

− 1

s

N∑

k=1

ln

(
hk

eshk − 1

)
+

γ

s
. (4.23)

whereHi =
∑

k∈Ai
hk.

Proof of Theorem 5First, rearrange the terms in the product in (4.11):

N∏

k=1

(
mk +

hk

eshk − 1

)
=

G∏

i=1



 ni

√√√√
∏

k∈Ai

(
mk +

hk

eshk − 1

)


ni

(4.24)

Applying the algebraic-geometric inequality among the groups we get

G∏

i=1



 ni

√√√√
∏

k∈Ai

(
mk +

hk

eshk − 1

)


ni

≤
G∏

i=1



 1

ni

∑

k∈Ai

(
mk +

hk

eshk − 1

)


ni

(4.25)

The proof concludes if we insert (4.25) into (4.10) of Theorem 2. �
A derivation of a closed form approximation for the optimals can be found in Appendix A.1:

sG
opt =

√
8γ

Ĥ −
∑G

i=1 (2Mi − Hi)
2 /ni

(4.26)
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We performed a test to see the magnitude of the gain achieved by grouping. Two randomized
set of flows were created with similar mean and peak rates within a group. Type-1 and type-2
flows have 100 kbit/s and 1 Mbit/s average peak rates and average mean-to-peak ratios of 0.5
and 0.1 respectively. A variety of traffic mixes were generated, such that the average rate of
the total traffic mix is 100 Mbit/s. The effective bandwidth of the random sets was calculated
using several formulas. In Figure 4.3a the overhead (BW −M ) is plotted forBW H (Hoeffding
bound),BW A and the grouping based expressionBW G. Thex axis shows the composition of
the traffic mix, indicating the percentage of type-1 flows. Inthe grouping case, flows were sorted
into two groups according to their type.

Figure 4.3b shows the ratio of the overheads ofBW A andBW G. It can be seen that the
required overhead suggested byBW A can be 40% higher than required byBW G. Without
group measurements this bandwidth is wasted. We also note that in this case the overhead
suggested by the optimal, but also architecturally expensive, per-flow measurement based bound
(BW O) is better than the grouping bound by less than 2%. This result suggests that more
detailed measurements would hardly improve the tightness of the estimation.
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Figure 4.3: Evaluation of several bounds for a varying traffic mixes consisting of two types
of sources. The traffic mix changes from consisting only type-1 (0%) to only type-2 sources
(100%). a) Overheads of the boundsBW H , BW G andBW A with the appropriate closed form
sopt expression. b) Ratio of the overheads obtained usingBW A andBW G.

Grouping Strategies

The tightness of (4.23) depends on the choices of the number of groups (G) and how flows are
classified into groups (Ai). The effective bandwidth expression (4.23) can be optimized for both.
For the classification problem a simple rule of thumb exists:if we select statistically “similar”
flows into the same group, the geometric mean will be closer tothe algebraic in (4.25), resulting
in tighter bandwidth estimation.

The term similar denotes flows withV (k) = mk + hk/(e
shk − 1) values close to each other
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(V (k) is the inner term in the product in (4.24)). The problem is nontrivial for several reasons:
s is an unresolved parameter,mk is not known, since it would need per flow classification. We
argue that it is still possible to group flows without complexclassification algorithms and without
keeping any state in the routers.

The idea originates from the fact that any grouping is betterthan no grouping; that is, group-
ing does not have to be optimal. Significant gain can be achieved by simply “guessing” what
group a packet should belong to. For example, grouping can bebased on any header field in the
packets, or locally available information, including, butnot limited to:

• DS code point (TOS field);

• IP protocol and port;

• higher layer application header fields (e.g., RTP);

• lower layer protocol fields (e.g., ATM VCI/VPI, MPLS label);

• SLA parameters, traffic contract;

• access type and speed; or

• any other known parameter that affects the traffic of the flow.

We argue that all these fields can be candidates for efficient grouping, since these fields
usually separate different types of applications or users,very likely having different statistics.
In Figure 4.4 we plot data measured in a company dial-in modempool, gathered during a four
week long period. The two histograms show the distribution of measured average rates of TCP
and UDP flows. From the measurement it is evident that even such rough grouping (i.e., based
on protocol type) leads to significant difference between the statistics of the two groups. The
reason for different statistics lies in the fact that different applications use different protocols.
In this case, the majority of UDP traffic is streaming media, while TCP is dominated by WWW
applications.

The effect of increasing the number of measurement groups isshown in Figure 4.5. For the
experiment a random set of flows is generated (see Figure 4.5a), it contains flows with highly
varying statistics (power-law distribution for the peak rates and uniform distribution for the
mean-to-peak ratios). The number of groupsG is increased to see how much gain is achieved
with different number of groups. For a certainG the flows are sorted by theirV (k) values and
are evenly divided intoG groups such thatN/G flows fall into each group. Figure 4.5b shows
the ratio of overheads ofBW G andBW A as a function of the number of groupsG.

The figure suggests that it is sufficient to use only a small number of groups, and any further
increase in the number of groups (e.g. per-flow measurements) does not give significantly higher
gain. In practice, this means that the grouping algorithms can be easily implemented in a real
network, and little extra complexity required compared to the purely aggregate based methods.
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Figure 4.4: Histogram of measured mean rates of modem flows containing a) UDP and b) TCP
packets.

4.3 Effective Bandwidth for Delay Sensitive Classes

In the previous sections, we investigated a “bufferless” case. The bufferless approach is suitable
to provide throughput guarantees but it is not able to limit small timescale fluctuations that
cause buffer build-ups influencing the end-to-end delay. InDiffServ networks, it is envisioned
that delay sensitive classes will share separate queues andresources. In these classes, resource
dimensioning and admission control have to take delay sensitivity into account.

In this section, we analyze a queue shared by delay sensitivesources. In the DiffServ context,
the queue can implement the Expedited Forwarding PHB. The sources are policed with token
bucket policers. Similarly to the previous section, the presented bounds rely only on aggregate
queue measurements.

4.3.1 Effective Load of a Traffic Aggregate

DefineXk[t], k = 1 . . . N as the number of bits sent by flowk into the network during a time
interval of lengtht. The average rate of flowk is mk = EXk[t]/t. The objective is to derive a
probabilistic bound for the total number of bits arriving tothe queue during a time interval oft:

Definition 2 LetB(t) be theeffective load of a traffic aggregate, if it satisfies

Pr

(
N∑

k=1

Xk[t] ≥ B(t)

)
≤ ǫ (4.27)

As in the case of the effective bandwidth bounds, our objective is to give simple, closed form
expressions. If flowk is policed by a token bucket policer, the amount of traffic is bounded by
an envelope for anyt [PaGa93]:

Xk[t] ≤ σk + ρkt (4.28)
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Figure 4.5: a) Random flow set. b) The gain in the overheads compared to the no-grouping case
(BW A). Note that thex axis is logarithmic.

or, if the peak rate is policed as well:

Xk[t] ≤ min(hkt, σk + ρkt) (4.29)

whereρk denotes the token rate andσk is the bucket size.
SinceXk[t] are positive bounded random variables, the bounds derived in Section 4.2 can be

easily applied to them, but instead of the symbol “X”, we have to write “Xk[t]”. For example,
the Hoeffding bound takes the following form:

BH(t) = Mt +

√√√√γ

2

N∑

k=1

min(hkt, σk + ρkt)2. (4.30)

BA(t), BV (t) andBG(t) can be similarly derived fromBW A, BW V andBW G.
As a result, we have a set of bounds that limit the amount of traffic entering a buffer. In

the following sections, Section 4.3.2 and 4.3.3, we establish relations between these bounds and
the maximum queuing delay in a First In First Out (FIFO) queue. The results can be used to
estimate the required resources for a traffic mix, or to limitthe traffic mix by admission control
in a delay sensitive DiffServ queue.

4.3.2 Bounding Delay by Limiting the Length of the Busy Period

One very simple way to control the delay within a queue is to limit the length of the busy period.
The busy period is defined as the time period during which the server is continuously busy.
Theorem 6 provides us with a simple test to check the delay guarantees.

Theorem 6 The delay in a FIFO queue of service rateC is probabilistically bounded bydmax

if:
B(dmax) ≤ Cdmax (4.31)
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whereB(t) is the effective load of the traffic aggregate.

Proof of Theorem 6There are two statements in relation to the length of the busyperiod:

1. If all busy periods are shorter thand, the queuing delay can not be larger thand either,
since the queue goes empty withind.

2. If the length of a busy period is longer thand, more thanCd bits arrived during the firstd
seconds of the busy period.

Thus, if B(ddmax) ≤ Cdmax, the lengths of all busy periods are probabilistically limited by
dmax. Consequently, the probability that the delay stays withinthe desired limit is also proba-
bilistically limited byd. �

Note that this probability does not equal the probability ofindividual packet delays exceed-
ing the delay limit, since once the delay limit is violated, several packets may suffer large delays.
Nevertheless, if this violation probability is kept at sufficiently small level, the packet delay will
be also effectively bounded. This is why we call our guarantees “soft”.

Theorem 6 can be directly used for admission control or dimensioning. In place ofB(t),
any of the probabilistic bounds,BH(t), BA(t), BV (t), or BG(t), can be inserted. The choice
of which B(t) is used may depend on implementation preferences. For example, for BV (t),
the variance of the number of bits during time intervals of length dmax has to be measured in
addition to the average rate.

In Figure 4.6, the number of admitted flows are plotted as a function of the delay guarantee.
BA(t) and BH(t) are compared for the cases when policing is done for(h, σ, ρ) or just for
(σ, ρ). It can be observed that under a certain delay limit (in this caset = σ/(h − ρ) = 8
ms) the peak rate is a stronger limit than the token bucket andthe maximum number of flows is
considerably higher than if only(σ, ρ) is policed for. If the delay requirement is above this delay
limit, the maximum amount of admissible traffic increases gradually, improving the statistical
multiplexing gain. This implies that for DiffServ classes where the per-hop delay tolerance is
small, peak rate policing can significantly improve the efficiency of resource estimation.

4.3.3 Bounding Delay by Using the Queue Occupancy Curve

In this section, several bounds based on the probabilistic occupancy curve of the queue are
presented. The resulting bounds are tighter, but also more complicated than the ones presented
in Section 4.3.2.

Definition 3 Theprobabilistic queue occupancy curve ∆O(t) is defined as a probabilistic up-
per bound on the queue lengthQ(t) during a busy periodt seconds after the start of a busy
period:

Pr (Q(t) ≥ ∆O(t)) ≤ ǫ (4.32)

wheret is measured from the beginning of a busy period.

Lemma 1 The buffer occupancy curve is related to the effective load:

∆O(t) = B(t) − Ct (4.33)
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Figure 4.6: Number of admitted flows in the function ofdmax. The flows are identical with
parameters:hk = 5, mk = 0.5, ρk = 1 Mbit/s andσk = 32 kbit. ǫ = 10−5, C = 1 Gbit/s.

The proof of this lemma can be found in Appendix A.2.

Theorem 7 The maximum delay in the queue is bounded bydmax with probabilityǫ if:

max
t≥0

∆O(t) ≤ Cdmax (4.34)

Proof of Theorem 7 Let t0 be the value where∆O(t) takes its maximum:∆O(t0) =
maxt≥0 ∆O(t). Relation (4.34) implies that

Pr (Q(t0) ≥ Cdmax) ≤ Pr (Q(t0) ≥ ∆O(t0)) (4.35)

If we apply Definition 3, we get

Pr (Q(t0) ≥ Cdmax) ≤ ǫ (4.36)

SinceQ(t0) ≥ Q(t) for ∀t > 0,

Pr (Q(t) ≥ Cdmax) ≤ Pr (Q(t0) ≥ Cdmax) ≤ ǫ (4.37)

That is, the queue lengthQ(t) is bounded probabilistically byCdmax. In case of work-conserving
FIFO buffer of service rateC, this amount of work is served withindmax. �

Theorem 7 gives a bound on the maximum delay if we know the queue occupancy curve,
which can be derived from the effective load of the aggregateusing Theorem 1.

In Figure 4.7, several occupancy curves are plotted for several B(t) bounds for a given
traffic mix. The maximum of these curves shows the delay that can be guaranteed. Significant
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difference can be observed between the bounds. For example,BA(t) always outperforms the
Hoeffding bound based formula. Also, token bucket policingcombined with peak rate policing
(h, σ, ρ) allows tighter guarantees compared to simple token bucketpolicing (σ, ρ), because it
restricts the occupancy curves neart = 0.
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Figure 4.7: B(t)/C − t as the function oft. The traffic mix contains two kinds of sources
2300 and 200 from each type respectively:h12 = [1, 7], m12 = [0.3, 1], ρ12 = [0.5, 1.5] Mbps,
σ12 = [20, 100] kbit, ǫ = 10−5, C = 1 Gbps

4.3.4 Practical Delay Bounds Based on the Queue Occupancy Curve

In this section, we derive practical closed-form bounds. The derived bounds have closed forms
and are easy to implement. For the ease of discussion, we chose the Hoeffding based effective
load formulaBH(t), which has the shortest form, although it is not the tightest.

Delay Bounds for (σ, ρ) Policing

Theorem 8 Assume that flowsk = 1 . . . N are policed by token bucket policers(σk, ρk). Delay
dmax is guaranteed in the queue, with probabilityǫ, if both relations (4.38) and (4.39) hold.

M +

√√√√γ

2

N∑

k=1

ρ2
k < C. (4.38)

√√√√γ

2

N∑

k=1

σ2
k < Cdmax (4.39)
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Proof of Theorem 8 If flows are policed by a simple token bucket(σ, ρ) and we choose the
BH(t) bound, the occupancy curve takes the following form:

∆OH(t) = Mt − Ct +

√√√√γ

2

N∑

k=1

(σk + ρkt)
2 (4.40)

This follows from (4.30) and Theorem 1.
It can be proven that∆OH(t) is a convex function oft. If

lim
t→∞

∆OH(t)′ < 0 (4.41)

it implies that∆OH(t) decreases monotonously. This is equivalent to checking if

M +

√√√√γ

2

N∑

k=1

ρ2
k < C. (4.42)

If ∆OH(t) decreases monotonously, it takes its maximum att → 0.

max
t

∆OH(t) = lim
t→0

∆OH(t) =

√√√√γ

2

N∑

k=1

σ2
k (4.43)

Theorem 7 states that if this expression is less thanCdmax, the delay is guaranteed. This con-
cludes the proof.�

The tests in Theorem 8 are very simple to perform either for flow admission control or off-
line network dimensioning. Note that (4.38) is similar to the bufferless boundBW H , with ρk as
peak rates. It can be regarded as a test for long-term stability. The second test (4.39) is needed to
ensure that even during short-term bursts, the delay is guaranteed. If the policer does not allow
any burstiness (i.e.,σk = 0), in that case (4.38) is equivalent toBW H indeed.

Delay Bounds for (h, σ, ρ) Policing

If flows are policed for a short-term peak rate as well(h, σ, ρ), a tighter closed from bound can
be given compared to the one in the previous section.

Theorem 9 Assume that flowsk = 0 . . . N are policed by (hk, σk, ρk) policers. The delay in
the queue is guaranteed to be less thandmax with probabilityǫ, if the following conditions hold:

M +

√√√√γ

2

N∑

k=1

ρ2
k ≤ C and (4.44)

∆OH(tk) < Cdmax (4.45)

for all k = 0 . . . N , wheretk = σk/(hk − ρk), andt0 = 0, and where

∆OH(t) = Mt − Ct +

√√√√γ

2

N∑

k=1

min (hkt, σk + ρkt)
2. (4.46)
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Proof of Theorem 9 It can be proved that (4.46) is a concatenation of convex sections (see
Figure 4.7 for an example). The concatenation points orbreakpointsoccur where for any flow
hkt = σk + ρkt. The first breakpointt0 is defined to be 0.

Between two breakpoints∆O(t) is convex, which implies that∆OH(t) has its maximum
at one of the breakpointstk. It is sufficient to check the relation in Theorem 7 at these points to
ensure the delay guarantee. Regarding the global maximum of∆O(t), two cases are possible:

1. No delay can be guaranteed as∆O(t) diverges to infinity ast → ∞. To test if this is the
case (4.38) can be used because after the last breakpoint (4.46) takes the same form as
(4.40).

2. ∆O(t) takes its maximum at one of the breakpoints. If the maximum value is below
Cdmax, the delay can be guaranteed.�

For example, in case of theBH curve of Figure 4.7, the second case holds and the maximum
is taken at the first breakpoint. The maximum value and so the guaranteed delay is less than
3 ms in this case.

When applying the bounds for admission control, checking the value of∆O(t) in several
breakpoints may be computationally expensive. However, itcan be expected that many flows
will have similar descriptors (service classes), in which case, they share breakpoints, reducing
the number of points to be tested to just a few.

The same algorithm can be used if flows are described by multiple token bucket descriptors.
(Only the number of breakpoints increases.) Multilevel descriptors characterize flows better and
lead to more efficient admission control [ZhKn94]. Flows with descriptors of different detail
e.g.,(h), (σ, ρ), (h, σ, ρ) or as complex as(h, σ1, ρ1, σ2, ρ2, . . .) can be mixed in the same queue
using the same formula.

To compare the various methods for delay sensitive classes,we generated a random traffic
mix, and plotted the number of flows from that traffic mix that fit into the link. Figure 4.8a shows
the bucket sizes and token rates of the flow mix (the average ofmk was 500 kbit/s). For tight
delay requirements significantly more flows could have been admitted from the same flow set if
they were policed for(h, σ, ρ) compared to(σ, ρ), see Figure 4.8b. This observation underlines
the importance of peak rate policing. Another observation is that the occupancy curve based
method significantly outperforms the method based on the busy period limitation. Finally, the
resource efficiency of both probabilistic methods is much higher than the deterministic method
of Parekh et al. [PaGa93, PaGa94]. Due to the statistical multiplexing of sources, the worst-
case scenario assumed by deterministic bounds is too conservative. This is the reason for the
significantly better performance of the statistical methods observed in Figure 4.8b.

4.4 Supporting Multiple DiffServ Classes using Static Priority Sched-
uler

In this section, a complex DiffServ router is discussed thathas multiple queues in every interface
for several service classes served with SPQ scheduling. Thetask of resource management is
ensuring the delay and loss guarantees in each DiffServ queue.
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Figure 4.8: Comparison of different methods for delay sensitive class. a) Random traffic mix
composition. b) The number of admitted flows from the traffic mix. Busy period limitation:
(solid line) (h, σ, ρ) policing, (circles)(σ, ρ) policing. Occupancy curve limitation: (dotted
line) (h, σ, ρ) policing, (stars)(σ, ρ) policing. Deterministic bound by Parekh and Gallager:
(squares).

Assume we haveL priority levels with one queue at each level, served in a fixedpriority
order. LetXa,b,c,... denote the set of flows in queuesa, b, c, . . .. The firstR (high priority)
queues provide different guaranteed delaydk (di ≤ dj, i ≤ j) with probability ǫk. The queues
R + 1 . . . L provide assured service with saturation probabilitiesǫk (ǫi ≤ ǫj, R < i ≤ j). See
Figure 4.9.

d_3

d_2

d_1

e_5

e_4

C

loss sensitive queues (L−R)
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Figure 4.9: Guaranteeing multiple service classes with SPQscheduling.

4.4.1 Bounds for Assured Forwarding Queues

Theorem 10 DenoteBW ǫ[A] as the effective bandwidth of a flow setA with probabilityǫ. The
saturation guaranteeǫk is ensured in the assured forwarding queuek, if

BW ǫk[X1...k] ≤ C (4.47)
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where any previously derived form of the effective bandwidth BW can be used.

Proof of Theorem 10Priority scheduling ensures that the traffic of queuek can only be
affected by traffic ink or higher priority queues, but packets in lower queues have no effect (we
neglect the impact of a possible, single, lower priority packet already in service). Therefore, to
check the guarantees of queuek, only the traffic of queuesj ≤ k has to be taken into account.

To guarantee the saturation probabilityǫk in the assured queuek (R < k ≤ L) we want to
ensure that

Pr




∑

i∈X1...k

Xi ≥ C



 ≤ ǫk (4.48)

Theorem 10 follows from the definition of the effective bandwidth. �

Using the above calculation, statistical multiplexing is exploited not only within a queue, but
among queues as well, since

BW ǫ[X1...k] ≤
k∑

j=1

BW ǫ[Xj] (4.49)

That is, the amount of resources required for a set of queues served by SPQ scheduling is less
than the sum of the effective bandwidths of individual traffic aggregates in separate queues.

4.4.2 Bounds for Delay Sensitive Queues

Delay sensitive queues are the firstR queues in the system (Figure 4.9). As in the case of assured
queues, when analyzing the delay of a queue, only the traffic in higher queues has to be taken
into account. To estimate the delay in a queue, we have to estimate how much service remains
from higher queues. For this, we can rely on per-queue trafficmeasurements. The following
theorem establishes a relation between the effective loadsof queues and the queue occupancy.

Theorem 11 The delay limitdk, in queuek, is exceeded with probability less than2ǫk if, for
∀t ≥ 0:

Bǫk [X1...k](t) − Ct ≤ Cdk − Bǫk [X1...k−1](dk) (4.50)

whereBǫ[A](t) is the effective load of flow setA and violation probabilityǫ.

In Theorem 11,Bǫk [X1...k](t) is the effective load of all queues through1 . . . k, but with the
guarantee of the lowest priority queue among themǫk. The following Lemmas are required to
prove the theorem. (The proofs of the Lemmas can be found in Appendix A.3).

Lemma 2 t seconds after the start of the busy period of queuek, the queue occupancy of queue
k is bounded probabilistically by

Pr (Qk(t) ≥ Bǫk [X1...k](t) − Ct) ≤ ǫk (4.51)
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Lemma 3 The amount of service queuek receives during timet is bounded by

Pr (Uk(t) ≤ Ct − Bǫk [X1...k−1](t)) ≤ ǫk (4.52)

Lemma 4 If X andY are two independent random variables, andPr(X ≥ c) ≤ ǫ andPr(Y ≤
c) ≤ ǫ,

Pr (X ≤ Y ) ≤ 2ǫ (4.53)

Proof of Theorem 11If for ∀t > 0

Bǫk [X1...k](t) − Ct ≤ Cdk − Bǫk [X1...k−1](dk) (4.54)

holds, Lemma 2, Lemma 3 and Lemma 4 imply that

Pr (Q(t) ≥ Uk(dk)) ≤ 2ǫk (4.55)

for ∀t > 0. The expression limits the queue occupancy below a certain valueUk(dk). If the
queue occupancy is less than the amount that can be served from this queue during timedk, the
queuing delay does not exceeddk only with a small probability2ǫk. �

4.4.3 Analysis of a Simple DiffServ Implementation

In this section, we apply the theorems developed for multiple SP queues. For simplicity, we
investigate a DiffServ router using just three queues for three traffic classes: the highest priority
queue serves EF, the second AF and the lowest priority queue serves BE traffic. The three queues
are served by a SPQ scheduler, at a rate ofC.

Based on Theorem 11, the delay in the delay sensitive EF queueis guaranteed if

Bǫ1[X1](t) − Ct ≤ Cdk (4.56)

This has the same form as the single queue case, so Theorem 8 can be applied here to check the
delay guarantees of the EF queue. Both relations must hold for the guarantee:

M1 +

√√√√γ1

2

N1∑

k=1

ρ2
k < C and

√√√√γ1

2

N1∑

k=1

σ2
k < Cdmax (4.57)

whereγ1 = −lnǫ1, ρk, σk, k = 1 . . . N1 are the token bucket parameters of flows in the EF
queue, andM1 is the average load of the EF queue.

The rate guarantee of the AF queue can be checked using Theorem 10, which takes the
following simple form:

BW ǫ2[X1,2] ≤ C (4.58)

Using the effective bandwidth expressionBW A from Theorem 3 we get

BW A(s) =
1

s

N∑

k=1

ln




M +

∑N
j=1

hj

eshj−1

N
· eshk − 1

hk



+
γ2

s
≤ C (4.59)
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and

sopt =

√
8γ2

Ĥ − (2M − H)2/N
whereH =

N∑

k=1

hk andĤ =
N∑

k=1

h2
k (4.60)

whereγ2 = −lnǫ2, N = N1 + N2 the total number of flows in both AF and EF queues, and
M = M1 + M2, the total average rate the two higher priority queues. The peak rate of the flows
in the AF queuehk is either an admitted value, or simply the access line speed.The peak rate
of the flows in the EF queue can be approximated by their token rateshk ≈ ρk if we intend to
guarantee the AF rate over a longer time period, i.e., over more than ofT ≈ σ/ρ, which is still
a reasonable timescale for the AF class.

4.5 Conclusions

In this chapter, we introduced a set of resource estimation methods for Differentiated Services
networks. These methods can be used for dimensioning, traffic engineering or admission con-
trol. The specialties of DiffServ were taken into account, namely aggregate traffic handling,
simple scheduling and traffic conditioning at the edges. We derived several effective bandwidth
expressions for assured and delay sensitive classes. Thesemethods utilize simple measurements
of the aggregate traffic in DiffServ queues, such as mean rateor variance. We showed that the
efficiency of bounds utilizing per flow measurements could beapproximated by using a small
number of measurement groups. Methods were given for delay sensitive traffic classes, utilizing
token bucket, peak rate or more complex descriptors and queue measurements. It was shown,
that peak rate policing considerably improves resource efficiency. Finally, a practical example
for a SPQ based DiffServ router implementation was discussed.

The proposed methods can be used in the core or the access partof a DiffServ network.
The assumptions on traffic flow statistics are general to any DiffServ enabled network, however,
the assumptions on the properties of lower layers limits theapplication of the methods to wired
networks. The most important such property is that the managed links are highly reliable and
their service rate can be regarded as being constant. In the case of wireless networks, these two
properties cannot be usually guaranteed. The next chapter discusses the wireless environment:
the challenges of the radio channel, the open issues in wireless DiffServ provisioning, and our
proposed solutions.



Chapter 5

Supporting Service Differentiation in
Wireless Packet Networks

In the past several years the Internet has started to penetrate the wireless world with the result
that the emphasis in wireless communication will be the support of TCP/IP based applications,
in contrast to the current circuit switched voice. It is envisioned that TCP/IP will be the glue
for all applications in future mobile environments, many ofthem requiring better than best-
effort services. Wireless access may be considered just another hop in the communication path.
Therefore, it is desirable that the architecture supporting quality assurances follows the same
principles in the wireless network as in the wireline Internet assuring compatibility between the
wireless and wireline parts.

There are two principal approaches to support better than best-effort services for Internet
based services in a future wireless network. The first approach starts from the conventional
circuit switched paradigm and extends it with datagram services. These systems are character-
ized by strict control over both the wireline and wireless resources, motivated by the argument
that such control, with its complex and sophisticated mechanisms and protocols, is necessary to
maintain good quality in the wireless environment [MoPa92][GPRS][NLB99].

Another increasingly popular approach is based on an important Internet design principle
that mandates that only minimal control and signaling is viable, since only simple mechanisms
can accommodate the diversity of applications in the Internet, let alone unforeseen future wire-
less applications. A good example for such a wireless technology is the IEEE 802.11 standard
[IEEE802.11], which in itself does not guarantee anything other than best-effort service for mo-
bile hosts using the Distributed Coordination Function (DCF). However, the IEEE 802.11 DCF
enables the fast installation of simple wireless access networks, with minimum management
and maintenance costs, and with virtually no requirement for cell planning. Similar distributed
algorithms are analyzed and compared in [Bhar98] [BDSZ94].

In the case of ad-hoc wireless networks, there is no notion ofa central entity. The dynamic
nature of ad-hoc networks makes it very difficult to dynamically assign a central controller, and
maintain connection, reservation and scheduling states, not to mention the difficulty of handling
overlapping coverage areas, in which case, nearby mobile hosts need to discover and negotiate
resources. Instead of introducing complex layer two signaling, distributed algorithms attempt to
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solve these problems in a more straightforward, although possibly less radio efficient manner.
In this chapter, we propose a set of algorithms that form a fully distributed wireless differ-

entiated services network based on:

• a distributed, differentiated services capable MAC;

• a distributed radio resource monitoring mechanism;

• service quality estimation; and

• distributed traffic and admission control.

Each of these components performs a well-defined task and canbe implemented in a fully
distributed manner, without the need of a central host. While our framework is generally appli-
cable to distributed wireless access schemes, we design, implement and evaluate our framework
within the context of existing wireless technology. Service differentiation is based on the IEEE
802.11 DCF. Supporting better than best-effort service over such a shared wireless channel using
distributed control algorithms presents a number of challenges, however.

The first challenge relates to the difficulty in providing service differentiation at the dis-
tributed wireless MAC layer. The impact of packet collisions, hidden terminals, fading and
interference suggests that such a radio environment lends itself more to soft service assurances
rather than deterministic ones. In this work, we take that lead from this observation and attempt
to quantify the level of assurance and service differentiation that can be delivered to Internet ap-
plications. This means that under such a regime quality measures can only be probabilistically
guaranteed where relative quality differentiation can be assured for different service classes.

Providing differentiated services in this manner requiresthat the radio MAC supports some
degree of separation between different types of services. We propose a modified IEEE 802.11
radio MAC algorithm for mobile hosts and base stations. The proposed MAC ensures that all
packets sent by a mobile host are differentiated and, more importantly, that differentiation is
effective among packets sent by other mobile hosts as well.

Providing service differentiation solely at the radio interface is insufficient to enable pre-
dictable behavior for individual traffic types, however. This leads to our next challenge. Network
cells may overlap significantly and service differentiation has to be maintained across cells. The
probabilistic assurances offered by such a wireless differentiated services MAC itself cannot en-
sure that traffic levels experienced by a mobile host are not only relatively better, but kept within
some absolute limit for acceptable application quality. Weaddress this challenge by proposing a
distributed solution without the need for any central control over multiple cells. In particular, we
propose a distributed traffic control algorithm, which maintains the traffic load such that the rel-
ative assurances offered by a differentiated services MAC also meet the absolute limits required
by the applications using better than best-effort service.

In response to these challenges, we develop theVirtual MAC (VMAC)andVirtual Source
(VS)algorithms that monitor the capability of the radio channeland passively estimate whether
the channel can support new service demands (e.g., delay andloss) taking into account both
local conditions and interference caused by external effects or overlapping cells. The Virtual
MAC channel monitoring capability is capable of collectinginformation about all transmissions
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in the proximity of a mobile host. Mobile hosts utilize this information to estimate the quality
experienced by other mobiles. The difficulty of estimation in this environment is that there
is little relationship between the monitored channel load and the delay or loss statistics of the
channel. The Virtual MAC and Virtual Source algorithms, which, based on the information
provided by a passive channel monitor, can efficiently estimate the necessary quality metrics
for different traffic classes. These “virtual algorithms” are passive and do not load the channel,
avoiding further increases of load in potentially congested wireless networks.

Based on the service quality estimations obtained from the virtual monitoring algorithms,
mobile hosts and base stations determine whether a new session with a particular service level
requirement should be admitted or not. In this chapter, we simplify traffic control and propose
an admission control solution that simply accepts or rejects real-time sessions. Admission is
granted if the average delay estimated by the Virtual Sourcealgorithm in the last time period
falls within a certain delay limit. We show that if all nodes use passive monitoring and base their
admission decisions accordingly, a globally stable state can be maintained even in multicell
environments.

In this chapter, we present the design, implementation and evaluation of a framework for
wireless differentiated services within the context of an IEEE 802.11 network. The principles
that underpin our distributed approach are based on minimalcontrol and signaling. While our
implementation is evaluated within the context of IEEE 802.11 the algorithms that support ser-
vice differentiation, radio monitoring and admission control are more generally applicable. We
recognize that such an approach can only deliver softer assurances in comparison to more tightly
coupled control systems. We argue, however, that distributed control is more scalable (i.e., pro-
vides minimum coupling between architectural components), extensible (i.e., one component
can be replaced or improved without the need to change other system components) and flexible
(i.e., in accommodating new and diverse needs of applications).

The structure of the chapter is as follows. Section 5.1 presents the related work on wireless
service differentiation and distributed control. Section5.2 discusses and analyses the achievable
service differentiation using a distributed approach. We analyze the delay experienced by a
mobile host implementing the IEEE 802.11 Distributed Coordination Function and derive a
closed form formula. We then extend the Distributed Coordination Function with the capability
to tune and set the backoff mechanisms to provide service differentiation for delay sensitive
and best-effort traffic based on the results from the analysis. In Section 5.3, we introduce the
Virtual MAC, which estimates key MAC level statistics related to service quality such as delay,
delay variation, packet collision and packet loss. We show the efficiency of the Virtual MAC
algorithm through simulation, and in Section 5.4, we implement and evaluate the Virtual MAC
in an experimental differentiated services wireless testbed. In Section 5.5, we present the Virtual
Source algorithm, which utilizes the Virtual MAC to estimate application level service quality.
The Virtual Source allows application parameters to be tuned in response to dynamic channel
conditions based on “virtual delay curves”. In Section 5.6,we demonstrate through simulation
that when these distributed virtual algorithms are appliedto the admission control of the radio
channel. Finally, we present some concluding remarks and discuss future work.
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5.1 Related Work

Effective wireless MAC protocols must find a good balance between the added complexity of
offering service guarantees for multiple service classes,most efficient use of available resources
and the ability to react promptly to failed transmissions [AMMP99]. A number of MACs in-
tended for third generation protocols are also analyzed in [AMMP99], some of which offer
probabilistic guarantees. In general, these MAC protocolsand wireless algorithms rely on cen-
tralized control.

In [LBS97] [NLB99] a numbers of wireless scheduling algorithms are analyzed, several of
which approximate optimal fluid fair scheduling even in the presence of location-dependent error
burst. However, these mechanisms rely on centralized control and the polling of backlogged mo-
bile hosts. These algorithms are analyzed using short memory models (e.g., CBR, Poisson and
MMPP), which have been shown to be inefficient when modeling real TCP/IP traffic [PaFl95].

A distributed architecture to support weighted rate differentiation among flows is introduced
in [NKSB99]. This proposal works in an end-to-end manner, where the end hosts adjust their
rate using the Additive Increase Multiplicative Decrease (AIMD) algorithm. Instead of using
packet loss, the AIMD actions are based on the observed end-to-end packet separation, which
is treated as a sign of congestion. The algorithm works over low bandwidth links assumes that
sources are greedy.

The IEEE 802.11 Point Coordination Function (PCF) is intended to support real-time ser-
vices by using a centralized polling mechanism. This mechanism is not supported by most
current wireless cards, however. In addition, cooperationbetween PCF and DCF modes leads to
poor performance [VeZa95].

We argue that distributed control for supporting real-timeservices is more efficient and flex-
ible than centralized control in the case of highly bursty traffic. We argue, that the basic IEEE
802.11 DCF standard, which is not capable of supporting better than best-effort services, can
in fact be extended to support service differentiation. TheDCF mechanism of IEEE 802.11 has
been investigated in numerous papers.

In [SoKr96] a distributed solution for the support of real-time sources over IEEE 802.11 is
discussed, which modifies the MAC to send short transmissions to gain priority for real-time
service. It is shown that this approach is capable of offering bounded delay. One disadvantage
of the design [SoKr96] is that it is optimized to meet the service needs of isochronous traffic
sources, which can be a significant limitation for applications with variable data rates.

The fairness of distributed control is investigated in [NKGB98]. A theoretic analysis of
the protocol can be found in [CCG98]. Analysis and protocol enhancements for the DCF are
presented in [BFO96] [WSFW97] [WWEW95]. Shared medium access in case of multicell
environments is analyzed using simulation in [ChLe99].

5.2 Distributed DiffServ Enabled Wireless Mac

Providing differentiated services in a mobile environmentrequires that the radio MAC supports
some degree of separation between different types of services. This separation is based on
the DiffServ field in IP packets [BBCD98]. A “DiffServ enabled MAC” has to ensure that
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available radio resources are shared among active users, while at the same time ensuring that
different traffic types receive service in a differentiatedmanner. The ideal radio MAC is adaptive
and robust to both internal and external dynamics; that is, it offers effective protection for the
differentiated traffic classes against traffic fluctuationsin lower classes. The MAC should also
be robust to changes in the external environment, for example, growth of traffic in a cell must
have a predictable and limited effect on the delay and loss experienced by all service classes in
neighboring cells.

We argue that decentralized and adaptive mechanisms can more efficiently solve these prob-
lems in comparison to centralized ones. Distributed control of the radio resources may result in
more productive use of radio resources. Distributing control of the radio resources allows mo-
bile hosts within the same class to compete for radio resources and achieve acceptable fairness,
while at the same time offering differentiated access to different service classes.

We propose a simple modification of the IEEE 802.11 radio MAC algorithm that runs in
mobile hosts and base stations. The proposed MAC ensures notonly that packets sent by the
host itself are differentiated, but more importantly, thatdifferentiation is effective among pack-
ets sent by other mobile hosts as well. Furthermore, IEEE 802.11 network cells may overlap
significantly where service differentiation has to be maintained across cells. We show how this
can be achieved in a distributed manner without any central control over multiple cells.

5.2.1 IEEE 802.11 MAC Distributed Coordination Function Protocol

The IEEE 802.11 MAC DCF protocol is a Carrier Sense Multiple Access with Collision Avoid-
ance (CSMA/CA) protocol. In the DCF mode, a station must sense the medium before initiating
the transmission of a packet. If the medium is sensed as beingidle for a time interval greater than
a Distributed Inter Frame Space (DIFS) then the mobile host transmits the packet. Otherwise,
transmission is deferred and a backoff process is entered. Specifically, the station computes a
random value in the range of 0 to the so-called Contention Window (CW ). A backoff time
interval is computed using this random value:Tbackoff = Rand(0, CW ) ∗ Tslot, whereTslot

is the slot time [IEEE802.11]. This backoff interval is thenused to initialize the backoff timer.
This timer is decreased only when the medium is idle. The timer is frozen when another station
is detected as transmitting. Each time the medium becomes idle for a period longer than DIFS,
the backoff timer is periodically decremented once every slot-time.

As soon as the backoff timer expires, the mobile host accesses the medium. A collision
occurs when two or more mobile hosts start transmission simultaneously in the same slot. An
acknowledgement is used to notify the sending station that the transmitted frame has been suc-
cessfully received. If an acknowledgement is not received,the station assumes that the frame
was not received successfully and schedules a retransmission, reentering the backoff process. To
reduce the probability of collisions, after each unsuccessful transmission attempt, the Contention
Window is doubled until a predefined maximum (CWmax) is reached. After a successful or un-
successful frame transmission, if the station still has frames queued for transmission, it must
execute the new backoff process.

To deal with the hidden terminal problem the MAC protocol canuse a short Request To
Send (RTS) – Clear To Send (CTS) negotiation before sending adata packet. This reduces the
collision probability for data packets but increases the protocol overhead.
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5.2.2 Delay Analysis of the Distributed Coordination Function

Previous work has analyzed the IEEE 802.11 DCF mode from several different perspectives,
including fairness, throughput and the effect of hidden terminals. We are interested, however, in
analyzing the kind of delay guarantees that can be achieved using DCF. Furthermore, we would
like to determine how sensitive these guarantees are to certain channel conditions and MAC
parameterization, (e.g., channel utilization, average packet size, contention window sizes). We
derive a closed form formula for the delay of the packets originated from a single traffic flow on
a channel occupied with background traffic. We use this analysis to guide the configuration of
our modified DCF MAC.

Denote the mobile host sending the traffic flow under investigation as the “tagged host”, and
all other packets generated by other mobile hosts as the background traffic. Assume that each
packet in the background has a transmission timeL, which duration includes the time needed for
RTS/CTS/ACK transmissions as well. Assume that the time between the last bit of a background
packet and the first bit of the next background packet is exponentially distributed with average
1/λ. Also assume the tagged traffic only occupies a small portionof the total channel utilization,
(i.e., its effect on the background traffic is negligible).

The average channel utilizationU can be approximated as,

U =
L

L + 1/λ
(5.1)

λ =
U

L − L · U (5.2)

When a tagged packet arrives, the mobile host senses the channel and sends the packet if
the channel appears to be idle. If the channel is busy or a collision occurs, the MAC invokes
the backoff procedure and delays the transmission, otherwise, the tagged packet is sent. Assume
each tagged packet has a transmission timem, andm < L . Denoted′ as the average delay con-
ditional on the backoff procedure. The average delayd of the tagged packet can be approximated
as,

d = U · d′ + (1 − U) · m (5.3)

Denoted′i as the total deferred time during the i-th backoff period. According to the 802.11
protocol, the backoff timer is only decreased when the channel is idle. Denotebi as the random
deferred time chosen by the DCF algorithm during the i-th backoff, wherebi is a uniformly
distributed random variable in the interval[0, CWi] times the length of a backoff time slot
Tslot. During the i-th backoff period, a number of background packetski are sent. Because the
idle time between two background packets is exponentially distributed,ki is a Poisson random
variable with averageλbi. In the first backoff, the delay also includes the residual background
packet lengthL′ , which causes the backoff in the first place. In the subsequent backoffs caused
by collisions, the delays include the length of the colliding background packetL.

Adding all the above together, the i-th deferred timed′i can be written as,

d′i =

{
L′ + kiL + bi for i = 1
kiL + bi + L for i > 1

(5.4)



5.2 Distributed DiffServ Enabled Wireless Mac 89

The probability of collision after a backoff, denoted asp, can be estimated as the probability
that a transmission attempt of a background packet starts exactly in the same time slot as chosen
by the tagged host, otherwise the tagged station would sensethe packet and could avoid collision.

p ≈ λTslot (5.5)

The average value of the total accumulated deferred time,d′ = E[
∑

di], takes into account
occasional retransmissions and consecutive backoffs, andcan be estimated as,

d′ =

∞∑

i=1

E
[ i∑

j=1

d′j | i backoffs
]
(1 − p)pi−1 + m (5.6)

=

∞∑

i=2

( i∑

j=2

E
[
(kj + 1)L + bj | i backoffs

]
+

E
[
L′ + k1L + b1 | i backoffs

])
(1 − p)pi−1 +

E
[
L′ + k1L + b1 | 1 backoff

]
(1 − p) + m (5.7)

The contention windowCW ranges from2Wmin to 2Wmax . In the j-th backoff period the
backoff timebj is chosen randomly in the range of[0, 2Wmin+j−1]Tslot until we reach the maxi-
mum backoff time, when it is chosen from[0, 2Wmax−1]Tslot. The average backoff time is thus,

E[bj ] =

{
Tslot · 2Wmin+j−2 for 1 ≤ j ≤ Wmax − Wmin + 1
Tslot · 2Wmax−1 for j > Wmax − Wmin + 1

(5.8)

In the j-th backoff period, the randomly chosen backoff timeis bj . Given this choice, the
average number of background packets that arrive before thebackoff timer expires is E[kj |
bj ] = λbj . The average number of packets is thus E[kj ] = λE[bj ]. The average residual packet
time isE[L′] = L/2.

Let u = Wmin − 1, v = Wmax −Wmin. Given these notations, the final, closed form result
is,

d′ = 2u · Tslot · (Lλ + 1)

(
1 − (2p)v+1

1 − 2p
+ 2v pv+1

1 − p

)
+

L

1 − p
− L

2
+ m (5.9)

Put d′ in equation (5.3), we have the estimated average delayd as a function of the channel
utilization U .

Figure 5.1 shows a comparison between the analysis and the measured delay from our dif-
ferentiated services wireless testbed. We compared the measured average delay of a tagged host
at increasing levels of background traffic loads. The taggedsession generates 120 byte long
packets every 0.02 seconds, the length of background packets is 1500 bytes and the channel rate
is 11 Mbps. The background traffic rate is gradually increased to the saturation point in small
incremental steps. At every step the average delay of taggedpackets is calculated. The result
shows that the estimated average delay closely matches the measured delay. Section 5.4 presents
detailed description of our wireless testbed and the configuration for these results.



90 Supporting Service Differentiation in Wireless Packet Networks

0 100 200
time [s]

0.5

1

1.5

2

2.5

de
la

y 
[m

s]

Figure 5.1: The comparison of the analysis and measured results. Packet delays of single session
vs. increasing background load (running average) for a channel rate of 11 Mbps.

5.2.3 Discussion on Backoff Timers and Service Differentiation

We have previous described how initial values used by the backoff procedure are determined
using theCW parameter, which increases exponentially towards an upperbound as the backoff
procedure is reset for a given transmission. In other words,the more transmission attempts for a
given packet, the larger theCW , and so the longer the time between transmission attempts.

Backoff times are set to a random value in the range[0, CW ]∗Tslot. After a collision, a new
backoff time is chosen but with an increasedCW value. After every successful transmission,
CW is reset to an initial valueCWmin. We propose to support at least two service classes,
high priority (i.e., premium service) and best effort. Setting differentCWmin values for each
service class means that for two or more packets entering a backoff procedure at the same time,
but with differentCWmin values, the packet with the smaller value ofCW is more likely to be
transmitted first. Even if collisions occur, all MACs increaseCW at the same rate and it is likely
that theCW of high priority packets remain lower than that of low priority packets. with the
result of experiencing smaller average delays. Intuitively, even during highly congested periods,
all classes have increased delays but still in a differentiated manner.

By decreasing the maximum CW limit,CWmax, for a service class, the maximum backoff
time can be limited during congestion. This limits the rangeof congestion control, thus we
trade lower delay for increased collision probability, andeventually larger packet loss ratio.
Nevertheless, we argue that for better than best-effort services it is preferable to drop a packet
than to delay it excessively.

The analysis in the previous section can be used to address the issue of how backoff values
impact the average MAC delay for different levels of channelloads. OnlyWmin andWmax

values have to be modified in the equations accordingly. Figure 5.2 shows the estimated average
delays for increasing levels of utilization for several choices ofCWmin = 2Wmin = 8, 16, 32
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and 64.
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Figure 5.2: Estimated average delays for different values of CWmin and increasing level of
channel utilization, whileCWmax = 1024 is kept constant. Channel rate is 11 Mbps.

The analysis shows that by setting different values ofCW differentiated levels of service can
be achieved. We note, however, that the results of the analysis should be treated as qualitative
results only since some of the assumptions made in the model are too simple when one considers
highly bursty traffic scenarios. In the next section, we simulate realistic traffic mixes for TCP
and UDP sources, and explore the achievable service differentiation using these simple means
of control.

5.2.4 Evaluation of the Modified MAC to support Service Differentiation using
Simulation

Initially, the degree of separation between high priority and best-effort traffic for different values
of CWmin andCWmax is investigated for a fixed traffic mix consisting of delay sensitive voice
sources and best-effort TCP transmissions. We used networksimulation for the evaluation of
the proposed mechanisms. For simulation, we use the ns-2 network simulator developed by the
VINT Project [NS] with the wireless extension produced by the MONARCH Group [CMU].

The traffic mix we consider consists of 5 hosts sending high priority voice traffic and 10
mobile hosts starting best effort greedy TCP connections. Voice traffic was modeled using an
on/off source with exponentially distributed on and off periods of 300ms average each. Traffic
was generated during the on periods at a rate of 32kbps with a packet size of 160 bytes, thus the
inter-packet time was 40ms. During all simulations the channel rate was 2 Mbps.

We ran a set of tests for this traffic mix with varying values ofCWmin for both traffic classes.
For high priority traffic, theCWmin values varied between [8,32], theCWmin for best effort
traffic varied between [32,128]. A value of 32 is the proposedby the standard [IEEE802.11],
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which applies to the case when only best effort traffic class is supported. We chose this value to
be the delimiter between the two traffic classes under test. The values chosen for high priority
traffic range below this value. A value of 8 is proposed by the standard as an absolute minimum.
By using the values above 32 for the best effort traffic class,the ranges do not overlap, and for
all combinations it is assured thatCW highprio

min ≤ CW lowprio
min . Based on the intuitive discussion

in the previous section, the maximum contention window for the high-priority class was lowered
to CW highprio

max = 64, while the upper limit for the low priority class was set to the recommended
value ofCW lowprio

max = 1024.
In both intervals 5 values were chosen to cover each range ofCWmin values. Simulations

were performed for all 5x5 combinations covering the whole plane. Packet delays were logged
for both high and low priority traffic classes.

Figure 5.3 shows the summary of the simulation results. The x-axis corresponds to the
CWmin of the best-effort packets. It can be observed that increasing this value results in
larger delays for best-effort traffic and somewhat decreasing delays for real-time traffic. The
delay for real-time sources is more significantly affected by their CWmin values (see dashed
lines), while the delays of best-effort packets are not affected greatly by the value chosen
for real-time sources (straight lines). For all combinations (apart from the trivial case where
CW highprio

min = CW lowprio
min = 32) the streams in different traffic classes experienced differenti-

ated delay. The experiment supports the argument that the delay differentiation can be increased
by increasing the gap betweenCW lowprio

min andCW highprio
min , i.e., decreasingCW highprio

min and
increasingCW lowprio

min .
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Figure 5.3: Average delay experienced by voice and TCP flows for varying values ofCWmin.
The x axis is theCWmin for best-effort traffic. Different symbols represent different CWmin

for high-priority traffic. Channel rate 2 Mbps.

The previous test demonstrated that effective service separation is possible by appropriately
adjusting the backoff times through the contention window limits. However, it is still an open
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question whether this separation can be effectively maintained across a wide range of traffic
loads for moderate to high congestion. In the next test, the robustness of service separation is
investigated by simulating increasing levels of traffic up to the level of channel saturation.

During simulation, the channel load is increased by adding anew voice, video (64kbps con-
stant rate source) and TCP session periodically every 5 seconds. The voice and video sources
useCWmin andCWmax values of 16 and 64, while the TCP traffic uses 128 and 1024, respec-
tively. Figure 5.4 shows the delay throughout the simulation for the three traffic types. It can
be observed that the delay increases for all service types but the delay separation is efficiently
maintained from low load up until the channel is saturated.

For best-effort traffic the achievable throughput is of moreimportance than delay. Figure 5.5
shows that the modified MAC enables the best-effort adaptiveTCP traffic to utilize any free
capacity unused by high priority sources. It can be observedthat even at the saturation point, the
TCP traffic is not completely starved. This is due to the statistical and non-deterministic nature
of service separation.
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Figure 5.4: Average delay experienced by gradually increasing the number of TCP and real time
sources over time. Channel rate 2 Mbps.

The modified MAC provides good service differentiation in terms of throughput and delay
over a wide range of high priority and best effort traffic mixes. We investigate more dynamic
traffic scenarios in Section 5.6.

5.3 Estimation of Available Resources using a Virtual MAC Algo-
rithm

Many aspects of the wireless channel preclude exact controlof resources (e.g., channel fading or
interference). Furthermore, the lack of cell planning and shared resources in the access network
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Figure 5.5: Aggregate throughput of high priority and best effort traffic classes: number of TCP
and real time sources increase over time. Channel rate is 2 Mbps.

may result in densely packed base stations severely degrading the available capacity, as perceived
by neighboring base stations. The MAC described in the previous section ensures effective
service differentiation even in the case of overlapping cells and high traffic loads. However, to
support real-time services it is not sufficient to ensure that high priority traffic gets better service
than best effort, as in most cases, applications require absolute and not relative service quality,
(e.g. for voice or video). If a mobile host realizes that the channel is not able to meet its delay
and loss requirements, it can either refrain from loading the channel or reduce application traffic
demands, (e.g., by increasing compression). In order to make this decision the host has to rely
on accurate estimations of the achievable QoS of the radio channel.

The difficulty of this problem is that measuring simple channel properties, such as channel
utilization is not sufficient to estimate the loss and delay statistics of a new session. The reason
for this is that the actual QoS depends on a number of factors,(e.g., the actual arrival pattern of
packets or the ratio of hidden terminals). The analytic models published in the literature usually
focus on one of these aspects, and make a number of assumptions about the other aspects. Fur-
thermore, the traffic models used are usually simplistic forreal traffic scenarios, (e.g., assuming
only long, greedy sessions). Even if the analytic models were more accurate, and could take into
account the relevant modeling issues, parameterising themwould be an extremely difficult task.

To overcome the problem of channel modeling we take a more pragmatic approach: instead
of modeling the interaction of MAC, the radio channel and background traffic load, we introduce
a Virtual MAC (VMAC), which emulates the behavior of the MAC performance. We argue
that the algorithm is accurate, can be easily implemented, and scales to high data rates. To
prove these claims, we implemented the virtual MAC algorithm on a mobile host accessing a
11 Mbps wireless LAN. The efficiency of the algorithm and the implementation are discussed
in the section below.
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5.3.1 Operation of the Virtual MAC Algorithm

The VMAC algorithm operates in parallel to the real MAC in themobile host but the VMAC
does not handle real packets; rather, it handles “virtual packets”. Scheduling of these virtual
packets on the radio channel is performed in the same way as for real packets, which means
channel testing and random back-off is performed, as necessary. The difference arises when
the Virtual MAC decides to send a virtual packet. Unlike the case of real packets, no packet
is transmitted at this point. Rather, the Virtual MAC algorithm estimates the probability of
collision if the virtual packet was “really” sent. To make the algorithm conservative, a collision
is “detected” whenever any other mobile station chooses thesame slot for transmission, (i.e.,
the channel is occupied by any station within the same slot time). In this case, the Virtual MAC
enters a back-off procedure, as a real MAC would do after a collision had occurred.

For a real MAC, collision detection is realized using a timer, which expires if neither a CTS
in response to an RTS nor an ACK in reply to a data packet arrives in time, depending on the
operation. If no CTS or ACK has been received before this timer expires then the real MAC
assumes that a collision has occurred and the packet must be retransmitted. At this point a real
MAC would begin a backoff procedure. The Virtual MAC does notdetect collisions in this
manner. Rather, it decides that a collision would have happened if a transmission occurs in the
timeslot determined by its congestion avoidance algorithm. In other words, the Virtual MAC
detects “virtual collisions” immediately and not through using a timer. Thus, the VMAC enters
the backoff procedure after a delay equal to that of an RTS timer in a real MAC.

If no collision occurs, the MAC delay is estimated by the total defer time accumulated plus
the time to fully acknowledge the packet (e.g., if RTS/CTS isenabled it isd = tdefer + tRTS +
tCTS + tpacket + tACK + 3tSIFS + 3τ whereτ is an estimate of the maximum propagation
delay). An example of the operation of the Virtual MAC is illustrated in Figure 5.6.

defer

Virtual packet
Virtual MAC delay

RTS

CTS ACK

DATA

Virtual Packet (with overheads)

Packet "Sent"

Channel State

Figure 5.6: An example of the operation of the Virtual MAC algorithm. The channel state
indicates an idle (state is high) or busy (low) channel. A virtual packet arrives during a busy
period and the deferred timer is decremented during a short idle period, and virtual transmission
happens during the next idle period, when the deferred timerexpires.

The virtual MAC emulates not only backoff and collision resolution aspects of the real MAC
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but all other aspects of a real MAC are also emulated. For example, packet loss is signaled
by the VMAC if the maximum number of “retries” is reached. It also adjusts the contention
window by doubling the window until it reachesCWmax, when it stops increasing it further. If
a transmission is successful then the contention window is reset.

After every successful or failed “transmission”, the VMAC waits for the next virtual packet
to process. If, for example, the packets arrive at the VMAC ata rate of 20 ms and with size of
80 bytes, the output of the VMAC algorithm will closely matchthe delays experienced by a real
constant rate encoded voice application.

One of the key advantages of the VMAC algorithm over analyticmodels is that it does
not produce just a small set of performance measures, (i.e.,estimates of first order statistics).
Rather, it produces a time series that can be identically analyzed to a time series produced by a
real test. Consequently, there is no limit on using higher order statistics, which makes it possible
to apply more sophisticated analyses and traffic control methods. For example, not only thenth
moments of the delay can be calculated but also percentiles,burstiness, traffic envelopes, number
of errored seconds, etc., which are more closely related to user perceived quality measures.

The VMAC can be applied to estimate the performance of eitherbest effort or better than
best effort traffic by changing the MAC mechanism to match thechanges discussed for service
differentiation in Section 5.2. These estimates can be usedfor a variety of traffic control algo-
rithms. In the proposed architecture, we use the VMAC algorithm to estimate the QoS of better
than best effort traffic, and base the admission decision on that estimate.

5.3.2 Evaluation of the Virtual MAC Algorithm

Fig 5.7 shows results from a simulation test of the efficiencyof the Virtual MAC algorithm.
The figure shows the simulated and the VMAC estimated delays experienced by a new real-
time voice source for an increasing number of homogeneous voice sources. The estimation is
precise over the whole range of traffic loads, most importantly in the saturation region. Thus, it
is suitable for evaluating the admissible capacity of the channel for real time traffic.

Figure 5.8 shows the results for a more complex simulation test where voice traffic is mixed
with an increasing number of “Web sources”. The Web sources are modeled by short TCP file
transfers where the file sizes are drawn from a Pareto distribution with mean file size of 10kbps
and shape parameter 1.2. The length of the silent period between two downloads is also Pareto
with the same shape parameter and mean delay of 10s. This creates a highly bursty background
data traffic load with multiple time-scale fluctuations [LTWW93] [CrBe96] [TWS97]. The TCP
load is sufficient to saturate the channel by itself.

The figure shows two scenarios. In the first, the voice source is not prioritized over the data
sources. In the second, the MAC algorithm is modified, as discussed in the previous section for
the voice source. The results show that the VMAC algorithm efficiently estimates the delay. In
both cases, the estimation is conservative and the mean delay is about 1-2 ms greater than the
result obtained by simulation. Another important observation is that priority for voice provides
significantly smaller and smoother delay and delay variation values in the case of highly bursty
data traffic. Without modifying the MAC for voice, the voice packets have to compete with data
packets, which, since the data traffic is much burstier, doesnot only increase the voice packets’
delay but also increases the delay variance, as shown in Figure 5.8.
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Figure 5.7: Virtual and simulated average MAC delay of a new voice source versus the number
of active voice sources.

5.4 Implementation of the Virtual MAC Algorithm in a Wireles s
Testbed

Since the wireless DiffServ MAC can only offer soft and relative differentiation, it is impor-
tant that the mobile hosts have accurate estimations of the channel. There are several issues
concerning the VMAC that can only be satisfactorily evaluated in a real wireless network with
real applications. In what follows, we describe a wireless differentiated services testbed and its
VMAC implementation. In addition, we compare the estimatesgiven by the VMAC and the
performance perceived by real applications.

The VMAC was implemented on a Linux machine with a modification to the wireless card’s
device driver. We used 11 Mbps Lucent and Aironet PCMCIA cards in the experiments. These
cards, with the modified drivers, are capable of capturing all “overheard” layer two transmis-
sions,(e.g., CTS, RTS, ACK packets, even with CRC errors). Packets were timestamped with
approximately microsecond precision. This traffic trace was used as input for the VMAC algo-
rithm. In a commercial implementation, the VMAC could be placed into the firmware of the
wireless card and would operate in real-time.

The testbed generates traffic mixes of TCP and UDP flows, with different levels of offered
load, as illustrated in Figure 5.9. The wireless testbed consists of 6 hosts with 11 Mbps IEEE
802.11 PCMCIA cards. All mobile hosts were configured to operate in DCF ad-hoc mode. Three
of the mobile hosts (indicated as TCP hosts) were used to generate random TCP traffic. The TCP
hosts transferred random length files independently of eachother using TCP. The average file
size was 50 kbytes. Between file-transfers each host waited arandom duration before the next
transfer was started. Adjusting the average idle time modified the load on the channel. The UDP
host generates packets every 20 ms at a data rate of 32 kbps, resulting in a voice-like traffic
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Figure 5.8: Average delay (a) and delay variation (b) of a newvoice source obtained by sim-
ulation and from the virtual MAC algorithm, versus number ofWeb sources with and without
priority for voice traffic. Channel rate is 2 Mbps.
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Figure 5.9: Testbed configuration.

Because the cards do not support APIs to change the contention window limits, all sources
use the same backoff algorithm, using factory set default values. Therefore, we were not able to
evaluate the previously proposed DiffServ MAC but we could still evaluate the accuracy of the
VMAC algorithm.

The UDP host logged the delays of the wireless MAC. This was achieved by modifying the
wireless card network driver to capture all packet processing events together with an accurate
timestamp at a resolution of approximately one microsecond. The resulting log file consists of
packet arrivals to the MAC, packet sizes, MAC deferred delays and indications of successful or
unsuccessful delivery.

The fifth host acted as a traffic monitor and executed the VMAC algorithm (indicated in the
figure as the VMAC host). The VMAC host logged a similar file as the UDP host but this file
consisted of estimated delays provided by the VMAC algorithm.
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During the experiment the channel utilization gradually increased up to its saturation point
by decreasing the average idle time from 10 to 0 sec. Figure 5.10(a) shows the physical level
channel utilization vs. time. The maximum channel utilization reached was approximately 70%.

The measured UDP delay statistics and the estimated delay statistics from the VMAC al-
gorithm are shown in Figure 5.10(b). It can be observed that the VMAC implementation could
estimate the measured delay with excellent precision during the entire experiment for all chan-
nel loads. Thus, mobile hosts running passive monitors and VMACs can rely on precise quality
feedback for traffic control purposes.
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Figure 5.10: a) Measured channel utilization with increasing TCP traffic. b) Average delay of
UDP traffic. Channel rate 11 Mbps.

5.5 Estimation of Application Level QoS using a Virtual Source Al-
gorithm

The VMAC measures virtual packet delays, packet losses and collisions at the MAC level. The
delay experienced by an application can be very different than the delay provided by the MAC.
The reason for this is that application level data usually has to be packetized, encoded and placed
into an interface queue before the MAC layer receives it.

Also, even the estimated MAC layer delay depends not only on the channel but also the
arrival pattern of packets at the MAC. This effect can be due to the correlation structure of the
traffic load on the channel. These factors are taken into consideration by the Virtual Source (VS)
algorithm. For certain applications, running the VS can provide more precise estimates of the
achievable performance. In addition, the VS makes it possible to tune certain application level
QOS parameters.

The VS algorithm consists of a Virtual Application, interface queue and Virtual MAC. The
Virtual Application generates virtual packets, as a real application would do (e.g., generating
virtual voice packets at a constant rate). Packets are time-stamped and placed in a virtual buffer.
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When the virtual packet is finished processing in the VMAC, the total delay is calculated com-
paring the actual time to the timestamp stored in the packet.

Although the VS gives a more useful estimation for an application, the VS is not as generally
applicable as the VMAC, since it requires that the application traffic is well known in advance.
Nevertheless, we believe that there are a number of important applications that fit into this cat-
egory such as constant bit rate encoded voice or video. If theapplication traffic is not easy to
emulate then traffic management falls back to the estimations provided by the VMAC, which is
independent of application type.

5.5.1 Virtual Delay Curves

The application delay depends on several factors. Certain factors depend on the application
(e.g., packet size, packet rate), others depend on the load of the channel. The VS algorithm
monitors the channel continuously and estimates the application performance taking into account
these factors. Thus, the VS algorithm can be used to find the optimal parameters for the best
application performance. Intuitively, at the same data bitrate, the application delay can be
reduced by increasing the packet rate, since it reduces the packetization delay. In contrast,
higher packet rates load the radio channel more. Higher rates cause more collisions, increasing
the average contention window. This eventually leads to larger MAC delays. In addition, higher
packet rates mean smaller data packets, which results in larger protocol overhead, (i.e., larger
load on the radio channel). Thus, even at the same application bit rate, there is a tradeoff between
packetization delay and MAC delay.

Denote the functiond(prate) as the virtual delay curve of an application, whereprate is the
packet inter-arrival time of the application, e.g.,prate = 0.02 packets per second for voice,
but the data bit rate is kept constant, i.e.,psize ∗ prate = const (wherepsize is the size of the
application level packet). The virtual delay curve atprate gives the average delay of virtual
packets if the VS algorithm generates packets at the rate ofprate. The mobile host or the base
station runs VS algorithms with severalprate values in parallel. Delay curve can be constructed
from the virtual packet delays obtained from the VS algorithm. Similarly, we can define the
virtual delay variance curvev(prate) which calculates the virtual delay variances, respectively.
Based on the delay curve, a mobile host or base station can choose the optimal packet rate and
packet size so that an application experiences minimum delay and delay variance.

Figure 5.11 shows the virtual delay and variance curves for avirtual voice source at several
background traffic loads. It can be observed that in the case of low background traffic (N = 20
“Web” sessions) the delay curve increases monotonically, which means that the best end-to-
end delay can be achieved if the packet rate is high and the application sends small packets.
The estimation of delay variance appears to be constant. As the background load increases, the
MAC delay increases, and the optimum is not at the highest rate but at about 20 ms. The delay
variance also decreases as the inter-packet times increase.
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Figure 5.11: Virtual delay and delay variance curves at several radio channel loads,N denotes
the number of background Web sessions. Web traffic usesCWmin = 31 and the virtual algo-
rithm usesCWmin = 8. Channel rate 2 Mbps.

5.6 Distributed Admission Control Algorithm in a Multicell Envi-
ronment

A mobile host can use the VS and the VMAC estimates before actually starting transmission.
Because the virtual algorithms do not require high processing capacity and do not load the
channel, they may run continuously and not only when a service request arrives. In other words,
the virtual algorithms are designed to continuously keep track of the health of the channel.

This estimate can be used to apply traffic control to maintainthe congestion of the channel at
a low level and the relative performance guarantees provided by the DiffServ MAC at absolute
levels. There are numerous ways to utilize these estimates from the VMAC and VS algorithms.
For example, elastic, best-effort traffic can be policed or shaped in response to estimation of
congestion. Premium, delay sensitive sessions are usuallynot elastic, thus admission control
is more appropriate to control them. In this section, we apply the latter type of traffic control.
However, we note that adding some sort of control for best effort traffic may further improve
the quality assurances. Every mobile host keeps track of thestate of the channel using either
VMAC or VS. The admission control algorithm compares the results of the VS and VMAC with
the service requirements and admits or rejects a new sessionaccordingly. For admission we
only use the average delay estimation over the last few seconds. The admission algorithm runs
in every mobile host and is performed in a fully distributed and autonomous manner.

Because the radio channel properties may be different at thereceiving and transmitting mo-
bile hosts, it is preferable that both hosts execute the VS and VMAC algorithms to ensure that
the service quality will be met for a new session. This can be executed during session setup.
Admission is granted if both virtual algorithms at the mobile hosts admit the new request.

In this section, we investigate this concept through simulation of a complex configuration
with random topology and random traffic. The aim is to test howthe modified MAC and VMAC
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algorithm perform in the presence of a highly dynamic real-time and non real-time traffic mix
when the radio channel is dynamically shared among traffic streams between mobile hosts and
base stations.

Ten base stations were placed randomly on a 400m by 400m rectangular area with their
coverage areas significantly overlapping. One hundred mobile hosts were placed randomly in
the coverage area. The mobile hosts were stationary during the test. Every mobile host was
associated with the nearest base station. Half of the mobilehosts randomly generated Web
sessions and the other half randomly generated voice traffic. The length of the voice sessions
and the inter-arrival times between connection requests were exponentially distributed. The
average session length was 30s. Upon completion of a session, a mobile host attempted a new
call after an average waiting period of 10s.

Independent Virtual Source algorithms running in all base stations continuously monitored
the radio channel. Admission control was applied to delay sensitive voice sessions. When the
estimated delay exceeds 10 ms, new voice sessions were rejected from service. If accepted, the
voice packets use the modified MAC algorithm withcwmin = 32 slots andcwmax = 64 slots,
while the Web sessions use values 64 and 1024, respectively.There was no admission control
applied to Web traffic.

Figure 5.12a shows the total TCP and voice traffic rates in theentire coverage. After an
initial startup, the aggregate voice rate settles around a stable throughput, while the TCP traffic
shows high levels of burstiness.
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Figure 5.12: a) Aggregate rates of TCP and voice traffic in theentire service area. b) Estimated
delays by VS algorithms running at base stations.

Figure 5.12b shows the delay estimations by the VS algorithms running in base stations. It
can be observed that the delay estimation is kept below the admission target most of the time for
most base stations. However, the estimated delay is significantly different at a few base stations,
where, the estimated delay reaches 10 ms for long durations.These base stations did not accept
voice traffic during these periods. On the other hand, other base stations were continuously in
the accept state. This was due to the overlapping of cells andthe shared radio channel.
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Figure 5.13 shows the empirical distribution of voice packet delays from accepted sessions.
The low delays experienced indicate that the overall channel state is efficiently controlled by the
distributed monitoring and admission control algorithm, even in the presence of highly dynamic
TCP traffic.

0.000 0.005 0.010 0.015 0.020
delay [s]

10
−3

10
−2

10
−1

10
0

P
r(

d>
x)

Figure 5.13: Delay distribution of voice packets.

5.7 Conclusions

This chapter has shown how service differentiation can be provided in a mobile access network
in a fully distributed manner with minimal control. By manipulating the contention window
limits of the IEEE 802.11 DCF mode it is possible to provide service differentiation at the radio
MAC layer. The proposed MAC provides good delay and throughput separation for best effort
and high priority traffic for a range of traffic mixes and channel loads.

We have proposed two passive radio channel monitoring algorithms. By emulating MAC
(Virtual MAC) and application (Virtual Source) mechanisms, these algorithms can estimate the
achievable level of service without actually loading the channel. We evaluated the efficiency of
the Virtual MAC algorithm using simulation and implementation in an experimental differenti-
ated services wireless testbed. The notion of virtual delaycurves has been introduced in relation
to the virtual algorithms. Delay curves enable an application to tune its traffic parameters to
match the dynamic characteristics of the radio channel in anefficient manner.

We have demonstrated through simulation that thee modified MAC together with distributed
admission control algorithm can maintain a globally stablestate in a micro-cellular environment
even if cell areas overlap and the radio channel is shared.

Recently, there is a new proposed standard by the IEEE called802.11e [MCMK02], which
introduces a modification to the DCF mode called Enhanced DCF(EDCF). In EDCF, packets
in lower priority must wait a longer waiting time before theycan transmit on the channel. Our
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work predated and influenced the new proposed standard, which is very similar to our proposal.



Chapter 6

Summary

The objective of this thesis is to discuss, analyze, and improve several aspects of TCP/IP net-
works in the context of performance modeling and resource management in wired and wireless
Differentiated Services networks.

The central argument of this thesis is that to develop precise performance models, we have
to understand the interaction between network, application and end-host protocols and mech-
anisms. Only by collectively studying these issues in the context of an Internet extended by
wireless services can we fully grasp the great challenges facing the evolving nature of the global
Internet infrastructure.

In the first part of this thesis, we argued that the modeling ofTCP/IP networks requires
new analytical tools and modeling techniques, because, as we discussed, some of the major
assumptions of conventional traffic theory cannot be applied to the Internet. We argued that
the reason is because network mechanisms and end-host protocols are strongly coupled, mainly
due to the end-to-end congestion control used by the TCP protocol. In the second part of the
thesis we developed DiffServ performance management methods based on the insights from
Chapters 2 and 3 for wired and wireless networks. For wired DiffServ networks we developed
resource estimation methods based on the effective bandwidth concept in Chapter 4. In Chapter 5
we introduced a complete DiffServ solution ‘suite’ using exclusively distributed algorithms for
wireless IP networks.

In what follows, we summarize the main contributions of our work.

6.1 Chaotic Modeling of TCP Congestion Control

Chapter 2 analyzes the dynamics of competing TCP connections in bottleneck buffers. Through
simulations and network measurements, we demonstrated that TCP competition for network
resources could be modeled as a chaotic system. We demonstrated the major properties of
chaotic systems in TCP. We applied analytical methods developed in chaos theory to quantify the
properties of TCP as a chaotic system. In particular, we measured the fractal attractor dimension
and the Lyapunov exponent, which is a measure of the sensitivity to initial conditions. We
demonstrated that TCP competition could generate self-similar traffic, contributing to traffic
self-similarity observed in the Internet.
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The chaotic modeling technique allows us to understand TCP dynamics in a unified model-
ing framework by explaining previously separately modeledphenomena, such as phase effects,
synchronization and apparent randomness. We also demonstrated how we could use the tools
developed in chaos related research in other fields of science, for example, meteorology, biology
and physics.

This work represents the first analysis and modeling of TCP asa chaotic system.
A possible future direction of research is to make use of the sensitivity property of the chaotic

system, and develop chaos control methods as buffer management to improve network perfor-
mance using minute interactions.

6.2 TCP’s Role in the Propagation of Self-similarity in the Internet

Chapter 3 analyzed the adaptation property of TCP congestion control. Through a number of
wide area Internet measurements we showed that TCP propagates self-similarity encountered
on its path to other parts of the network where it self-similarity would not arise otherwise. We
presented a simple analytic model to support our arguments,which model approximates TCP
congestion control as a linear system. Linearity was demonstrated by simulations, showing
that TCP propagates the correlation structure of any stochastic background process above a
characteristic timescale. The characteristic timescale was approximated by an analytic model.
It was shown that TCP inherits self-similarity when it is mixed with self-similar background
traffic in a bottleneck buffer through the transform function of the linear system. This property
was demonstrated for both short and long duration TCP connections.

The proposed mechanisms are basic “building blocks” in a future wide-area traffic model,
and in real-life it is always their combined effect that we can observe. The network measure-
ments that we presented are intended to highlight the basic mechanisms in simplified network
scenarios, when it can be assured that only the network conditions and TCP’s response to net-
work conditions are the cause of the investigated phenomena.

The work presented in Chapter 3 shows for the first time that TCP propagates self-similarity.
Chapters 2 and 3 analyzed two aspects of TCCP congestion control. The two aspects are

strongly related since they are two sides of essentially thesame mechanism. The adaptation
property can propagate packet dynamics created by chaotic competition, but it is still an open
question how to model propagation and competition in the same modeling framework.

6.3 Resource Management for Differentiated Services Networks

Chapter 4 introduced a set of resource estimation methods for wired Differentiated Services
networks. We derived several analytic formulae for the estimation of required resources to pro-
vision loss and delay sensitive service classes. The properties of a DiffServ framework were
taken into account, namely, aggregate traffic handling, simple scheduling and traffic condition-
ing at the edges. The models behind the proposed methods are based on the assumptions of the
statistical properties of TCP/IP traffic flows analyzed in Chapters 2 and 3.

The proposed methods can be used for either admission control or network dimensioning.
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We built on previous research results, and analyzed their weaknesses and strengths from the
perspective of practical application in real networks.

A possible future direction of the research discussed in this chapter is to analyze the ro-
bustness of these methods in a real network or a realistic testbed. We have analyzed a simple
DiffServ router implementation using SPQ schedulers. We have started research to investigate
how to apply the theorems for other types of class based scheduling methods, for example,
Weighted Fair Queuing (WFQ) or Weighted Round Robin (WRR).

6.4 Providing Differentiated Services in Wireless Packet Networks

We developed a set of distributed algorithms to offer service differentiation in wireless packet
networks. The methods are general to be used in a wide range ofwireless technologies, however,
to be able to demonstrate the feasibility of the framework, we have applied them as an extension
of the IEEE 802.11 wireless LAN standard.

The contribution of our research is that the proposed solution is fully distributed and robust
against traffic fluctuations, host mobility or uncontrolledinterference. We have demonstrated
through simulation that the modified MAC together with a distributed admission control algo-
rithm can maintain a globally stable state in a micro-cellular environment even if cell areas
overlap and the radio channel is shared.

We have implemented passive radio channel monitoring and the Virtual MAC algorithm in
a IEEE 802.11 testbed. Our future research is to integrate the DiffServ solution with Cellular
IP [Val99], which provides a solution for mobility management. We also plan to implement the
full suite of algorithms in a testbed, which will include themodified MAC and virtual control
algorithms and will provide support for service level agreements with fast handoff.

The work presented in this chapter presents the first attemptto engineer service differentia-
tion in wireless IP networks based on IEEE 802.11.
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Proofs for Effective Bandwidth Bounds

A.1 Finding an Approximate Value for s

To obtain an approximation of the optimals the same derivation can be used forBW A and
BW G. ForBW A consider all flows as one group.
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1
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The objective is to approximate this equation with a closed form solution for the optimals.
The key idea is to arrive to a polynomial ofBW in s, that can be optimized in a closed form.

Step 1.In the first step, we approximate the first sum:
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Forhk/(e
shk − 1) we take the series expansion with respect to variables abouts = 0 up to

order two.
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Substituting the first 3 elements to the first sum we get
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using the notationHi =
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Place the approximation inF1:
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whereM =
∑N

i=1 Mi, H =
∑N

i=1 Hi andĤ =
∑N

i=1 Ĥi.
Step 2.In step 2, we approximate the second sum:
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Take the series expansion of the logarithm with respect to variable s abouts = 0 up to order
two:
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With this approximation:
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Step 3.Substituting the two approximationsF1 andF2 back toBW G we get:
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Step 4.Our objective was fulfilled, the resulting approximation issecond order with respect
to s. The single minimum is at

sopt ≈
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A.2 Effective Bandwidth for Delay Sensitive Classes

Proof of Lemma 1 We want to prove that the buffer occupancy curve is related tothe effective
load:

∆O(t) = B(t) − Ct (A.11)

During a busy period, aftert seconds from the beginning of the busy period, the buffer
occupancy equals the total traffic entering the queue minus the amount of traffic serviced from
the queue:

Q(t) =
N∑

k=1

Xk[t] − Ct (A.12)
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If we insert (A.12) into Definition 3 we get

Pr

(
N∑

k=1

Xk[t] − Ct ≥ ∆O(t)

)
≤ ǫ (A.13)

Now apply Definition 2 about the effective load. This concludes the proof.�

A.3 Delay Bounds for Multiple Queues

Proof of Lemma 2 The amount of service unused by all higher priority queuesl < k during
time interval of lengtht is:

Uk(t) =
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i∈X1...k−1

Xi(t)




+

(A.14)

Thust seconds after the beginning of a busy period of queuek, the buffer occupancy is

Qk(t) =
∑

i∈Xk

Xi(t) − Uk(t) ≤
∑

i∈X1...k

Xi(t) − Ct (A.15)

Applying the effective load bound for the setX1...k with probability ǫk:

Pr
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 ≤ ǫk (A.16)

This concludes the proof of Lemma 2.�

Proof of Lemma 3The amount of unused service(A.14), is

Uk(t) ≥ Ct −
∑

i∈X1...k−1

Xi(t) (A.17)

From the definition of the effective load of setX1...k−1:

Pr
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 ≤ ǫk (A.18)

which concludes the proof.�
Proof of Lemma 3The probability ofPr(X ≤ Y ) can be expressed as

Pr(X ≤ Y ) =

∫ ∞

0
Pr(X = x) Pr(Y ≥ x)dx (A.19)

Pr(X ≤ Y ) =
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0
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If Pr(Y ≤ c) ≤ ǫ, the first term
∫ c

0
Pr(X = x) Pr(Y ≥ x)dx ≤ ǫ

∫ c

0
Pr(X = x)dx ≤ ǫ (A.21)

and, ifPr(X ≥ c) ≤ ǫ, the second term
∫ ∞

c
Pr(X = x) Pr(Y ≥ x)dx ≤

∫ ∞

c
Pr(X = x)dx ≤ ǫ (A.22)

This concludes the proof.�
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