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Abstract— In this paper we develop a simple but effective
mathematical model to capture the file population dynamics
of file-sharing peer-to-peer systems. Our modeling framework
is based on the theory of branching processes. We describe
analytically the behavior of the proposed model. The precise
characterization of the necessary and sufficient conditions of
population extinction or explosion is given based on the system
parameters. We also present the expected ratio of active, passive
and dead peers for the long-term regime. We validate and
demonstrate our results in several simulation studies. Based on
our results we propose a number of engineering guidelines tothe
design and control of file-sharing P2P systems.

I. I NTRODUCTION

Recent traffic measurements (e.g. [1]) show that the work-
load generated by P2P applications are the dominant part of
most of the Internet segments. In spite of the fact that the
popularity of current P2P applications changes fast, it seems
that the file sharing-like applications were, are and probably
will be the most popular application type among all the P2P
applications. P2P file sharing also shows an evolution starting
from Napster and going through many new developments
resulted in Gnutella, Kazaa, Morpheus, eDonkey, BitTorrent,
etc.

In this paper we analyze the population dynamics of a file-
sharing peer-to-peer system. We build up a general model
which is capable of capturing all the important character-
istics of relevant P2P file-sharing systems. We perform a
comprehensive performance analysis based on the theory of
branching processes. We investigate the characteristics of the
system and present several results about the necessary and/or
sufficient conditions of extinction, stagnation and explosion
of the population size of shared files. Our analytical results
are validated by a simulation study and we also present a
number of examples about the evolution of population size
in different cases. Finally, we derive a number of useful
engineering guidelines from the results which may help the
design and the control of peer-to-peer file sharing systems.

A. Related work

Most of the early P2P research was mainly focused on traffic
measurements and design. These fields are still active and
recently several studies were published reporting resultson
these areas with related characterization studies, e.g. [9]. On
the other hand, the performance evaluation of P2P systems
is becoming a hot topic of recent research. Starting from

[10] where a closed queueing system is used to analyze the
performance of a P2P system a number of new results were
published trying to get some more understanding about the
behavior of such systems. Focusing only on the topic of this
paper papers [2], [3], [4], [5], [6], [7], [8] are the most closely
related published results.

In [5] the authors studied the service capacity of a P2P
system both in the transient regime with a branching process
model and also in the stationary regime with a Markov chain
model. They have found, among others, an exponential growth
of service capacity during the transient phase. Several papers
focused on the currently popular BitTorrent P2P applications,
e.g. [2], [8], [4], [7]. The authors of [2] have applied a
fluid model to reveal the performance and scalability aspects
of BitTorrent. [8] presents an extensive trace analysis and
modeling study of BitTorrent-like systems. The recent paper
[4] uses a deterministic fluid model and a Markov chain to
study the system behavior and an approximation for the life
time of a chunk in BitTorrent is also proposed. The behavior of
the peers in BitTorrent is studied in the recent paper [7], where
the authors also investigate the file availability and the dying-
out process. The population dynamics of the P2P systems
is also addressed in [3], where a spatio-temporal model is
proposed to analyze the resource usage of the system.

The main difference between these papers and our paper is
that our analysis is entirely based on the theory of branching
processes. We create a reasonable model for filesharing P2P
system and derive a detailed characterization of the systemin a
particular way. In the most related previous work the authors in
[5] also applied a branching process model but their analysis
was restricted to showing the sensitivity of the exponential
growth behavior to the system parameters in the transient
regime. [5] uses the simplest branching model to explain the
basis of population growing without any consideration of a
real P2P system operation.

II. M ODELING FILE POPULATION OF P2P SYSTEMS

The objective of the proposed model is to describe the main
characteristics of P2P file-sharing systems: the population of
shared files. Technically, all the available P2P file-sharing
systems apply the same rule. P2P users contribute to the
common system resource by providing the access to a set
of their files and they have access to the common resource
in return. In general, the common resource consists of one



or several copies of some individual, unique files. This is
straightforward since a unique file provided by a P2P user
in the file-sharing system will be downloaded by the other
peers and some of them will also share this one to the system.
The system state is modified each time a file download is
completed.

From a modeling point of view the operation of P2P systems
can be simplified by focusing on an individual file. At a certain
point in time, a file is first introduced into the system. Assum-
ing that this individual is ’interesting’ for the community: it
could be a new movie video or a popular MP3 song. Probably
this file will be downloaded by some other peers and now there
are already several copies of the file in the system. The new
copy can also be cloned by further peer’s download and so
on. This mechanism is very similar to the branching process
model of population growth, mainly applied in the field of
biology. This suggests the idea of using branching processes
to model the file population of the P2P file-sharing systems.
Results from the analysis of branching processes can give us
a detailed understanding of the population size of shared files,
which is the most important feature of a P2P system. The
conditions related to the explosion, stagnation or extinction of
the population could be the milestones of a successful P2P
system design.

Branching processes have been studied for over a century.
The applications of branching processes are found in many
areas such as population dynamics, algorithms, molecular
biology, etc. The simplest single type discrete time branching
model is presented in the next section.

A. Branching Processes

Suppose that at the beginning there areX0 individuals.
In every generation each individual independently gives rise
to a number of offsprings. Denote byξ(n)

1 , ξ
(n)
2 , . . . , ξ

(n)
Xn

the
number of offsprings ofXn individuals in thenth genera-
tion. ξ

(n)
1 , ξ

(n)
2 , . . . , ξ

(n)
Xn

are i.i.d. random variables having the
distribution:

P[ξ = k] = pk, k = 0, 1, 2, . . . (1)

The total size of the population in the(n + 1)st generation is

Xn+1 = ξ
(n)
1 + ξ

(n)
2 + . . . + ξ

(n)
Xn

. (2)

The sequence{Xn}∞0 is called a branching process with
initial population sizeX0 and offspring distribution{pj}.
The definition of branching process assumed thatXn is
independent ofξ(m)

k for all m, k.
Denote the mean and variance of the number of offsprings

of an individual byµ = E[ξ] and σ2 = Var[ξ]. It can be
shown, e.g. in [1], that the mean and variance of the population
size in thenth generation, denoted byM(n) = E[Xn] and
V (n) = Var[Xn], satisfy

M(n) = µM(n − 1)

V (n) = σ2M(n − 1) + µ2V (n − 1).

t
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η1, η2, η3, . . . i.i.d. ∼ Ta = exp(α)

Fig. 1. Branching process-like file replications in the P2P system

By iterating, we have

M(n) = µnM(0). (3)

If we impose thatX0 = 1 then

M(n) = µn

V (n) = σ2(µn−1 + µn + . . . + µ2n−2).

The mean of offsprings (µ) has direct impact on the behavior
of population growth: extinction or explosion. The branching
processes withµ < 1, µ = 1, and µ > 1 are referred to
assubcritical, critical, andsupercriticalbranching processes,
respectively. In the first two cases the popularity dies out with
probability 1, while in the last case the population size tends
to ∞ as n increases. An important difference between the
subcritical and critical cases is that the mean of the extinction
time T = min{n ≥ 1 : Xn = 0} is finite for µ < 1, i.e.,
E[T ] < ∞, and infinite forµ = 1. Note that in both cases
P[T < ∞] = 1 [1].

B. Age-Dependent Multitype Branching Process Model of File
Population

The real operation of the P2P system is much more com-
plicated than the model discussed above. Several important
properties of real P2P systems must be taken into account:

• Offsprings (copies) of an individual (file) are born at
different (random) points in time.

• Free riding problem: there is always a group of peers
who download files without contributing to the system by
making their files accessible to the others. The offsprings
owned by these peers will have no descendants. They are
considered ’dead’ from the point of view of the system.

• Peers possessing the concerned file may not share the
file constantly. Sometimes they can be offline when
downloads from that peer are not possible.

In addition, a file can be downloaded in some parts from
several peers having the same file in the P2P system. It means
that several similar individuals may contribute to the origin
of an offspring. Furthermore, peers can even share incomplete
objects in some P2P applications. However, this kinds of births
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Fig. 2. The state transitions and probabilities

have little impact on the overall population of the system in
general. Therefore we assume only single and complete parent
model in our description. In other words, a file can be shared
only if it is complete and it has the origin from only one peer.

Combining these characteristics we propose a model of age-
dependent multitype branching process for P2P file-sharing
system. We differentiate between two types of peers owning
the concerned file: cooperating peers and free riders. Afterthe
successful download of a file the cooperating peers will share
the file with the system, contributing to the newer copies of
the file in the system. Further, cooperating peers have two
possible states, active (A) and passive (P), correspondingto
their online and offline activities. An online peer can give
rise to a new copy while offline peers are unaccessible, thus
do not create new offsprings. Non-cooperating peers or free
riders are considered as dead (D) peers (copies), since they
do not contribute to the birth of any offsprings. The possible
transitions between states and the corresponding probabilities
are shown in Fig. 2.

We assume that an active peer can only change its state
when the offspring is born. To be more specific, when an
individual is born, it has to choose to be active, passive or
non-cooperative, i.e. ’dead’. If the individual is active,it will
stay in this state until its offspring is born. State transitions of
active peers only happen at these instants.

In the model we use the following assumptions and nota-
tions:

• The age time, i.e. the age of the parent when offspring is
born, is a random variableTa with an exponential distri-
bution with meanα. A peer can have several offsprings
during their activity time (lifetime) in the system. The age
of the parent is counted from the parent’s activation time,
i.e. when it turns from passive to active or it is just born,
or from the birth of the last born offspring (see Fig. 1).

• The offline time of a peer (length of passive period) is
also an exponential variableTp with meanβ.

• The expected value of offsprings in a single birth isλ.
This parameter expresses the average number ofexact
parallel downloads from a peer. In the P2P caseλ ≡ 1,
since the probability that multiple downloads of a file
from a peer end at the same time is zero. However, we
useλ in the general discussion of the model.

• Let {πi}3
i=1 be the probabilities that a new peer becomes

active, passive or dead. Clearly,
∑3

i=1 πi = 1. From this
point the lower indices1, 2, 3 will refer to active, passive
and dead peer states.

• The type-transition matrix which describes the probabil-
ities of state transitions is the following:

A
P
D

A P D




p11 p12 p13

p21 0 p23

0 0 1




,

where A, P and D stand for active, passive and dead
state, respectively. For example:P[active→ dead] = p13.
Obviously,

∑3
j=1 p1j = 1, p21 + p23 = 1 since the type-

transition matrix is a stochastic matrix.
With the assumptions of the memoryless property of the age

time Ta and the offline timeTp the population size process is
Markovian. The next section derives the expected size of the
population and the most important features of the process.

III. A NALYSIS OF THE MODEL

A. Model description

In this subsection we show how our branching process
model can be characterized by its transition operator and we
derive the operator parameters from our P2P system model
parameters.

Theoretically, if the generating function [1] of a branching
process is known, then all important properties of the process
is determined (e.g. the extinction probability, the expected pop-
ulation size, the deviation of size). Unfortunately, to determine
the generating function of the proposed branching model, the
following probabilities should be calculated:

P[the number of active and passive peers at timet0 is (k, l)],

which is a very complicated task. Therefore we avoid the use
of generating functions.

Let Zt = (Z
(1)
t , Z

(2)
t , Z

(3)
t ) be the vector representing the

population size of active, passive and dead peer at the time
instantt. Let Mt be the transition operator defined by:

Zt = MtZ0.

It is easy to see that the process we investigate depends linearly
on Z0, which means thatMt is a random matrix.

First of all, since the process is Markovian it can be realized
that the following equation holds:

Mt+s = MtMs, (4)

where Mt and Ms are independent random matrices. This
implies:

lim
n→∞

(EMt/n)n = EMt (5)

The element(EMt)1,1 of the matrix EMt can be deter-
mined as follows. Let us choose an appropriate small time
interval δ ∈ R

+, such that the probability that two or more
downloads are finished inδ is o(δ), wherelimδ→0

o(δ)
δ = 0.

Thus the probability that an active peer is going to have
children within the time intervalδ is δ

α + o(δ). Similarly, we
have:

P[a passive peer becomes active withinδ] =
δ

β
+ o(δ).



The average number of active peers produced by one active
peer after the time intervalδ is λπ1

δ
α because there areλ

offsprings on average and onlyλπ1 will be active. But an
active peer may also become passive or dead with probabilities
p12 and p13; the probability that no file-sharing happens is
1 − δ

α + o(δ). Then,

(EMδ)1,1 =
δ

α
λπ1 + (1 − p12 − p13)

δ

α
+

(

1 − δ

α

)

. (6)

Using similar considerationsEMδ is given by:

EMδ =





1 0 0
0 1 0
0 0 1





︸ ︷︷ ︸

I

+δ






λπ1+p11−1
α

p21

β 0
λπ2+p12

α − 1
β 0

λπ3+p13

α
p23

β 0






︸ ︷︷ ︸

A

+o(δ).

Letting δ = t
n , we get

EMt = lim
n→∞

(
EMt/n

)n
= lim

n→∞

(

I +
At

n

)n

= exp(At) (7)

(7) implies thatEZt grows exponentially with a rate de-
termined by the eigenvalues ofA. Let γi, i = 1, 2, 3 be the
eigenvalues ofA. It is clear that one of them is zero. Put
γ3 = 0. The other two eigenvalues ofA are given by:

γ1,2 =
−b ±

√
b2 − 4c

2
, (8)

where

b := −(a22 + a11) =
1

β
− λπ1 + p11 − 1

α
,

c := a11a22 − a12a21 =
(1 − λπ1 − p11) − p21(λπ2 + p12)

αβ
,

aij is the(i, j)-th element ofA.
Considering (8) one can clearly see thatγ1,2 are real

numbers sincea12, a21 ≥ 0. In addition,γ1 = γ2 if and only
if {

a11 = a22 = − 1
β < 0

p21 = 0 or (π2 = 0 andp12 = 0)
, (9)

i.e., γ1 = γ2 < 0 and eitherp12 = 0 or p21 = 0.
This means that either active peers cannot become passive
or passive ones cannot become active. This is completely
unlikely and unrealistic regarding the concerned systems.Thus
the investigation of this case is ignored. Putγ1 > γ2.

B. The expected population size of the process

Using the model description presented above some impor-
tant properties of the system can be derived. In this subsection
we present several necessary and/or sufficient conditions of
extinction, stagnation and explosion of the population size of
shared files. The ratio of active, passive and dead peers in the
long-term behavior is also provided.

Since the maximal eigenvalue ofA determines the behavior
of the process, it is worth differentiating between two cases:

• max{γi} > 0, i.e. there exists at least a positive eigen-
value ofA (so γ1 > 0)

• max{γi} = 0, i.e. γ1,2 ≤ 0.

Lemma 1: If the condition
(

π1

π2

≤ 1 + p13

p12

)

holds, the ma-
trix A has positive eigenvalue(s) if and only if

∃i : γi > 0 ⇔ λ >
(p12 + p13) + p12p21

π1 + π2p21
(10)

Note thatλ = 1 in our particular model.
The next statement provides the sufficient conditions for the

existence of positive eigenvalues ofA.
Lemma 2:There exists a positive eigenvalue ofA if any of

the following two conditions hold:
(i) λ > (1−p11)+p12p21

π1+π2p21

(ii) λ = 1, 1 − p11 ≤ min{π1, π2}, andp13 6= 0
Proof: The proofs of lemmas and propositions presented

in this paper are detailed in [14].
Lemma 1 and 2 show the conditions for the existence of
positive eigenvalue(s). These results are important sincewe
will show later in Lemma 6 that the existence of positive
eigenvalues results in the explosion of the population size.
It is interesting that the sufficient conditions do not depend on
several parameters, e.g.α, β, p12, and alsop21 in Lemma 2(ii) .

The following lemma shows conditions for non-positive
eigenvalues.

Lemma 3: If λ = 1 and the following conditions hold
thenA has only non-positive eigenvalues, which implies that
the population will stop growing with probability1 (see
Lemma 5):

p12 ≥ max{π1, π2}
1 − p11 ≥ π1

}

⇒ γi ≤ 0 ∀i (11)

If γ1,2 6= 0 the eigenvectors ofA associated to the
eigenvaluesγ1,2,3 are the followings:

s1 =





p21

β

γ1 − λπ1+p11−1
α

p23

β + a31a12−a11a32

γ1



 ;

s2 =





p21

β

γ2 − λπ1+p11−1
α

p23

β + a31a12−a11a32

γ2



 ; s3 =





0
0
1



 .(12)

Sinceγ1 > γ2, the three eigenvectors form a basis inR
3 and

the expected number of peers will be the following:

E[Zt] = exp(At)Z0 =

3∑

i=1

cie
γitsi, (13)

whereci, i = 1, 2, 3 are given as the solution of the equation
systemZ0 ≡ (Z

(1)
0 , Z

(2)
0 , Z

(3)
0 ) =

∑3
i=1 cisi. Z0 is the initial

state of the system.
If γ1 = 0 or γ2 = 0 (only one of them can be zero)A has

only two eigenvectors, the previous calculation is not valid in
this case. However, it can be shown that the rank ofAk is 1
if k ≥ 2, i.e.,

Ak = (xyT )k = x(yT x)k−1yT (14)

where

x =





p21

β

− 1
β

a31a12+a32a22

a11+a22



 y =





β
p21

λπ1+p11−1
α

1
0







andyT is the transpose ofy. Since the third eigenvalue of A
is yT x = a11 + a22, clearly it is not zero.

exp(At) = I + t (A − xyT )
︸ ︷︷ ︸

L

+xyT exp(yT xt) − 1

yT x
(15)

where

L =
a11a32 − a31a12

a11 + a22





0 0 0
0 0 0
−a22

a12

1 0



 (16)

It is easy to see thatL exerts an influence only on the number
of dead peers.

Summarizing the results:
Proposition 1: The expected value of file population at time

t is given by

E[Zt] = exp(At)Z0 =

=







∑3
i=1 cie

γitsi if γ1, γ2 6= 0
Z0 + t(LZ0) + x(yT Z0)

1
γ2

(eγ2t − 1) if γ1 = 0

Z0 + t(LZ0) + x(yT Z0)
1
γ1

(eγ1t − 1) if γ2 = 0

(17)

Note thatx = s1 if γ2 = 0 andx = s2 if γ1 = 0.
This yields some important results:
Lemma 4: If γ1 = 0 the expected numbers of active and

passive offsprings are bounded while the expected value of
dead offsprings grows linearly ast tends to infinity.

Lemma 5: If γ1 < 0, the process will stop growing with
probability1.

Lemma 5 shows that in case of the existence of non-positive
eigenvalues the population will become extinct. It is also
interesting that the sufficient conditions in Lemma 3 do not
depend onα, β, andp21.

Lemma 6: If the matrix A has a positive eigenvalue, i.e.
γ1 > 0, the mean number of active, passive and also dead
peers tends to infinity. However, the process can still die out
in this case, even with a very small probability.

This lemma shows that the existence of the positive eigen-
value which determined by the parameters as shown by
Lemma 1 and 2 yields to the explosion of population size
of shared files.

Proposition 2: The proportion of active, passive and dead
peers converges to a deterministic vector, namely

lim
t→∞

Zt

‖Zt‖1
=

=

{
s1

‖s1‖1

if γ1 > 0 and limt→∞ ‖Zt‖1 = ∞
(0, 0, 1) if γ1 ≤ 0 or limt→∞ ‖Zt‖1 < ∞ . (18)

IV. RESULT VERIFICATION AND IMPLICATIONS

We have implemented a simulation study to verify the re-
sults presented in the previous sections. The simulation results
are shown in this section. In addition, the implications of the
results and some engineering guidelines are also describedand
discussed.
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Fig. 3. The case of population extinction
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A. Simulation results

The P2P system model as described in section II-B is
simulated using Matlab. The parameterλ is set to be 1, i.e.,
only an offspring is born from its parent at a certain point
in time. We will show how the set of system parameters can
predict exactly the long-term behavior of the P2P system.

Set α = 4, β = 5, π1 = π2 = 0.05; p11 = 0.25, p12 =
0.5, p21 = 18/19. It is easy to calculate that the conditions
of Lemma 5 are satisfied. This means that the matrixA has
only non-positive eigenvalues, i.e. the file population dies out
almost surely. The exact values ofγ1 and γ2 are calculated
to be -0.025 and -0.349, respectively. The simulation result
is shown in Fig. 3. The figure displays the change of active
and passive peers in the function of time. Once the number of
these peers is zero the system is extinguished. It can be seen
that it happens after about 160 time units.

If we changeπ1 = 0.15, π2 = 0.25 while keeping the
others unchanged the Lemma 2 holds. This implies that the
population of all types of peers is likely to tend to infinity.
The exact calculation providesγ1 = 0.015, γ2 = −0.365. The
growth of population is also justified by simulation results, see
e.g. Fig. 4. Furthermore, the proportion of active, passive, and
dead peers are very close to the expected values. Recall that
by the result of Prop. 2 the ratio of peer types is determined by
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Fig. 5. The effects of free loaders

the eigenvectors1 corresponding to the maximal eigenvalueγ1

which is calculated to be about6 : 5.3 : 88.7 [%]. At the end
of simulation this ratio is actually registered as6.1 : 5.4 : 88.5
[%].

Recent results in the research of P2P systems [11], [12],
[13] claim the important effects of free riding (peers that do
not share). However, our analytical result shows that while
free riding is an important factor in P2P system performance,
it is not necessarily the only one that determines the system
behavior. For instance, setπ1 = 0.05, π2 = 0.05; p11 =
0.95, p12 = 0.02, p21 = 0.65. In this case 90% of the
downloads are free riders but with the proper setting of the
other parameters the system capacity still grows, see Fig. 5(a).
In contrast, in another case (π1 = 0.7, π2 = 0.05; p11 =
0.2, p12 = 0.1, p21 = 0.6), Fig. 5(b), when only 25% of
the downloads is performed by freeloaders the system still
collapses after a finite lifetime.

Finally, in Fig. 6 we present a case study when the system
parameters are changed during the system operation. Origi-
nally the system has the parameter setπ1 = 0.16, π2 = 0.04,
p11 = 0.5, p12 = 0.45, p21 = 0.75, which implies that the
population will grow to infinity (γ1 = 0.0047). This growth
can be seen in the left half of the figure. At timet0 ≃ 650
we modify some parameters such thatπ1 = 0.04, π2 = 0.16,
while the others are unchanged. The new parameters predict
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Fig. 6. The parameter set is changed at time instantt0 ≃ 650

the extinction of the population (γ1 = −0.00039), which is
justified by the right side of Fig. 6. The system actually died
out at about 1350.

B. Applicability of the model

It is important to verify the model in a real P2P system.
However, without the access to the source codes of these
running systems the model parameters are hard to collect.
Unfortunately, a normal network monitoring cannot provide
all needed information to use in the model. We are working on
this issue but the model verification in a working P2P system
is not addressed in this paper.

Nevertheless, this issue is straightforward in the case of the
system operators. By putting a built-in statistical monitor in
their software the model parameters can easily be estimated
over time. With the help of the model the operation tendency
of the system can be predicted. The impact of their possible
modifications and developments can also be easily measured.

C. Practical implications

The proposed branching process model of P2P filesharing
systems provides a very clear, simple, and reliable description
of the population dynamics of the shared files in the system.
The model establishes several practical implications which
should be carefully considered by P2P system designers and
operators.

• If the population grows, the rate of growth is exponential
(see (7)).

• Under some certain conditions, the long-term behavior of
the system does not depend on several system parameters
(see details in Lemma 2 and 5).

• As presented above we argue that the presence of free
loaders is not the only factor which determines the system
performance. It is one among many other important
system descriptors: cooperative peers, online/offline times
of peers, age times, etc.

• The model can predict exactly the long-term performance
of the system using its set of parameters. A successful
system design should apply rules and techniques, e.g.
incentives and/or reputation index, which somehow force



the possible ranges of system parameters such that the
shared files’ population grows.

• The results are also valid with different system starting
conditions. The impact of new modifications, develop-
ments, or any other external circumstances, provisions
can be immediately measured, estimated for an ongoing
(already under operation) P2P system using a built-in
statistical monitor of the software.

• In the long term with a fixed combination of parameters
the system population dies out or grows exponentially
or linearly (see Prop. 1). There is no other possibility.
Nevertheless, in practice the system may exhibit short
term stationary behavior several times during its lifetime.

V. CONCLUSION

In this paper we presented a mathematical model to capture
the main characteristics of file-sharing peer-to-peer systems.
Our model is general and flexible enough to be applied
for most of the file-sharing P2P applications in current use.
Our results clearly predict the long-term dynamics of the
population size.

We have shown that with fixed values of the parameter set
the file population will either explode or die out. The important
conditions that depend on the system parameters and that
determine which case will happen are derived. We also derived
the ratio of active, passive and dead peers in the long-term
regime and showed that the growth is exponential. Using our
results we have found some important practical implications:
the population can explode even if most of the peers are free
loaders, and the population can become extinct even if most
of the peers are cooperative. We can conclude that the free
loaders are not the only factor which determines the system
behavior.

We proposed some useful guidelines which can help the
design and control of such systems since according to our
results one can control and predict the system behavior in the
future.
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